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Abstract. This paper describes the design and implementation of as-
sociation aspects, which are a linguistic mechanism for the AspectJ lan-
guage that concisely associates aspect instances to object groups by ex-
tending the per-object aspects in AspectJ. This mechanism allows an
aspect instance to be associated to a group of objects, and by providing
a new pointcut primitive to specify aspect instances as execution context
of advice. With association aspects, we can straightforwardly implement
crosscutting concerns that have stateful behavior related to a particular
group of objects. The new pointcut primitive can more flexibly specify
aspect instances when compared against previous implicit mechanisms.
We implemented a compiler for association aspects by modifying the
AspectJ compiler, which reduces the size of data structures for keeping
associations. Our benchmark tests confirm that the overheads of associ-
ation aspects are reasonably small when compared against functionally
equivalent aspects in pure AspectJ that manually manage associations.
The expressiveness of association aspects is demonstrated through de-
velopment of an integrated development environment with and without
association aspects.

1 Introduction

In aspect-oriented programming (AOP), an aspect is the unit of modular defi-
nitions of crosscutting concerns. Aspects may be provided as a different module
system from existing ones (e.g., in AspectJ [1]), or may be defined by using an
existing module system (e.g., in Hyper/J [2]). In both cases, an aspect serves
as the encapsulation of state and behavior, which are represented by instance
variables and advice declarations, respectively, in AspectJ-like languages.

AspectJ-like languages run an advice body in the context of an aspect in-
stance, in a similar sense that object-oriented languages run a method body in
the context of an object. A problem is how to determine an aspect instance as
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the context of an advice execution, since aspect instances are not usually obvious
during the program execution. AspectJ, for example, offers a few mechanisms1

to this problem:

– Singleton aspects create only one aspect instance for each aspect declaration.
This type of aspect is useful to implement concerns that have systemwide
behaviors.

– Per-object aspects associate a unique aspect instance for each object. When
an operation in terms of an object triggers an advice execution, the system
automatically looks up the aspect instance associated to the object, and
uses the instance as the execution context. This type of aspect is useful to
implement concerns that have a unique state for each object.

Those mechanisms are useful to certain kinds of crosscutting concerns, but Sul-
livan et al. pointed out that they do not straightforwardly support behavioral
relationships, which are the concerns that integrate the behaviors of collections
of objects by extending or modifying their respective behaviors [3]. With the
above mechanisms, such behavioral relationships are usually implemented by
creating a singleton aspect with a table for associating the states unique to ob-
ject groups. The resulting implementations have to have not only the code for
the core behavior but also the code for managing association in a single aspect
definition.

Subsequently, Rajan and Sullivan proposed instance-level advising by aspect
instances as a solution, as demonstrated in their AOP language Eos [4]. In Eos,
the programmer dynamically creates an aspect instance to represent behavioral
relationships. Each aspect can be associated to the objects in its representing
relation. When a method is called during program execution, the advice body is
executed in the context of each aspect instance that is associated to the target
of the call. As a result, the mechanism can cleanly implement such behavioral
relationships. However, the mechanism can still be improved with respect to the
following problems: (1) It is not flexible in the selection of aspect instances as
it always selects with respect to the target object, and (2) it requires additional
language constructs in order to distinguish associated objects of the compatible
types.

This paper proposes an alternative mechanism called association aspects,
which also allows us to associate an aspect instance to a group of objects.
The mechanism addresses the above-mentioned problems by providing a new
pointcut primitive that can more flexibly select aspect instances upon advice
execution, and can distinguish associated objects without introducing other lan-
guage constructs. The mechanism is implemented by modifying an AspectJ com-
piler(ajc [5]). Our benchmark tests showed that the association aspects can be
implemented with acceptable amounts of overhead in comparison to the single-
ton or per-object aspects that manually manage tables.

The rest of the paper is organized as follows. Section 2 presents an example of
behavioral relationships. Section 3 explains the design of association aspects, our
1 There are also mechanisms based on the control flow, but they are not directly

relevant to the topic of the paper.
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proposed mechanism. Section 4 describes how association aspects are compiled
into native Java programs. Section 5 gives the result of our benchmark tests to
compare the efficiency of association aspects with respect to the programs in
pure AspectJ. Section 6 shows an application program written with association
aspects for comparing expressiveness against pure AspectJ. Section 7 compares
association aspects to similar approaches. Section 8 concludes the paper.

2 Motivating Example

This section presents an example system to motivate the need for association
aspects. Section 2.1 presents a system integration that becomes a crosscutting
concern in object-oriented programming, and starts with prerequisites and re-
quirements of the example system. Section 2.2 presents an object-oriented im-
plementation of the system integration using a design pattern. Section 2.3 then
shows that AspectJ implements the concern in an awkward manner. Section 2.4
analyzes the conditions when such problems happen. The problem presented in
this section was first pointed out by Sullivan et al. [3].

2.1 System Integration

Integration of independently developed systems often raises crosscutting con-
cerns; it often requires modifications on many descriptions of participating sys-
tems [3, 6, 7]. For example, assume that one builds an integrated development
environment (IDE) by integrating a text editor and a compiler [6, 7]. Without
AOP, descriptions for the integration concern have to appear in several places in
both subsystems; e.g., a “save” method not only writes to a file, but also needs
to invoke the compiler. We will revisit this example in Sect. 6.

For concreteness, we consider integration of Bit objects, which was originally
introduced by Sullivan et al. [3]. A Bit object has a Boolean instance variable
and methods for setting, clearing, and getting the value of the variable:

class Bit {
boolean value = false;
void set() { value = true; }
void clear() { value = false; }
boolean get() { return value; }

}

The integration concern is to synchronize the states of particular Bit pairs,
which are represented by relations. A relation consists of a type (either equality
or trigger) and a pair of Bit objects. The relations are created dynamically
during program execution.

Figure 1 shows three Bit objects (illustrated as ovals) connected by two equal-
ity relations (illustrated as diamonds). An equality relation propagates set and
get calls on the left-hand side to the right-hand side, and vice versa. Therefore,
when set is called on b2, the top equality relation calls set on b1, which in turn
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Equality

b1

Equality

b2

b3

Fig. 1. Integration of Bits

makes the bottom equality relation to call set on b3. Note that the relations
must not cause an infinite loop; i.e., the call on b1 by the top equality relation
should not be propagated back to b2.

We require the following properties for implementing the equality (and other)
relations for comprehensiveness, maintainability, and extensibility:

Nonintrusiveness. The implementation does not require modification of the
definition of Bit.

Variability. Not only equality, but also other kinds of relations are supported
simultaneously. For example, a trigger relation, which merely propagates
calls on the left-hand side to the right-hand side should also be used.

Simplicity. When the programmer uses relations, he/she need not consider the
implementation details of the relations.

2.2 A Solution in Java with Observer Pattern

Figure 2 shows an implementation of the Bit integration system in Java with
the Observer pattern. The Observer pattern is one of the Gang-of-Four (GoF)
design patterns [8] that define a dependency relationship between one to many
objects. When the monitored object changes its state, it notifies the depending
objects.

In order to implement the Bit integration system, we let Bit objects play the
Subject role and define Equality objects to represent describing equality rela-
tionships, and let Equality play the Observer role so that they can propagate
operations on Bit objects.

An Equality relation establishes an association by calling the attach method
on two Bit objects. Propagation of the set and clear operations are achieved by
inserting a call to the change method at the end of these methods. When the
change is called, it calls the update method of the Equality object associated
to the Bit object. The update method determines the opponent Bit object of
the relation, determines whether it should call set or clear method by sensing
the state of the changed object, and then calls the method on the opponent. The
instance variable busy of Equality is an algorithmic state for avoiding cyclic
calls of update on the same object.

With respect to the required properties presented in the last section, the
implementation is intrusive because we have to modify the Bit class. The mod-
ifications are not only at the end of each propagated operation, but also in the
inheritance hierarchy. This suggests that we cannot apply the implementation
to a class in the middle of an inheritance hierarchy. The implementation is also
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interface Observer {

void update(Subject s);

}

class Subject {

List observers =

new LinkedList();

void attach(Observer o) {

observers.add(o);

}

void detach(Observer o) {

observers.remove(o);

}

void change() {

for (Iterator iter

= observers.iterator();

iter.hasNext();) {

Observer o

= (Observer) iter.next();

o.update(this);

} }

}

class Equality implements Observer {

Bit l, r;

boolean busy;

Equality(Bit l, Bit r) {

this.l = l; this.r = r;

l.attach(this); r.attach(this);

}

public void update(Subject s) {

Bit b = (s == l) ? r : l;

if (!busy) { //to avoid

busy = true; //infinite loop

if (((Bit) s).get())

b.set(); else b.clear();

busy = false;

}}

}

class Bit extends Subject {

boolean value = false;

void set() {value=true; change();}

void clear() {value=false; change();}

boolean get() {return value;}

}

Fig. 2. Bit integration system with observer pattern

less variable. When we introduce a different kind of relation that is to propagate
a different set of operations, the pattern forces every relation to receive notifi-
cations of all kinds of state changes, even if the changes are not relevant to a
specific relation.

2.3 A Solution in AspectJ

It is possible to define aspects in AspectJ that implement the above relations.
Figure 3 shows a possible definition of the equality relation in AspectJ.2 In
order to represent the state of each relation, the aspect defines an innerclass
called Relation, which has references to the related Bit objects and a busy
flag. The aspect adds a list of Relations to each Bit object, so that the advice
can find Relations from a Bit object.

Two advice declarations capture set and clear calls, respectively, to any Bit
object. The bodies of advice obtain a relations list from a target object. For
each Relation in the list, it checks the flag and invokes the same method when
the advice is not recursively executed for the same Relation.

The static method associate creates a relation. When the method is called
with two Bit objects, it creates a Relation object and registers it into each

2 The definition is written by the authors who follow the outline originally presented
by Sullivan et al. in [3].
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aspect Equality {

static class Relation {

Bit left, right;

boolean busy = false;

Bit getOpp(Bit b) {

return b==left? right:left;

} }

private List Bit.relations

= new LinkedList();

static void associate(

Bit left, Bit right) {

Relation r = new Relation();

r.left = left;

r.right = right;

left.relations.add(r);

right.relations.add(r);

}

after(Bit b): call(void Bit.set())

&& target(b) {

for (Iterator iter

= left.relations.iterator();

iter.hasNext(); ) {

Relation r

= (Relation) iter.next();

if (!r.busy) { //to avoid

r.busy = true; //infinite loop

r.getOpp(b).set();

r.busy = false;

} }

}

//advice for the clear

//method goes here

//...

}

Fig. 3. An implementation of Equality relation in AspectJ

of the relations lists in the given Bit objects. The integrated system of Bits
specified in Fig. 1 can be constructed by executing the following code fragment:

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();
Equality.associate(b1,b2); //connect b1 and b2
Equality.associate(b1,b3); //connect b1 and b3

2.4 Problems of AspectJ Solution

The AspectJ solution is better than the pure Java solution, but it still has
problems. Here, we analyze the AspectJ implementation with respect to the
required properties in Sect. 2.1:

Nonintrusiveness. The Equality aspect is not intrusive as its pointcut and
advice captures calls to Bit objects without modifying the class declaration
of Bit.

Variability. AspectJ allows the programmer to define relations other than
Equality without major interference. However, such a relation cannot share
the implementation with Equality as those different relations manage the
relations among objects in different ways.

Simplicity. The solution is not simple enough as it has to declare a separate
inner class for representing relations, and each advice body has to have an
iteration to find all the relevant relations. The latter point would be signifi-
cant when there are more advice declarations for more complicated relation-
ships. At the design level, an equality relation is an entity that encapsulates
the state (related objects and a busy flag) and the behavior (detection and
propagation of method calls). It would be straightforward if a relation is
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modeled by an instance at the programming level. However, the AspectJ
solution models the relation as an aspect declaration (for the behavior) and
an instance of an inner class (for the state).

To summarize, aspect instantiation mechanisms in AspectJ are not sufficient
to straightforwardly implement concerns that affect a group of objects and have
stateful behavior. As it is a natural idea to encapsulate the state and behavior
in an aspect instance, a mechanism that enables us to create aspect instances
on a per-object-group basis is useful.

In other words, the singleton aspects in AspectJ are not suitable because they
can create no more than one instance. As a result, the implementation would
have to allocate the states in different objects, and manage a table to keep those
objects.

The per-object aspects in AspectJ, namely pertarget and perthis aspects,
are not suitable either. This is because only one per-object aspect instance is
allowed to exist for each object. In order to represent relations between objects,
more than one aspect instance exists for one object.

Although one may think standard protocols or APIs for managing relations
could solve problems of simplicity and variability, they actually help little for
achieving both. If we designed the protocols or APIs variable enough to support
various usages of relations, the resulting aspects would be no longer simple as
the protocols and APIs would require a number of descriptions such as iterators,
unsafe type casting, subclassing, and so forth.

We do not believe that this problem is unique to large-scale system integra-
tions. Rather, similar problems could be observed in smaller-scale systems. For
example, in the AspectJ implementation of the GoF design patterns [8] by Han-
nemann and Kiczales [9], 6 out of 23 patterns manage the relations and their
states by using tables.

3 Association Aspects

3.1 Overview

We propose an extension to the AspectJ’s aspect instantiation mechanism, called
association aspects, that allows the programmer to associate an aspect instance
to a tuple of objects. Association aspects are designed to straightforwardly model
crosscutting concerns like behavioral relations, which coordinate behavior among
a particular group of objects. Two basic functions support the association as-
pects: (1) a function to associate an aspect instance to tuples of objects, and (2)
a function to select aspect instances based on the association at advice execution.

Figure 4 shows the Bit integration example rewritten with the association
aspects. The perobjects modifier on the first line declares that its instance is
to be associated to a pair of Bit objects. The following statements builds the
integrated Bits in Fig. 1:
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aspect Equality perobjects(Bit, Bit) {

Bit left, right;

Equality(Bit l, Bit r) {

associate(l, r); //establishes association

left = l; right = r;

}

after(Bit l) :

call(void Bit.set()) && target(l) && associated(l,*){

propagateSet(right); //when left is called, call set on right

}

after(Bit r) :

call(void Bit.set()) && target(r) && associated(*,r){

propagateSet(left); //when right is called, call set on left

}

boolean busy = false; //indicates if the relation is active

void propagateSet(Bit opp) {

if (!busy) { //call set on opp

busy = true; //unless it already has propagated

opp.set();

busy = false;

} }

// advice decls. for clear method go here

}

Fig. 4. Equality relation with association aspects

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();
Equality a1 = new Equality(b1,b2);
Equality a2 = new Equality(b1,b3);

The new expressions create Equality aspect instances. The constructor of
Equality associates the created instance to the given Bit objects.

The associated pointcuts in the advice declarations specify what aspect
instances shall be used as the execution context of the advice bodies. The com-
bination of pointcuts target(l) && associated(l,*) selects aspect instances
that are associated to the current target object. The selected aspect instances
serve as execution context of advice; i.e., the body of advice runs with accesses
to the instance variables of the selected aspect instances. For example, when a
program evaluates b2.set(), aspect instance a1 is selected by the second ad-
vice, and executes the advice body. The advice checks busy flag in a1, and calls
set on left, which is bound to b1 in a1. We hereafter refer to the process that
selects aspect instances and runs advice body in the context of selected instances
as advice dispatching to aspect instances.

3.2 Properties of Association Aspects

Association aspects satisfy the three properties that are presented in Sect. 2.1.

Nonintrusiveness. Equality in Fig. 4 is as nonintrusive as the one in AspectJ.
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Variability. By combining associated pointcuts with AspectJ’s abstraction
mechanism such as abstract aspect and pointcut overriding, association as-
pects are variable. As we will see in Sect. 3.4, associated pointcuts are
powerful enough to describe both symmetric and asymmetric relations. For
the Bit integration, it therefore is possible to define an aspect that has an
abstract pointcut and subaspects with concrete pointcuts to specify either
symmetric or asymmetric relation.

Simplicity. Equality in Fig. 4 is simpler than the one in Fig. 3 because associ-
ation aspects hide the implementation details of relations, which are explicit
in Fig. 3 (e.g., the field Bit.relations and the use of iterator in the after
advice). Moreover, composition of associated pointcuts with free variables,
which will be explained in Sect. 3.4, avoids the duplication of advice decla-
rations.

The following sections explain the association and advice dispatching mecha-
nisms in greater detail.

3.3 Creating and Associating Aspect Instances

Association aspects are declared with perobjects modifiers. They are defined
by the following syntax:

aspect A perobjects(T,. . .) { mdecl . . . }

where A is the name of the aspect, T is the type of objects to be associated,
and mdecl is the member declaration including constructor, method, variable,
advice, etc.

An association aspect can be instantiated by executing a new A(. . . ) ex-
pression in a similar manner to object instantiation. Creation of a new aspect
instance also invokes a constructor for initialization. A newly created aspect
instance is not associated to any objects.

The perobjects(T1,T2,. . .,Tn) modifier automatically defines an
associate method in A. It takes n objects of type T1, . . . , Tn, and asso-
ciates the aspect instance to the given objects o1, . . . , on. The modifier also
defines a void A.delete() method, which revokes association.

In contrast to per-object aspects in AspectJ, creation and association of as-
sociation aspects are explicit. This is due to the typical usage of association
aspects, in which they represent explicit artifacts such as the Equality relations
in the Bit integration example. When association aspects are required for ob-
jects in certain joinpoints, it is possible to make those operations nonintrusive
by defining advice, as we will see in Sect. 3.5.

3.4 Dispatching to Aspect Instances

Semantically, dispatching advice to aspect instances is realized by trying to exe-
cute the same advice in the context of all aspect instances, and only the instances
that satisfy the pointcut actually run the body. In order to select associated as-
pect instances, we provide the associated pointcut primitive.
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(1) b2.set()

a1

b1

a2

b2

b3

target(r) &&
associated(*,r) = true

target(r)&&
associated(*,r) = false

(2) a1 runs advice

(3) left.set()

a2 does not run

Fig. 5. Advice dispatching to associated aspects

Figure 5 illustrates the semantics in terms of the example presented at the
beginning of the section. The evaluation of b2.set() creates a call joinpoint (1).
We focus here on the execution of the second advice declaration. Each aspect
instance tests the pointcut. Since the pointcut is satisfied only when an aspect
instance is associated to b2 as the second parameter, a1 is the only aspect
instance to run the advice (2). The advice body propagates the call by accessing
the left instance variable stored in the execution context, a1 (3).

Aspect instances are ordered in undetermined order to test and execute an
advice declaration. For around advice, the following four steps are executed.
First, an aspect instance is randomly selected from all aspect instances. Second,
the selected aspect instance tests and executes the advice declaration. Third,
when the aspect instance executes a proceed form, or the aspect instance does
not match the advice declaration, a next aspect instance is selected and repeats
from the second step. When the aspect instance does not execute a proceed
form, it continues the execution without running the joinpoint. Fourth, when
there are no more aspect instances at the first step or the last part of the third
step, it continues the joinpoint.

An associated pointcut determines how an aspect instance is associated
to objects. In an aspect declared with perobjects(T1,. . .,Tn), the pointcut is
written as associated(v1,...,vn), where vi is either

– a variable that is bound by another pointcut (e.g., by target(vi))
– an asterisk (*) as a wild card, or a free variable

An additional restriction is that an associated pointcut has at least one bound
variable in its parameter.

The pointcut associated(v1,...,vn) is evaluated to true for an aspect in-
stance that is associated to 〈o1, . . . , on〉, if, for any 1 ≤ i ≤ n, vi is either an
asterisk or a free variable, or a variable bound to oi. The asterisks and free
variables allow more than one aspect instance to match the same joinpoint.
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Note that the pointcut distinguishes parameter positions. This is useful to
define directed relations that capture different events on the different sides of
the relations.

Binding to Associated Objects. The associated pointcut can bind vari-
ables to associated objects when free variables are written instead of wild cards.
For example, the following declaration, which is slightly modified from the first
advice declaration in Fig. 4, has a free variable r instead of the wild card:

after(Bit l, Bit r) : call(void Bit.set())
&& target(l) && associated(l,r) {
propagateSet(r);

}

The modified advice has the same behavior as the original one except that it
binds r to each associated object at the second parameter position when it
executes the body.

The binding feature can give shorter definitions to symmetric association
aspects, which equally treat their associated objects. For example, the following
single advice declaration can be substituted for the first two advice declarations
in Fig. 4:

after(Bit b,Bit o): call(void Bit.set()) && target(b)
&& (associated(b,o) || associated(o,b)) {
propagateSet(o);

}

This is because the combination of associated pointcuts by an disjunctive oper-
ator identify aspect instances that are associated to the target object regardless
of parameter position, and then the binding feature binds o to the associated
object that is not the target.

3.5 Static Advice

Association aspects can declare static advice, which provides similar semantics
to the advice declarations in singleton aspects. When an advice declaration has
a static modifier, pointcut matching and execution is performed exactly once,
regardless of the number of existing aspect instances. Obviously, a static ad-
vice declaration may not use an associated pointcut. The execution context of
static advice is the aspect-class; the advice body can only access static (or class)
variables.

The static advice declarations are typically useful for bootstrapping. In order
to create a new aspect instance by using the advice mechanism, a static advice
declaration should be used because there are no aspect instances at the begin-
ning. For example, the advice in the following code creates an Equality instance
when callSomeMethod() happens:
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aspect Equality perobjects(Bit, Bit) {
static after(Bit l, Bit r) : callSomeMethod() && args(l,r) {
new Equality(l,r); //creates an aspect instance

}
...

}

3.6 Idioms to Find Aspect Instances

It is sometimes necessary to check if there is any aspect instance associated to
a particular tuple of objects, or to do something on all aspect instances associ-
ated to a particular object (e.g., deleting all aspect instances associated to an
object). Those operations can be realized by means of advice declarations with
associated pointcuts. We therefore do not provide specific primitives for such
purposes.

An example is to prevent creating no more than one Equality aspect instance
for the same pair of objects. The next advice does the job:

aspect Equality perobjects(Bit,Bit) {
...
Equality around(Bit l, Bit r) :

call(Equality.new(Bit,Bit)) && args(l,r)
&& (associated(l,r) || associated(r,l)) {

return this;
} }

When a program executes new Equality(b,b′) and there is an aspect instance
a associated to 〈b, b′〉 or 〈b′, b〉, the above advice returns a instead of creating a
new one. When there is no such an aspect instance, a new Equality instance
will be created because the advice does not run at all.

Enumerating all aspect instances associated to a particular object can be
realized by an empty static method with an advice declaration. For example,
execution of Equality.showAll(b) in Fig. 6 displays all aspect instances that
are associated to b.

aspect Equality perobjects(Bit,Bit) {

...

static void showAll(Bit b) { } // empty body

after(Bit b) :

call(void Equality.showAll(Bit)) && args(Bit b)

&& (associated(b,*) || associated(*,b)) {

System.out.println(this); //this is bound to

} } //associated instance

Fig. 6. An idiom to enumerate aspect instances
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4 Implementation

The mechanisms for association aspects are implemented3 by modifying the
AspectJ compiler (ajc) version 1.2.0. Similar to the original compiler, it takes
class and aspect declarations as inputs, and generates Java bytecode as compiled
code. We first review how the original AspectJ compiler generates compiled code.
We then show how the extended compiler generates code for association aspects.
For readability, we present compiled code at the Java source-code level.

4.1 Compilation of Regular AspectJ Programs

The AspectJ compiler translates an aspect declaration into a class, and an ad-
vice body into a method of the class, respectively [10]. Advice is executed by the
inserted method calls into locations where the pointcut of the advice statically
matches. Dynamic conditions in the pointcut (e.g., cflow and if) are trans-
lated into conditional statements inserted at the beginning of translated advice.
Masuhara et al. gave a semantic model of the translation by using partial eval-
uation of an interpreter [11].

Consider the following (nonassociation) aspect definition, which counts invo-
cations of a method on a per-target-object basis:

aspect Counter pertarget(callSet()) {
pointcut callSet() : call(void Bit.set());
int count = 0;
after() returning() : callSet() {

count++;
} }

Compilation of Counter aspect with Bit class yields the code shown in Fig. 7.4

A statement b.set(); where b is of type Bit is translated into the following
statements:

b._bind(); //create&associate if not yet
b.set();
b._aspect._abody0();//advice dispatching

The Counter aspect is translated into a class. The variable count becomes
an instance variable, and the after advice becomes a method. The Bit class has
an instance variable aspect, which keeps an aspect instance (i.e., a Counter
object) associated to the Bit object. The bind method creates an associated
Counter instance for a Bit object if it is not yet created.

The translated call to set method is surrounded by a call to bind and a
call to run the advice body. The latter call is realized by invoking an instance
3 The implementation is available at http://www.komiya.ise.shibaura-it.ac.

jp/~sakurai/.
4 Note that the code is drastically simplified from what the actual compiler generates.

For readability, we inlined method calls and renamed compiler-generated methods
and fields, and removed unimportant access modifiers.
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class Bit { //translated

Counter _aspect; //associated aspect instance

boolean value; //original instance variable

public synchronized void _bind() {

if (_aspect == null) _aspect = new Counter();

}

//definitions of set, clear and get methods

//...

}

class Counter { //translated

int count = 0; //instance variable

public final void _abody0() {//body of the after

count++; //advice

} }

Fig. 7. Code compiled by AspectJ

method of Counter class. As a result, the body of the advice is executed in the
context of an associated aspect instance.

4.2 Overview of Compilation of Association Aspects

Compilation of Bit Integration Example. Association aspects are compiled
into Java classes in a similar manner to other aspects, except for association and
advice dispatching. We first show how the Bit class and the Equality aspect in
Fig. 4 are compiled.

The translated Bit class5 has a field aspects1 to keep a map from Bit
to Equality, and a field aspects2 to keep a list of Equality. The fields are
of different types because of optimizations reasons, which will be explained in
Sect. 4.3.

class Bit {// translated
Map<Bit, Equality> _aspects1 = new HashMap();
List<Equality> _aspects2 = new ArrayList();
...

}

These two collections are used for processing pointcuts associated(b,*) and
associated(*,b), respectively. They preserve the following invariants: when
an aspect instance a associated to 〈b1, b2〉, b1. aspects1.get(b2) = a and
b2. aspects2.contains(a) = true.

Note that those fields are not symmetric even though the Equality aspect
definition treats the first and second Bit objects equally. This is because our
compiler minimizes the collection types to reduce memory overheads. The de-
tailed compilation strategy is described in the next section.
5 We use Java 1.5 notation for collection types. Map<T1, T2> denotes the type of map

objects from T1 to T2. List<T> denotes the type of lists of T . The syntax for(T v
: e) s is a shorthand for looping s for each v of type T in iterator e.
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b1
key value_aspects1

a2

a1

b3

b2 _aspects2

_aspects2

Fig. 8. Implementation of association with maps

Figure 8 shows how the implementation represents the associations of the
integrated Bits in Fig. 1.

Advice dispatching is translated into a loop over all key-value pairs in a map
or into a loop over a list. A statement b.set(); is translated into the following
code for dispatching the two advice declarations:

b.set(); //original call
for(Bit v: b._aspects1.keys()) { //for the first

Equality a=b._aspects1.get(v); //after-advice
a._abody0(b);

}
for(Equality a: b._aspects2) { //for the second

a._abody1(b); //after-advice
}

The two for-loops correspond to the two advice declarations. Since the first
advice has the associated(l,*) pointcut, where l is the target of the call, it
processes all the aspect instances a in the aspects1 map of the target object,
and runs the body of the advice by invoking the instance method of a. The code
for the second advice corresponds to the associated(*,r) pointcut, where r is
the target of the call and processes all the aspect instances a in the aspects2
list of the target object, and runs the body of the advice by invoking the instance
method of a.

When all parameters to the associated pointcut are bound, advice dispatch-
ing is translated into simple lookup in the map. For example, the parameters to
the associated pointcut in the following advice are both bound by args:

after(Bit l, Bit r) : call(Equality.new(Bit,Bit))
&& args(l,r) && associated(l,r) {

System.out.println("duplicated!");
}

Then the translation of an expression new Equality(b1,b2) yields the next
statements subsequent to the original expression:

Equality a = b1._aspects1.get(b2); //for the third
if (a != null) a._abody2(b1,b2); //after advice
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4.3 Compilation Process

The general compilation process is slightly more complicated because we allow
aspects to be associated with arbitrary numbers of (i.e., even more than two)
objects, and to use wild cards at any parameter positions in associated pointcuts.
Note that free variables are regarded as wild cards.

The compilation takes place in the following steps:

1. For each aspect declaration with a perobjects modifier, it enumerates a set
of parameter combinations that serve as keys for dispatching advice execu-
tion.

2. It computes a set of sequences of parameter indices. Each sequence represents
a type of data structure that records associations for specific associated
pointcuts.

3. Based on the set of sequences, it installs fields into the associated types for
recording associations, and generates methods for registering associations.

4. Finally, for each joinpoint shadow that matches an associated pointcut, it
inserts a code fragment for dispatching advice.

Below, we assume aspect A is declared with perobjects(T1, T2, · · · , Tn) and
advice declarations with associated pointcuts. We write the ith occurrence of
associated pointcut as pi = associated(vi1, vi2, . . . , vin), where vij is either
a bound variable or a wild card. Free variables are regarded as wild cards.

We define a parameter combination of an associated pointcut as a set of
indices of bound variables in the pointcut. The parameter combination of pi is
written as τi. When pi = associated(v1, v2, *), τi = {1, 2}.

For each associated pointcut, the compiler uses a sequence of indices σi

to determine the type of the data structure for recording associations, and to
generate a code fragment to dispatch advice execution. We write |σi| as the
length of the sequence, and σi(j) as the jth index in σi for 1 ≤ j ≤ |σi|. The
sequence σi contains all indices in τi at the first |τi| positions; i.e., ∀k ∈ τi, ∃j
such that j ≤ |τi| and σi(j) = k.

Given a sequence σi, we use a map of type Tσi(1) → Tσi(2) → · · · →
Tσi(|σi|) → A for recording associations. When objects o1, o2, . . . , o|σi| of type
Tσi(1), Tσi(2), . . . , Tσi(|σi|) are given, the dispatching procedure is to apply o1,
o2, . . . , o|σi| to the map, in order to obtain a reference to the associated aspect
instance. Usually, there are several possibilities to choose a set of σis for the
given aspect. We will discuss this issue after presenting how associations are
managed based on τis.

Managing Associations. In order to maintain an association between objects
and an aspect instance, the compiler actually installs fields into type declara-
tions of associated objects, and generates an associated method in the aspect
declaration by following the rules in Fig. 9.

Given a sequence of indices σi for pointcut pi, the compiler first installs a field
aspectsi of type Ui1(defined in Fig. 9) into class Tσi(1). The associate method,
shown in Fig. 9, consists of the statements installi, which installs an aspect
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Uij =

���
��
Map<Tσi(j+1), Uij+1> j < |σi|
A j = |σi| = n

List<A> j = |σi| < n

void associate(T1 v1,T2 v2,. . .,Tn vn) {

install1
install2
...

}

installi =

����������
���������

Ui1mi1 = vσi(1)._aspectsi;

Ui2mi2 = getOrCreatei2(mi1,vσi(2));

Ui3mi3 = getOrCreatei3(mi2,vσi(3));

. . .

Ui|σi|−1mi|σi|−1 = getOrCreatei|σi|−1(mi|σi|−2,vσi(|σi|−1));

addaspect;

addaspect =

�����
����
mi|σi|−1.put(vσi(n), this) |σi| = n

Ui|σi| mi|σi|= getOrCreatei|σi|(mi|σi|−1,vσi(|σi|));

mi|σi|.add(this)
|σi| < n

vσi(1)._aspectsi= this |σi| = 1

Fig. 9. Rules for generating associate method

aspect A perobjects(T1, T2, T3) {

before(T2 v2, T3 v3): call(* *.*(..))

&& args(v2, v3) && associated(*, v2, v3) { ... }

before(T1 v1, T2 v2, T3 v3): call(* *.*(..))

&& args(v1, v2, v3) && associated(v1, v2, v3) { ... }

}

Fig. 10. An example aspect definition

instance into a sequence of maps for each σi. Therefore, the compiler adds the
statements of Fig. 9 for each σi in the associate method.

getOrCreateij(m, v) in the installi statements in Fig. 9 returns a value of
type Uij for key v in Map m if it is registered. If not, it creates an empty map of
type Uij , registers it in m with key v, and returns the created object. The last
line of the installi registers the aspect instance depending on the length of σi.

For example, assume we have an aspect definition shown in Fig. 10 and
the compiler uses sequences of indices σ1 = 〈2, 3〉 and σ2 = 〈1, 2, 3〉 for the
first and second associated pointcuts, respectively. It inserts field declara-
tions aspects1 of type Map<T3,List<A>> into type T2 and aspects2 of type
Map<T2, Map<T3,A>> into type T1. It then generates the associate method in
Fig. 11 into A.
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void associate(T1 v1, T2 v2, T3 v3) {

Map<T3, List<A>> m1_1 = v2._aspects1;

List<A> m1_2 = getOrCreate1_2(m1_1, v3);

m1_2.add(this);

Map<T2, Map<T3, A>> m2_1 = v1._aspects2;

Map<T3, A> m2_2 = getOrCreate2_2(m2_1, v2);

m2_2.put(v3, this);

}

Fig. 11. associate method generated for Fig. 10

static void dispatch( Tσi(1) v1, Tσi(2) v2,...,Tσi(l) vl) {

if(!〈parameterless dynamic conditions〉) return;

Ui1 mi1=v1. aspectsi; if(mi1==null)return;

Ui2 mi2=mi1.get(v2); if(mi2==null)return;

...

Uil−1 mil−1=mil−2.get(vl−1); if(mil−1==null)return;

Uil mil=mil−1.get(vl); if(mil==null)return;

for (Uil+1 mil+1 : mil.values()) {

for (Uil+2 mil+2 : mil+1.values()) {

...

for (Ui|σi| mi|σi| : mi|σi|−1.values()) {

invokebody
}

...

} } }

invokebody =

�
for(A a :mi|σi|) a._abody(v1,..., vl); |σi| < n

mi|σi|._abody(v1,..., vl); |σi| = n

Fig. 12. Rules for generating dispatching method for pointcut pi

Dispatching Advice Execution. The compiler realizes advice dispatching by
inserting a call to a method that dispatches advice execution at each joinpoint
shadow that statically matches the pointcut. The dispatching method receives
l parameters from the context (i.e., the joinpoint),6 finds all aspect instances
associated to those parameters, and calls method abody on each aspect instance.
The abody is the method translated from the advice body, which first checks
conditions due to dynamic pointcuts (e.g., if and type tests), followed by the
body of the advice.

For brevity, we here explain the cases for before and after advice declarations.
The case for around advice is explained in the Appendix.

The rules for generating the dispatching method, which is shown in Fig. 12,
depend on the parameter sequence σi. Due to the sharing of parameter sequences

6 Actually, thisJoinPoint and other arguments used in pointcuts other than
associated should be passed to the advice body.
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aspect A perobjects(T1, T2, T3, T4) {

before(T1 v1, T2 v2): call(void m1(T1, T2))

&& args(v1,v2) && associated(v1,v2,*, *) {

System.err.println("m1 with " + v1 + "," + v2);

}

}

Fig. 13. An example aspect definition

static void _dispatch1(T1 v1, T2 v2) {

Map<T2, Map<T3, List<A>>> m1 = v1._aspects1; if(m1==null) return;

Map<T3, List<A>> m2 = m1.get(v2); if(m2==null) return;

for (List<A> m3: m2.values()) {

for (A a : m3)

a._abody(v1, v2);

}

}

Fig. 14. Dispatching method generated for Fig. 13

S ← {}
while P �= {}

τmin ← min|τ |{τ |τ ∈ P}
P ← P\{τmin}
σmax ← max|σ|{σ|σ ∈ S ∪ {〈〉}, τmin contains σ}
S ← S\{σmax} ∪ {append(σmax, τmin)}

end

Fig. 15. Algorithm to compute a set of parameter sequence S for sharing maps

among pointcuts (which will be explained later), σi can be longer than the num-
ber of parameters available at the joinpoint. The dispatching method therefore
consists of two parts: the first half looks up the maps by using the parameters,
and the latter half iterates over all the elements in the maps. For example, with
the aspect declaration in Fig. 13, the rules in Fig. 12 generate the dispatch1
method in Fig. 14.

Sharing Maps. The compiler minimizes the number of map types that record
associations by sharing maps among different associated pointcuts. This avoids
the inefficiency of using redundant data structures when associated pointcuts
use different parameters for dispatching advice.

Normally, an advice declaration can reuse a map object if its parameter se-
quence appears in the head of a parameter sequence of another advice declara-
tion. Take the example in Fig. 10 again. When the compiler uses the sequences
σ1 = 〈2, 3〉 and σ2 = 〈1, 2, 3〉 for the two pointcuts, we have to have two maps.
When σ1 = 〈2, 3〉 and σ2 = 〈2, 3, 1〉, a field in T1 of type Map<T3, Map<T1,A>>
is sufficient for dispatching those two advice declarations.

In order to share maps among pointcuts, the compiler computes a set of
sequences S that cover all parameter combinations P in an aspect declaration
by applying the algorithm in Fig. 15.
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In the algorithm, τ contains σ if ∀k ∈ {σ(1), . . . , σ(|σ|)}. k ∈ τ , and
append(σ, τ) = σ′ is a shortest sequence that has the same first |σ| elements to σ,
and has all the elements in τ ; i.e., ∀j ∈ {1, . . . , |σ|}.σ(j) = σ′(j) and ∀k ∈ τ. ∃j ∈
{1, . . . , |τ |}. σ′(j) = k. When P = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
one of the solutions of the algorithm is S = {〈3, 1〉, 〈2, 3〉, 〈1, 2, 3〉}. After com-
puting the set of sequences S, σi for τi is selected as the shortest sequence in S
whose first |τi| elements have all elements in τi.

5 Performance Evaluation

We carried out microbenchmark tests for comparing run-time efficiency between
(1) programs with association aspects, (2) programs with singleton aspects that
manually manage associated states, and (3) programs with per-object aspects in
AspectJ.

All benchmark tests were executed by Java HotSpot Client VM version 1.4.2,
running on a PowerPC G4 1.25-GHz MacOS X 10.4 machine with 512-MB mem-
ory. Each execution time was measured by averaging the execution time, which
is obtained through currentTimeMillis, of a loop that runs more than one
second.

5.1 Performance of Basic Operations

We measured the costs of the basic operations, namely object creation, aspect in-
stantiation and association, and method invocation with before advice execution.
They are measured by executing programs with aspect declarations associated
to n objects. The programs perform each of the following operations:

1. OBJ: create objects that can be associated to aspect instances
2. ASSOC: create an aspect instance and associate it to the n objects, and
3. BEFORE: invoke the empty method on an object

In the aspect declarations, there are advice declarations that use the
associated pointcut with 1 to n bound variables:

aspect Test perobjects(C,. . .,C) {
int x1, x2, x3, x4, x5;
Test(C o1,. . .,C on) {

associate(o1,. . .,on);
}
before(C o1, . . .,C on): callEmptyMethod()

&& args(o1,. . .,on) && associated(p1,. . .,pn) {
x1++; x2++; x3++; x4++; x5++;

} }

where pi is either oi or *.
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We compare the following three aspect implementations:

AA: that uses association aspects (shown above).
SNG: that uses singleton aspects in AspectJ with inner-class objects stored in

collections for associated states (see below).
PO: that uses per-object aspect in AspectJ (namely pertarget). This is used

only for n = 1.

SNG uses the same collection structures to those in the AA. For example, the
SNG aspect declaration for n = 2 with one bound variable looks as in Fig. 16.

aspect Test {

static class Relation {

int x1, x2, x3, x4, x5;

C o1; C o2;

}

HashMap C.relations;

static void associate(C o1, C o2) {

Relation r = new Relation();

r.o1 = o1; r.o2 = o2;

HashMap m1 = o1.relations;

if (m1 == null) {

m1 = new HashMap();

o1.relations = m1;

}

m1.put(o2, r);

}

before(C o1): callEmptyMethod() && args(o1, *) {

if (o1.relations == null) return;

for (Iterator i = o1.relations.values().iterator();

i.hasNext(); ) {

Relation r = (Relation) i.next();

r.x1++; r.x2++; r.x3++; r.x4++; r.x5++;

} } }

Fig. 16. Declaration of an SNG aspect

Table 1 shows the execution times of those basic three operations for different
n and different variations of associated pointcuts. The column p shows the
parameters of the associated pointcuts. Since our current implementation uses
the same set of map structures, OBJ denotes the time for generating one object.
OBJ and ASSOC give the same figures for the same n. The rightmost column
shows the relative execution times of AA with respect to SNG. We omit the
cases for (*,*,o3) and (*,o2,o3) because they are identical to the cases for
(*,o2,*) and (o1,*,o3), respectively.

As we can see, AA poses at most 19% overheads compared to the man-
ual implementation, SNG, except for the aspects associated to one object (i.e.,
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Table 1. Execution times (in µs) of basic operations

n P AA SNG PO AA/SNG

OBJ 1 0.068 0.068 0.068 0.994
2 0.133 0.140 0.946
3 0.264 0.267 0.988

ASSOC 1 0.135 0.113 0.163 1.194
2 1.762 1.719 1.025
3 5.454 5.404 1.009

BEFORE 1 (o1) 0.050 0.032 0.072 1.566
2 (o1, *) 0.382 0.379 1.009

( *,o2) 0.326 0.322 1.012
(o1,o2) 0.139 0.117 1.191

3 (o1, *, *) 0.743 0.721 1.031
( *,o2, *) 0.683 0.667 1.023
(o1,o2, *) 0.476 0.464 1.025
(o1, *,o3) 0.416 0.404 1.030
(o1,o2,o3) 0.229 0.201 1.135

P =(o1)).7 Those numbers are reasonable as the compiled code for AA basically
does the same operations as SNG does, yet in much more concise descriptions.

5.2 Performance of Bit Integration

We also compared the performance by running the Bit integration example in
AA and SNG implementations (as shown in Figs. 3 and 4, respectively). The
benchmark programs first create 100 Bit objects, which are randomly connected
via n equality and trigger relations, and then invoke set or clear methods on
randomly selected objects for 1000 times.

Table 2. Execution times (in ms) of bit integration with n relations

n AA SNG AA
SNG

10 0.345 0.330 1.046
20 0.525 0.504 1.041
30 0.804 0.742 1.084
40 1.338 1.197 1.118

n AA SNG AA
SNG

50 3.450 3.183 1.084
60 21.081 18.612 1.133
70 62.731 57.124 1.098
80 347.120 287.047 1.209

The overall execution times are shown in Table 2. As seen in the rightmost
column on the table, the relative execution times of AA with respect to SNG

7 The relative overheads are increased from our previous measurement, which was
14%[12]. We presume that the additional overheads are introduced by the guard
code in the implementation of the association aspects that guarantees safe addition
and deletion of associations during advice dispatching. Since the guard code adds
constant overhead to each method invocation, we predict the ratio AA/SNG will not
change significantly for the cases n > 3, though we have not measured.
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range 1.0 to 1.2, depending on the density of the relations. We conjecture that the
differences in the implementation details caused those differences. In particular,
we presume that the major overheads come from the guard code in the AA
implementation that allows safe addition and deletion of associations during
advice dispatching.

6 Expressiveness Evaluation

In this section, we illustrate a practical application program built with associ-
ation aspects. We then compare the implementation of the application against
the same application implemented differently, namely with Java and with pure
AspectJ. The comparison illustrates the advantages of association aspects.

6.1 An Application: Integrated Development Environment

We developed a simple integrated development environment(IDE) by integrating
existing application programs. Note that we used major open source software as
the applications to be integrated, rather than toy programs. Figure 17 shows a
screenshot of our developed IDE, consisting of:

– jEdit8 text editor on the left window.
– Apache Ant building system9 with our own simple GUI called AntManager,

whose role is to list source files in a project description file build.xml and
to launch the Ant process with the project file, on the bottom right window

– our own IDE front- end that starts the AntManager after letting the user
choose a build.xml file, and coordinates between the AntManager and jEdit.

The IDE front end uses association aspects called AutoBuild in order to build
a project after saving a file in the jEdit text editor, and in order to save jEdit
buffers before building a project.

The IDE instantiates an AutoBuild aspect when a user selects a source file
from AntManager or opens a file with jEdit. The instantiated aspects are associ-
ated to a Buffer object in jEdit and the AntManager object itself. The Buffer
object contains a copy of the text in the opened file. It has a method save to
write the modified text to the file. The AntManager object is instantiated on a
per-definition file of a project (build.xml) basis. Its method build calls Ant
with the build file.

When an aspect AutoBuild observes a call of method save to an associated
Buffer object, it invokes the method build of the associated AntManager object.
Moreover, when method build is called, the aspect AutoBuild invokes save
method to an associated Buffer object so that Ant can build the project with
the latest files.

8 http://www.jedit.org
9 http://ant.apache.org/

http://www.jedit.org
http://ant.apache.org/
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Fig. 17. Screenshot of a tiny IDE system built with association aspects

6.2 Implementation of Integrated Development Environment

The code of the aspect AutoBuild from the design that was described in the
previous section is represented by Fig. 18. We implemented the same IDE in
Java and in AspectJ without using association aspects. By comparing those im-
plementations against the implementation in AspectJ with association aspects,
we observed the following problems:

The Pure Java Implementation. In the pure Java Implementation, the code
for integration crosscuts the underlying applications. We had to define a generic
Listener interface and to modify the Buffer and AntManager classes to im-
plement the interface, and to insert code fragments to notify the Listener into
several methods of those classes.

AspectJ Implementation Without Association Aspects. Figure 19 shows
an implementation of AutoBuild in AspectJ without using association aspects.
It basically follows an implementation technique discussed in Sect. 2.3. The
implementation adds the fields that store references to Relation objects into
Buffer and AntManager by means of intertype declarations.

The implementation even tries to modularize the code for managing associ-
ations by declaring an abstract aspect Association and by letting AutoBuild
inherit from Association. The reusability of this approach is, however, limited
as we have to define Relation inner class in AutoBuild and to explicitly write
loops over Relation objects in each advice body.

6.3 Comparison of Code Size

Table 3 compares implementations in AspectJ with and without association
aspects in terms of code size. In the table, the AALOC column shows the
lines of code of the implementation with association aspects on a per-file basis.
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aspect AutoBuild perobjects(Buffer, AntManager) {

private int busy;

after(Buffer buffer, AntManager project):

execution(public boolean Buffer.save(..))

&& target(buffer) && associated(buffer, project) {

if (busy > 0) return;

busy++;

project.build();

busy--;

}

before(final Buffer buffer, AntManager project):

execution(public void AntManager.build())

&& associated(buffer, project)

&& target(project) && if(buffer.isDirty()) {

if (busy > 0) return;

busy++;

SwingUtilities.invokeLater(new Runnable() {

public void run() {

if (buffer.save(jEdit.getLastView(), null, false)) {

buffer.setDirty(false);

jEdit.getLastView().getEditPane()

.getBufferSwitcher().updateBufferList(); }

busy--;

} });

}

//...advice delete AutoBuild when file is closed,

// and so on, goes here

}

Fig. 18. Code of AutoBuild with association aspects

The AJLOC column shows the numbers without association aspects, in which
AutoBuild is defined by two aspects: AutoBuildAj.aj and Association.aj.
The two implementations share the Java classes AntFile.java, AntManager.
java and IDE.java that define GUI for ant and IDE.

As we can see, AALOC of AutoBuild.aj is 50, and AJLOC of
AutoBuildAj.aj is 83. In other words, the implementation with association as-
pects has merely 60% code size when compared against the implementation
without association aspects.

The difference in the code size can be observed as the additional lines in the
implementation without association aspects. The comments in Fig. 19 classify
the additional lines into the next three groups:

+REL: code for Relation class declaration
+LOOP: code for loops to access all relations
+GET: code for retrieving states in Relation objects



284 K. Sakurai et al.

public aspect AutoBuildAj extends Association {

private static class AutoBuildRelation extends Relation { //+REL

private int busy;

... //following getter and setter of busy definitions //+REL

} //+REL

protected Class getRelationClass() { //+REL

return AutoBuildRelation.class; //+REL

}

after(Buffer buffer):

execution(public boolean Buffer.save(..))

&& target(buffer) {

for (Iterator iter = (Iterator) associated(buffer, ANY); //+LOOP

iter.hasNext();) { // writing explicit loop by hand //+LOOP

AutoBuildRelation r = (AutoBuildRelation) iter.next(); //+LOOP

AntManager project = (AntManager) r.getRight(); //+GET

int busy = r.getBusy(); //+GET

if (busy > 0) return;

r.setBusy(busy+1);

project.build();

r.setBusy(busy-1);

} }

... //following other advice definitions

}

Fig. 19. Code of AutoBuild by the original AspectJ

Conversely, the advantages of association aspects are to provide language con-
structs for those operations.

The advantages of association aspects would become more significant when
we develop more practical IDEs. This is because such an IDE would have more
integrated operations not only between Buffer and AntManager, but also among
multiple projects (e.g., build depending projects before building a project), be-
tween a text editor and a source file versioning system, between a text editor and
a compiler for handling error messages, and so on. Implementing those additional
features by using association aspects would be good for assessing extensibility
and adaptability of aspects. We would like to explore this in future work.

Table 3. The result of comparing code size

File name AALOC File name AJLOC AALOC/AJLOC

AutoBuild.aj 50 AutoBuildAj.aj 83 0.60
Association.aj 77

AntFile.java 85 85
AntManager.java 128 128
IDE.java 132 132

Total 395 505 0.78
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7 Discussion

7.1 Comparison with Eos

As the work on the association aspects is based on the work on Eos [4], we
here discuss the differences in detail. The most notable difference is that Eos
implicitly uses the current target object when selecting aspect instances at advice
execution. In contrast, association aspects can use arbitrary objects that are
explicitly specified by pointcuts. The mechanism in Eos is less flexible for the
following situations: (1) when aspect instances should be selected by using a
nontarget object, e.g., when advising a call to a class method, and (2) when
aspect instances should be selected by using more than one object, e.g., when a
security concern is to prevent method calls from object A to B, it can be realized
by an aspect instance associated to A and B. When a call from A to B happens,
all the aspect instances associated to B run an advice body in Eos, even though
the caller object A could be used for selecting aspect instances.

Both association aspects and Eos can distinguish roles of associated objects.
Eos, however, distinguishes by introducing additional role constructs around ad-
vice declarations, which might make it difficult to reuse aspects. For example,
even though Trigger and Equality aspects in Sect. 2.1 only differ in what ob-
jects should be used at advice dispatching, the declarations in Eos have different
program structures, since the former has to enclose advice declarations in a role
construct. Since association aspects distinguish roles of objects by the param-
eter positions in the associated pointcuts, the declarations of those aspects
can only differ in the pointcuts. Our approach, in which advice dispatching is
governed by pointcuts, would fit the other language features in AspectJ, as it
usually reuses aspects through the abstraction mechanisms of pointcuts (i.e., the
named pointcuts and the abstract pointcuts).

Both Eos and association aspects should be careful about the performance
penalty for the objects with no associated aspect instance. For the Bit inte-
gration example, a set call to a Bit object that has no associated Equality
instances should not have significant overhead. On this regard, there are two
possible dimensions to the overhead.

The first is the number of aspect instances. A naive implementation (which
is called the first work-around [4]) would significantly degrade its performance
to look up a systemwide table of aspect instances. Both Eos and association
aspects avoid this problem by having a list of associated aspects in each object.

The second is the number of advice declarations that statically match to
the call. Association aspects would linearly degrade the performance as each
advice declaration adds a getting a field and null checking into the method call
expression. Eos avoids this problem by having a list of thunks for each method
call expression. However, the approach in Eos requires more memory and more
operations for associating/unassociating aspect instances.

Those differences in implementation would result in the differences in per-
formance characteristics. However, we would need more programs written with
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association aspects in order to carry out quantitative comparison. This is because
the difference in performance depends on the number of advice declarations at
a joinpoint shadow and the number of joinpoint shadows that are advised by
different sets of aspect instances.

7.2 Other Related Work

Prior to the proposal of AOP, there have been studies on language mecha-
nisms that support the evolution of collaborative behavior for object-oriented
languages, namely the contracts by Helm and Holland [13], and the context rela-
tions by Seiter et al. [14, 15]. Those languages rely on different mechanisms from
pointcut and advice. Although there are many commonalities between those
language mechanisms and association aspects, there are also differences when
compared more closely. For example, a context relation can be associated to an
arbitrary number of objects, while an association aspect can be associated to, at
most, one object for each parameter position. Conversely, an association aspect
can be associated to an object pair in the same type, which does not seem to be
possible in the context relations.

There are AOP languages that have similar mechanisms to association as-
pects, namely CarsarJ proposed by Mezini and Ostermann [16, 17, 18], EpsilonJ
proposed by Tamai et al. [19], and ObjectTeams proposed by Herrmann et al.
[20, 21]. Those language models can support integration concerns by using role
objects and collaboration contexts.

In CaesarJ, a cclass object corresponds to an aspect instance, which can
be instantiated with several cclass instances that wrap objects as role mem-
bers. However, CaesarJ has no mechanism to associate a cclass instance to a
group of objects and to find associated instances. Supporting integration con-
cerns would need manual management of wrapper instances. A more recent ver-
sion of CaesarJ supports variable management implementations by a mixin-like
reuse mechanism.

EpsilonJ and ObjectTeams have a construct to define a context that encloses
several role definitions. A context (or a team in ObjectTeams) can be instan-
tiated explicitly and can bind a role to an arbitrary object. EpsilonJ realizes
one-to-many relations by introducing a mechanism that broadcasts calls to all
role objects of a specified type in a context; ObjectTeams can generalize the
mechanism by using an abstract team.

JAsCo [22] is an aspect-oriented language for component-based software de-
velopment. JAsCo introduces new language constructs such as a hook and a
connector. Although they have different granularity from the module system of
the association aspects (or AspectJ), we think that association aspects are useful
to connect(integrate) existing components as well as JAsCo.

Ostermann et al. proposed an expressive pointcut language ALPHA based on
logical queries over dynamic properties of a program execution [23]. Unlike other
extensible AOP languages that can query over static structures of a program,
ALPHA is so powerful that it can define pointcuts that examine a past state in
a program execution with individual object references. As a result, it is possible
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to write a pointcut like “when called set or clear to a target bit1, there was
a call associate(bit1,bit2) in the past, then bind the second parameter to
bit2”. However, it is not clear whether such a pointcut can be as efficiently
implemented as association aspects.

Colman and Han developed the ROAD framework [24] using association as-
pects for defining a coordination system that manages an organizational system.
In the ROAD framework, objects are modeled as the roles in a specific organiza-
tion. Association aspects act as the stateful contract between role objects. When
an association aspect picks up a message between the role objects, the advice of
the aspect coordinates the role objects

The current version of association aspects is implemented by modifying the
ajc compiler [10]. There is another AspectJ compiler named abc developed by
de Moor et al. [25]. abc is an extensible compiler for implementing new language
constructs such as association aspects. We expect that association aspects for
the abc compiler can be achieved by applying the same compilation strategy as
that described in Sect. 4.

8 Conclusion

We presented association aspects as an extension to in AspectJ. They are based
on the notion of instance-level aspects in Eos [4], and extended with the pointcut-
based advice dispatching mechanisms that enable flexible yet concise descriptions
of aspects whose instances are associated to more than one object. As a result,
the association aspects can give straightforward representations of crosscutting
concerns that have stateful behavior with respect to a particular group of objects.

We developed a compiler for association aspects by modifying the AspectJ
compiler (ajc). The compiler employs an optimization strategy that reduces the
number of data structures. The benchmark tests exhibited that the slowdown
factors of the programs using association aspects with respect to the regular
AspectJ programs are 1.0 to 1.2.

As an application of association aspects, we developed an tiny IDE by in-
tegrating existing applications in a nonintrusive way. Although this is merely
one particular example, we observed that the use of association aspects reduced
the code size of the core integration aspect in the IDE to approximately 60%
from the one defined without association aspects. Our future plan is to quanti-
tatively evaluate association aspects by using software metrics other than code
size. In particular, evaluation criteria used for comparing GoF Design Pattern
implementations in Java and AspectJ [26] would be useful.

Bridging between design level concepts and association aspects at the im-
plementation level is also left for future work. Association aspects would be a
suitable vehicle to implement many design-level concepts such as relation ob-
jects in UML, roles in the collection designs, and composites of concepts in
CoCompose [27]. It would be useful to investigate methodologies to design these
concepts by assuming association aspects and to derive proper implementations
from those concepts.
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Appendix

Generating Code of Dispatching with Around Advice

The compilation rules of around advice are slightly different from those of before
and after advice due to the proceed mechanism in around advice. Figure 20
shows the skeletons of the methods and an auxiliary class, namely the dispatch
and abody methods and the Closure class.

When an around advice is to run, instead of directly running the advice body,
the compiled code first creates a Closure object with a list of associated aspects
that match the pointcut. The Closure object serves as a continuation of advice
body. When called, it runs the advice body in the context of the next aspect
instance, or performs the original operations of the joinpoint.

Assume the declaration of aspect A in Fig. 21. As shown in Fig. 22, the
Compiler generates the dispatch1 and abody1 methods in to class A and an
auxiliary class Closure. The compiler replaces every call to m with a called to
dispatch1, which in turn runs the body of advice in the context of an aspect
instance or runs method m when no more matching aspect instances are found.
Note that the former case creates a new Closure object for handling proceed
in the advice body. This is needed to cope with AspectJ’s language design that
allows around advice declarations to call proceed more than once.

Performance of Around Advice. The implementation of around advice in as-
sociation aspects has some overheads when compared against before advice. The
overheads include collecting n aspect instances and dispatching n closures with
proceed. Table 4 illustrates differences in execution times between around and
before advice with n aspect instances. Those figures are insensitive to the num-
ber of associated objects and the number of bound parameters in associated
pointcuts.

From the figures in the table, we can approximate the overhead of around
advice execution by the following formula:

Table 4. Execution times (in µs) of around advice

n AROUND BEFORE AROUND-BEFORE

0 0.786 0.029 0.757
1 2.016 0.327 1.689
25 11.986 3.578 8.408
50 24.103 6.948 17.155
75 39.369 10.268 29.101
100 56.223 13.642 42.581
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AROUND(n) = 0.375n + 0.757 + BEFORE(n),

where AROUND(n) and BEFORE(n) are execution times of around and be-
fore advice with n instances, respectively.

This suggests that the around advice has overheads of approximately 0.757 µs
for each joinpoint and 0.375 µs for running an advice body in the context of an
aspect instance.

static Tjp dispatch( Tσi(1) v1, . . .,Tσi(l) vl) {

if(!〈parameterless dynamic conditions〉) return jp(v1, . . . , vl);

Ui1 mi1=v1. aspectsi; if(mi1==null)return jp(v1, . . . , vl);

Ui2 mi2=mi1.get(v2); if(mi2==null)return jp(v1, . . . , vl);

· · ·
Uil mil=mil−1.get(vl);

if(mil==null)return jp(v1, . . . , vl);

List as = new ArrayList();

for (Uil+1 mil+1 : mil.values()) {

· · ·
for (Ui|σi| mi|σi| : mi|σi|−1.values()) {

collecting
}

· · ·
}

return new Closure(as, 0).run(v1 ,· · · ,vl);

}

Tjp abody(Tσi(1) v1, . . ., Tσi(l) vl, Closure c) {

if (!〈dynamic conditions〉) return jp(v1, . . . , vl);

//statements in the advice body...

//proceed are translated to c.run(...)

}

class Closure {

List as; int i;

Closure(List as, int i) { this.as =as; this.i =i; }

Tjp run(Tσi(1) v1,. . . ,Tσi(l) vl) {

if(i < as.size()) {

return ((A)as.get(i)). abody(v1, ..., vl, new Closure(as, i+1));

} else { return jp(v1, . . . , vl); }

} }

collecting =

�
as.addAll(mi|σi|); |σi| < n

as.add(mi|σi|); |σi| = n

Fig. 20. Code for around advice dispatching and body
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aspect A perobjects(T1, T2, T3, T4) {

int around(T1 v1, T2 v2): call(int m(T1, T2))

&& args(v1, v2) && associated(v1,v2,*,*) {

return proceed(v1, v2);

} }

Fig. 21. An example aspect with an around advice declaration

static int _dispatch1(T1 v1, T2 v2) {

Map<T2, Map<T3, List<A>>> m1 = v1.aspects1;

if(m1==null) return m(v1,v2);

Map<T3, List<A>> m2 = m1.get(v2); if(m2==null) return m(v1,v2);

List as = new ArrayList();

_Closure c = new _Closure(as, 0); //create a closure

for (List<A> m3: m2.values()) //collect all matching

as.addAll(m3); // aspect instances

return c.run(v1,v2); //run the first advice

}

static int _abody1(T1 v1, T2 v2, _Closure c) {

return c.run(v1, v2); //the body of advice

}

class _Closure {

List as; int i;

_Closure(List as, int i) { this.as = as; this.i = i; }

int run(T1 v1, T2 v2) {

if (i < as.size()) {

A a = as.get(i); //run advice body

return a._abody1(v1,v2, new _Closure(as, i+1));

} else {

return m(v1,v2);

}

} }

Fig. 22. Generated methods and class for around advice
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