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Abstract— the paper describes a computational system that is 
composed of a special-purpose processor augmented by an 
application-targeted coprocessor with variable instruction set. 
The primary objective is to form the processor architecture in 
such a way that is the most appropriate to a selected scope of 
applications and to optimize instructions of the coprocessor for 
a particular application. As an example the scope of 
combinatorial search algorithms was examined and 
experiments were carried out and analyzed with the relevant 
system implemented in FPGAs. 
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I.  INTRODUCTION 
Nowadays a special attention is paid to problem-oriented 

computational systems with such architectures that are the 
most appropriate to particular applications. A number of 
distributed solutions have been explored enabling the 
required computations to be spread among multiple 
processing elements connected to a net. As examples, a 
recently proposed paradigm of Networks-On-Chip [1] and 
application-specific instruction-set processors [2] can be 
pointed out. The latter combine general purpose processor 
cores and programmable fabric showing such advantages as 
[2]: 
• Shortened development lead time and cost by reusing 

components of a pre-verified processor; 
• Supplying optimized instructions; 
• Achieving certain flexibility through reconfiguration. 

It is known that the programmable fabric might be used 
differently and one of potential ways is an optimization of 
micro-programs customizing them to the requirements of a 
particular application. Such variable-instruction set 
accelerators are very promising for numerous areas [3]. 

The paper is dedicated to communicating fixed 
instruction set scope-oriented processor and an application-
targeted variable instruction set co-processor with the 
objective to benefit from advantages [2] listed above. The 
main distinctive feature of the proposed technique is the 

rational combination of scope-oriented and application-
targeted instructions.  

Let us consider an example. Many practical problems can 
be solved through applying various algorithms of 
combinatorial search. Systems for solving combinatorial 
search problems might be implemented in field-
programmable devices (FPGA, in particular). The latter have 
a number of advantages, which have appeared because the 
considered tasks possess the following specific features. 
Firstly, any task involves a huge number of similar 
operations. As a rule, these operations are not the same for 
different combinatorial problems. Thus, it is not easy to 
construct a universal combinatorial processor, i.e. 
processor’s instructions have to be customized for a 
particular problem that is going to be solved. Secondly, 
different practical applications might require solving 
combinatorial tasks with varying complexity. However, 
optimal results can be achieved in case if the size of 
processor operands permits any required operation to be 
performed in one clock cycle. Thus, the size of operands has 
to be properly adjusted. 

This paper suggests to customize the set of instructions 
through implementing variable instruction sets and to adjust 
the size of operands through generic statements in hardware 
description language used in the design flow. The following 
two most important distinctive features of the proposed 
technique can be highlighted: 
• Decomposition of instructions for problems that are 

going to be solved into problem independent and 
problem dependent groups, implemented respectively in 
fixed instruction set processor and a variable instruction 
set co-processor; 

• Wireless remote change of the processor’s program and 
variation of the co-processor’s instructions aimed at 
optimization of the designed system for a particular 
problem.  

 Note that the primary objective of this paper is to 
evaluate the proposed technique and to provide a case study 
on the basis of pre-selected examples, namely the exact 
algorithms for Boolean satisfiability and matrix covering.   



The remainder of this paper is organized in eight 
sections. Section II presents the proposed general 
architecture of a computational system that is composed of a 
fixed instruction set processor and a variable instruction set 
co-processor. Sections III and IV describe the processor and 
the co-processor, respectively. Section V explains program 
executions. Section VI outlines particularities of a wireless 
interaction and remote programming. Section VII gives 
implementation details and demonstrates the results of 
experiments. The conclusion is presented in Section VIII. 

II. SYSTEM ARCHITECTURE 
At the top level, the considered system is composed of 

two communicating components (see Figure 1) that are a 
special-purpose processor and an application-specific 
coprocessor. The processor is entirely reused and includes 
components [4] augmented by a scope-oriented extensions. 
For the simplicity, let us assume that the bus structure and 
the blocks of Figure 1, marked with filled triangle at the 
bottom-right corner, are exactly the same as in [4]. 
Optimization of the system functionality for particular 
applications is achieved through the use of the following 
two suggestions: 
• Extending the processor functionality through the use of 

scope-specific components that enable the system to 
take into account the particularity of the targeted group 
of applications. It is important that on the one hand such 
components are application-specific and on the other 
hand they are common for applications from relatively 
wide scope and, thus, can be implemented permanently 
in the fixed part of the processor; 

• Variation of instructions that can be somehow optimized 
for particular applications from the selected scope.   
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Figure 1.  System architecture. 

For example, solving combinatorial search problems over 
discrete matrices considered in [5] would require some 
dedicated blocks that are common to different problems and, 
therefore, can be implemented permanently in the fixed part 
of the processor. Any concrete combinatorial search problem 
involves dedicated operations that are not the same for 

different problems. Even a little reduction of the execution 
time for such operations speeds up the relevant algorithms 
dramatically due to a huge number of repetitions [5]. 

Since the proposed system possesses the coprocessor and 
scope-oriented circuits, the subsequent sections need to be 
more concrete. Therefore we will discuss the proposed 
technique on an example of backtracking combinatorial 
search algorithms [5]. 

III. PROCESSOR ARCHITECTURE 
Application-specific components of the processor 

targeted to combinatorial search problems (see Figure 2) 
were selected on the basis of analysis of the relevant 
algorithms [5] and include: 
• Memory, permitting to store discrete matrices and to 

provide direct access to both: their rows and columns; 
• Mask registers allowing the same storage to be used for 

processing the initial matrix and all eventual 
intermediate sub-matrices (minors); 

• Stacks for managing forward and backward propagation 
steps in such a way that permits to construct sub-
matrices sequentially and to return back to any 
intermediate sub-matrix if required; 

• Application-specific registers. 
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Figure 2.  Processor architecture. 

The considered architecture combines general-purpose 
and application specific components. The latter are entirely 
included in the rectangles surrounded by a solid line and 
integrated with general purpose components in the rectangles 
surrounded by a dashed line.  

To make the considered above blocks reusable they have 
to be parametric and customizable (reconfigurable). The first 
property allows for scalability in such a way that the blocks 
can be applicable to matrices of different dimensions (i.e. 
with different number of rows and columns). It is achieved 
through generic statements in hardware description language 
used in the design flow. The second property enables 
different operations over vectors (rows and columns of the 
matrixes) to be chosen. It is done through the following four 
ways: 
• Reloading a new program to the RAM of the processor 

(see Figure 1) that is composed of both fixed and 
variable instructions; 



• Optimizing fixed instructions for the selected group of 
combinatorial search problems; 

• Optimizing the set of variable instructions; 
• Updating a virtual table that associates the names of 

variable instructions with micro-programs invoked to 
execute the instructions. 

IV. COPROCESSOR ARCHITECTURE 
The developed variable instruction set coprocessor is 

composed of control and execution units. The execution unit 
is constructed in such a way that permits to implement 
unique instructions for combinatorial search problems that 
are intended to be solved. Indeed, according to [5], all 
necessary operations are executed over Boolean and ternary 
vectors and they can be divided in the following two groups: 

• Executing operations over individual elements of one 
or two vectors, for example, sequential counting the 
number of ‘1’s, finding the maximum number of 
successive elements with the same value, etc.; 

• Executing operations over entire vectors, for 
example, parallel operations over all elements of 
one/two vectors, verification if two vectors are 
orthogonal, etc. 

Dependently on target requirements (such as 
performance) the same operation can be run either 
sequentially or in parallel. For example, counting the number 
of ‘1’s in a binary vector can be implemented through trivial 
shift and count or in parallel using cascaded set of adders. In 
the first case the operation over two vectors would require at 
least N clock cycles (N is the number of elements in each 
vector). In the last case the operation would be executed just 
during one clock cycle. The following assumption is used. 
Since all operations over vectors can be executed 
sequentially, we can apply the technique “shift and 
compute”. The shift operation is needed to select an 
element(s) in vector(s). The second operation is needed to 
execute some computations over two binary or ternary 
elements in order to produce the results required for 
combinatorial search algorithms. For some algorithms the 
“shift” operation can be replaced with a “select” operation 
enabling the required computations to be applied just for 
certain pre-selected elements of vector(s). Obviously the 
considered sequential operations are time consuming but 
they also have a number of advantages namely:  

• They can be executed in a reusable finite state 
machine (FSM) with dynamically changeable 
functionality; 

• They consume very little resources; 
• They are universal in a sense that any imaginable 

operation over vectors can be executed; 
• They can be considered as a basis for future 

improvements involving parallel computations. 
Figure 3 shows how some sequential operations can be 

replaced with parallel operations and vice versa. Additional 
details about implementation of various operations over 
Boolean and ternary vectors can be found in [6]. 

Since all potentially required operations for the explored 
combinatorial search algorithms can be implemented 

sequentially (see examples in Figures 3a and 3c) we can 
conclude that any of such algorithms can be realized within 
the same relatively simple computational system. Since the 
majority of the operations can be accelerated in a way shown 
in Figures 3b and 3d, the efficiency of implementation and 
the relevant performance might be increased significantly. 
The sequential implementation is very helpful because it 
allows to estimate influence of any instruction on the 
performance and to conclude which instructions need to be 
accelerated. 
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Figure 3.  Sequential counting the number of "1"s in a binary vector (a); 

parallel (combinatorial) counting the number of "1"s in a binary vector (b); 
sequential verification of vectors' orthogonality (c); parallel (combinatorial) 

verification of vectors' orthogonality (d). 

The control unit is implemented on the basis of FSM 
with dynamically changeable functionality. Specification of 
variable instructions is provided with the aid of hierarchical 
descriptions. All necessary details will be explained through 
an example. Suppose we would like to explore two different 
combinatorial search problems. The first problem requires 
instructions z1

1,…,z1
q1 and the second problem requires 

instructions z2
1,…,z2

q2: {z1
1,…,z1

q1} ≠ {z2
1,…,z2

q2}; 
{z1

1,…,z1
q1} ∩ {z2

1,…,z2
q2} ≠ ∅. Let us describe execution 

steps for all necessary instructions z1,…,zp ⊆ {z1
1,…,z1

q1} ∪ 
{z2

1,…,z2
q2} by micro-programs μ1,…, μp. Any micro-

program is executed sequentially with minimal potential 
numbers of clock cycles satisfying the requirements “the 
fewer the better”. Suppose that each micro-program μi ∈ 
{μ1,…, μp} is described by a hierarchical graph scheme 
(HGS) Γi. Thus, the set of HGS Γ1,…, Γp (representing 
micro-programs) enables all the required operations for two 
considered problems to be described. It is known that a set of 
HGS is synthesizable and can be implemented in a 
hierarchical finite state machine (HFSM). Suppose, we 
would like to minimize hardware resources and to implement 
the instructions z1

1,…,z1
q1 (or the relevant HGS Γ1

1,…, Γ1
q1) 

for the first problem and the instructions z2
1,…,z2

q2 (or the 
relevant HGS Γ2

1,…, Γ2
q2) for the second problem. It has 

been done using the following proposed technique: 
• The HFSM has been organized in such a way that 



allows the set {μi
1,…, μi

p} for the problem i with the 
maximum required number of instructions to be 
implemented and an HGS with the maximum 
complexity (from all HGS Γ1

1,…, Γ1
q1, Γ2

1,…, Γ2
q2,…) 

to be synthesized. The paper [7] describes all necessary 
details and the methods that permit to satisfy such 
requirements; 

• The HFSM is constructed on the basis of memory 
(RAM) blocks using the methods [7]. Applying the 
results [7] the HFSM functionality can be altered by 
reloading the RAM contents. Thus, we are able to 
change one set of instructions zi

1,…,zi
q1, needed for the 

one problem i to another set of instructions zj
1,…,zj

q2, 
needed for another problem j through reloading the 
RAMs. 

Figure 4 presents additional explanations. Suppose that 
all application-specific instructions from the set z1

1,…,z1
q1 

needed for solving the Boolean satisfiability problem have 
been implemented. The decoder of the instructions tests the 
instruction code and activates the appropriate micro-
program from the set μ1

1,…, μ1
q1, executing the relevant 

micro-instructions. Assuming that the Boolean satisfiability 
does not take the maximum number of instructions, some 
decoder outputs (such as zi

q1+1,…) do not invoke any micro-
program (see Figure 4). A virtual table, shown in Figure 4, 
establishes a correspondence between the names of 
instructions (these names are used in a program of the fixed 
instruction set processor) and micro-programs that have to 
be invoked for execution of the instructions. Any 
association might be established and, thus, any element 
from the set of instructions can be associated with any 
micro-program.  

Programs of the fixed instruction set processors have to 
be developed taking into account the established association 
with micro-programs and, thus, with the aid of the virtual 
table. 

Let us assume that we would like to solve another 
combinatorial problem, such as matrix covering. This would 
require executing the following steps: 
• The set zi

1,…,zi
q1 of SAT-targeted instructions is 

changed to the set zj
1,…,zj

q2 of covering-targeted 
instructions. Consequently the number of instructions 
could also be altered i.e. it becomes either larger or 
smaller. In the first case some of empty micro-programs 
will be replaced with real micro-programs. In the 
second case some of real micro-program will be 
replaced with empty micro-programs; 

• Each unique for the SAT problem micro-program will 
be either completely removed or replaced with a unique 
for the covering problem micro-program. The latter is 
done with the aid of the reconfiguration controller 
through the reprogramming of HFSM RAM blocks; 

• The virtual table is properly updated and, thus, the 
program of the fixed instruction sets processor has to be 
rewritten in terms of new operations indicated in the 
virtual table. 

Note that any instruction might be implemented 
differently, for example, either sequentially (in such a way 

that is shown in Figures 3a and Fig. 3c) or in parallel (in 
such a way that is shown in Figures 3b and Fig. 3d) and, 
thus, influence the performance and the needed hardware 
resources. It permits to conclude that the proposed technique 
is very flexible for solving combinatorial search problems 
with different optimization criteria and undoubtedly helpful 
for experiments and evaluations of implementation 
platforms (e.g. sequential vs. combinatorial implementation 
of problem-specific operations) for different algorithms). 

Begin

Decoder of the 
instructions

zi
1

μ1

zi
2

μ2
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q1

μq

zi
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End
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Figure 4.  Implementation details for variable instructions. 

V. PROGRAM EXECUTION 
All available instructions are divided in fixed and variable 

groups. Fixed instructions are implemented much like [4,5]. 
Variable instructions are handled by a virtual table (see 
Figure 4) with lines that look something like the follows: 

Name -Micro-program,   
where Name is an alterable sequence of characters that 
indicate the relevant instruction (e.g. ORT for the 
orthogonality), Micro-program is the code of the module that 
has to be called applying hierarchical specification of micro-
programs proposed in [8]. Since both the Name and the code 
of Micro-program can be altered in the virtual table, we are 
able to associate arbitrary names with different instructions 
and the respective micro-programs. Indeed, suppose ORT is 
needed for the SAT problem [5] and it is associated in the 
virtual table with a micro-program for verifying 
orthogonality between two ternary vectors. The same line of 
the virtual table might be reprogrammed in a way indicating 
that, for example, AL0 (verifying if the vector contains all 
zeros that is needed for covering problem [5]) calls a micro-
program for executing AL0. The change of functionality of 
RFSM (that enables the implemented micro-programs to be 
modified) is provided with the aid of methods [7].  

Execution of any program is very similar to [4] with the 
only difference that the program instructions are distributed 



dependently on their names and executed either in the 
processor or in the coprocessor. 

Communication between the processor and the co-
processor is established as follows: 
• When the program of the fixed instruction-set processor 

requires just application-independent or shared 
(common) application-specific instructions, it is 
executed entirely in the processor; 

• As soon as an application-specific (not common) 
instruction is required, the processor sends the 
instruction code to the co-processor. The latter activates 
a micro-program based on given association in the 
virtual table. As soon as the results are ready they are 
sent back to the processor. 

VI. WIRELESS INTERACTIONS 
Wireless interactions provide support for remote change 

of the processor’s program and the co-processor’s 
instructions aimed at optimization of the designed system 
for a particular problem (such as the considered above SAT 
and covering). Data needed for reconfiguration have to be 
prepared before execution and stored in a memory of a 
device responsible for reconfiguration. During execution the 
data have to be read and transferred to the dedicated device.   

To change remotely the processor program and the co-
processor instruction set an additional (auxiliary) FPGA was 
used, that communicates with the dedicated (processor + co-
processor) FPGA through a wireless interface and includes 
memories containing all necessary configuration data. For 
the considered above example these data enable the 
processor and the co-processor to be customized for solving 
either the first (SAT) or the second (covering) combinatorial 
problem. Wireless communications is established with the 
aid of CC1101 module [9] and the developed protocol stack. 
The module CC1101 is connected with the FPGA through 
an interface [9].  

VII. IMPLEMENTATION AND EXPERIMENTS 
The considered computational system has been 

implemented in two prototyping boards with allocation of 
the dedicated FPGA (Spartan-3E family) in Digilent Nexys-
2 [10] and the auxiliary FPGA in Celoxica RC10 [11]. Two 
different modes (wired and wireless) have been verified. 
The first mode was used for debugging purposes (see the 
left-hand part of Figure 5). The second mode (see Figure 5) 
enables the functionality of the entire system described in 
the paper to be verified.  

The results of experiments confirm the correctness of the 
intended functionality. The reprogramming time allowing to 
optimize the system for solving either the SAT or the 
covering problem is about 18 seconds with a 5 Kbits/s 
wireless connection speed. This time can be reduced 
significantly in case of wired interactions between the 
dedicated and auxiliary circuits. The maximum distance 
between two FPGAs interacting through wireless interface 
is about 240 meters. Additional details are given in [12]. 

 

 
Figure 5.  Organization of experiments. 

VIII. CONCLUSION 
The paper suggests architecture of communicating fixed 

and variable instruction set processors and presents a case 
study illustrating applicability of the proposed system for 
selected problems from the scope of combinatorial search 
algorithms. The experiments confirm the correctness of the 
intended functionality and show advantages of the technique 
for real-world problems. 
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