
Design and Implementation of an FPGA-based Real-Time Face Recognition System

Janarbek Matai, Ali Irturk and Ryan Kastner
Dept. of Computer Science and Engineering, University of California, San Diego

La Jolla, CA 92093, United States

{jmatai, airturk, kastner}@cs.ucsd.edu

Abstract—Face recognition systems play a vital role in many

applications including surveillance, biometrics and security. In

this work, we present a complete real-time face recognition

system consisting of a face detection, a recognition and a

downsampling module using an FPGA. Our system provides an

end-to-end solution for face recognition; it receives video input

from a camera, detects the locations of the face(s) using the

Viola-Jones algorithm, subsequently recognizes each face using

the Eigenface algorithm, and outputs the results to a display.

Experimental results show that our complete face recognition

system operates at 45 frames per second on a Virtex-5 FPGA.

Keywords-Face recognition; Eigenface; Complete face recog-

nition system; face detection; FPGA; real-time processing.

I. INTRODUCTION

Face recognition is a challenging research area in terms
of both software (developing algorithmic solutions) and
hardware (creating physical implementations). A number of
face recognition algorithms have been developed in the past
decades [1] with various hardware implementations [2], [3],
[4], [5], [6], [7]. All previous hardware implementations
assume that the input to the face recognition system is an
unknown face image. Current hardware based face recogni-
tion systems are limited since they fail if the input is not
a face image. A practical face recognition system should
not require the input to be a face, instead would recognize
face(s) from any arbitrary video which may or may not
contain face(s) potentially in the presence of other objects.
Therefore, an ideal face recognition system should first have
a face detection subsystem which is necessary for finding
a face in an arbitrary frame, and also a face recognition
subsystem which identifies the unknown face image.

We define the complete face recognition system as a
system which interfaces with a video source, detects all
face(s) images in each frame, and sends only the detected
face images to the face recognition subsystem which in turn
identifies the face images. We designed and implemented a
real-time and complete face recognition system consisting
of a face detection subsystem, a downsampling module and
a face recognition subsystem. The face detection subsystem
uses our previously developed hardware implementation [8],
[9], which is publicly available at [10]. The face recognition
subsystem uses the Eigenface algorithm [1]. The complete
system interfaces with a camera, sends the video data to the
face detection subsystem, which in turn sends detected faces

!"#$%

&$'$#'()*%

+,-./.'$0

&)1*."023(*4

5""6 76"(*(*4%&"'"

!"#$%8$#)4*('()*%

+,-./.'$0

9(4$*:"#$ 76"(*(*4%&"'"

;"0$6"

Figure 1. Overview of our complete face recognition system on an FPGA.
Video data is received from the camera and sent to the face detection
subsystem which finds the location of the face(s). These face(s) can be any
size. The architecture then performs downsampling of the detected face to
20 × 20, and sends these 400 pixel values to the recognition subsystem.
The face recognition subsystem identifies the person.

to the face recognition subsystem via the downsampling
module as shown in Figure 1. Our face recognition system
automatically identifies or verifies a person from a digital
image, a video frame or a video source while previous
works [2], [3], [4], [5], [6], [7] simply implemented what
we describe as the face recognition subsystem.

In this work, we describe the design and implementation
of a face recognition architecture using Eigenface algorithm.
We design and implement a face recognition subsystem on
an FPGA using both pipelined and non pipelined architec-
tures. In each case, we evaluate system performance on a
different number of images. Then we show how to integrate
face recognition and face detection using a downsampling
module which is responsible for preprocessing detected
face images from the detection subsystem to satisfy the
requirements of the face recognition subsystem.

II. FACE RECOGNITION SUBSYSTEM

A. Architecture

The block diagram of the face recognition subsystem is
shown in Figure 2.

1) Image Reader: The image reader module reads a 20×
20 image and stores each pixel of this unknown image in the
Image Frame Buffer. These are the pixels of the unknown
image that need to be recognized. Previously stored pixels
are sent to the Normalized Image Calculator Module in order
to start normalized image calculation.

Figure 2. A block diagram of the face recognition subsystem implemented
on Virtex-5 FPGA.

2) Normalized Image Calculator: The normalized image
calculator module finds the differences between the average
image and the input image. The average image reader reads
the image pixels from the average image buffer, and then
the input image pixels are subtracted to find a normalized
image. The normalized image is stored in the normalized
image buffer.

3) Weight Vector Finder: The weight vector finder mod-
ule calculates weight values for input image using the previ-
ously calculated normalized image and Eigenvector values.
The Eigenvector values are read by the Eigenface reader
from the Eigenface image buffer. The Eigenvector values
are stored in block RAM. The weight vector finder is the
most computationally expensive step in the face recognition
algorithm.

4) Weight Vector Reader: The weight vector reader is
used by the classifier/projection module for retrieving the
weight vector values that are generated in the training stage
and stored in the block RAM.

5) Classifier/Projection: The classifier module utilizes
weight vectors (from the weight vector reader module) and
the weight vector for the unknown image (from the weight
vector finder module). Then the classifier finds the distance
between each weight vector from the weight vector reader
module and the weight vector of the unknown image. For
each calculation of distance, it compares the current distance
value with the previous one. If the current value is smaller,
then it is stored to the distance buffer. Finally, the index
of the identified face, which corresponds to a minimum
distance in distance buffer, is sent to the display (or other
output device) as an identified face.

B. FPGA Implementation

The implementation of the face recognition subsystem is
performed in two steps. The first step generates the training

data and the second step is face recognition.
1) Training Data Generation: The training data is gener-

ated using the OpenCV library [11]. We used two different
face image databases as training data. First, we evaluated
the feasibility of the face recognition subsystem using the
ORL database [12]. We refer to the ORL database as
“set1” throughout the remainder of the article. We generated
training data using 100 images from 10 different individuals
from set1. We also collected 60 images from 6 individuals in
our lab which we call “set2”. In the following sections, we
introduce the details of the implementation based on set2.

The training data provides us with an average image
Ψ, weight vectors for each image Ωi, and Eigenvectors
µi. Assuming Γ1,Γ2...Γ60 represent the initial 60 images
provided for training, the following data is generated:

• An average image Ψ of size 20× 20
• A weight vector Ω1,Ω2, ...Ω60 for each image. The size

of the weight vector Ωi for image i is 59. In total, we
have to save a 59× 60 matrix for each Ωi in the form
of Ω = ω1,ω1, ...,ω59.

• 59 Eigenvectors of size 20×20. The set of Eigenvectors
is µ1, µ2, ..., µ59

In essence, the training data transforms the sixty images into
a linear combination of weight vectors and Eigenvectors. For
instance, Γ1 can be represented as:

Γ1 −Ψ = ω1 ∗ µ1 + ω2 ∗ µ2 + ...+ ω59 ∗ µ59 (1)

2) Face recognition: After generating the training data,
we store the average image Ψ (size of Ψ is 20 × 20), the
weight vectors for each image Ωi (size of Ωi is 59 × 1),
and the Eigenvectors µi (size of µi is 20 × 20) in a block
RAM. Then, we implement face recognition in three steps:
normalization, weight vector calculation and projection to
find if Γunknown belongs to any of the six individual’s faces
in training data.

Normalization: Given a 20 × 20 unknown input image
Γunknown, the first step of the face recognition is the
calculation of the normalized image Φ. Given the training
data, it is straightforward to calculate the normalized image.
The average image Ψ is subtracted from unknown image
pixel by pixel; both the average image and the unknown
input image have the same size (20 × 20). The average
image buffer is stored in a block RAM, and the input
image buffer is implemented for storing the unknown input
image. Since there are 400 operations and each operation
is independent, the subtraction of the average image pixels
from unknown image pixels can be performed in parallel.
After the normalized image is calculated, the resulting pixels
are sent to the weight vector calculation step.

Weight vector calculation step: Here we find the weight
vector for an unknown image using Equation 2. In this step,
the µ1, µ2, ..., µ59 Eigenvectors and normalized image Φ are
used to calculate the weight vector of the unknown input

image. At this point, the normalized image Ψ is calculated
and stored in a register. Therefore, the calculation of each of
the 59 weight vector elements ωi can be parallelized since
the Eigenvectors are read from the block RAM indepen-
dently of each other. The Eigenvector buffer has 23,600 16
bit elements (the 59 Eigenvectors each contain 20×20 = 400
16 bit elements). The normalized image is a 20×20 matrix.

ωi = µT
i Φ (2)

where i = 1 to 59.
Projection step: The Euclidean distance between the

weight vector of the unknown input image and the weight
vectors of the trained image are calculated using a nearest
neighbor search. There are 60 weight vectors corresponding
to each training image each of which containing 59 values.
We calculate the Euclidean distances d1, d2, ..., d60 between
each of the training images and the unknown image using the
weight vectors. The weight vectors of the training images are
stored in the weight vector buffer in a block RAM. The size
of the weight vector buffer is 59×60. The Euclidean distance
calculation is performed on all 60 weight vectors Ωi. The
Euclidean distance calculation are independent operations,
and therefore these two operations are performed in parallel.
For each calculation of the distance value, we compare the
new calculated distance value with the distance value in the
distance buffer (old distance value). If the newly calculated
value is smaller than the old distance value, we overwrite
the newly calculated distance value and index. This process
continues 60 times. Finally, the index of smallest value
among d1, d2, ..., d60 is returned from the distance buffer
as the index of the person identified.

C. Experimental Results

We present experimental results from set1 and set2. Fig-
ure 3 shows the performance comparisons between the soft-
ware and hardware implementations of the face recognition
subsystem using 10, 20, 25, 50 and 100 images from set1.
When using 100 images, the face recognition subsystem
achieves an average speed up of 15X over the equivalent
software implementation. The software experiment was done
on multi-core machine machine with Core2 Duo CPU run-
ning at 3.33 GHz with 4 GB RAM.

Figure 4 (a) and (b) shows the latency and the latency
cycles respectively for 40, 50 and 60 face images from set2

with pipelined and non-pipelined implementations. The de-
vice utilization summary when using set2 with pipelined and
non-pipelined implementations is also shown in Figure 4 (c)
in number of slices, LUTs, RAMs (BRAMs), and DSP48s.

III. IMPLEMENTATION OF THE COMPLETE FACE
RECOGNITION SYSTEM

In this section, we present the downsampling module used
to connect the detection and the recognition subsystems.
Then we describe the complete face recognition system

Figure 3. Performance comparisons between software and hardware
implementations of the face recognition subsystem.

!"#$%&!'(%)*#+%
,#+%&-%(%+(./'&

012343(%"

,#+%&5%+/$'.(./'&

012343(%"
-/6'3#"78.'$

59:&;<=>

04'+&;?>

@/'()/8&;<>

!"#$%&;A>

B%)3/'&!'C%D

!"#$%&;A>
-%(%+(%C

@//)C ;A>

E'#28%

-F!&!'(%)*#+%@#"%)#

G'#8/$&!"#$%

-F!

04'+&;?> !"#$%&;<=>

Figure 5. The architecture for the complete face recognition system
consisting of the face detection and face recognition subsystems.

which is a combination of all of these subsystems. Figure 5
provides an overview of the architecture for the complete
face recognition system.

The downsampling module is notified when a face is de-
tected by the face detection subsystem. After being notified,
the downsampling module reads the face image data using
the coordinates, width and height given by the face detection
subsystem. According to the size of the detected face image
data, the downsampling module reduces the detected face
to 20 × 20 and sends these 400 pixel values to the face
recognition subsystem. The downsampling module resizes
each detected face so that they are suitable as input into the
face recognition subsystem.

We introduce a factor which is used to calculate how many
pixels we should skip in order to downsample a x×x image
into a 20 × 20 image. The factor depends on the size of
detected face. For instance, if the size of the detected face
is 60×60, then the factor would be 3. We can find the factor
using factor = detected face size/20. Finally, when the
detected face is appropriately downsampled, the downsam-
pling module checks if the face recognition subsystem is
busy. If the face recognition subsystem is available, it reads
20 × 20 image and returns the index of a person which
belongs to the detected face. According to the returned

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

40 50 60

L
a

te
n

c
y
 (

m
s)

Number of Images

Non-Pipelined Pipelined

0
20000
40000
60000
80000

100000
120000
140000
160000

40 50 60

L
a

te
n

cy
 C

y
cl

es

Number of Images

Non-Pipelined Pipelined

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Slices L U Ts Slices L U Ts Slices L U Ts

Non-Pipelined Pipelined

40 50 60
Number of Images

40 50 60
Number of Images

40 50 60
Number of Images

(a) (b) (c)

11 BR A Ms
6 DSP48s

16 BR A Ms
5 DSP48s

16 BR A Ms
5 DSP48s

Figure 4. Part (a) shows the latency of our face recognition subsystem implementation results on an FPGA in milliseconds using both pipelined and
non-pipelined implementations. Part (b) shows the latency cycles for pipelined and non-pipelined implementations. Part (c) shows the device utilization
summary for the number of slices, LUTs, block RAMs (BRAMs) and DSP48s for both pipelined and non-pipelined implementations.

Table I
DEVICE UTILIZATION TABLE FOR THE COMPLETE SYSTEM

Logic Utilization Used Available Utilization
Slices 8,683 11,200 77%
Number of Slice LUTs 32,480 44,800 72%
Number of Block RAMs 84 148 56%
Number of DSP48s 11 128 8%

index of a person, we draw a box around the detected face
with predefined color. Each individual’s face in the set is
represented by an index and each index is associated with a
color.

The implementation was simulated/verified with Model-
Sim, and then implemented on a Virtex-5 FPGA. Table I
shows the device utilization of the complete face recogni-
tion system on a Virtex-5 FPGA board. According to the
experimental results, the complete face recognition system
runs at 45 frames per second on VGA data.

IV. CONCLUSION

This paper presented the design and implementation of
a complete FPGA-based real-time face recognition system
which runs at 45 frames per second. This system consists
of three subsystems: face detection, downsampling and face
recognition. All of the modules are designed and imple-
mented on a Virtex-5 FPGA. We presented the architectural
integration of the face detection and face recognition subsys-
tems as a complete system on physical hardware. Different
experimental results of the face recognition subsystem are
presented for pipelined and non-pipelined implementations.

REFERENCES

[1] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-

nal of Computer and System Sciences, vol. 3, no. 55, pp.
119–139, 1991.

[2] I. Sajid, M. M. Ahmed, I. Taj, M. Humayun, and F. Hameed,
“Design of high performance fpga based face recognition
system,” in PIERS Proceedings, Cambridge, July 2 2008.

[3] D. Chen and H. Jiu-qiang, “An fpga-based face recognition
using combined 5/3 dwt with pca methods,” in Journal of

Communication and Computer, vol. 6, Oct 2009.

[4] H. T. Ngo, R. Gottumukkal, and V. K. Asari, “A flexible and
efficient hardware architecture for real-time face recognition
based on eigenface,” in IEEE Computer Society Annual

Symposium on VLSI, 2005.

[5] R. Gottumukkal, H. T. Ngo, and V. K. Asari, “Multi-lane
architecture for eigenface based real-time face recognition,”
in Microprocessors and Microsystems, 2006, p. 216224.

[6] A. P. Kumar, V. Kamakoti, and S. Das, “System-on-
programmable-chip implementation for on-line face recog-
nition,” Pattern Recognition Letters, vol. 28, pp. 342–349,
2007.

[7] S. Visakhasart and O. Chitsobhuk, “Multi-pipeline architec-
ture for face recognition on fpga,” in International Conference

on Digital Image Processing, March 2009.

[8] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based
face detection system using haar classifiers,” in International

Symposium on Field Programmable Gate Arrays, February
2009.

[9] J. Cho, B. Benson, and R. Kastner, “Hardware acceleration
of multi-view face detection,” in IEEE Symposium on Appli-

cation Specific Processors, July 2009.

[10] J. Cho and R. Kastner, “Face detection (haar classifiers)
source code, http://ercbench.ece.wisc.edu.”

[11] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly
Media, Inc., 2008.

[12] “The orl database from cambridge univer-
sity computer laboratory.” [Online]. Available:
http://www.cl.cam.ac.uk/research/dtg/attarchive

