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In recent years, the PteroisVolitans, also knownas the red lion�sh, has become a serious threat by rapidly invadingUS coastalwaters.
Being a �erce predator, having no natural predator, being adaptive to di	erent habitats, and being with high reproduction rates,
the red lion�sh has enervated current endeavors to control their population.�is paper focuses on the �rst steps to reinforce these
e	orts by employing autonomous vehicles. To that end, an assistive underwater robotic scheme is designed to aid spear-hunting
divers to locate and more e
ciently hunt the lion�sh. A small-sized, open source ROV with an integrated camera is programmed
using Deep Learning methods to detect red lion�sh in real time. Dives are restricted to a certain depth range, time, and air supply.
�e ROV program is designed to allow the divers to locate the red lion�sh before each dive, so that they can plan their hunt to
maximize their catch. Lightweight, portability, user-friendly interface, energy e
ciency, and low cost of maintenance are some
advantages of the proposed scheme.�e developed system’s performance is examined in areas currently invaded by the red lion�sh
in the Gulf of Mexico. �e ROV has shown success in detecting the red lion�sh with high con�dence in real time.

1. Introduction

Biological invasions can cause environmental disruption and
biodiversity loss, o�en due to human-caused global change
[1–3]. Invasive species are nonnative species that may have
serious e	ects on ecosystems and habitats. Some of these
e	ects can evolve to global consequences [4]. �e terrestrial
and freshwater systems appropriate the majority of invasions,
while, in the last decade, the rates of the marine invasions
have dramatically increased and impacted the stability of
ecosystems, raising ecological and economic concerns [1, 5].
Overall, recent studies [6] indicate that invasive species cost
120 billion dollars to the environment and the economy.
Among marine species, Pterios volitans (red lion�sh) is the
most invasive and aggressive species that has taken only two
decades to populate across a signi�cant portion of the US east
coast [7–9].

Regardless of how the red lion�sh were �rst introduced
[10–12], their rapid reproduction rate, lack of signi�cant
predators, and wide range of dietary consumption have made
them a serious threat to coral reefs and many other marine

environments [13–16]. As evidence to this threat, in Figure 1,
the spread of the red lion�sh in 1995 is compared with
that of 2015. �e red lion�sh grow rapidly and reach up
to 50 centimeters in 3 years [16]. Both smaller �shes and
crustaceans are potential prey for red lion�sh [1, 9]; they
literally consume anything that they can �t in their mouth.
Due to their venomous dorsal, pelvic, and anal spines the red
lion�sh are fatal [13] to human divers [9] and native predatory
species who quickly learn to avoid them. Having no natural
predator on one hand and the ability to quickly procreate,
which is approximately 2million eggs per female annually, the
red lion�sh population is exponentially growing and calling
for immediate national resolutions [17].

Being aware of this destructive invasion in recent years,
scientists have tried to �nd e	ective ways to control the
red lion�sh to spread and prevent more damage to the
ecosystem [17]. One way for controlling the red lion�sh
population is hunting them by scuba divers equipped with
“ZooKeepers” [18] and an “ELF lion�sh Spear Tool” [19].
�e divers spear the red lion�sh and then keep them into
the tubular ZooKeeper containments through their one-way
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Figure 1: Red lion�sh occurrence in the Western North Atlantic and Caribbean Sea (USGS-NAS 2015) (�gures courtesy of USGS-NAS
database found at http://nas.er.usgs.gov).

gate that holds the �sh until the diver returns to the surface.
�is method is not cost-e
cient due to limitations in the
number of divers, diving time and the small number of hunts
possible in each dive. Divers facemany limitations for �nding
and locating red lion�sh underwater due to signi�cant
depth, limited air cylinder capacity, low visibility conditions
underwater, temperature di	erences, high pressure, etc. �e
fast spreading of the red lion�sh calls for more e
cient
and aggressive solutions for the problem [20, 21]. Hence,
introducing assistive technological schemes to detect the red
lion�sh can help to increase the e	ectiveness of the hunt in
each dive.

Recently, several methods to detect �shes underwater
are used for di	erent purposes such as �shing, biological
research, etc. Some of these methods employ high-resolution
sonar scanning or vision-based methods. However, sonar-
based �sh �nders are unable to distinguish �sh species.
Finding a speci�c species of �sh can be very challenging
using the available technologies. Using robots instead of
humans in harsh environments is a common solution for
such problems [22]. Nonetheless, for the robots, there are
challenges to automatically detect objects underwater. Low
lighting, moving cameras along with moving objects, limited
sight, and background color change due to organic and
arti�cial �oating debris are some of the technicalities that add
more complexity to red lion�sh detection. Although some of
these challenges had been addressed in the literature [23],
applying them in underwater condition is still challenging.
�ere exists an extensive amount of research for o�ine
detection of �sh underwater for di	erent purposes such as
counting [24, 25] and measurement of their length [26]. In
[25] they perform detection, tracking, and counting �sh;
the method they used for detection was a moving average
algorithm applied o�ine to recorded videos. In [27] a radio-
tag system was developed for monitoring invasive �sh. Lin
Wu et al. [28] developed underwater object detection based
on a gravity gradient, which detects objects underwater
using a gravimeter. In [29] several methods were proposed

and implemented on o�ine videos for the purpose of �sh
classi�cation. In [30] deep Convolutional Neural Networks
were used for coral classi�cation. Qin proposed used Deep
Learning for underwater imagery analysis [31]. In [32] a
survey is conducted over using Deep Learning for various
marine objects excluding red lion�sh. Moreover, Siddiqui et
al. [33] investigated the automated classi�cation systems that
have the ability to identify �sh from underwater videos and
also studied the feasibility and cost e
ciency of automated
methods like Deep Learning. Although many species are
included in [33], unlike the red lion�sh, the selected species
had a less complex body shape such as P. porosus and A. ben-
galensis. An automatic image-based system was proposed in
[24] that was used for estimating the mass of free-swimming
�sh. Qin et al. [34] has proposed live �sh recognition using
deep architecture where both support vector machines and
So�Max for classi�cation are compared. Similar to [33], the
outcome of [34] was tested on �shes with simple body shapes,
e.g., oval or semicircle shapes and species with variable body
shapes were excluded. �e challenge in the lion�sh detection
is that it takes di	erent gestures in di	erent dispositions
such as o	ending, defending, hiding or normal swimming
[1]. In other words, unlike salmon, trout, tuna, etc., the red
lion�sh does not have a certain body shape. To the best of the
author’s knowledge, the available underwater object detection
methods have not been applied to the detection of red lion�sh
in real time.

In this work, a compact-sized, open source ROV is
employed to assist divers in detecting red lion�sh in a more
e
cient manner. �e scheme of the mechanism is as follows.
�e ROV is tethered to a computer on the surface that
receives the video from a camera integrated on the ROV.�e
computer processes the video frames real-in-time and detects
the red lion�sh. By prespotting the red lion�sh, the divers will
not need to consume time and air hunting for them.

�e ability of Deep Learning to learn patterns from high-
dimensional data especially in image processing problems
has made it a major tool for object detection or classi�cation

http://nas.er.usgs.gov
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Figure 2: Overall system block diagram. ROV, Designed Interface inMATLAB, and Joystick for navigation aremain parts of assistive system.

in recent years in several applications [35]. �e proposed
real-time red lion�sh detection scheme employs the Deep
Learning method in aMATLAB-based Graphical User Inter-
face (GUI) in a PC. �e user employs a joystick to navigate
and investigate underwater while the ROV is programmed
to send video from its camera in real time. Each frame of the
video is processed, and the detected red lion�sh are identi�ed
on the screen. �e ROV uses its Inertial Measurement Unit
(IMU) to report the detected lion�sh’s location to the surface.
�is scheme o	ers a unique platform that can be employed
for detecting any other recognizable species. Further, �nding,
locating, and recording the population of the red lion�sh
are useful for the biologists to determine the red lion�sh
spreading patterns [7].

�e remainder of this paper is organized as follows.
Section 2 gives an overview of the robot speci�cations and
navigation; also it discusses the algorithm and methodology
that has been used for detecting the red lion�sh. In Section 3,
Simulation and real-world testing results and challenges are
presented. �e conclusion follows in Section 4.

2. Design

�e proposed assistive system is comprised of the following
subsystems:

(1) OpenROV robot that consists of actuators, control
boards, lighting system, camera, and navigation sys-
tem

(2) Computer and Graphical User Interface

(3) Red Lion�sh detection system

�e overall block diagram of the designed system is depicted
in Figure 2, and the above subsystems are elaborated in the
following subsections.

2.1. OpenROV 2.8. �e OpenROV 2.8 is a telerobotic
submarine with open access to its operational source code.
Small dimensions and light weight (30 × 20 × 15 cm and 2.6
kg) make it possible to be carried and operated by a single
user. It reaches a maximum forward speed of 2 knots, which
is su
cient for the calm sea states, where the dives take place.
�is ROV is a tethered robot and all data are transceived

through a 90-meter two-wire twisted cable with 100Mbps
throughput. A Tenda HomePlug and a third party board
(Topside Interface Board) designed byOpenROV [36] is used
to convert Ethernet to the two-wire connection protocol. �e
communication channel is depicted in Figure 3.�ree 700Kv
(rpm/v) brushlessmotorswith electronic speed control (ESC)
propel the ROV to move in three dimensions. Figures 4 and
5 show the OpenROV layouts.

�e OpenROV 2.8 is powered with six 3.3V batteries that
last for at least 30 minutes of sur�ng, when fully charged. All
the electronics are in an acrylic case under vacuum mounted
as depicted in Figure 4, on an internal chassis. In addition, the
maximum frame rate of the mounted camera is 30 fps at HD
720p quality.

2.2. User Interface Panel (UIP). To provide data access and
control, a MATLAB-based Graphical User Interface (GUI)
was coded that is shown in Figure 6. For all the test and
simulations, the program was run on a Core i7 PC with 16
GigaByte of RAM and NVIDIA GTX 745 GPU.

Being open source, the ROV is supported by numerous
libraries for accessing motors, camera, etc.�ey are accessible
via socket.io [37] in MATLAB’s GUI. A USB joystick was
utilized to make the navigation of the ROVmore convenient.
�e joystick is capable of controlling the ROV in all directions
by adjusting the thrusters’ rotation speed. �e horizontal
thrusters propel the ROV forward and backward and provide
torque to control the yaw. �e vertical thruster propels the
ROV vertically. In addition, the joystick can control lights,
camera recording, and camera tilting upward and downward.
A Node.js [38] server was created and ran on BeagleBone
Black that is integrated on the ROV.

In Figure 7 the communication process during deploy-
ment of the ROV underwater is depicted. �rough these
interface options, e.g., navigating, monitoring motors, con-
trolling LEDs and lasers, camera tilting and capturing videos
or images are accessible. �e default method for transmitting
data between the ROV and the surface computer is web-
based. In this approach, all controlling and feedback values
between the ROV and PC are transmitted using Socket.io.
In other words, the ROV acts as a server and the browser
in the PC is its client. To be able to transmit data without
using a web browser, Java code is written for communicating
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balancing underwater.

with Node.js server inside the ROV directly and it bypasses
the web browser for reducing delay between the ROV and
UIP. �is Java code is then used in the MATLAB GUI
and provides complete access to the ROV. Navigational and
miscellaneous related commands are sent through Socket.io

each 20 milliseconds and the camera image frames are
received each 0.8 seconds.

2.3. Object Detection Algorithm. To detect objects under-
water, the Deep Learning (DL) method is employed. DL
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Figure 5: Rear view of OpenROV 2.8. �ere are three brushless motors for moving the device underwater. �e tether cable is used for data
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Figure 6: Designed UIP in MATLAB. All three brushless motors,
LED lights, camera, laser, and camera tilt are accessible via this UIP.
Live camera view also is available on this UIP.

utilizes Convolutional Neural Networks for object detection
and classi�cation [39]. For detecting objects of interest, it
is necessary to gather a database that includes prototypical
images of those speci�c objects.�emore images that contain
the object of interest, the more accurate the detection will
become. �ere is no limitation on the number of objects
of interest to be detected other than memory if su
cient
prototypes are available. �ere are several databases for
various objects available online, e.g., human faces in di	erent
poses, human body gestures, cars, etc. But unfortunately,
because the red lion�sh are a speci�c species, there are no
images or video database available for them. To address that

issue, 1500 images were gathered from di	erent royalty free
online resources such as ImageNet, Google, and YouTube.
Also, the authors contributed to the database by participating
in diving excursions in the Gulf of Mexico in di	erent
infested areas such as Flower Garden Banks National Marine
Sanctuary, arti�cial reefs o	 the coast of Pensacola, FL.

Deep Learning consists ofmany cascaded layers and these
layers are nonlinear processing functions used for feature
extraction and transformation. �e pattern recognition for
the database is semisupervised and because of that we
introduce the object of interest, which is a red lion�sh in
this case, and label them in the database. �e classi�cation
is an unsupervised algorithm that classi�es objects of interest
from other objects based on de�ned labels. �e database is
trained using Regions with Convolutional Neural Networks
(R-CNN) [40]. In this project the database images were run
through 15 layers of 5 × 5 convolutions, and the �lters were
trained using Stochastic Gradient Descent with Momentum
(SDGM) [41].

MATLAB was used to label the images. Using the “Train-
ing Image Labeler” app in MATLAB allows us to specify all
rectangular ROIs in images. Most of images su	ered from
two problems, the �rst one was background and the second
was low quality images requiring preprocessing. For instance,
Figure 8(a) depicts a red lion�sh next to an arti�cial reef,
so for preparing the image for the database the brightness
of image is modi�ed as shown in Figure 8(b). Also, the size
of the images is reduced to avoid other unnecessary objects,
although the objects in the background or foreground, such
as reefs and underwater debris, are impossible to avoid.

CNNs have the ability to build their own features and
transform the input signal using convolutional kernels, an
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(a) (b)

Figure 8: Two le� images in (a) are original images from red
lion�sh. �e right images (b) are preprocessed to become suitable
for the database. Images are taken from in Pete Tide II.

activation function, and a pooling phase. �e activation
function adds nonlinearity to the input, and the pooling
phase is for reducing input size and strengthening learning
[35]. Finally, in the last convolutional layer all features are
sorted as a vector and sent to next layer. In the training step,
the database that contains images and their labels are inputs
to CNN. Figure 9 shows the architecture of CNN that was
used for detecting the red lion�sh. Excluding input layer,
there were total of 14 layers. �e input size of �rst layer
was set to 32 × 32 × 3 for all three channels and to have

a coarse-to-�ne prediction of features three convolutional
layers were used. First convolutional layer size was set to
5 × 5. Each convolutional layer is followed by a Maxpooling
layer. Maxpooling layers were followed by a Recti�ed Linear
Unit (ReLU) layer where this layer is used as a thresholding
operator [35, 42].

3. Experimental Results

�e trained network was tested real-in-time on collected
videos with ROV camera from four arti�cial reefs o	 the
coast of Pensacola, Florida, USA. Figure 10 shows the sites
that are visited during the experimental dives. In order
to simulate real conditions, no samples from the recorded
videos were added to the database. �erefore, the testing
procedures could be assumed as a real-world situation, since
the results were completely captured in real environment.
Figure 11 shows a screenshot from one of the captured videos.
Due to algae, green is the dominant color in this video. Also,
the background, which is a sunken ship, has some patterns
that can be mistaken as red lion�sh stripes by a trained
CNN. Moreover, as depicted in Figure 11, the similar stripe
patternswere detected as a false positive instance. Con�dence
of false positives was relatively low. �erefore, to avoid false
detection, the acceptable con�dence level was set to 80%.
Figure 12 is a sample of frame that have detected true positive.
As depicted in Figure 12, although the red lion�sh stripes are
not clearly observable, because of other features such as �ns,
the trained network could successfully distinguish the red
lion�sh. In addition, as depicted in Figure 13, in a complicated
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Figure 10: Location of three di	erent sites in Pensacola, Florida, for
�nding red lion�sh.

situation like presence of other �shes, the CNN is capable of
detecting the red lion�sh with 91% con�dence.

In order to �nd the accuracy of proposed method, 1000
consecutive frames were selected from one of the captured
videos from the Pensacola reefs. According to the selected
frames, the red lion�sh was available in 88.5% of them. Table 1
shows the number of true positive detected red lion�sh in
885 frames that contained red lion�sh in them. Among the
true positive instances there were some frames that contained
false positive instances that means despite the presence of red

Figure 11: An example of false positive detection due to similarity of
patterns. Although because of strip patterns this stair was detected as
a red lion�sh, the con�dence was about 0.5 that is below the de�ned
rejection threshold. Location of image is TDC Reef #1.

Figure 12: Despite the color change and camou�age, the red lion�sh
was detected with con�dence above 0.8. Location of image is TDC
Reef #1.

lion�sh in that particular frame another object was wrongly
detected as red lion�sh with a con�dence higher than 80%.
Moreover, in some frames like Figure 14, the trainedCNNwas
not able to detect the target due to di	erent conditions like
instantaneous turning of the red lion�sh that cause a blurry
image of it, very low light condition, or far distance. However,
since these frames sporadically occur in the video, the overall
continuousness of the lion�sh tracking is not a	ected.
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Table 1: Results of the trained CNN on 1000 frames.

Frames True Positive Detected False Positive Detected Missed Red lion�sh

red lion�sh 93% 4% 3%

Figure 13: �e red lion�sh was detected correctly despite the
presence of other species in the image. Location of image is SE Navy
YDT15.

Figure 14: �e ROV lights were o	 while the red lion�sh tried to
hide in a dark environment. Location of image is TDC Reef #1.

In Figure 15, a video containing 500 frames in presence
of a red lion�sh was selected for evaluating the real-time
performance of the trained CNN real-in-time. �e average
time for processing each frame was measured as 0.097
seconds that leads to at least 10 frames per seconds. Since
the red lion�sh swim at low speed, the detection system can
still notify the user about the presence of the red lion�sh in a
real-time manner. Figure 16 depicts the processing time for
each of the 500 frames in the processed video. Moreover,
Figure 17 shows the con�dence percentage of detected red
lion�sh in each frame. In each frame, if the detected object
has a con�dence level lower than the threshold of 85%, then it
is discarded as false positive.�e total number of true positive
detected objects in 500 frames was 461, which is 92% of the
whole frames. Finally, four live performances of the trained

Figure 15: The processed video is available at youtu.be/j43Og -d SQ.
Location of video is SE Navy YDT15.
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Figure 16: Processing time for each frame in the Figure 15’s video.
�e average time for processing frames is 0.097 seconds.

CNN the red lion�sh detection scheme can be found in a
YouTube video with the address provided in Figure 18.

As one can recognize from the results, the proposed
system shows success in real-time detection of red lion�sh in
a variety of environments and lighting conditions. However,
further investigations are required to prove the e	ectiveness
of the system on the number of catches, the time for each dive,
and the number of divers needed in each excursion.

4. Conclusions

�is study was a proof of concept for the design and
implementation of a real-time CNN-based assistive robotic
system for divers to locate the red lion�sh. �e assistive
robot is able to �nd red lion�sh at up to 30 meters in
depth. �e streaming videos from underwater are sent to the
surface and processed in real time to detect the red lion�sh.
�e overall design was driven by the needs of portability,
high manoeuvrability, low energy consumption, and user

http://youtu.be/j43Og_-d_SQ
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Figure 18: Four CNN live performance on three di	erent sites
can be found by scanning the QR code or on YouTube at
youtu.be/j43Og -d SQ. Locations of videos are SE Navy YDT15,
TDC Reef #1, Pete Tide II, SE Navy YDT15.

friendliness. �e proposed scheme is able to perform red
lion�sh detection in real time, while diving in an underwater
environment. �e detection system was implemented on
an open source, low cost ROV equipped with a camera to
collect live videos underwater. Experiments were conducted
on recorded videos from marine environments. �e main
achievement of this work was developing a computer-aided
scheme on an a	ordable set of hardware that can be used
environmentalist to detect and remove the lion�sh. In the
next phase of this research, the focus will be on (1) developing
a custom-built ROVespecially designed for lion�sh detection
and removal and (2) investigating the e	ect of utilizing the
proposed assistive scheme on the number of hunts in diving
excursions.
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