
SPECIAL SECTION ON SMART CACHING, COMMUNICATIONS, COMPUTING AND

CYBERSECURITY FOR INFORMATION-CENTRIC INTERNET OF THINGS

Received February 21, 2019, accepted April 22, 2019, date of publication April 30, 2019, date of current version May 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914067

Design and Implementation of an Open Source
Framework and Prototype For Named Data
Networking-Based Edge Cloud Computing System

REHMAT ULLAH 1, MUHAMMAD ATIF UR REHMAN1,
AND BYUNG-SEO KIM 2, (Senior Member, IEEE)
1Department of Electronics and Computer Engineering, Hongik University, Sejong 30016, South Korea
2Department of Software and Communications Engineering, Hongik University, Sejong 30016, South Korea

Corresponding author: Byung-Seo Kim (jsnbs@hongik.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) through the Korean Government under Grant

2018R1A2B6002399, and in part by the International Research & Development Program of the National Research Foundation of

Korea (NRF) through the Ministry of Science and ICT under Grant NRF-2018K1A3A1A39086819.

ABSTRACT Named data networking (NDN) and edge cloud computing (ECC) are emerging technologies

that are considered as the most representative technologies for the future Internet. Both technologies are

the promising enabler for the future Internet such as fifth generation (5G) and beyond which requires fast

information response time. We believe that clear benefits can be achieved from the interplay of NDN and

ECC and enables future network technology to be much more flexible, secure and efficient. In this paper,

therefore, we integrate NDN with ECC in order to achieve fast information response time. Our framework is

based on N-Tier architecture and comprises of three main Tiers. The NDN is located at the Tier1 (Things/end

devices) and comprises of all the basic functionalities that connect Internet of Things (IoT) devices with

Tier 2 (Edge Computing), where we have deployed our Edge node application. The Tier 2 is then further

connected with Tier 3 (Cloud Computing), where our Cloud node application is deployed at multiple hops

on the Microsoft Azure Cloud machine located in Virginia, WA, USA. We implement an NDN-based ECC

framework and the outcomes are evaluated through testbed and simulations in terms of interest aggregation,

round trip time (RTT), service lookup timewith single query lookup time and with various traffic loads (load-

based lookup time) from the IoT devices. Our measurements show that enabling NDN with edge computing

is a promising approach to reduce latency and the backbone network traffic and capable of processing large

amounts of data quickly and delivering the results to the users in real time.

INDEX TERMS Internet of things, edge computing, fog computing, distributed computing, caching, named

data networking, framework, offloading, latency, scalability, multi-access edge computing, future Internet.

I. INTRODUCTION

The future Internet of Things (IoT) is evolving very fast

which will potentially connect billions and trillions of edge

devices [1]. These devices could generate massive amount of

data at a very high speed and some of the applications may

require very low latency [2]. The conventional cloud only

model may short fall due to centralized computation, storage,

and networking in a small number of datacenters. Moreover,

the relative long distance between the edge devices and the

remote data-centers is vulnerable to the real time applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wu.

Industrial Internet of Things (IIoT), such as manufacturing

systems, smart grids, oil and gas systems, often require end-

to-end latencies of a few millisecond between the sensor and

the control node.Moreover, IoT applications, such as vehicle-

to-vehicle communications, vehicle-to-roadside communi-

cations, drone flight control applications, Augmented real-

ity (AR) and virtual reality (VR) applications, and online

gaming, may require latencies below a few tens of millisec-

onds. Some wearable camera applications, or industrial mon-

itoring and controlling applications require response time to

be as low as 10-50 ms [3]. Moreover, the number of IoT

devices is exponentially increasing and it is predicted that by

year 2020 these devices will generate 2.3 trillion gigabytes of

data each day [4]. Suchmassive increment of devices and data

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57741

https://orcid.org/0000-0002-6475-2434
https://orcid.org/0000-0001-9824-1950

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

will result in a significance load on the Internet. Therefore,

it is important that most of the data should be processed by

the edge node first. After processing and filtering data at the

edge node, further the data should be sent to the cloud data

center. Similarly, comparing with the servers in cloud data

centers, most of the IoT devices or sensors at the edge tier are

resource constrained in terms of computing power and battery

capacity [5]. Therefore, the complex and intense computation

are not appropriate for these devices. Instead, most of such

computation and data processing tasks can be offloaded to

ECC, which could save energy on IoT devices and get the

tasks done faster.

For such resource constrained and massive number of IoT

devices the traditional centralized cloud computing would

be alarming due to the large data volume generated and the

long distance between clients and the backend data-centers.

Therefore, Edge Computing can provide effective ways to

overcome many limitations of the cloud only model by dis-

tributing computing, control, storage, and networking func-

tions closer to end user devices. However, the traditional

model (IP approach) is still the dominant solution, where

the end-to-end communication is managed between the IoT

data sources and fixed purpose-built servers deployed at the

network edges [6]. Although edgemay accommodate all such

enormous data, it cannot fulfill the end to end latency require-

ment of future networks such as AR and VR.

For future Internet the demand for various services

such as multimedia IoT, autonomous vehicle service, and

location-based service is expected to increase. It is expected

that the next generation real time applications should be

capable of processing large amounts of data quickly and

delivering the results to the users in real time through various

network environments that change due to mobility rather than

a static environment [7]. However, the static network environ-

ment based on the existing IP and Server-Client approach,

the inflexible communication environment in the mobility

environment, the network overload due to the massive traffic

transmission through the fixed path, the remote clouding and

the occurrence of an enormous delay arising from a series of

processes such as transmission, processing, and data recep-

tion of real-time data, which causes degradation of the real

time service performance in the network in the future, has

been recognized as an impediment to the development of a

combined technology of NDN and ECC.

In order to solve the problems of real-time services and to

improve the performance of real time services, the framework

to combine well-known innovative future network technolo-

gies: NDN and ECC are needed. NDN offers network layer

content and services, increased caching, built-in mobility,

built-in security, multihoming in case of heterogeneous wire-

less environment and so on. In addition, edge computing

offers computation, storage, and increased caching capabil-

ities in close proximity of end users/devices, thereby reduc-

ing the end to end latency. Edge computing removes the

cloud dependency for content processing and removes the

end to end mapping. We believe that the two technologies

will bring an enormous performance improvement to the

real-time applications that require response time of less than

1ms. In this paper, we proposed an open source framework,

in which we leverage and exploit the features of both tech-

nologies (NDN and ECC) in order to empower the future

networks. Since the main goal of edge computing in IoT is

to reduce the backbone network traffic on cloud data centers,

to reduce latency and increase the bandwidth. Therefore, it is

possible to bring the content and services more closer to the

end users via NDN.

As a summary, the major contributions of this paper

include:

1) We propose an open source framework integrating

NDN and ECC via N-Tier architecture with 7 layers

at Edge Tier and 6 layers at the Cloud Tier.

2) We propose.NET web API for RESTful web services

in order to communicate IoT devices with the Things

Tier, Edge computing Tier and Cloud computing Tier.

3) In order to integrate NDN with Edge computing Tier

and Cloud computing Tier, we make changes in the

official ndnSIM codebase.

4) Development of an Edge node application and Cloud

node application from the scratch.

5) A prototype implementation and extensive experimen-

tation to validate and evaluate our propose framework.

This prototype is not dedicated to our propose frame-

work evaluation. Instead anyone can use it for possible

edge computing ideas.

6) Open source all the source code to the research com-

munity for reuse and further improvement.

The rest of the paper is organized as follows. We present

the background studies of edge computing and NDN in

the Section 2. In Section 3 we present related works.

Section 4 presents the proposed framework. In Section 5 we

present the testbed experimental setup and results and discus-

sion. Finally, we conclude the paper in Section 6.

II. BACKGROUND AND MOTIVATION

A. EDGE COMPUTING

Edge computing refers to the enabling technologies allowing

computation to be performed at the edge of the network. Here

the ‘‘Edge’’ means any computing and network resources

along the path between data sources and cloud data centers.

The rationale of edge computing is that computing should

happen at the proximity of data sources. Sometimes the term

‘‘Edge computing’’ is interchangeably used with ‘‘Fog com-

puting’’. However, the Edge computing focus more toward

the Things side, while Fog computing focus more on the

infrastructure side [2]. Edge computing pushes computing

power to the edges of network, instead of centralized cloud.

The data analytics happens very close to the devices and

sensors. Therefore, edge computing thus results in lower

delay and high speed of task execution [7]. The core idea of

Edge computing is to bring the resources at the network edge

such as computation and bandwidth. The storages resource

is moved closer to the IoT devices to reduce the backbone

57742 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

data traffic and the response latency, and to facilitate the

resource-intensive IoT applications. Edge computing has rel-

atively smaller computation capacity compared to cloud com-

puting, however, takes advantage of short access distance,

flexible geographical distribution, and relatively richer com-

putational resource than mobile device(s).

Various edge computing proposals has been presented

in the literature under the umbrella of edge computing

paradigm. Initially Mobile Cloud Computing (MCC) was

introduced in the edge computing initiative. MCC [8] offers

offloading mechanism for the mobile devices by integrating

mobile Internet, mobile computing, and cloud computing

into a combined system. The major purpose of MCC is

offloading tasks from a mobile device to the cloud servers in

order to overcome the storage and computation limitation of

mobile devices. Moreover, the mobile devices also have the

issue of battery drainage. Therefore, the objective of MCC

is to save energy and prevent the factors that cause battery

drainage.

Cloudlet [9] has been introduced as an extension of MCC

and is considered as one of the key enabling technolo-

gies for MCC. Offloading to the cloud is not always a

solution because of high wide area network (WAN) laten-

cies. Real-time applications need low latency and may not

be achieved by offloading tasks to the cloud. Tasks run-

ning on mobile devices may require high computation and

lower latency. Such limitations of mobile device cannot ful-

fill these requirements. Therefore, to provide computation

power and to meet lower latency requirements, these tasks

can be offloaded to the Cloudlet instead of Cloud servers.

Cloudlet is kind of small cloud server located betweenmobile

device and central cloud. Cloudlets are placed nearby to

mobile devices with single hop proximity and works as

virtual-machine (VM).

CISCO proposed Fog computing model [10] for the better

management of the Clouds by enabling services, applications,

and content storage in close vicinity to mobile end users.

In the Fog computing paradigm, data processing happens

locally rather than being sent to the Cloud servers. Fog com-

puting supports offloading, caching, location awareness, and

mobility information. It has many advantages for applications

that are delay sensitive.

European Telecommunications Standards Institute (ETSI)

coined the term Mobile Edge Computing (MEC) [11] with

the aim to push computational power into Radio Access

Network (RAN) and to leverage the virtualization of software

at the radio edge. In order to realize the power of location,

now both fixed and mobile networks are accepting MEC.

Therefore, the MEC acronym no longer refers to ‘‘Mobile

Edge Computing’’ and instead stands for ‘‘Multiple-access

Edge Computing’’ [12]. The motivation behind MEC is the

proliferation of smart phones and the traffic generated from

the phones. According ETSI, MEC can reduce the latency

and can provide location awareness to mobile users. Require-

ments such as bandwidth (higher), latency (lower) and

mobility should be met in future mobile networks such as

5G and beyond. Therefore, to fulfill such requirements both

the RAN and core network should be optimized to serve

billion of devices. Furthermore, Edge servers address issue of

congestion at the core network. The reason is that most of the

traffic is processed locally instead sending to the backbone

networks.

1) DIFFERENCES BETWEEN EDGE COMPUTING PROPOSALS

The terms such as Edge, Fog, MEC, Cloudlet and MCC

all are the umbrella concepts of Edge computing. However,

the implementation speciation differs at different aspects for

each proposal.

MEC provides access within RAN instead of core WAN

to minimize latency and to decrease the energy consumption.

However, Cloudlets and Fog computing provides the services

to offload the subscriber’s tasks. The specifications of MEC

states that MEC servers should be co-located with the cellular

network base station. On the other hand, Fog servers are

generally provided by private environment such as shopping

malls and coffee shops etc. However, they can be deployed

as routers and gateways in Internet service provider (ISP)

infrastructure. Cloudlet can be deployed in a distributed way.

However, there is not any exact location or vendor defined

for the deployment of Cloudlets. MEC server is reachable

via third generation/Long-Term Evolution (3G/LTE) base

station. However, Fog servers and Cloudlets are accessible

via wireless access point (AP) whose coverage area is much

smaller than 3G/LTE. Mostly the Cloudlet study emphasis

on Wi-Fi as an access technology. However, Cloudlet is not

limited and can be applied in other wireless technologies

too.

Due to technological enhancement in cellular networks,

the operators emphasis on MEC technology. In other words,

future cellular networks are more commonly referred toMEC

instead of any other Edge Computing proposal. Hence, for

cellular networks, MEC is the de-facto Edge computing tech-

nology. The reason is that Cloudlet and Fog computing have

short range communication such as Bluetooth and Wi-Fi and

hence cannot reach to the level of MEC.

The number of devices and users are also different in

each proposal. Fog computing addresses the use cases of

IoT and vehicle-to vehicle (V2V) communication. For this

reason, the users and devices in Fog computing is expected

higher than the Cloudlet. However, Cloudlet covers the IoT

devices but not V2V communication. The users of MEC is

much smaller because MEC only focuses on subscribers and

providers in cellular environment. Furthermore, the server

density of MEC servers is limited to the base stations.

Whereas the Cloudlet can be installed at any public place such

as coffee shops, shopping malls and restaurants etc. Cloudlets

mostly uses wireless local area network (WLAN) as an access

technology. Therefore, the density of Cloudlet is much higher

than other Edge computing proposals. Fog server(s) deploy-

ment is average and cannot be installed everywhere like

Cloudlet [12].

VOLUME 7, 2019 57743

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

2) NEED OF EDGE COMPUTING

The necessity of bringing content and services closer to end

users comes from various factors that drive the evolution

of edge computing paradigm. The challenges of resource

constrained IoT devices can be addressed by providing

local computing storage and the networking resources. The

data generated by the end users will be processed at the

edge nodes and only small portion of data will be sent

to the cloud for further processing. Therefore, the back-

bone traffic and the networking load will be reduced.

The motivations behind edge computing paradigm are as

follows:

1) QoS and Latency: Even though edge devices are pow-

erful, most of them are lacking enough capacity for fulfilling

the delay sensitive requirements. Cloud computing provides

resource enriched technology infrastructure for constrained

devices with huge computation and storage capacity. How-

ever, most of the devices in IoT i.e. wearable devices are

delay sensitive. In legacy cloud paradigm, the accessibility

of all these devices is done via WAN, which creates delay,

and hence conventional cloud cannot deal with the prob-

lems such as the mobility, and real-time requirements. The

latency-sensitive applications demanding computation power

andmemory resources that cannot be built satisfactorily using

cloud services, which can be many network hops away from

user locations. Computational resources are required at the

edge of the network to meet high QoS. As an example,

in autonomous vehicles the generated data of camera need

to be processed instantly to meet the real-time requirements

of QoS [13]. User experience is affected by the centralized

servers of cloud due to limited Internet bandwidth and WAN

delay. The overall latency can be reduced if the servers are

deployed closer to user devices. The benefit of servers closer

to the users are the high local-area network (LAN) bandwidth

and a smaller number of hopes. Moreover, edge computing

provides caching, storage and computation capabilities in

close proximity of end users/devices thereby reduces end to

end latency. Edge computing offers such benefits without

requiring deployment in the core and remove cloud depen-

dency for content processing.

2) Minimization of Core Network Traffic: In the conven-

tional cloud computing approach, all the traffic flows from

devices through core network to reach cloud servers. The

content as well as the context require processing and storage

which may not achievable on mobile devices. Therefore, it is

done on the cloud that result in higher response time and

increased backbone traffic. In case of IoT billions of devices

may generate a huge amount of raw data to be processed

and stored. According to [14], 15 petabytes of traffic has

been generated per month. Sending all the traffic to the

cloud servers may result in congestion on cloud servers, since

cloud servers have limited capacity. To optimize bandwidth

utilization and to reduce traffic on the core network, the traffic

should be handled at the edge servers. Traffic from billions of

devices can be handled at edge servers to prevent congestion

and latency problems. Therefore, edge computing paradigm

can play a meaningful role in traffic reduction on the core

network [15].

3) Scalability: It is predicated that the end user devices will

reach million and billions that may create a serious scalability

challenge. Therefore, sending such a massive amount of data

to the centralized servers create congestion within the data-

centers. As a result, cloud computing may fall short in the

context of scalability for applications and data. The virtual-

ization of edge servers can bring an opportunity to support

scalability. If any of the edge server becomes congested,

then the request can be distributed to other edge servers in

proximity and so on. The burden on the cloud servers can be

reduced by processing data at the edge servers, since smaller

amount of traffic will be forwarded to the cloud servers.

B. NAMED DATA NETWORKING

Named Data Networking (NDN) is an architecture under

the umbrella of Information-Centric Networking (ICN)

paradigm where various architectures are being proposed

such as DONA, NetInf, CCN, NDN, MobilityFirst, PUR-

SUIT, CONVERGENCE, and COMET [16]. Named data

networking (NDN) paradigm is gaining more popularity and

is widely accepted in the research community due to its

simple communication architecture [17]. In this paper, there-

fore, we are also using the NDN architecture. In the NDN

architectures the content is treated as the first-class citizen

rather than host and names are used for network layer commu-

nication instead IP addresses. The predecessor of NDN is the

Content-Centric Networking (CCN) architecture which was

originally proposed by Van Jacobson as a project initiated

by Palo Alto Research Center (PARC) [18]. The main idea

behind CCN is that the Consumer(s) send Interest packet(s)

containing the names of the requested content and the Data

packet(s) flow back, carrying the named and secured content

or chunks of the content, following the same path through

which the Interest packets were sent. The content provider,

or any other network node with a copy of the requested

content can reply with the requested content along with addi-

tional authentication and data-integrity information, along

the path. Furthermore, caching on each path node is enabled

depending on the caching policy of the node.

Named-data networking (NDN) is an enhanced version of

the CCN architecture. Similar to CCN, NDN also follows the

interest/data packet combination to obtain any particular data.

Each node maintains three types of data structures: (1) a Con-

tent Store (CS), which is capable of caching data temporarily;

(2) a Pending Interest Table (PIT), which retains the records

of unsatisfied Interest packets (3) a Forwarding Information

Base (FIB), which traverses Interest packets toward the data

providers.

The main architectural difference between NDN and CCN

is that CCN (which is the previous implementation of NDN),

the CS proceeds the PIT search. However, in NDN PIT is

checked first and then CS is checked. However, in pure ICN

and in most of the literature, the CS lookup is the very first

operation after the arrival of an Interest packet. The main

57744 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 1. NDN communication process.

reason is to overcome the lookup delay of CS since the PIT

is considered much smaller than the CS. [19].

Figure 1 depicts the NDN communication flow. When a

consumer node wants to access specific content, it sends

an Interest packet containing the name of the content. The

consumer node uses the content name and its selectors (the

content attributes, resolutions, filters, nonce etc.) in the Inter-

est message to request the content object. When some relay

node(s) receives the Interest packet, it checks its PIT. If an

entry is found in PIT (but with a different receiving face or

with a different NONCE or Interest payload ID), the node

updates the existing PIT table by adding a new incoming

interface entry and discards the Interest for further process-

ing. Otherwise, the content is searched in the CS using name

and selectors; if match is found, the node sends the data back

to the consumer via the same interface fromwhich the Interest

is received. If there are more than one content matches,

the selectors are used to precisely identify the content object.

Otherwise, a new PIT entry is created and the Interest packet

is sent further via interface(s) stored in the FIB. If the FIB

search returns more than one next hops, then the Interest is

forwarded based on the forwarding strategy, i.e., send the

Interest to all, best path, or alternatively to the paths based

on their ranks, etc. If no FIB entry is found, the NDN discard

the Interest message.

After receiving an Interest packet, the provider node will

forward the Data packet which carries content as the pay-

load, the name that identifies it, and additional information

to verify and validate the content and the data message.

This additional information includes the signature (crypto-

graphic), the identification information of the publisher or

signer, etc.When theData packet is coming back, the received

node first checks it’s PIT table. If some entry is matched,

it forwards the data to the interface(s) from where the cor-

responding Interests received. Moreover, it stores the data in

the CS and delete the existing PIT entry. However, the data

storing is dependent on the caching policy, i.e., all caching,

no caching, popularity-based caching, etc. Note that the PIT

entry is also purged when the life-time of the PIT entry is

expired. If there is no entry in PIT table then the received

Data packet is considered as unsolicited Data packet (data

which is not requested) and it is discarded due to security

reasons. The Data packet follows the ‘‘breadcrumb’’ i-e the

same route of PIT entries till it reached to the consumer(s).

VOLUME 7, 2019 57745

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

Detailed processing steps of an Interest packet and a Data

packet are depicted in Figure 1.

C. WHY NDN WITH EDGE COMPUTING?

In today’s Internet design the communication happens

between fixed entities due to host oriented approach

(TCP/IP). However, due to rise of IoT and real-time appli-

cations such as AR, VR and Tactile Internet, it becomes

challenging in terms of mobility, scalability, security and

network management. NDN is a promising paradigm that

is based on named based communication rather than host

address. In this paper, we leverage the NDN features to

facilitate edge computing functionalities for seamless and

efficient edge computing. Since NDN is an emerging technol-

ogy for distributing contents to users, which makes contents

directly addressable and routable in networks. Therefore,

NDN-based Edge computing will improve the efficiency of

content distribution. The Edge computing is another novel

paradigm that moves the control of cloud services to the

network edge devices. Both NDN and Edge computing can

improve the communication performance by reducing the

distance between users and services. Thus, the integration of

both technologies (NDN and Edge computing) will be a great

opportunity for 5G networks and beyond. There are many

expected benefits resulting from the integration of NDN in

edge computing which are described as follows:

1) Interest Aggregation: NDN provide the interest aggre-

gation feature natively. In NDN, when a content router

receives an Interest packet that cannot be satisfied through

its local CS, it creates a PIT entry and forwards the Interest if

there is no entry for the same content name in its PIT. If a PIT

entry already exists for the same content the Interest is aggre-

gated at the router and is not forwarded. The benefits of Inter-

est aggregation in NDN architectures has been that network

and server loads can be drastically reduced by controlling

similar Interests, and the end-to end latency can be reduced by

integrating caching with Interest aggregation [20]. Therefore,

we are using the interest aggregation feature of NDN for

edge computing. We control the traffic generated from end

users/things to the edge device via NDN interest aggregation

feature. All the incoming requests for the same content will

be aggregated in the PIT table and will not be forwarded

further to the edge node. However, in case of IP (without

using NDN), since there is no PIT table. Therefore, all the

interests will be forwarded to the edge node which increases

the network and server loads. Without aggregation, all the

traffic from the things Tier will be sent to the edge Tier which

is quite a challenging and alarming situation for the case of

IoT where billion of devices will send the traffic to the edge

and the cloud. Such aggregation of request reduces the traffic

load on the edge node and the cloud data center as well.

2) Native in-network caching and computation reuse:

Nodes in NDN caches the data and even results of func-

tions/services and make them available to other consumers

without performing the computation again and again [21].

Moreover, the distance between the cloud and edge networks

can be several hops, which may result in a significant delay.

NDN over edge computing can achieve latency requirements

by providing data and services that are close to end users

via caching the content and results as well. Therefore, NDN

not only provides content caching but also functions/code

caching in order to avoid re-request the content or re-execute

the function/code.

3) Location-independent naming: Hierarchical user-

friendly Uniform Resource Identifier (URI) like names

uniquely identify a content (e.g., a movie, a picture, a song)

as well as context (location, identity etc), independently of

the identity/locator (i.e., the IP address) of the node gen-

erating/hosting it. Therefore, NDN is not bound to specific

address of content, service or context. InNDN those all reflect

the named pieces of content [22].

5) In-network security: In NDN protection and trust are

implemented at the packet level, rather than at the channel

level. By design, NDN offers native support for security,

which are still not effectively available in the host-centric

paradigm. The self-certify names model of ICN enable to

verify the binding between public key and self-certify name

in distributed systemwithout relying on a third party. This can

reduce the security risk of involving a third party. However,

it is difficult to maintain the centralized key management

infrastructures such as Central Authority (CA), especially in

the constrained IoT. The reason is large communication and

computational overheads incurred due to complex trust chain

of certificate verifications. Recently Jun Wu et al. propose

an anonymous distributed key management scheme based on

CL-PKC specifically for Space InformationNetwork (SIN) in

order to overcome the security issues [25]. Authors designed

a distributed keymanagement systemmodel for key exchange

services. Since authors scheme is based on the certificateless

public key cryptosystem, therefore, it can avoid the problems

of complicated certificate management. However, this was

specifically designed for SIN and may be used for NDN

based edge computing. In [23] authors proposed a scheme

for information centric social networks (ICSN) and claimed

that the existing schemes for the conventional social networks

cannot fulfill the requirements of ICSN. Therefore, a fog

computing-based content-aware filtering method for security

services, FCSS, is proposed in information centric social

networks [23]. They introduced fog computing in IC-SN, and

the content aware filtering scheme is proposed for security

services. Such edge computing based ICN solutions can be

introduced in many NDN-based edge computing applica-

tions. Moreover, CL-PKC is one of the areas to be explored

for NDN based edge computing applications.

6) Built-in Mobility support: Consumer Mobility is a

built-in feature of NDN due to receiver driven and connec-

tionless data communication nature. When an end device

moves to a new location, it simply needs to re-express request

for its interested data. However, support for producer mobil-

ity still a research problem in NDN. Some networks are

highly mobile, such as vehicular networks (VNs). There-

fore, if mobile users can only receive the content from the

57746 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

provider (original server), then the connection can be lost

during the mobility of users. Due to interruptions in con-

nectivity, users will again make a request from the original

server. In NDN the mobility feature (consumer) is inherently

supported. The devices can directly communicate using ser-

vice names instead of specific host such as Netflix.com or

Youtube.com. Services are provided by the network and does

not rely on end to end communication. NDN caching provides

a copy of the content to all users and hence mobile users

no longer make requests of the original server. Therefore,

if the mobile users keep moving in network as in Vehicular

Network, then content can be obtained from the nearest cache

instead of going to the original server. Hence, a reduction in

delay and support for mobility is achieved [24].

D. WILL NDN AND EDGE COMPUTING CO-EXIST AND

WORK TOGETHER?

We argue that the combination of NDN and edge computing

would speed up content retrieval. However, NDN in edge

computing poses many challenges to network’s infrastructure

and architecture. The issue arises because of two differ-

ent architectures. Inter-networking schemes with existing

architecture of edge computing are necessary to make both

paradigms interoperable. Since the traditional Internet is

based on TCP/IP (host oriented) network model. Therefore,

to replace the TCP/IP model with NDN is impractical. How-

ever, there is a way to deploy the ICN partially or overlay

such as ICN over IP or IP over ICN. In our framework we

are not replacing the TCP/IP model. Instead we use both

approaches to work efficiently together where required. The

complete details on how both technologies work together in

our framework has been provided in Section IV.

III. RELATED WORKS ABOUT ICN OVER EDGE

COMPUTING

Only limited number of works have been devoted to NDN

over edge computing. Moreover, some works have also been

proposed that can act as a bridge between IP and NDN

networks. Trossen et al. [26] proposed an architecture that

enables IP applications to communicate with an NDN net-

work via Network Attachment Point (NAP). Similarly, Refaei

et al. [27] proposed a general purpose, extensible IP-to-NDN

gateway that translates between NDN and IP packets. The

translation is based on predefined rules. Susmit et al. pro-

posed IPoC [28], a protocol that can enable a transition to

ICN in mobile networks by encapsulating and forwarding IP

traffic over an ICN core. Wu et al. investigated the issues

for incrementally deploying NDN in LANs using dual-stack

switches that support both NDN and IP protocols [29]. How-

ever, all these protocols didn’t specify the edge computing

with NDN. In the literature some of the support for virtualiza-

tion of services for edge computing have been provided, such

as Docker [30], Amazon Lambda [31] or serverless comput-

ing technologies such as unikernels [32]. These technologies

are useful for edge computing, since it provides encapsulation

of functions into self-contained software components, exe-

cutable on edge nodes and totally independent of its deploy-

ment structure. Specifically, about ICNwith edge computing,

authors in [21] proposed a pioneering scheme call ‘‘Named

Function Networking’’ (NFN) for the extension of NDN to

the edge computing. In NFN, the name field of interest packet

carry the name of the content as well as expressions for

named functions. The network is in-charge of computing the

result and resolving the forwarding plane of NDN. However,

NFN is constrained by the number of services/functions it

can support. In many scenarios, nodes require more sophisti-

cated processing, custom code and libraries, which is difficult

to express only through simple expressions and acquiring

additional function code. In [33] Named Function as a Ser-

vice (NFaaS) has been proposed that supports more sophis-

ticated processing with lightweight virtual machines in the

form of named unikernels. The unikernels are actually the

functions/codes. In NDN the content is cached in the CS,

whereas, in NFaaS an additional data structure call Kernel

Store (KS) has been introduced. Every node contains Kernel

Store that stores the unikernels. The KS is responsible not

only for storing functions, but also for making decisions on

which functions to run locally. Since the Kernel Store has

lots of functions and which functions to download locally

to the node is calculated by score function. The score func-

tion scores all the popular function that is requested more

frequently and the main goal of score function is to identify

the unikernels/functions that are worth downloading locally

into the node’s memory. In [34] authors have extended the

NDN architecture to turn the network edge into a dynamic

computing in the IoT domain. The proposed scheme performs

distributed in-network IoT data processing at the network

edge, by relying on NDN augmentation and named compu-

tations. This scheme also performs the dynamic execution of

services, according to the interests popularity function. In the

proposed scheme authors have performedminormodification

to legacy NDN and used a naming scheme that identifies

IoT contents and services without affecting the NDN routing.

In [35] authors have proposed an NDN based scheme call

NDNe (NDN at the edge) that supports cloudification at the

edge. In NDNe the existing NDN packet is extended and

names are used to address, not only ‘‘contents’’, but also

to identify different types of cloud service (e.g., storage,

computation, etc.)

On the contrary, we propose a framework that works real-

istically with IP and NDN network. In order to do that we

use the.Net Web API services and proposed our own API for

carrying the end users request to the edge node and cloud

node.

IV. PROPOSED FRAMEWORK

Our proposed framework is based on N-Tier architecture and

comprises of 3 main tiers: Tier 1, Tier 2 and Tier 3 and

represents Things/end devices, Edge computing and cloud

computing respectively. Tier 2 and Tier 3 is then further

divided into layers. Since the framework comprises of Tiers

and layers, therefore, firstly, we need to clarify the differences

VOLUME 7, 2019 57747

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 2. N-Tier architecture.

between the two terms in N-Tier architecture: Tier and layer

and are described as follows:

A. TIER AND LAYER

Tier usually means the physical deployment of computers or

devices. Usually an individual running server is one Tier. Sev-

eral servers may also be counted as one Tier, such as Cloud

servers and edge servers. By contrast, layer usually means

the logical components of software that are grouped mainly

by functionality. Layered approach has many advantages and

is a good way to achieve N-Tier architecture. Each layer may

run in an individual Tier. However, multiple layers may also

be able to run in one Tier. A layer may also be able to run in

multiple Tiers.

In this paper, first we introduce the 3-Tier concept so that

the readers can understand layers in each Tier easily. After

that a comprehensive detail of each layer is presented. The

simplest of N-Tier architecture of our proposed framework

typically contain following Tiers listed from the top level to

the low level: Cloud computing Tier, Edge computing Tier

and Things Tier, as depicted in Figure 2. Edge computing

Tier is then further divided into the following layers listed

from top level to low level: application programming inter-

face (API) layer, web layer, service layer, data access layer

(DAL), component layer, model layer and unit test layer.

Furthermore, the cloud computing layer is also divided in all

the aforementioned layers except the web layer.

1) TIER1: THINGS/END DEVICES

This Tier is involved with end user(s) or IoT device(s)

directly. There may be several different types of IoT

devices/users coexisting, such as sensor nodes, end user’s

smart hand-held devices (smart phone, smart watch, smart

vehicles etc). These device(s) request for data and services

and are connected at single hop to the edge Tier.

2) TIER2: EDGE COMPUTING

The edge computing Tier comprises of fog servers and pro-

vide delay constrained service request to end users. This Tier

is located at one hope distance from the Things Tier. The edge

computing Tier is not like the actual cloud computing Tier,

however, provides medium number of service request with

low latency.

3) TIER3: CLOUD COMPUTING

The cloud computing Tier is the top most Tier and comprises

of traditional cloud servers and has enough storage and com-

puting resources. This Tier is located at multiple hops from

the Things Tier and edge computing Tier. However, this Tier

comes with a cost of higher latency to the end users. All the

three Tiers are illustrated in Figure 2.

B. ARCHITECTURE DETAILS

Figure 3 shows a detailed architectural diagram of the pro-

posed framework. In the following subsections we have pro-

vided the detail of our proposed framework as follows:

1) TIER1: NAMED DATA NETWORKING

All the IoT devices which we call end user devices located

at the things layer. At this layer we have used the NDN

technology where all the communication is content centric,

and content are requested at the network layer using interest

names. All the end users/IoT devices communicate locally

via NDN network. If there are some tasks that cannot be

handled by the NDN, then it is forwarded to the edge device.

The edge device send back the computations/services to the

end users subject to the policies of edge device. In addition,

if edge device is not able to perform computation on these

requests then the edge will forward the requests to the Cloud

data center, where further processing will take place. To aid

better understanding to the readers, we explain the NDN

Tier (Things/IoT devices) at first then edge Tier and cloud

Tier is presented. Subsequently, we provide the complete

architectural details of proposed edge Tier and cloud Tier in

the subsequent sections.

At the Things Tier, without loss of generality, we have used

a simple scenario of three nodes i-e consumer node, relay

node and the producer node. Since the producer node act as

a gateway node between the NDN network and edge node,

therefore, we are using the term gateway node for producer

node throughout this paper. In this scenario, the consumer

node send request for content and/or services via relay node.

If the relay node has the services/content cached before,

then it will send back to the user as the conventional NDN

architecture does. Otherwise the request for content/service

will be forwarded to the gateway node. The gateway node

possibly has the content and also maintains a list of services.

In order to better differentiate the gateway node of NDN, edge

node and the cloud node, we assume that in our framework the

gateway node maintains a limited number of services for end

users. The edge node is power full than gateway node of NDN

57748 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 3. An architectural diagram of the proposed framework.

where a large amount of services is listed and similarly the

cloud is resource enrich platform for all type of resources. The

end user when request for data or services then interest and

data exchange in NDN between consumer and router nodes

will be as follows:

Step 1. The end user(s) or device(s) send request for data or

service to the nearest content router (CR).

Step 2. Nearest CR discovers if the requested con-

tent/services exists in the router CS through NDN

discovery process.

Step 3. If the content/services exist in the CR, the request

may be satisfied, and the data/service may be sent

back to the user(s).

Step 4. If the content/service is not found in the CR,

the request is forwarded to the gateway node.

Step 5. Now when the gateway node receives interests from

end user(s) in the NDN, it processes the received

interests and respond with data/services back to the

user (subject to the data and service availability). It is

also possible that the end user devices are requesting

less computing tasks/services and the gateway node

is capable to provide such services. Therefore, all

such less computing requests for data/services would

be handled at the gateway node.

As the devices in IoT could be million or even billions,

and many devices may request for content or services. In that

case, some requests could be identical for many users (i-e

same request would be sent by many end users). Therefore,

we exploit the NDN aggregation feature in the NDN network.

The same request from many end users will not be forwarded

in the network. Instead it will be aggregated at the NDN

relay nodes or at the gateway node which substantially reduce

the traffic on the gateway as well as at the edge and cloud

node. Moreover, the in-network caching will also alleviate

the interest forwarding and the devices will access the data

from nearby nodes in the network. Exploiting such feature

of NDN results in lower delay, better mobility management,

in network caching, and security of services and the content.

The usage of NDN enhances the data communication effi-

ciency andminimize access to the cloud and edge since all the

subsequent data access does not need to go to the cloud com-

puting Tier and can be accessed from NDN nodes and edge

node as well. The subsequent requests for the same content

will be aggregated and filtered by NDN routers. The services

and data are brought at very close vicinity of end users.

It is also important to mention that the gateway node

might not have the requested services, processing power or

computation resources for some complex tasks. Therefore,

the gateway node will try to benefit from the edge node

which is much powerful than the gateway node of the NDN

network. In that case, in order to avoid failure of request or

non-availability of data/services, the NDN gateway node will

communicate with the edge nodewhich is outside of the NDN

network. At this point, we need to switch from NDN network

to IP network of the edge node. In our framework, the gateway

node runs both NDN and IP. It is also to be noted that the

gateway node could be multiple in number, since in dense

IoT environment a single gateway node could be a bottleneck

for end user devices. Therefore, for dense scenario, we also

deployed multiple gateway nodes in our framework for the

communication with end users and edge device as well.

For communication with the IP based edge device, we have

used Web Application Programming Interface (Web API).

In our framework, the web API connects the NDN network

with the edge computing device located at Tier 2 (Edge

computing). We have defined specific layers for each kind

of services at the edge node. All such layers are discussed in

the edge Tier in the subsequent section as follows:

VOLUME 7, 2019 57749

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

2) TIER2: EDGE COMPUTING

In our proposed framework, the Tier 2 represents the edge

computing where our edge node application is deployed.

We further divide the edge computing Tier into seven differ-

ent layers and each layer is discussed in detail as follows:

1) Layer 1: API Layer The term API stands for ‘‘Appli-

cation Programming Interface’’. APIs can provide access to

hardware and software resources and allow developers to save

time by taking advantage of a platform’s implementation.

In our implementation we have used RESTful API which

stands for ‘‘Representational State Transfer’’ and it is an

architectural pattern for creating an API that uses Hypertext

Transfer Protocol (HTTP) as its underlying communication

method. Almost every device that is connected to the Inter-

net already uses HTTP; it is the base protocol that the Internet

is built on. HTTP is a request and response system where

an interested user sends a request to an endpoint and the

endpoint responds. REST uses HTTP requests, responses,

verbs and status codes for the communication purpose. Any

IoT device can consume HTTP such as toasters, cars and

sensors etc. Following are the several key implementation

details with HTTP that we have used in our framework for the

communication between end user IoT devices and the edge

devices.

Resources: REST uses addressable resources to define the

structure of an API. The resources in our framework typically

represent the services (i.e. crypto services, media services,

document services and IoT services etc). We include a few

services in our prototype and more IoT services could be

added according to the requirements.

Request Verbs: The verb describes what to do with the

resource. End nodes in IoT issue a verb to instruct the

edge node for performing some action. There are many

verbs available such as GET, POST, PUT and DELETE.

For example, a GET verb gets data about an entity, POST

verb creates a new entity, DELETE verb delete an entity

and update verb update the existing entry on the edge node.

The end user can issue GET requests for services such as

192.168.72.1:82/api/services that will returns a list of ser-

vices on the edge node (Edge node IP address: 192.168.72.1).

However, to retrieve a specific service from the edge node,

the end user or IoT devices use query string parameters

with an API. For example, it could be something like

192.168.72.1:82/api/Services? Media=video which returns

all the video services to the end users. The detailed expla-

nation of the our proposed web API URL structure is pre-

sented in the follow up subsection (Proposed.NET Web

API).

Request Headers: The request headers contain additional

instructions that are sent with the request for services or

data.

Request Body: The request body contains the data that is

sent with the request. For example some functions/services

require some data such as conversion ofmedia file (i- emp4 to

mp3) or document conversion (i-e word to pdf), therefore,

such data is typically sent as the request body.

FIGURE 4. Proposed.NET web API for IoT services.

Response Body: When the request is received at the edge

node then the edge node respond with a service or any com-

putation. The response body contains the services which is

requested by the end users.

Response Status codes: When the response is sent back

to the end users then the end users should be informed with

the status of the requested services. For example, the services

which is requested by the end users is not available or might

not have any resources that is requested, then these codes are

issued with the relevant response and give the details on the

status of the request.

We have tabulated some of the key resources which we

have used in our framework and has been shown in details

in Table 1.

Proposed.NET Web API: For the communication of

IoT devices with the edge node and cloud node, we have

used.NET Web API which is an easy way to implement a

RESTful web service. All the requests from NDN network

comes in the form of an API and hit the Web API (Microsoft

ASP.NET Web API 2.0) layer of the edge node. This API

layer provides a kind of interface to the requests coming from

NDN network. For APIs deployment we are using Microsoft

Internet Information Services (IIS) which host websites, web

applications and services needed by users or developers.

Web API uses the controller and action concepts and the

resources are mapped directly to controllers. There could be

different controllers such as Crypto, Document, Media, IoT

etc. The structure of our proposed.NET web API is depicted

in Figure 4 and is described as follows:

Our proposed API comprises of an IP, port number, Con-

troller, action, and the value. The values could be multiple in

some cases.When the end user/IoT device(s) wants to request

57750 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

TABLE 1. An example of REST resources, verbs, expected outcome and response codes for the proposed framework.

some service from edge node then it send an API request

to the edge node with all the information embedded for that

service in an API.

Let’s explain the complete procedure via an API request

from end node which we have implemented in our frame-

work and is depicted in Figure 4. To aid better under-

standing we considers an API of Crypto Controller such as

192.168.72.1:82/api/Crypto/ComputeHash? Value=30. The

first part of an API represents the IP address where the edge

node is located. The IP address ‘‘192.168.72.1’’ is the IP of

our edge node (located in our Lab: Broadband Convergence

Network Laboratory, Hongik University, Sejong Campus,

Republic of Korea). Once the request arrives at the edge

node via IP address ‘‘192.168.72.1’’ then the Transmission

Control Protocol (TCP) fetch the port number of the spe-

cific application where the API application is deployed. For

example, in our case we have used port number 82 for our

API application on server. If the port number field is left

void, then the port number-80 will be assigned by default.

Now once the request reaches at specific port number then

the API controller part is checked. Typically, APIs are held

within a ‘/api/’ route which helps to distinguish an API

controllers from another non-API (such as web controller) in

case web application and an API are running on same TCP

port. In the proposed Edge Tier API application, the API

controller is the main class, which is a base class for our Edge

Tier API controller classes such as crypto controller, docu-

ment controller, media controller and IoT controller etc. The

controller defines the service types on which some possible

actions might be performed. For example, in our framework

we have used a crypto controller where the main actions

are ComputeHash1, ComputeHash256, and Compute RSA

etc. If the crypto controller is called, then further actions are

performed such as ComputeHash1, ComputeHash256, and

Compute RSA etc. Once the action is performed then the

execution handler is called, and the results are then returned

in Extensible Markup Language (XML) format or JavaScript

Object Notation (JSON) format via response body to the IoT

end user. There could be multiple actions with same name

(action overloading) in each Controller. Therefore, the value

field in an API will distinguish the multiple actions. For

example, in Figure 4 we show the document controller. The

document controller comprises of various actions such as

word converter, pdf converter, word count etc.

Layer 2: Web Layer The web layer shows a graphical

user interface for real time data display in our framework.

In our case, it shows the real-time statistics of requests from

end users to edge Tier and from edge Tier to the cloud Tier.

We can see the actual requests with GUI via web layer that

are coming from the Things Tier to the Edge Tier. For future

work, we have planned to provide the real time statistics

and graphs of related performances metrics such as end to

end latency, RTT, Traffic load, backbone traffic reduction etc

(since our work is prototype, therefore the real time graphs

are still under development and it is open for any possible

contribution from the research community).

Layer 3: Service Layer This layer coordinates data and

services between an API layer and the Data Access Layer

(DAL) (which is explained in the next subsection). The API

layer send requests to the service layer and the service layer

accept all the request from an API layer. The service layer

contains all the business logics of the services on which the

decision might be taken. In our prototype, we just mentioned

services like crypto services (to perform some crypto related

services such as ComputeHash etc), media services (such

as audio/video conversion etc.), document services (such as

pdf/word conversion and word count etc.) and IoT services.

It is to be noted that this is a prototype implementation and

the framework is open to implement any kind of service in the

services layer. After receiving the requests from an API layer,

the service layer checks the available services. If the request

from end user devices are computational requests such as

document conversion or media conversion, then the services

layer will decide to coordinate with the component layer

where the computations will be performed. The component

layer is explained in next subsections in detail. However, if the

service layer received POST request (insert soma data), GET

request (retrieve some data), DELETE or UPDATE request,

then the services layer will coordinate with the DAL. The

service layer in coordination with DAL will decide whether

to retrieve the data from local storage of edge node or cloud

node. For example, if the data is available in the local storage,

then the DAL will provide the data from local storage to the

services layer and then the service layer will send data back

to an API layer which then send it to Things Tier users. Since

the edge node is not powerful as the cloud node. Therefore,

there might be cases where the data might not be available at

the edge node and need to be fetched from the cloud node.

VOLUME 7, 2019 57751

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

In that case, the DAL will fetch the data from the cloud via

cloud API. The service layer will then request to the DAL

to bring the data from the cloud node. Moreover, for the

POST request(s) the service layer will take decisions whether

to store the data in local database of edge node or cloud

data base. In our framework, the services layer performs the

following major operations:

• Processing requests from the end user IoT devices via an

API layer.

• Coordination between DAL and an API layer.

• Accessing data from the DAL via Local storage of edge

node and the cloud storage.

• Making logical decisions upon the request(s) received

from the end user device(s).

• Performing computations and calculations on various

services such as crypto services, documents services,

media services and IoT services with the help of com-

ponent layer.

• Sending the data/services to an API layer in order to

reach the data to end users.

Layer 4: Data Access layer (DAL) The DAL is the layer

where data management occurs. Typically using a database

such as SQL, MySQL, Oracle MongoDB etc. In our imple-

mentation we have used SQL data base. The code modules

in DAL is triggered based on two major decisions; local

storage and cloud storage. The service layer instructs the

DAL whether to store the data in the local storage or cloud

storage. By storage we mean the SQL database. The DAL

then stores the results locally or send to the cloud subject

to the application requirement and edge policies. In order

to communicate with the local SQL database, we are using

Microsoft Entity Framework (an underlying communication

framework between database and an application). The Entity

framework automate all the database related activities for our

application. Automated database commands are generated for

reading or writing data in the database and executing them

for end users. Entity Framework provides relevant libraries

and execute the relevant query in the database to create

results for our application. Generally, the Entity framework

uses three different approaches for communication with the

database such as Code First, Database First and Model First.

In the Code First approach, the classes are defined first and

then Entity Framework comprehend the conceptual model

of tables and related schemas of database. In the Database

First, the tables and all other schemas are defined first and

then Entity Framework defines the classes.WhileModel First

uses a Visual Designer to define the conceptual model, which

can then generate the classes to be used in the application.

According to Microsoft, the Model First approach is less

used approach and other two approaches are used often by

the developers. In our implementation, we have used the

Database First approach.

Layer 5: Unit Test LayerWe have provide a unit test layer

in order to ease the testing of our framework. That means

if one’s wants to add a new service(s) or to change some

services in the framework according requirements, then the

unit test layer will perform the testing of such service(s). The

processwill not be repeated from the beginning in order to test

the newly added service. However, it will be checked directly

from the unit test layer. Let’s explain the unit test layer of the

proposed framework as follows:

In each layer we need to write some codes for some kind

of service(s) to be requested. As the API layer provides

communication between Things Tier, Edge Tier and Cloud

Tier. Therefore, first we need to write a code for specific

service(s) to be requested. For instance, an end user wants

to request some service i-e document service from the edge

Tier. Therefore, the request will be sent to the edge Tier via

an API comprising of IP of the edge node, controller, action

and the request query as discussed in an API layer. The API

layer can access service layer, DAL, and the component layer.

These all layer have the accessibility to each other. Now if a

developer wants to change some code in any specific layer,

then the developer needs to go to the specific layer to change

the specific code. In order to test the code whether it works

correctly or not, an API request from the web browser or

Postman (Postman is a tool for performing testing with an

API) with specific API will be sent. This request will be

forwarded to each layer and the newly added code will be

tested. It is a hectic job and time consuming. Why not to

make a separate layer and just to use that layer for testing

the code in each layer. Therefore, we have used the unit

test layer to perform the testing of newly added or updated

code in each layer. For that we only need to make a sample

code in the unit test layer. This unit test layer provides the

testing of code in each layer during development of code for

services to be used in IoT scenarios or some other scenarios.

We argue that if we use the unit test layer then there are 95%

chances that an API would be working correctly, whereas,

in case of no unit test layer we are not sure whether the test

would be successful or not. With unit test layer we write a

function or other block of application code and create unit

tests that verify the behavior of the code in response to the

correct cases of input data. With test driven approach in this

framework, we have provided a facility to create the unit tests

before testing the actual code. Using unit testing we are able

to promptly catch any bug introduced due to the update or

change. In case we don’t use the unit testing in place, we need

to write the code, fire up the GUI and provide a few inputs

that hopefully hit the code. However, if we have unit testing

in place, then we write the test, write the code and run the test.

Debugging becomes very easy. If a test fails, only the latest

changes need to be debugged.

Layer 6: Component Layer In the component layer,

we have provided those code modules that are shared among

different layers such as helpers (configuration helper, email

helper and log helper) and extensions etc. This layer is also

open to contribution and to add any kind of relevant helper

such as custom type conversion helper, extension helpers,

and security helper. In this layer, users are provided with

configuration helper class to configure the edge/cloud node

57752 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

configuration directly instead of going to the web.config

file of the edge Tier. By doing so the re-deployment of the

modified Dynamic Link Library (DLL) files can be avoided.

In our first version of edge and cloud codebase, we have

provided 3 helper classes, 1) Configuration Helper, 2) Email

Helper, and 3) Log Helper. Email helper provides the email

services to the administrators (administrator can be anyone

who is managing or monitoring the edge or cloud and his/her

email address will be provided in web.config file at the

time of deployment) and the administrators will be informed

about all the activity of edge Tier. Logging is a means of

tracking events that happen when some application (edge or

cloud) runs. The application developer adds logging calls to

their code to indicate that certain events have occurred and

is described by a descriptive message. Therefore, we have

provided a logging module in the component layer to ease

the effort of understanding. Currently this logging module

have two types Debug and Exception. For future we have

planned to add more types such as Info and Warning Logs

(this logging module is also open to contribution).

Layer 7: Model Layer The model layer comprised of dif-

ferent types of classes used for carrying data among different

layers. A model typically represents a real-world object that

is related to the problem or domain space. However, in pro-

gramming, we create classes to represent them. These entity

classes known as models, have some properties (defining

their behavior) in a particular domain space. For instance,

in our edge application if one wants to save the Load_Request

time in database then the Load_Request_Time Model must

be defined which may include different properties such

as Id, Request_Arrival_Time, Request_Completion_Time,

Requesting_Node_Name and Requesting_Node_Type. Our

model layer contains 3 different types of models 1) Custom

Models, 2) Database Models, and 3) Database Partials. Cus-

tom models may consist on those classes which may use in

custom requirements. For example, we may use these classes

for the computational purposes. These classesmay ormay not

represents the database schema. Classes in database model

represent the Tables in the database. Each database model

class map with a single table in a database and each of its

property map with the column name. Database partials are

replica of database model however these classes are used for

the validations such as required validation, length validation,

data type validation, and extension validations.

3) TIER 3: CLOUD COMPUTING

The cloud node comprises of all the layers which are detailed

in the edge Tier except the web layer and the subpart of the

data access layer where request is sent to the cloud for data

access (since we don’t need to get data farther than the cloud).

We deployed our cloud node at multiple hops at theMicrosoft

Azure Windows server 2016 and for the cloud storage we

have used SQL 2017 developer version. Any database can be

used in this framework for storage such as Oracle, My SQL,

MongoDB etc. In the evaluation section we have provided the

complete details about the cloud server specifications.

V. PROTOTYPE AND EVALUATION

In this section, we first introduced our experimental testbed

which is built on our NDN based edge computing framework.

Then we measured the possible performance metrics.

A. ENVIRONMENTAL SETUP

The testbed includes Edge node machine, access point, and

Microsoft Azure Cloud server machine. The detailed hard-

ware and software configurations are as follows:

For NDN network we generate requests from ndnSIM to

the edge node. In order to do that we modified some of

the code in ndn-producer.cpp file and ndn-producer.hpp file.

Our custom function which generates the request is using

boost/asio.hpp library and it’s class is asio::ip::tcp. ndnSIM

is running on Linux using VMware. The VMware has 8 GB

RAM and 4 core CPU.

Edge application is hosted at one hop from NDN network

on a system with specifications of 16 GB RAM, core-i7,

4710HQ-CPU and @ 2.40 Ghz core. We developed our edge

application using.NET framework. For the deployment of

edge application, we have used Internet Information Ser-

vices (IIS). IIS is a flexible, general-purpose web server

provided by Microsoft. The IIS web server accepts requests

from remote client computers and returns the appropriate

response. This basic functionality allows web servers to share

and deliver information across local area networks, such as

corporate intranets, and WANs such as the Internet. A web

server can deliver information to users in several forms, such

as static webpages coded in HTML; through file exchanges

as downloads and uploads; and text documents, image files,

JSON, XML and more.

For cloud application we have used Microsoft Azure

Window Server 2016 Data Centre with specification of 8

GB RAM, Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30Ghz

2.29Ghz. Microsoft Azure is a cloud computing service

created by Microsoft for building, testing, deploying, and

managing applications and services through a global net-

work of Microsoft-managed data centers. It provides soft-

ware as a service (SaaS), platform as a service (PaaS) and

infrastructure as a service (IaaS) and supports many different

programming languages, tools and frameworks, including

bothMicrosoft-specific and third-party software and systems.

Cloud application is also developed in.NET framework and

deployed using IIS server. For the database of the edge

node and the cloud node we have used SQL 2017 developer

version. Our NDN based edge computing testbet is shown

in Figure 5.

It is to be noted that we have used a limited version

of Cloud VM with limited amount of resources for testing

our system. However, these resources were enough for our

experiments. Since we need the Cloud VM just for test-

ing the latency related measurements and to show the real

cloud behavior at multiple hops. Therefore, high amount of

resources were not necessary for our evaluations. We tes-

tify our system with lower amount of Cloud VM resources

and that were enough for our measurements. The system is

VOLUME 7, 2019 57753

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 5. NDN based edge cloud computing testbed.

completely scalable; however, it depends on the user require-

ments. If one’s wants to scale the system at large scale then

they could scale it easily just by buying the CloudVMaccord-

ing the requirements.

B. RESULTS AND DISCUSSION

Edge computing and NDN promises to increase the perfor-

mance of several applications by using data locality. More-

over, it is also able to relieve the core network by addressing

the increasing bandwidth demands caused by the increase

of services, data volume, and IoT devices. In the following

subsections we evaluated the relevant possible performance

metrics of NDN and edge cloud computing.

1) INTEREST AGGREGATION IN SPARSE ENVIRONMENT

In this experiment, we have exploited the interest aggregation

feature of NDN. First, we conduct the experiment with simple

IP (without NDN). That means if we don’t use NDN then

how much interest packets would be forwarded to the edge

node. By number of interest packets we mean the traffic

generated from end users/things to the edge device. In case

of IP all the requests from users is forwarded to the Edge

Tier. In order aid better understanding we consider a simple

topology of 4 nodes in NDN network which is connected with

the edge node at most one hop and with cloud machine at

multiple hops. Out of 4 nodes in our topology, we set 2 nodes

as consumer nodes, 1 as a relay node and 1 as a producer

node which also act as gateway node for the edge device.

The consumer 1 starts sending requests when the simulation

starts. Consumer 2 started sending request just after 10 ms

after the simulation start time. The reason to send request

after 10 ms for consumer 2 is to check the behavior of PIT

entries and interest aggregation at the relay node. Since those

requests in forwarded via relay node to the gateway node

and then from the gateway node it is forwarded to the Edge

node. Therefore, the relay node start aggregation for all the

consequent incoming interests in the PIT table in order to

reduce the traffic on the edge node. All the incoming requests

for the same content will be aggregated in the PIT table

and will not be forwarded further to the edge Tier. However,

in case of IP, since there is no PIT table. Therefore, all the

requests will be forwarded to the edge Tier.

FIGURE 6. Number of request received at the edge node as a function of
number of requests generated.

Figure 6 depicts the number of requests generated as a

function of request received at the Tier 2 (edge node). It is

evident from Figure 6 that for 20 number of interest packets

only 10 packets are forwarded to the edge node, while the rest

of 9 requests were aggregated in the PIT table of the relay

node. Since the second consumer started sending interest

packets after 10 ms therefore, total 19 request were generated

over all. Whereas in case of no aggregation all the 19 requests

are forwarded to the edge node. It is to be noted that both

consumers have interest frequency of 1 interest /sec with a

total simulation time of 10 seconds. The consumer 1 sends

10 requests in 10 seconds which make entries in the PIT

table. Now when the consumer 2 sends the same 10 requests

with a delay of 10 ms then all the interest packets are not

forwarded further. Instead they are aggregated in the PIT

table of the relay node. Therefore, only 10 interest packets

are forwarded only. We have observed that 47.73 % of traffic

is accommodated at the relay node via interest aggregation

feature of NDN. Without aggregation 100% of the traffic is

forwarded to the edge node. The same is the case for 40, 60,

80 and 100. From this experiment we have concluded that if

we use the aggregation feature of NDN, then we can reduce

a large amount of incoming traffic towards the edge node.

Without aggregation, all the traffic from the things Tier will

be sent to the edge Tier which is quite a challenging and

alarming situation for the case of IoT where billion of devices

will send the traffic to the edge and the cloud.

2) INTEREST AGGREGATION IN DENSE ENVIRONMENT

In this experiment we measured the interest aggregation

of NDN with Edge computing using dense environment.

In order to check the effectiveness of interest aggregation,

we run the same topology for a dense environment with

higher interest rate. Figure 7 depicts the behavior of interest

aggregation with various number of interest packets rate.

Initially, 2000 interest packets are generated by both con-

sumers (i-e consumer 1 and consumer 2). However, only

1288 interest packets were forwarded to the edge node. That

means 35.6% of traffic is reduced at the edge node using

PIT interest aggregation feature of NDN at the relay node.

57754 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 7. Number of request received at the edge node as a function of
number of requests generated.

Moreover, when we sent 10,000 number of interest packets

then 5288 number of interest packets were forwarded to the

edge node. That means 47.12% of traffic is accommodated at

the edge node and 52.88% traffic were aggregated at the NDN

relay node. From this experiment, we observed that in case of

IoT, NDN is a promising approach with edge computing to

reduce the backbone traffic on the edge Tier and cloud Tier

as well.

3) EDGE VS CLOUD LATENCY

We investigated latency performance measurements of our

cloud application hosted on Microsoft Azure cloud and an

edge application hosted in our Lab at one hop. The latency

measurements are based on Round Trip Time (RTT). We sent

various number of interest packets per second from the NDN

network using ndnSIM simulator. The end devices/IoT nodes

send interest packets to the gateway node of NDN where the

gateway node is connected to the edge device at one hop

distance. Furthermore, our edge device is further connected

to the Microsoft Azure Cloud machine (IP: 13.68.129.103)

located in Virginia, Washington, USA. All the requests are

forwarded from the IoT devices to the gateway node, and

then from gateway node to the edge node and cloud machine.

In order to calculate RTT, we first notice the request send

time (when the request is sent from IoT device to the edge

and cloud) and the request return time (when the request is

returned from the cloud and edge node). All such information

are traced in RTT_tracefile.txt and the average end to end

latency were measured using the Tracehelper.exe tool (which

we have developed in.Net framework). Figure 8 depicts

the collected latency measurements. It is evident from Fig-

ure 8 that the latency has a strong relation with the physical

distance of the edge node and the cloud node. Since the edge

node is at one hop distance from the end users/IoT devices

where the requests are generated. Therefore, the latency is

very minimal. By increasing the number of interest packets

per second, the latency is changing very slightly. The reason

is the one hop physical location of the edge node. However,

the latency to the cloud is very high and shows minimum

FIGURE 8. Average end to end latency as a function of number of
requests generated.

latency of 408 ms at 100 number of requests from end

users/IoT devices. The reason is that the cloud is located at

multiple hops and far from end users, thereby resulting in a

significant increase in average end to end latency. This study

shows that the edge computing is a promising approach for

end user devices to satisfy their requests with lower response

time. By sending all the traffic to the cloud Tier not only

increase the backbone traffic on cloud data center, but also

might result in high end to end latencies which is not suitable

for the real time application such as AR and VR. According

to our measurements, a latency lower than a 10ms is achieved

with edge node. We have noticed an approximate average

end to end latency of 8 ms from end user devices to the

edge device and almost 2 ms processing delay at the edge

node which might be sufficient for most of the low-latency

application requirements.

4) SINGLE QUERY LOOKUP TIME

In this test we have performed the measurement of a single

resolution query from NDN to the edge node and cloud node

as well. That means a single gateway node in the NDN

network has been used which send services requests to the

edge Tier.

a) Edge Service Lookup Time: Figure 9 depicts the edge

service lookup time for varying interest rate in relation to

different amounts of edge node entries (1K, 10K, 20K and

50K). As in the case of IoT, various IoT devices may generate

various data with different rates, therefore, we varied the

number of interests per second from 10 to 90 with an interval

of 20. We have checked the behavior of edge node when

different number of requests received from IoT devices at

the edge node. For instance, each second 10 interest packets

are generated from a single gateway node and each interest

carries a single query that is checked in 1K, 10K, 20K and

50K. The same is repeated for 30, 50, 70 and 90 in relation

to the edge node entries. It can be observed that the lookup

time for 1K entries is 8 ms and is increases slowly when the

interest rate is increasing. The linear behavior is due to the

increase in load of services request from IoT device while

searching in the edge entries. It is also noticed that the lookup

VOLUME 7, 2019 57755

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 9. Edge service lookup time as a function of interest rate.

time for 10K, 20K and 50K increased much higher when

the single interest against various number of interest packets

is checked. The edge service lookup time for 50K is much

higher comparing to other edge entries, since 50K comprises

of higher number of services entries and the lookup time

suddenly increased for looking a single query in 50K entries

of the edge node. From this experiment we have observed the

behavior of the edge node with lookup time against various

number of edge entries. This shows that the edge computing

promises a very good lookup time comparatively with the

cloud computing which is presented in the next subsections.

b) Edge Node Round Trip Time: In this test, we have

conducted measurements of the edge node device in terms

of RTT under various Interest rate for various number of

edge device entries. We have checked the total RTT from

Tier 1 (IoT devices) to Tier 2 (Edge node) and then from

Tier 2 to Tier 1 while checking for the entries in the edge

device. The RTT comprises of the network latency form Tier

1 to the Tier 2 and from Tier 2 to Tier 1 including the pro-

cessing delay at Tier 2. RTT is calculated by sending various

number of interests per second from the NDN network using

ndnSIM simulator. In order to calculate RTT, we first notice

the request send time (when the request is sent from user to

the edge and cloud) and the request return time (when the

request is returned from the cloud or edge node) as discussed

before. The IoT devices are sending interest packets from

NDN network which is then forwarded via gateway node to

the edge node. After processing the request from IoT devices,

the edge node then returns the response to the IoT devices and

the total RTT is calculated.

In Figure 10, for 10 interest packets per second the total

RTT for 1K entries to the edge node is approximately 11 ms

and 13 ms for 30 interest per second. The RTT increases

linearly for 1K entries, since we are increasing the interest

rate. Similarly, for edge entries 10K, 20K, and 50K, the RTT

increment is higher. We have observed that for 50K edge

entries the RTT is very high. The reason is that processing is

quite higher because 1 interest is checked in the 50K entries

and then the response is then sent back to the IoT devices.

c) Cloud Node Round Trip Time: In this test we have

investigated the RTT performancemeasurements of our cloud

FIGURE 10. Edge node RTT as a function of interest rate.

FIGURE 11. Cloud node RTT as a function of interest rate.

application hosted on Microsoft Azure cloud with various

interest rate for various cloud entries. It is evident from

Figure 11 that the latency has a strong relation with the phys-

ical distance of the cloud. Since edge is at one hop distance

from the users where the requests are generated. Therefore,

the latency is very minimal as also shown in Figure 8. The

latency to the cloud is much higher and shows minimum RTT

of 408 ms at 10 number of requests per second for a single

query search. For 50K entries the RTT exceed 480 ms which

is quite higher RTT for real time applications. The reason is

that the cloud is located at multiple hops and far from end

users, thereby resulting in high RTT.

5) LOAD BASED LOOKUP TIME

In this experiment, we have conducted the measurements of

the edge service lookup time under various load conditions.

In the previous test, the scenario was not dense, therefore,

interest rate was limited to 90. However, there may be cases

when the network is very dense and the IoT devices request-

ing services in a dense manner. Therefore, we have con-

sidered an ultra-dense network scenario for this evaluation.

In this test, multiple gateway nodes are deployed, where each

gateway node start sending requests towards edge node at the

same time (approximately).

a) Edge Service Lookup Time: Figure 12 depicts the

behavior of edge node by varying the load of parallel requests

57756 VOLUME 7, 2019

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

FIGURE 12. Edge service lookup time as a function of load request.

from 200 to 3000 in relation to different amounts of edge node

entries (1K, 10K, 20K and 50K). The edge service lookup

time for 200 number of parallel requests shows lookup time

of 32.95 ms for 1K entries. Similarly, for 600 number of

parallel requests the lookup time of 172.31 ms was noted for

1K entries. Similarly, for 10K, 20K, and 50K the edge service

lookup time is increasing higher and higher and we have

observed a significant increase in the lookup time for 50K

with various number of parallel requests. If we compare Load

based lookup timewith the single query lookup time, then this

lookup time is very high. In the single query the lookup time

for 1K edge node entries were 8 ms whereas in the load-based

lookup it is 32.95 ms. This shows a huge difference when

we have used sparse and dense network. As in IoT networks

millions and billions of devices will be connected and all such

devices may send a massive amount of data. Therefore, it is

a best design choice to process data at the edge node. If the

data is sent to the cloud, then it may result in a high amount

of Lookup time at the cloud Tier and is not a good practice

for many IoT applications.

b) Edge Node Round Trip Time: Figure 13 shows the

evaluation of RTT with various load conditions and different

edge device entries. We have checked the total RTT from

Tier 1 to Tier 2 and then from Tier 2 to Tier 1 while checking

for the entries in the edge device. The behavior of edge node

is checked by varying the load of parallel requests from 200 to

3000. The edge node RTT for 200 number of parallel requests

shows RTT of 40.90ms for 1K entries. The 40.90ms includes

the processing delay at the edge node and an average RTT to

the edge node. As soon the interest load request is increased,

RTT for edge entries 10K, 20K, and 50K also increased.

For 50K edge entries with 200 number of requests the RTT

of 821.11 ms was noted. The reason is that processing is

quite higher because 1 interest is checked in the 50K entries

and then the response is then sent back to the IoT devices.

Apparently results of Figure 12 and Figure 13 looks similar,

but in fact the values are slightly different in both plots. For

instance with 50K edge node entries and with 3000 number

of parallel requests, the edge service lookup time is approx-

imately 12000 ms (Figure 12), whereas in the edge node

FIGURE 13. Edge node RTT as a function of load request.

FIGURE 14. Cloud node RTT as a function of load request.

RTT (Figure 13) it is approximately 12,011 ms. The reason is

that the Figure 13 includes the average RTT (approximately

11 ms) to the edge node in addition to the processing delay at

the edge node.

c) Cloud Node Round Trip Time: We have also checked

the Cloud RTT with various load request for various entries.

Figure 14 depicts that RTT to the cloud is much higher and

shows aminimum latency of 439ms at 200 number of parallel

requests. The 439 ms includes the processing delay (approx-

imately 31 ms) at the cloud node and an average RTT to the

cloud node (approximately 408 ms). As soon we increase

the number of parallel requests, the RTT is increasing higher

and higher. For 50K entries with 3000 parallel requests the

average RTT of 1223.11 ms was noted. That means that if

we increase the load requests from end users then the RTT

could reach to a very high level and it is very alarming

and vulnerable for many IoT applications. The edge RTT,

cloud RTT and edge services lookup time clearly shows that

sending the traffic to the cloud is not a good practice for future

IoT networks.

VOLUME 7, 2019 57757

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

Moreover, we have also noticed that the use of NDN with

ECC also creates some issues with the basic NDN design

parameters. These design parameters of ndnSIM should be

changed if one’s wants to use NDN with ECC. For instance,

ndnSIM provides default design parameters of 4 seconds for

maximum RTT and the ndnSIM community argues that the

4 seconds PIT time is enough for the data packet to come

back. However, if we use the same design parameter with

edge cloud system then the requests might not be satisfied

with in 4 seconds. Invoking computation at the edge device(s)

may take relatively long than a simple Interest and Data

interaction. Therefore, most of the packets might be still on

the way and the NDN PIT entry will be purged and will result

in a heavy traffic losses. Such losses results in retransmissions

and create congestion in the network. Furthermore, many real

time applications such as AR/VRmay not afford the PIT time

with 4 seconds. Therefore, such design parameters should be

checked while working with NDN and ECC system.

VI. CONCLUSIONS

In this paper, we have proposed and discussed the design,

implementation and evaluation of NDN based ECC frame-

work. In order to solve the challenges of real-time ser-

vices and to improve the performance of real time services,

the framework combines well-known innovative technolo-

gies: NDN and ECC. NDN offers network layer content and

services, increased caching, built-in mobility, built-in secu-

rity, and interest aggregation. In addition, edge computing

offers computation, storage, and increased caching capabili-

ties in close proximity of end users/devices, thereby reducing

end to end latency and backbone traffic. In our proposed

open source framework, we have leveraged and exploited

the features of both technologies in order to empower the

future networks. We have implemented NDN based ECC

framework prototype and conducted extensive experiments

which show that NDNwith ECC reduces the backbone traffic

on the edge node and cloud node as well. Similarly, edge

service lookup time, edge node RTT and cloud node RTT is

evaluated for various load request from end users. We have

observed that the data should be processed in the vicinity of

end users with enabling technologies for future Internet such

as NDN and edge computing. Although clouds are rich in

resources, it cannot fulfill the end to end latency requirement

of future networks such as AR and VR due to long physical

distance. From experimental results, we have concluded that

the NDN and edge computing are promising technologies to

reduce the latency, backbone network traffic and can facilitate

the resource-intensive and latency sensitive IoT applications.

A NOTE ON REPRODUCIBILITY

We make our implementation open and publicly accessible

to the research community. Our framework prototype imple-

mentation can be forked from our GitHub repository.1 2

1https://github.com/atifrehman/NEC
2https://github.com/rehmatkhan/NEC

REFERENCES

[1] J. Pan and J. McElhannon, ‘‘Future edge cloud and edge computing for

Internet of Things applications,’’ IEEE Internet Things J., vol. 5, no. 1,

pp. 439–449, Feb. 2018. doi: 10.1109/JIOT.2017.2767608.

[2] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research oppor-

tunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

doi: 10.1109/JIOT.2016.2584538.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and

challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

doi: 10.1109/JIOT.2016.2579198.

[4] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra. (2018).

‘‘Edge cloud offloading algorithms: Issues, methods, and perspectives,’’

[Online]. Available: https://arxiv.org/abs/1806.06191

[5] J. Pan, L. Ma, R. Ravindran, and P. TalebiFard, ‘‘HomeCloud: An edge

cloud framework and testbed for new application delivery,’’ in Proc. 23rd

Int. Conf. Telecommun. (ICT), Thessaloniki, Greece, May 2016, pp. 1–6.

doi: 10.1109/ICT.2016.7500391.

[6] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,

‘‘Orchestration of microservices for IoT using docker and edge comput-

ing,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 118–123, Sep. 2018. doi:

10.1109/MCOM.2018.1701233.

[7] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey

of mobile cloud computing application models,’’ IEEE Commun. Surveys

Tuts., vol. 16, pp. 393–413, 1st Quart., 2014.

[8] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing,

Fog et al.: A survey and analysis of security threats and chal-

lenges,’’ Future Gener. Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

doi: 10.1016/j.future.2016.11.009.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-

based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,

no. 4, pp. 14–23, Oct./Dec. 2009. doi: 10.1109/MPRV.2009.82.

[10] F. Bonomi, R. Milito, J. Zhu, R. Milito, and J. Zhu, ‘‘Fog com-

puting and its role in the Internet of things,’’ in Proc. 1st Ed.

MCC Workshop Mobile Cloud Comput., Helsinki, Finland, Aug. 2012,

pp. 13–16.

[11] (2016). Mobile-Edge Computing Initiative, Eur. Telecommun. Stand.

Inst., Sophia Antipolis, France. [Online]. Available: http://www.etsi.

org/technologies-clusters/technologies/mobile-edge-computing

[12] R. Ullah, S. H. Ahmed, and B. Kim, ‘‘Information-centric net-

working with edge computing for IoT: Research challenges and

future directions,’’ IEEE Access, vol. 6, pp. 73465–73488, 2018.

doi: 10.1109/ACCESS.2018.2884536.

[13] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, ‘‘Service popularity-based smart

resources partitioning for fog computing-enabled industrial Internet of

Things,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4702–4711,

Oct. 2018.

[14] ‘‘Cisco visual networking index: Global mobile data traffic forecast

update,’’ Cisco Syst., Inc., San Jose, CA, USA, Tech. Rep.

1486680503328360, Mar. 2017, pp. 2016–2021. [Online]. Available:

http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-

networking-index vni/mobile-white-paper-c11- 520862.html

[15] A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing

benefit from software-defined networking: A survey, use cases, and future

directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391,

4th Quart., 2017.

[16] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

‘‘A survey of information-centric networking,’’ in IEEE Commun. Mag.,

vol. 50, no. 7, pp. 26–36, Jul. 2012. doi: 10.1109/MCOM.2012.6231276.

[17] R. A. Rehman and B.-S. Kim, ‘‘LOMCF: Forwarding and caching

in named data networking based MANETs,’’ in IEEE Trans. Veh.

Technol., vol. 66, no. 10, pp. 9350–9364, Oct. 2017. doi: 10.1109/

TVT.2017.2700335.

[18] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, ‘‘Networking named content,’’ in Proc. 5th Int. Conf.

Emerg. Netw. Exp. Technol., New York, NY, USA, Dec. 2009, pp. 1–12.

doi: 10.1145/1658939.1658941.

[19] S. H. Ahmed, S. H. Bouk, M. A. Yaqub, D. Kim, H. Song, and J. Lloret,

‘‘CODIE: Controlled data and interest evaluation in vehicular named data

networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3954–3963,

Jun. 2016. doi: 10.1109/TVT.2016.2558650.

[20] A. Dabirmoghaddam, M. Dehghan, and J. J. Garcia-Luna-Aceves,

‘‘Characterizing Interest aggregation in content-centric networks,’’ in

Proc. IFIP Netw. Conf. (IFIP Networking) Workshops, May 2016,

pp. 449–457.

57758 VOLUME 7, 2019

http://dx.doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/ICT.2016.7500391
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/ACCESS.2018.2884536
http://dx.doi.org/10.1109/MCOM.2012.6231276
http://dx.doi.org/10.1109/TVT.2017.2700335
http://dx.doi.org/10.1109/TVT.2017.2700335
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1109/TVT.2016.2558650

R. Ullah et al.: Design and Implementation of an Open Source Framework and Prototype For NDN-Based ECC System

[21] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, ‘‘An information

centric network for computing the distribution of computations,’’ in Proc.

1st ACM Conf. Inf.-Centric Netw., New York, NY, USA, Sep. 2014,

pp. 137–146. doi: 10.1145/2660129.2660150.

[22] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu,

‘‘A survey of naming and routing in information-centric networks,’’ IEEE

Commun. Mag., vol. 50, no. 12, pp. 44–53, Dec. 2012.

[23] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, ‘‘FCSS: Fog computing

based content-aware filtering for security services in information centric

social networks,’’ IEEE Trans. Emerg. Topics Comput., to be published.

doi: 10.1109/TETC.2017.2747158.

[24] W. Shang et al., ‘‘Named data networking of things (Invited Paper),’’ in

Proc. IEEE 1st Int. Conf. Internet Things Design Implement. (IoTDI),

Berlin, Germany, Apr. 2016, pp. 117–128. doi: 10.1109/IoTDI.2015.44.

[25] Y. Liu, A. Zhang, J. Li, and J.Wu, ‘‘An anonymous distributed keymanage-

ment system based on CL-PKC for space information network,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia, May 2016,

pp. 1–7. doi: 10.1109/ICC.2016.7510841.

[26] D. Trossen, M. J. Reed, J. Riihijärvi, M. Georgiades, N. Fotiou, and

G. Xylomenos, ‘‘IP over ICN—The better IP?’’ in Proc. Eur. Conf. Netw.

Commun. (EuCNC), Jun./Jul. 2015, pp. 413–417.

[27] T. Refaei, J. Ma, S. Ha, and S. Liu, ‘‘Integrating IP and NDN

through an extensible IP-NDN gateway,’’ in Proc. 4th ACM Conf. Inf.-

Centric Netw. (ICN), New York, NY, USA, Sep. 2017, pp. 224–225.

doi: 10.1145/3125719.3132112.

[28] S. Shannigrahi, C. Fan, and G. White, ‘‘Bridging the ICN deployment gap

with IPoC: An IP-over-ICN protocol for 5G networks,’’ in Proc. Workshop

Netw. Emerg. Appl. Technol., New York, NY, USA, Aug. 2018, pp. 1–7.

[29] H. Wu et al., ‘‘On incremental deployment of named data networking in

local area networks,’’ in Proc. ACM/IEEE Symp. Archit. Netw. Commun.

Syst. (ANCS), May 2017, pp. 82–94.

[30] Docker Inc. (2017). The Docker Project Page. [Online]. Available:

https://www.docker.com/

[31] Amazon Web Services. (2017). Amazon Lambda project page- Run Code,

Not Servers—Serverless Computing. [Online]. Available: https://aws.

amazon.com/lambda/

[32] A. Madhavapeddy et al., ‘‘Unikernels: Library operating systems for the

cloud,’’ SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 461–472,

Mar. 2013.

[33] M. Król and I. Psaras, ‘‘NFaaS: Named function as a service,’’ in Proc.

ACM Conf. Inf.-Centric Netw., Berlin Germany, Sep. 2017, pp. 134–144.

[34] M. Amadeo, C. Campolo, A. Molinaro, G. Ruggeri, ‘‘IoT data processing

at the edgewith named data networking,’’ inProc. 24th Eur.Wireless Conf.,

May 2018, pp. 1–6.

[35] M. Amadeo, C. Campolo, and A. Molinaro, ‘‘NDNe: Enhancing named

data networking to support cloudification at the edge,’’ IEEE Commun.

Lett., vol. 20, no. 11, pp. 2264–2267, Nov. 2016.

REHMAT ULLAH received the B.S. and

M.S. degrees in computer science (major in

wireless communications and networks) from

COMSATS University, Islamabad, Pakistan,

in 2013 and 2016, respectively. He is currently

pursuing the Ph.D. degree in computer engi-

neering with the Broadband Convergence Net-

works Laboratory, Department of Electronics and

Computer Engineering, Hongik University, South

Korea. His major interests are in the field of

information-centric networking (ICN) specifically mobile/wireless content-

centric/named data networking (CCN/NDN), edge computing, the Internet

of Things (IoT), 5G and the future Internet architectures. Moreover, he is an

ACMStudent Member and serves as a regular reviewer for the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, the IEEE Wireless Communications

Magazine, the IEEE Communications Magazine, Transactions on Emerging

Telecommunications Technologies, Future Generation Computer Systems

Journal (Elsevier), and the IEEE ACCESS Journal. He served as a reviewer

and/or TPC for various international conferences and workshops including

ACM MobiHoc (Los Angeles, USA), IEEE CCNC (Las Vegas, USA),

VTC2018-Spring (Porto, Portugal), and SIGCSE 2019 (Special Sessions:

Minneapolis, Minnesota, USA).

MUHAMMAD ATIF UR REHMAN received the

B.S. degree in electronics and communication

from The University of Lahore, Lahore, Pakistan,

in 2013, and the M.S. degree in computer sci-

ence from the COMSATS Institute of Information

Technology, Islamabad, Pakistan, in 2016. He is

currently pursuing the Ph.D. degree with the

Broadband Convergence Networks Laboratory,

Department of Electronics and Computer Engi-

neering, Hongik University, South Korea. From

2013 to 2018, he was working as a Software Engineer and Architect in

leading IT companies in Pakistan. His major interests are in the field of infor-

mation centric wireless networks, named data networking, edge computing,

software defined networking, the Internet of Things, and 5th generation

communication. His responsibilities were to write well design, testable, and

efficient code, collaborate with other team members to determine functional

and non-functional requirements for new software or application, provide

technical guidelines to other team members and ensure software meets all

requirements of quality. He worked closely with quality assurance team to

deliver high quality and reliable products.

BYUNG-SEO KIM (M’02–SM’17) received the

B.S. degree in electrical engineering from In-Ha

University, In-Chon, South Korea, in 1998, and

the M.S. and Ph.D. degrees in electrical and com-

puter engineering from the University of Florida,

in 2001 and 2004, respectively. His Ph.D. study

was supervised by Dr. Y. Fang. From 1997 to

1999, he was with Motorola Korea Ltd., Paju,

South Korea, as a Computer Integrated Manufac-

turing (CIM) Engineer in Advanced Technology

Research and Development (ATR&D). From 2005 to 2007, he was with

Motorola Inc., Schaumburg, IL, USA, as a Senior Software Engineer in net-

works and enterprises. His research focuses in Motorola Inc., were designing

protocol and network architecture of wireless broadband mission critical

communications. From 2012 to 2014, he was the Chairman with the Depart-

ment of Software and Communications Engineering, Hongik University,

South Korea, where he is currently a Professor. His work has appeared in

around 167 publications and 22 patents. His research interests include the

design and development of efficient wireless/wired networks including link-

adaptable/cross-layer-based protocols, multi-protocol structures, wireless

CCNs/NDNs, mobile edge computing, physical layer design for broadband

PLC, and resource allocation algorithms for wireless networks. He served

as the Member of the Sejong-city Construction Review Committee and

Ansan-city Design Advisory Board. He served as the General Chair for 3rd

IWWCN 2017, and the TPC member for the IEEE VTC 2014-Spring and

the EAI FUTURE2016, and ICGHIC 2016 2019 conferences. He served as

the Guest Editor for special issues of the International Journal of Distributed

Sensor Networks (SAGE), the IEEEACCESS, and the Journal of the Institute of

Electrics and Information Engineers. He is an Associate Editor of the IEEE

ACCESS.

VOLUME 7, 2019 57759

http://dx.doi.org/10.1145/2660129.2660150
http://dx.doi.org/10.1109/TETC.2017.2747158
http://dx.doi.org/10.1109/IoTDI.2015.44
http://dx.doi.org/10.1109/ICC.2016.7510841
http://dx.doi.org/10.1145/3125719.3132112

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	EDGE COMPUTING
	DIFFERENCES BETWEEN EDGE COMPUTING PROPOSALS
	NEED OF EDGE COMPUTING

	NAMED DATA NETWORKING
	WHY NDN WITH EDGE COMPUTING?
	WILL NDN AND EDGE COMPUTING CO-EXIST AND WORK TOGETHER?

	RELATED WORKS ABOUT ICN OVER EDGE COMPUTING
	PROPOSED FRAMEWORK
	TIER AND LAYER
	TIER1: THINGS/END DEVICES
	TIER2: EDGE COMPUTING
	TIER3: CLOUD COMPUTING

	ARCHITECTURE DETAILS
	TIER1: NAMED DATA NETWORKING
	TIER2: EDGE COMPUTING
	TIER 3: CLOUD COMPUTING

	PROTOTYPE AND EVALUATION
	ENVIRONMENTAL SETUP
	RESULTS AND DISCUSSION
	INTEREST AGGREGATION IN SPARSE ENVIRONMENT
	INTEREST AGGREGATION IN DENSE ENVIRONMENT
	EDGE VS CLOUD LATENCY
	SINGLE QUERY LOOKUP TIME
	LOAD BASED LOOKUP TIME

	CONCLUSIONS
	REFERENCES
	Biographies
	REHMAT ULLAH
	MUHAMMAD ATIF UR REHMAN
	BYUNG-SEO KIM

