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Abstract—The implementation of algorithms for acoustic
source localization on edge platforms for the Internet of Things
(IoT) is gaining momentum. Applications based on acoustic
monitoring can greatly benefit from efficient implementations
of such algorithms, enabling novel services for smart homes
and buildings or ambient-assisted living. In this context, this
work proposes extreme low-cost sound source localization system
composed of two microphones and the low power microcontroller
module ESP32. A Direction-Of-Arrival (DOA) algorithm has
been implemented taking into account the specific features of
this board, showing excellent performance despite the memory
constraints imposed by the platform. We have also adapted off-
the-shelf low-cost microphone boards to the input requirements
of the ESP32 Analog-to-Digital Converter. The processing has
been optimized by leveraging in parallel both cores of the
microcontroller to capture and process the audio in real time. Our
experiments expose that we can perform real-time localization,
with a processing time below 3.3 ms.

Index Terms—ESP32, Embedded Systems, Sound Source Lo-
calization, DOA Estimation.

I. INTRODUCTION

Sound in general, and speech in particular, constitutes a
natural and intuitive modality for the development of human-
machine interfaces. The use of location information and its
potential for the development of ambient intelligence applica-
tions has significantly promoted the design of local positioning
systems during the last decade [1]. As a representative exam-
ple, in Ambient-Assisted Living (AAL) applications, location
information is really valuable, since knowing the position of
the user enables the implementation of services that may make
the living environment easier, safer or more comfortable [2].
Moreover, the use of sound in AAL systems is significantly
beneficial, since it has been shown that microphones can be
easily integrated into existing living environments and they
tend to be smaller, lightweight, and less intrusive than video
cameras [2].

From the hardware perspective, audio capturing and pro-
cessing is considered a challenging problem, which involves
a trade-off between the complexity of the audio processing
task and the hardware resources [3]. The audio monitoring
process introduces some specific requirements on hardware
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platforms. On the one side, audio signals are normally sampled
at relatively high rates, demanding large memories and high
computational capabilities. On the other side, signal process-
ing tasks should be programmed carefully to deal with the
audio sampling process and to optimize the system resources
properly.

Estimating the Direction-Of-Arrival (DOA) of multiple
sound sources in a real scenario is a difficult task [4]. Cross-
correlation-based methods have been widely applied in DOA
estimation [5]. However, for small devices with close micro-
phones, these methods usually offer poor angular resolution,
motivating the use of subspace or time-frequency-based ap-
proaches [6]. When only two microphones are used, DOA
estimation is usually performed by estimating interchannel
amplitude and time differences, as sound arrives slightly earlier
in time at the microphone that is physically closer to the
source, and with somewhat greater energy [7]. Moreover,
sound sources can be usually assumed to be disjoint in the
time-frequency domain [7] and, thus, the analysis of temporal
(phase) and amplitude differences at each time-frequency bin
facilitates the identification of several simultaneously active
sources. Such analysis implies an intensive use of Fast Fourier
Transform (FFT) operations, which may be appropriately
handled by the hardware and accommodated within its general
operation without affecting other concurrent tasks.

Multiple embedded platforms have been used in Internet-Of-
Things-based applications. In fact, most of them are analysed
in [8] for carrying out a personalized stress detection. In [9],
a wearable Internet of Things (IoT) Monitoring device uses
an Arduino Due for improving battery life and false alarms at
photoplethysmogram analysis. An audio-assisted system for
understanding Braille symbols is developed in [10]. Most of
these works make use of a Raspberry Pi for data processing.
However, the energy consumption and the economic cost of
the Raspberry is higher than what is expected from a low-cost
and low-power system in comparison to other alternatives such
as the ESP32. Especially, the study carried out in [11] points
out the difficulties of implementing a real-time sound source
localization system that works properly in a general-purpose
platform. The authors of this work propose an Application-
Specific Integrated Circuit (ASIC), which, spite of fulfilling
real-time constraints, limits possible improvements related
both in circuit design and in the localization algorithm.

The ESP32 is a general-purpose low-cost, low-power
system-on-chip series of microcontrollers with Wi-Fi and
Bluetooth capabilities and a highly integrated structure pow-
ered by a dual-core Tensilica Xtensa LX6 microprocessor. The
main goal of this paper is to design and evaluate a DOA-based
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sound-source localization system using two microphones im-
plemented on an ESP32 platform, which is considered to be
an excellent option for data processing due to its performance,
low-power consumption and price, as shown in [12], [13].

This manuscript presents hardware design and development
details of a real-time sound source localization system us-
ing low-cost off-the-shelf components providing low-power
consumption features. Specifically, the system has been im-
plemented over a widely employed general-purpose micro-
controller, facilitating its integration into IoT-based acoustic
applications. To this end, the edge computing paradigm is
followed, where all the processing is carefully accommodated
within the system itself, avoiding any unnecessary communi-
cation with other components or with the cloud. Therefore,
the system can be successfully exploited without incurring
problems related to data protection regulations. Moreover, the
localization system, besides running in real-time, only makes
use of a small part of the computational power of the pro-
cessors, leaving room for other simultaneous processing tasks.
Finally, it should be emphasized that sound-source localization
systems for industrial applications have traditionally made use
of dedicated hardware [14]. Thus, the proposed system may
be seamlessly incorporated with little cost into a wide range
of existing applications.

The contributions of the paper are: 1) a detailed system
design and implementation considering the limited hardware
and processing resources of the ESP32 and the microphone
subsystem; 2) a comparative evaluation of a time-frequency-
based DOA estimation system implemented on a PC and
in ESP32, considering different programming languages and
resources; and 3) an evaluation of the localization accuracy of
the final system in a real office scenario. Besides, we present a
solution to several constraints of the ESP32 in order to process
two audio channels concurrently.

II. DOA ESTIMATION MODEL

This section presents the signal model and localization
method that motivates our proposed implementation.

A. Signal Model

Consider two microphones, m = 1, 2 and N sound sources
located on the azimuth plane, each one emitting from an angle
θn ∈ [0, π] with respect to the center of the two microphones
(see Figure 1). The discrete-time signals captured by the
sensors can be expressed as

xm[t] =
N∑
n=1

sn[t] ∗ hmn[t], m = 1, 2, (1)

where sn[t] is the signal emitted by the n-th source and hmn[t]
is the impulse response of the acoustic channel from the n-th
source to the m-th microphone. Since location information is
contained on the direct-path delays between the two micro-
phones, we omit possible acoustic reflections and consider a
simplified free-field model where the impulse responses are
given by hmn = amnδ(t − τmn), where amn is a scalar
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Fig. 1. DOA estimation geometry.

amplitude decay factor and τmn is a direct-path delay. The
microphone signals are therefore given by

xm(t) =
N∑
n=1

amnsn[t− τmn], m = 1, 2. (2)

Equivalently, in the Short-Time Fourier Transform (STFT)
domain, the microphone signals are

Xm[k, l] =

N∑
n=1

amnSn[k, l]e−jωkτmn , m = 1, 2. (3)

where Sn(k, l) denotes the coefficient of the n-th source at
frequency bin k and time frame l, and j =

√
−1. The term

ωk = k 2π
K , k = 0, . . . ,K−1 is the normalized digital angular

frequency considering K FFT points.

B. DOA Estimation

Assuming plane-wave incidence from an angle θn and
an inter-microphone distance d, the time delay in seconds
between the two microphones is given by

∆τn =
1

fs
(τ1n − τ2n) =

d

c
cos(θn), (4)

where c is the sound propagation speed (≈ 343 m/s) and
fs is the sampling frequency of the acquired signals. The
corresponding phase difference between the two microphones
at a frequency ωk is therefore given by

∠

(
X1(k, l)

X2(k, l)

)
= ωk

fsd

c
cos(θn), (5)

where ∠(·) denotes the phase of a complex number.
As a result, the cosine of the DOA angle can be estimated

for each time-frequency point (k, l) as

ĉos(θ)(k, l) =
1

fsd

c

ωk
∠

(
X1(k, l)

X2(k, l)

)
(6)

For phase differences having a magnitude higher than π, the
resultant wrapping makes such difference ambiguous. There-
fore estimates corresponding to ωk > π c

dfs
are discarded, i.e.

the maximum non-ambiguous FFT coefficient is

kmax =

⌊
K

2

c

d · fs

⌉
, (7)
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Fig. 2. An example histogram of DOA estimates with three sources.

where b·e denotes the rounding operator. Note that small
microphone distances are needed in order to have a wider
range of valid frequencies available. The DOA of the multiple
sources can be estimated by picking the peaks of a histogram
of DOA estimates over all frequency bins. Alternatively, more
sophisticated approaches based on model fitting, such as the
described in [6] using a Laplacian mixture model, can also
be used for improved accuracy. An example histogram for an
example of the sources and its corresponding fitted model is
shown in Figure 2. All our tests have been performed using
only one sound source and taking its position as the maximum
peak of the histogram obtained with the DOA algorithm.

III. SUITABILITY AND CHALLENGES OF THE PLATFORM

The processor of the ESP32 is a 32-bit dual-core Tensilica
Xtensa LX6, able of executing up to 600 Mega Instructions
Per Second (MIPS). The ESP32 modules include 448 KB of
Read-Only Memory (ROM), 520 KB of Static Random Access
Memory (SRAM), and up to 16 MB of external Quad Serial
Peripheral Interface (QSPI) flash that is cached for increased
performance. The system is clocked at up to 240 MHz and
includes a low frequency, ultra-low-power coprocessor able
to process certain events and wake the system from the
deep-sleep mode. The microcontroller features of the ESP32
are completed with a flexible General-Purpose Input/Output
(GPIO) subsystem and an important list of on-chip peripherals
and sensors, including a Digital-to-Analog Converter (DAC)
and two Analog-to-Digital Converter (ADC) with up to 18
channels [15]:

Espressif provides the IoT Development Framework (IDF)
Integrated Development Environment (IDE) to easily program
ESP32 applications as FreeRTOS-based applications. Two of
the characteristics of the ESP32 make it an adequate target
for implementing the DOA algorithm. Two ADC converters
are required, as audio signals from two microphones have to
be captured and used by the algorithm in real-time. Note that
having several channels with a unique ADC is not possible
because the signals would be captured at different instants,
delaying the conversion time. The second is the possibility to
use one core to perform the conversion task, as Direct Memory
Access (DMA) transport is not possible for both channels,

while the other core implements all the processing required
by the DOA algorithm.

Several important design challenges had to be solved in or-
der to implement the DOA algorithm on low-cost components.
Firstly, the DOA is a computation-intensive and memory-
consuming algorithm. The ESP32 is a micro-controller with
a small amount of RAM and a limited computing power.
Secondly, our audio acquisition subsystem uses two low-cost
electret microphones and the dual ADC of the ESP32. The
quality of the signal provided by the former and the sample
rate and accuracy of the latter are a serious issue that will
prove or deny the robustness of our implementation. To state
this challenge suffice to say that the LyraT audio board series,
built by Espressif, the company that developed the ESP32
micro-controller, does not rely on the ESP32 ADC but include
external hardware codecs to sample the input audio.

IV. IMPLEMENTATION ISSUES

To evaluate the performance of the ESP32 we focused
first on the FFT, the most time-consuming step of the DOA
algorithm. We modified the FastFFT algorithm by Reliable
Software used on its frequency analyzer application to obtain
a C implementation that worked on a fixed-size input buffer.
This implementation was first compiled with MinGW Studio
using the gcc compiler and tested for correctness on a PC.
Once the FFT algorithm was proved correct it was ported to the
ESP32 and compiled using the IDF Software Development Kit
(SDK). The resultant algorithm offers meaningful performance
since it precomputes once the exponential coefficient vectors
and the butterfly reordering indexes, and then it uses them
as required to perform the actual FFT call. The drawback of
this approach is the large amount of memory used. Our first
tests shown that the maximum size of the buffer on which the
transform can be performed is 1024 single precision elements.
With this size and taking into account that the Floating Point
Units (FPUs) on the ESP32 work with single precision, 32 bit
floats, the amount of RAM consumed by the coefficient array
is 88 KB. The ESP32 SDK linker allocates 256 KB for static
data, so only 168 KB remain available for data structures and
buffers of the DOA code. Then we measured the performance
of our basic implementation of the FFT using synthetic data.
Our results show that the time to compute a 1024-points FFT
is around 1 ms, and thus, there is enough margin to perform
computation between successive buffer acquisitions: around 50
ms at 22 Kilo samples per second (Ksps) or 25 ms at 44 Ksps.

The following tests were performed to test ADC speed and
quality, as it is not documented on the technical manuals of
the ESP32. They showed that both ADCs can capture more
than 40 Ksps but the conversion time is not stable and does
not always reach 44 Ksps. Unfortunately, the ESP32 is not
able to use DMA to carry data directly from both ADCs to
the in-memory buffers and end of conversion interrupts are
not implemented. Hence, to use the ADCs one of the cores
has to be in charge of ADC management and synchronize
the conversion using the timers of the system. Given that
the required sps is less than the maximum of 40 Ksps, the
sample rate was set to 22 Ksps. During these tests we had
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to modify the Integrated Development Environment (IDE)
to provide non-blocking start of conversion functions and
separated data collecting ones to allow for simultaneous data
acquisition in both ADC. When these tests were performed,
we put all the pieces together to program a simple system
that uses both cores in parallel. One core reads from the two
ADCs while the other performs FFT and other computations.
The system duplicated buffers and a ping-pong scheme for
continuous flow of conversion and processing and no memory
issues arose. These tests demonstrated enough quality on the
signals captured by the ADCs to port the DOA algorithm with
confidence.

A. Porting the DOA algorithm

Once the basic audio processing system was ported and
tested, the next step was to port the DOA algorithm introduced
in [6]. The original algorithm was programmed in Octave
and all the input audio data was taken from a wav file and
processed as a matrix. So we firstly modified the original DOA
as follows:

1) The program produces the histogram used to obtain the
most likely DOA angle, without applying the subsequent
Laplacian fitting.

2) Matrix calculation is not possible, as the system must
work with real-time audio data. Therefore we trans-
formed it to vector calculations, on-the-fly processing
both captured buffers, one for each audio channel. The
coherence-based selection phase of the algorithm is then
computed using a circular buffer of vectors.

We implemented a C version of the code and tested it
on a PC using different buffer sizes, overlapping factors and
sampling rates obtaining similar results to those observed with
the Octave version. Finally, we tested the code using single
precision floating point elements on the ESP32. The tests
shown that the time consumed by the DOA algorithm is less
than 3.3 ms, while filling a buffer of 1024 samples at 22 Ksps
is around 50 ms, therefore the ESP32 can effectively be used
to perform these tasks in real time and possibly add more
computation to improve the results.

The final step was to evaluate the system in real time with
real audio data on the ESP32. The development just required to
use the two ADCs audio capture task that was tested in our first
experiments, that ran on a core, and use the fully tested DOA
algorithm on the other core. Simple synchronization variables
were used to correctly implement the ping-pong structure of
the system that guaranteed no concurrency problems. The
first results obtained with the complete ESP32 system showed
a random behavior in DOA estimation. The cause of the
problems was found to be in the microphones and the adapting
circuitry, as discussed in the following section.

B. The microphone subsystem

In order to keep low the cost and complexity of the
system, off-the-shelf, low-cost amplified electret microphones
were used. The basic boards, one per channel, included a
microphone, a MAX9812 amplifier, a voltage regulator an a

Fig. 3. ESP32 SoC and the electret microphones connection.

few discrete components (see Figure 3). The output of the
boards was an AC signal centered on 0 volts. As the ADCs of
the ESP32 work in DC the output capacitors of the boards
were bypassed using thus the output of the amplifier. The
ESP32 can configure the ADC attenuation rate to be 0dB
(range 0 to 1.1V), 2.5dB (0 to 1.5V), 6dB (0 to 2.2V) or
11dB (0 to 3.9V). When bypassing the capacitor, the signal
given by the MAX9812 is centered at 1.5V, so attenuation of
6 or 11 dB had to be used. If the amplitude of the signal is
low, the final resolution of the converted data is not sufficiently
good, leading to poor results. Then an external output capacitor
and an adjustable high-impedance potentiometer were added
to center the output level to 0.5V (see Figure 3).

V. TESTS AND RESULTS

For validation purposes we will compare first the result of
four different versions of the DOA algorithm, all of them
using single precision floating point variables and overlapping
half of the samples: Two Octave scripts using 4096 samples
with 44 Ksps and 1024 samples with 22 Ksps; and two
C versions with the same configurations, one running on
a PC and the last on the ESP32 platform. To perform the
comparison, we considered one-minute of real sound recorded
from three different angles. To this end, we used the previously
described simple audio system connected to the line-in input of
a PC. All the experiments were conducted by using the same
stored audio recording, bypassing the ADCs of the different
subsystems to properly validate the DOA algorithm over the
different implementations and platforms. These audio streams
were sliced into 12 chunks of approximately 5 seconds each,
and fed into the different versions of the algorithm on the PC
and on the actual ESP32 version. Figure 4 shows the average
results obtained with the 12 chunks for each implementation.
As expected, the results with the large-size buffers do not
depend on the programming language, providing the same
results in the three positions of the source. When we decrease
the buffer size and the sample rate, the results are not exactly
the same. Nonetheless, despite the observed slight differences,
the results agree with the actual source direction, validating the
ESP32 implementation.

After this initial experiment, we present the results obtained
on the ESP32 board implementation using real-time audio
on a defined grid of azimuth angles with a separation of 10
degrees. All the tests were performed using a buffer size of
1024 samples with 50% overlap, and a sample rate of 22 Ksps.
The experiments were conducted in a laboratory without any
special acoustic treatment, placing a small loudspeaker at a
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Fig. 4. Comparison of different versions of the algorithm using pre-recorded
sounds on three source positions.

distance of 2m from the microphones, free of obstacles. The
test consisted in reproducing segments of a vocal song with
broadband spectral characteristics from each angle. Figure 5
shows the average results of 10 measurements of 5 seconds in
each audio source position. Although the results were consis-
tent with the change in direction, extreme angles were under-
estimated, motivating a first-order regression-based correction:
θ̂ = 2θ − 122.82, where θ is the algorithm output before
correction and θ̂ the final estimate after correction. These
results confirm that relatively good sound localization features
can be obtained from a low-cost and low-power system based
on the ESP32, even when low-quality hardware limits the
attainable accuracy. This outcome enables the development
of innovative IoT-based applications making use of sound
analysis and localization.
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VI. CONCLUSIONS

This paper presented a real-time sound-source localiza-
tion system implemented on the ESP32 microcontroller. The
system was carefully designed to provide a low-cost and
low-power solution for IoT-based applications, showing the
potential of emerging platforms and their processing capabil-
ities for developing context-aware services based on sound
analysis. On the one hand, as we used cheap microphones

and amplifiers, we had to apply slight modifications to the
hardware that allowed the full exploitation of the platform. On
the other hand, the processing was optimized to leverage both
cores of the ESP32 in parallel: one to capture the two ADCs
audio streams and the other to run the localization algorithm.
Moreover, in order to overcome the problems imposed by the
scarce memory of the platform, we modified the algorithm
using a circular buffer of vectors to process the two audio
buffers on-the-fly. The results demonstrated that, despite the
hardware constraints, the system was able to estimate with
relatively good accuracy the DOA of a broadband acoustic
source. Future work will focus on combining multiple ESP32
devices in a distributed system to estimate the absolute posi-
tions of acoustic sources in the monitored space. Finally, it is
worth to remark that the ideas and adaptations described in
this paper can be extended to other problems in the IoT field.
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