
Design and Implementation of Communicating
Fixed and Variable Instruction Set Processors

Valery Sklyarov
DETIUA/IEETA

University of Aveiro
Aveiro, Portugal
e-mail: skl@ua.pt

Iouliia Skliarova
DETIUA/IEETA

University of Aveiro
Aveiro, Portugal

e-mail: iouliia@ua.pt

João F.Lima
IEETA

University of Aveiro
Aveiro, Portugal

e-mail: jflima@ua.pt

Abstract— the paper describes a computational system that is
composed of a special-purpose processor augmented by an
application-targeted coprocessor with variable instruction set.
The primary objective is to form the processor architecture in
such a way that is the most appropriate to a selected scope of
applications and to optimize instructions of the coprocessor for
a particular application. As an example the scope of
combinatorial search algorithms was examined and
experiments were carried out and analyzed with the relevant
system implemented in FPGAs.

Keywords-computational system; combinatorial search
algorithms; FPGA

I. INTRODUCTION
Nowadays a special attention is paid to problem-oriented

computational systems with such architectures that are the
most appropriate to particular applications. A number of
distributed solutions have been explored enabling the
required computations to be spread among multiple
processing elements connected to a net. As examples, a
recently proposed paradigm of Networks-On-Chip [1] and
application-specific instruction-set processors [2] can be
pointed out. The latter combine general purpose processor
cores and programmable fabric showing such advantages as
[2]:
• Shortened development lead time and cost by reusing

components of a pre-verified processor;
• Supplying optimized instructions;
• Achieving certain flexibility through reconfiguration.

It is known that the programmable fabric might be used
differently and one of potential ways is an optimization of
micro-programs customizing them to the requirements of a
particular application. Such variable-instruction set
accelerators are very promising for numerous areas [3].

The paper is dedicated to communicating fixed
instruction set scope-oriented processor and an application-
targeted variable instruction set co-processor with the
objective to benefit from advantages [2] listed above. The
main distinctive feature of the proposed technique is the

rational combination of scope-oriented and application-
targeted instructions.

Let us consider an example. Many practical problems can
be solved through applying various algorithms of
combinatorial search. Systems for solving combinatorial
search problems might be implemented in field-
programmable devices (FPGA, in particular). The latter have
a number of advantages, which have appeared because the
considered tasks possess the following specific features.
Firstly, any task involves a huge number of similar
operations. As a rule, these operations are not the same for
different combinatorial problems. Thus, it is not easy to
construct a universal combinatorial processor, i.e.
processor’s instructions have to be customized for a
particular problem that is going to be solved. Secondly,
different practical applications might require solving
combinatorial tasks with varying complexity. However,
optimal results can be achieved in case if the size of
processor operands permits any required operation to be
performed in one clock cycle. Thus, the size of operands has
to be properly adjusted.

This paper suggests to customize the set of instructions
through implementing variable instruction sets and to adjust
the size of operands through generic statements in hardware
description language used in the design flow. The following
two most important distinctive features of the proposed
technique can be highlighted:
• Decomposition of instructions for problems that are

going to be solved into problem independent and
problem dependent groups, implemented respectively in
fixed instruction set processor and a variable instruction
set co-processor;

• Wireless remote change of the processor’s program and
variation of the co-processor’s instructions aimed at
optimization of the designed system for a particular
problem.

 Note that the primary objective of this paper is to
evaluate the proposed technique and to provide a case study
on the basis of pre-selected examples, namely the exact
algorithms for Boolean satisfiability and matrix covering.

The remainder of this paper is organized in eight
sections. Section II presents the proposed general
architecture of a computational system that is composed of a
fixed instruction set processor and a variable instruction set
co-processor. Sections III and IV describe the processor and
the co-processor, respectively. Section V explains program
executions. Section VI outlines particularities of a wireless
interaction and remote programming. Section VII gives
implementation details and demonstrates the results of
experiments. The conclusion is presented in Section VIII.

II. SYSTEM ARCHITECTURE
At the top level, the considered system is composed of

two communicating components (see Figure 1) that are a
special-purpose processor and an application-specific
coprocessor. The processor is entirely reused and includes
components [4] augmented by a scope-oriented extensions.
For the simplicity, let us assume that the bus structure and
the blocks of Figure 1, marked with filled triangle at the
bottom-right corner, are exactly the same as in [4].
Optimization of the system functionality for particular
applications is achieved through the use of the following
two suggestions:
• Extending the processor functionality through the use of

scope-specific components that enable the system to
take into account the particularity of the targeted group
of applications. It is important that on the one hand such
components are application-specific and on the other
hand they are common for applications from relatively
wide scope and, thus, can be implemented permanently
in the fixed part of the processor;

• Variation of instructions that can be somehow optimized
for particular applications from the selected scope.

ROM RAM I/O

master

slave slave slave

Pr
oc

es
so

r

Co
pr

oc
es

so
r

Implementation
of variable

instructions

Fixed instruc-
tion set Vartiable ins-

truction set

Bus

Figure 1. System architecture.

For example, solving combinatorial search problems over
discrete matrices considered in [5] would require some
dedicated blocks that are common to different problems and,
therefore, can be implemented permanently in the fixed part
of the processor. Any concrete combinatorial search problem
involves dedicated operations that are not the same for

different problems. Even a little reduction of the execution
time for such operations speeds up the relevant algorithms
dramatically due to a huge number of repetitions [5].

Since the proposed system possesses the coprocessor and
scope-oriented circuits, the subsequent sections need to be
more concrete. Therefore we will discuss the proposed
technique on an example of backtracking combinatorial
search algorithms [5].

III. PROCESSOR ARCHITECTURE
Application-specific components of the processor

targeted to combinatorial search problems (see Figure 2)
were selected on the basis of analysis of the relevant
algorithms [5] and include:
• Memory, permitting to store discrete matrices and to

provide direct access to both: their rows and columns;
• Mask registers allowing the same storage to be used for

processing the initial matrix and all eventual
intermediate sub-matrices (minors);

• Stacks for managing forward and backward propagation
steps in such a way that permits to construct sub-
matrices sequentially and to return back to any
intermediate sub-matrix if required;

• Application-specific registers.

Stacks for masks and
general-purpose registers

General-purpose
registers:
1) group independent;
2) group dependent.

Arithmetic, logic
and shift

Control Unit: fetch an operation; fetch operands; execute the
operation

Figure 2. Processor architecture.

The considered architecture combines general-purpose
and application specific components. The latter are entirely
included in the rectangles surrounded by a solid line and
integrated with general purpose components in the rectangles
surrounded by a dashed line.

To make the considered above blocks reusable they have
to be parametric and customizable (reconfigurable). The first
property allows for scalability in such a way that the blocks
can be applicable to matrices of different dimensions (i.e.
with different number of rows and columns). It is achieved
through generic statements in hardware description language
used in the design flow. The second property enables
different operations over vectors (rows and columns of the
matrixes) to be chosen. It is done through the following four
ways:
• Reloading a new program to the RAM of the processor

(see Figure 1) that is composed of both fixed and
variable instructions;

• Optimizing fixed instructions for the selected group of
combinatorial search problems;

• Optimizing the set of variable instructions;
• Updating a virtual table that associates the names of

variable instructions with micro-programs invoked to
execute the instructions.

IV. COPROCESSOR ARCHITECTURE
The developed variable instruction set coprocessor is

composed of control and execution units. The execution unit
is constructed in such a way that permits to implement
unique instructions for combinatorial search problems that
are intended to be solved. Indeed, according to [5], all
necessary operations are executed over Boolean and ternary
vectors and they can be divided in the following two groups:

• Executing operations over individual elements of one
or two vectors, for example, sequential counting the
number of ‘1’s, finding the maximum number of
successive elements with the same value, etc.;

• Executing operations over entire vectors, for
example, parallel operations over all elements of
one/two vectors, verification if two vectors are
orthogonal, etc.

Dependently on target requirements (such as
performance) the same operation can be run either
sequentially or in parallel. For example, counting the number
of ‘1’s in a binary vector can be implemented through trivial
shift and count or in parallel using cascaded set of adders. In
the first case the operation over two vectors would require at
least N clock cycles (N is the number of elements in each
vector). In the last case the operation would be executed just
during one clock cycle. The following assumption is used.
Since all operations over vectors can be executed
sequentially, we can apply the technique “shift and
compute”. The shift operation is needed to select an
element(s) in vector(s). The second operation is needed to
execute some computations over two binary or ternary
elements in order to produce the results required for
combinatorial search algorithms. For some algorithms the
“shift” operation can be replaced with a “select” operation
enabling the required computations to be applied just for
certain pre-selected elements of vector(s). Obviously the
considered sequential operations are time consuming but
they also have a number of advantages namely:

• They can be executed in a reusable finite state
machine (FSM) with dynamically changeable
functionality;

• They consume very little resources;
• They are universal in a sense that any imaginable

operation over vectors can be executed;
• They can be considered as a basis for future

improvements involving parallel computations.
Figure 3 shows how some sequential operations can be

replaced with parallel operations and vice versa. Additional
details about implementation of various operations over
Boolean and ternary vectors can be found in [6].

Since all potentially required operations for the explored
combinatorial search algorithms can be implemented

sequentially (see examples in Figures 3a and 3c) we can
conclude that any of such algorithms can be realized within
the same relatively simple computational system. Since the
majority of the operations can be accelerated in a way shown
in Figures 3b and 3d, the efficiency of implementation and
the relevant performance might be increased significantly.
The sequential implementation is very helpful because it
allows to estimate influence of any instruction on the
performance and to conclude which instructions need to be
accelerated.

Binary vector

RFSM: shift right and
count “1”s in the

rightmost bit; finish
when all bits are tested

shift right

co
un

t ”
1”

s

A
ll

bi
ts

 s
hi

ft
ed

an

d
te

st
ed

a)

b)

c)

d)

Ternary vector B

RFSM: shift right and
count “1”s in the

rightmost bit; finish
when all bits are tested

shift right

Al
l b

its
 s

hi
ft

ed

an
d

te
st

ed

Ternary vector A
shift right

te
st

 c
as

es
 0

1
O

R
10

Ternary vector A

Ternary vector B

O
R

ga
te

te
st

 c
as

es
 0

1
O

R
10

te
st

 c
as

es
 0

1
O

R
10

te
st

 c
as

es
 0

1
O

R
10

Th
e

re
su

lt

Binary vector

Σ Σ ΣΣ Σ

Σ Σ

Σ

Σ

The result

Figure 3. Sequential counting the number of "1"s in a binary vector (a);

parallel (combinatorial) counting the number of "1"s in a binary vector (b);
sequential verification of vectors' orthogonality (c); parallel (combinatorial)

verification of vectors' orthogonality (d).

The control unit is implemented on the basis of FSM
with dynamically changeable functionality. Specification of
variable instructions is provided with the aid of hierarchical
descriptions. All necessary details will be explained through
an example. Suppose we would like to explore two different
combinatorial search problems. The first problem requires
instructions z1

1,…,z1
q1 and the second problem requires

instructions z2
1,…,z2

q2: {z1
1,…,z1

q1} ≠ {z2
1,…,z2

q2};
{z1

1,…,z1
q1} ∩ {z2

1,…,z2
q2} ≠ ∅. Let us describe execution

steps for all necessary instructions z1,…,zp ⊆ {z1
1,…,z1

q1} ∪
{z2

1,…,z2
q2} by micro-programs μ1,…, μp. Any micro-

program is executed sequentially with minimal potential
numbers of clock cycles satisfying the requirements “the
fewer the better”. Suppose that each micro-program μi ∈
{μ1,…, μp} is described by a hierarchical graph scheme
(HGS) Γi. Thus, the set of HGS Γ1,…, Γp (representing
micro-programs) enables all the required operations for two
considered problems to be described. It is known that a set of
HGS is synthesizable and can be implemented in a
hierarchical finite state machine (HFSM). Suppose, we
would like to minimize hardware resources and to implement
the instructions z1

1,…,z1
q1 (or the relevant HGS Γ1

1,…, Γ1
q1)

for the first problem and the instructions z2
1,…,z2

q2 (or the
relevant HGS Γ2

1,…, Γ2
q2) for the second problem. It has

been done using the following proposed technique:
• The HFSM has been organized in such a way that

allows the set {μi
1,…, μi

p} for the problem i with the
maximum required number of instructions to be
implemented and an HGS with the maximum
complexity (from all HGS Γ1

1,…, Γ1
q1, Γ2

1,…, Γ2
q2,…)

to be synthesized. The paper [7] describes all necessary
details and the methods that permit to satisfy such
requirements;

• The HFSM is constructed on the basis of memory
(RAM) blocks using the methods [7]. Applying the
results [7] the HFSM functionality can be altered by
reloading the RAM contents. Thus, we are able to
change one set of instructions zi

1,…,zi
q1, needed for the

one problem i to another set of instructions zj
1,…,zj

q2,
needed for another problem j through reloading the
RAMs.

Figure 4 presents additional explanations. Suppose that
all application-specific instructions from the set z1

1,…,z1
q1

needed for solving the Boolean satisfiability problem have
been implemented. The decoder of the instructions tests the
instruction code and activates the appropriate micro-
program from the set μ1

1,…, μ1
q1, executing the relevant

micro-instructions. Assuming that the Boolean satisfiability
does not take the maximum number of instructions, some
decoder outputs (such as zi

q1+1,…) do not invoke any micro-
program (see Figure 4). A virtual table, shown in Figure 4,
establishes a correspondence between the names of
instructions (these names are used in a program of the fixed
instruction set processor) and micro-programs that have to
be invoked for execution of the instructions. Any
association might be established and, thus, any element
from the set of instructions can be associated with any
micro-program.

Programs of the fixed instruction set processors have to
be developed taking into account the established association
with micro-programs and, thus, with the aid of the virtual
table.

Let us assume that we would like to solve another
combinatorial problem, such as matrix covering. This would
require executing the following steps:
• The set zi

1,…,zi
q1 of SAT-targeted instructions is

changed to the set zj
1,…,zj

q2 of covering-targeted
instructions. Consequently the number of instructions
could also be altered i.e. it becomes either larger or
smaller. In the first case some of empty micro-programs
will be replaced with real micro-programs. In the
second case some of real micro-program will be
replaced with empty micro-programs;

• Each unique for the SAT problem micro-program will
be either completely removed or replaced with a unique
for the covering problem micro-program. The latter is
done with the aid of the reconfiguration controller
through the reprogramming of HFSM RAM blocks;

• The virtual table is properly updated and, thus, the
program of the fixed instruction sets processor has to be
rewritten in terms of new operations indicated in the
virtual table.

Note that any instruction might be implemented
differently, for example, either sequentially (in such a way

that is shown in Figures 3a and Fig. 3c) or in parallel (in
such a way that is shown in Figures 3b and Fig. 3d) and,
thus, influence the performance and the needed hardware
resources. It permits to conclude that the proposed technique
is very flexible for solving combinatorial search problems
with different optimization criteria and undoubtedly helpful
for experiments and evaluations of implementation
platforms (e.g. sequential vs. combinatorial implementation
of problem-specific operations) for different algorithms).

Begin

Decoder of the
instructions

zi
1

μ1

zi
2

μ2

zi
q1

μq

zi
q1+1

End
Virtual table

instruction micro-program

Figure 4. Implementation details for variable instructions.

V. PROGRAM EXECUTION
All available instructions are divided in fixed and variable

groups. Fixed instructions are implemented much like [4,5].
Variable instructions are handled by a virtual table (see
Figure 4) with lines that look something like the follows:

Name -Micro-program,
where Name is an alterable sequence of characters that
indicate the relevant instruction (e.g. ORT for the
orthogonality), Micro-program is the code of the module that
has to be called applying hierarchical specification of micro-
programs proposed in [8]. Since both the Name and the code
of Micro-program can be altered in the virtual table, we are
able to associate arbitrary names with different instructions
and the respective micro-programs. Indeed, suppose ORT is
needed for the SAT problem [5] and it is associated in the
virtual table with a micro-program for verifying
orthogonality between two ternary vectors. The same line of
the virtual table might be reprogrammed in a way indicating
that, for example, AL0 (verifying if the vector contains all
zeros that is needed for covering problem [5]) calls a micro-
program for executing AL0. The change of functionality of
RFSM (that enables the implemented micro-programs to be
modified) is provided with the aid of methods [7].

Execution of any program is very similar to [4] with the
only difference that the program instructions are distributed

dependently on their names and executed either in the
processor or in the coprocessor.

Communication between the processor and the co-
processor is established as follows:
• When the program of the fixed instruction-set processor

requires just application-independent or shared
(common) application-specific instructions, it is
executed entirely in the processor;

• As soon as an application-specific (not common)
instruction is required, the processor sends the
instruction code to the co-processor. The latter activates
a micro-program based on given association in the
virtual table. As soon as the results are ready they are
sent back to the processor.

VI. WIRELESS INTERACTIONS
Wireless interactions provide support for remote change

of the processor’s program and the co-processor’s
instructions aimed at optimization of the designed system
for a particular problem (such as the considered above SAT
and covering). Data needed for reconfiguration have to be
prepared before execution and stored in a memory of a
device responsible for reconfiguration. During execution the
data have to be read and transferred to the dedicated device.

To change remotely the processor program and the co-
processor instruction set an additional (auxiliary) FPGA was
used, that communicates with the dedicated (processor + co-
processor) FPGA through a wireless interface and includes
memories containing all necessary configuration data. For
the considered above example these data enable the
processor and the co-processor to be customized for solving
either the first (SAT) or the second (covering) combinatorial
problem. Wireless communications is established with the
aid of CC1101 module [9] and the developed protocol stack.
The module CC1101 is connected with the FPGA through
an interface [9].

VII. IMPLEMENTATION AND EXPERIMENTS
The considered computational system has been

implemented in two prototyping boards with allocation of
the dedicated FPGA (Spartan-3E family) in Digilent Nexys-
2 [10] and the auxiliary FPGA in Celoxica RC10 [11]. Two
different modes (wired and wireless) have been verified.
The first mode was used for debugging purposes (see the
left-hand part of Figure 5). The second mode (see Figure 5)
enables the functionality of the entire system described in
the paper to be verified.

The results of experiments confirm the correctness of the
intended functionality. The reprogramming time allowing to
optimize the system for solving either the SAT or the
covering problem is about 18 seconds with a 5 Kbits/s
wireless connection speed. This time can be reduced
significantly in case of wired interactions between the
dedicated and auxiliary circuits. The maximum distance
between two FPGAs interacting through wireless interface
is about 240 meters. Additional details are given in [12].

Figure 5. Organization of experiments.

VIII. CONCLUSION
The paper suggests architecture of communicating fixed

and variable instruction set processors and presents a case
study illustrating applicability of the proposed system for
selected problems from the scope of combinatorial search
algorithms. The experiments confirm the correctness of the
intended functionality and show advantages of the technique
for real-world problems.

REFERENCES
[1] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, G. De

Micheli, “Network-on-Chip design and synthesis outlook”,
Integration, the VLSI Journal 41, 2008, pp. 340-359.

[2] A. Sangiovanni Vincentelli, D. Densmore, J. Cong, R. Marculescu,
“System-Level Synthesis - Functions, Architectures, and
Communications”, ASP DAC 2008 Tutorial.

[3] J. Liu, F. Chow, T. Kong, R. Roy, “Variable Instruction Set
Architecture and Its Compiler Support”, IEEE Trans. on Computers,
vol. 52, no. 7, July 2003, pp. 881-895.

[4] Available at: http://www-md.e-technik.uni-
rostock.de/lehre/vlsi_i/proc8/index.html.

[5] I. Skliarova, V. Sklyarov, "Design Methods for FPGA-based
implementation of combinatorial Search Algorithms", Proc. Int.
Workshop on SoC Design - IWSOC'2006, Yogyakarta, Indonesia,
Dec. 2006, pp. 359-368.

[6] V. Sklyarov, I. Skliarova, A. Oliveira, A.B. Ferrari, “A Dynamically
Reconfigurable Accelerator for Operations over Boolean and Ternary
Vectors”, Euromicro Symp. on Digital System Design, Turkey, pp.
222-229, 2003.

[7] V. Sklyarov, “Reconfigurable models of finite state machines and
their implementation in FPGAs”, Journal of Sys. Arch., 47, 2002, pp.
1043-1064.

[8] V. Sklyarov, “Hierarchical Finite-State Machines and Their Use for
Digital Control”, IEEE Trans. on VLSI Systems, vol. 7, no. 2, pp. 222-
228, 1999.

[9] CC1101 Low-Cost Low-Power Sub-1GHz RF Transceiver:
www.ti.com.

[10] Available at: http://www.digilentinc.com/.
[11] Available at:

http://www.embeddedstar.com/press/content/2005/5/embedded18313.
html.

[12] J. Lima, “Remotely Reprogrammed Variable Instruction Set
Processor”, M.Sc. Thesis, University of Aveiro, Portugal, 2009.
Available at: http://radiosrd.com.sapo.pt/thesis.rar.

