
341EARTH SYSTEM MODELING FRAMEWORK

DESIGN AND IMPLEMENTATION OF
COMPONENTS IN THE EARTH
SYSTEM MODELING FRAMEWORK

Nancy Collins1

Gerhard Theurich2

Cecelia DeLuca1

Max Suarez3

Atanas Trayanov3

V. Balaji4

Peggy Li5

Weiyu Yang6

Chris Hill7

Arlindo da Silva3

Abstract

The Earth System Modeling Framework is a component-
based architecture for developing and assembling climate
and related models. A virtual machine underlies the com-
ponent-level constructs in ESMF, providing both a foun-
dation for performance portability and mechanisms for
resource allocation and component sequencing.

Key words: framework, high performance computing, cli-
mate modeling

1 Introduction

Component-based design is a natural fit for climate mod-
eling. At its simplest, a software component is a code that
has a standard calling interface and behavior and a coher-
ent function (see, for example, http://www.corba.org and
http://www.cca-forum.org). Components are ideally suited
for the representation of a system comprised of a set of
substantial, distinct and interacting domains, such as
atmosphere, land, sea ice, and ocean. Further, since Earth
system domains are often studied and modeled as collec-
tions of processes (radiation and chemistry in an atmos-
phere, for example), it is convenient to model climate
applications as a hierarchy of nested components.

Component-based software is also well suited for the
manner in which climate models are developed and used.
The multiple domains and processes in a model are usu-
ally developed as separate codes by specialists. The crea-
tion of a viable climate application requires the integration,
testing, and tuning of the pieces, a scientifically and tech-
nically formidable task. When each piece is represented
as a component with a standard interface and behavior,
that integration, at least at the technical level, is more
straightforward. Similarly, standard interfaces help to fos-
ter interoperability of components, and the use of compo-
nents in different contexts. This is a primary concern for
modelers, since they are motivated to explore and main-
tain alternative versions of algorithms (such as dynamical
cores), whole physical domains (such as oceans), para-
metrizations (such as convection schemes), and configu-
rations (such as “standalone” versions of physical domains).

The Earth System Modeling Framework (ESMF; Hill
et al., 2004; see http://www.esmf.ucar.edu) project is a
large, multi-agency collaboration whose goal is to develop
common modeling infrastructure and deploy it in climate,
weather, and data assimilation applications. It is currently
in its third year of development. The climate applications
that are evaluating and adopting ESMF include the Com-
munity Climate System Model (CCSM; Boville and

The International Journal of High Performance Computing Applications,
Volume 19, No. 3, Summer 2005, pp. 341–350
DOI: 10.1177/1094342005056120
© 2005 Sage Publications

1NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
(NANCY@UCAR.EDU)

2SILICON GRAPHICS INCORPORATED

3GODDARD SPACE FLIGHT CENTER

4GEOPHYSICAL FLUID DYNAMICS LABORATORY

5JET PROPULSION LABORATORY

6NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION

7MASSACHUSETTS INSTITUTE OF TECHNOLOGY

342 COMPUTING APPLICATIONS

Gent, 1998; see http://www.ccsm.ucar.edu), the National
Oceanic and Atmospheric Administration (NOAA) Geo-
physical Fluid Dynamics Laboratory (GFDL) models
(see http://www.gfdl.noaa.gov/~fms), the new NASA
Goddard Earth Observing System (GEOS-5) model, and
the MITgcm (see http://www.mitgcm.org). The Strategic
Plan for the U.S. Climate Change Science Program
(CCSP), a report by the CCSP and the Subcommittee on
Global Change Research (July 2003), recognizes ESMF
as the realization of common modeling infrastructure for
the climate community.

The ESMF software consists of an infrastructure of
utilities and data structures for building model compo-
nents, and a superstructure for combining them into
applications. In this paper we concern ourselves with the
superstructure, and how ESMF components and related
constructs are designed and implemented.

2 The ESMF Superstructure

The ESMF superstructure defines an architecture for
assembling Earth system applications from modeling
components. A component may be defined in terms of
the physical domain or process that it represents, such as
an atmosphere or sea ice model. It may also be defined in
terms of a computational or scientific function, such as
an I/O or diagnostic system. Climate models often
require that such components be coupled together to cre-
ate an application. By coupling we mean the data trans-
formations and, on parallel computing systems, data
transfers, that are necessary to allow data from one com-
ponent to be utilized by another. ESMF offers a suite of
regridding methods and other tools to simplify the organ-
ization and execution of intercomponent data exchanges.

All ESMF methods can be called from Fortran 90, and
some, including those at the component level, can be
called from C++. The framework is implemented in a
combination of these languages. Since most climate
modelers work in Fortran, in this paper we focus on For-
tran bindings. ESMF currently runs only in single pro-
gram multiple datastream (SPMD) mode, although
execution of components can be either concurrent or
sequential. It is supported on IBM, SGI, Compaq, Mac
OS X, Cray X1, and many Linux platforms.

The ESMF is implemented using an object-oriented
design strategy. Superstructure and infrastructure are
organized as sets of classes, which are data structures
with associated methods. The main classes in the super-
structure are component, state, and application driver.

2.1 COMPONENT

An ESMF component has two parts: one that is sup-
plied by the ESMF and one that is supplied by the user.

The part that is supplied by the framework is in the form
of a predefined Fortran derived type. ESMF provides
two kinds of components: a gridded component (Grid-
Comp) and a coupler component (CplComp). A gridded
component represents a physical domain in which data
are associated with one or more grids; for example, a
dynamical core. A coupler component arranges and exe-
cutes data transformations and transfers between one or
more gridded components. All gridded components and
coupler components possess initialize, run, and finalize
methods with standard interfaces. These methods can
be multiphase. Components also have create and destroy
methods.

The second part of an ESMF component is the user
code that will perform the computational work. The user
code must be split up so that it too contains clear initial-
ize, run, and finalize subroutines that match standard
interfaces. The arguments must be ESMF data structures,
although these data structures need not be used in the
body of the code. Users set entry points within their code
so that their initialize, run, and finalize subroutines are
callable by the framework. In practice, setting entry
points means that a special method called set services1 is
written by the user for every component. Within set serv-
ices there are calls to ESMF set entry point methods that
associate the name of a user’s Fortran subroutine with the
corresponding standard component operation. For exam-
ple, a user might create an ESMF gridded component
representing an ocean model known as the Parallel
Ocean Program (POP) by making the following calls
from a driver or parent component:

type(ESMF_GridComp) :: pop

pop = ESMF_GridCompCreate(“POP Ocean”, … , rc)

If the Fortran subroutine names of the user’s initialize,
run, and finalize methods were popInit, popRun, and
popFinal, respectively, the set services method would
contain the following fragment:

call ESMF_GridCompSetEntryPoint(pop,

ESMF_SETINIT, popInit, … ,rc)

call ESMF_GridCompSetEntryPoint(pop,

ESMF_SETRUN, popRun, … ,rc)

call ESMF_GridCompSetEntryPoint(pop,

ESMF_SETFINAL, popFinal, … ,rc)

These calls link the two pieces of the component: the
gridded component derived type provided by the frame-
work and the model methods provided by the user. The
result is that the POP model can be dispatched by a driver
or by a parent component in a very generic way. The cre-
ate and destroy operations for components are not linked
to user code; they act only on the component derived type.

343EARTH SYSTEM MODELING FRAMEWORK

The set services method (called POPSetServices
here) and initialize, run, finalize methods are invoked
from the driver or parent component. They follow the
ESMF_GridCompCreate() call shown previously:

call ESMF_GridCompSetServices

 (pop, POPSetServices, rc)

call ESMF_GridCompInitialize(pop, … ,rc=rc)

call ESMF_GridCompRun(pop, … ,rc=rc)

call ESMF_GridCompFinalize(pop, … ,rc=rc)

2.2 STATE

ESMF components exchange information with other
components only through states. A State is a Fortran
derived type that can contain other ESMF types represent-
ing fields, bundles of fields on the same grid, and arrays. It
can also contain other states. A gridded component is
associated with two states: an import state and an export
state. Its import state holds the data that it receives from
other gridded components. Its export state contains data
that it can make available to other gridded components.

2.3 APPLICATION DRIVER

The application driver (AppDriver) is a small, generic
driver program that contains the “main” routine for an
ESMF application. It can be thought of as the “cap” for a
hierarchical application.

Infrastructure classes closely associated with the
ESMF superstructure include the Clock class and the
virtual machine (VM) class. An ESMF clock contains
information about the start time, stop time, and time-step
of a component, based on a variety of supported calen-
dars. The time-step may be changed during component
execution. The clock may be associated with multiple
alarms that “ring” for periodic or unique events. The VM
controls computational resource allocation and is described
in detail in Section The ESMF Virtual Machine and Com-
ponent Parallelism.

A very simple ESMF coupled application might
involve an AppDriver, a parent gridded component,
two or more child gridded components that require an
intercomponent data exchange, and a coupler compo-
nent. Calls cascade so that when, for example, the initial-
ize routine of a parent component is called, it in turn calls
the initialize routines of all its children. Figure 1 illus-
trates the structure of such an application.

3 Application Example

The newly developed NASA GEOS-5 atmospheric gen-
eral circulation model (AGCM) provides a more compre-

hensive example of how ESMF is being used to structure
climate and related models. GEOS-5 is the atmospheric
component of a variety of applications at the NASA Glo-
bal Modeling and Assimilation Office (GMAO). It will
be used for research in satellite data utilization; as part of
the GMAO atmospheric data assimilation system; for
weather, subseasonal, and seasonal to interannual fore-
casting; for atmospheric chemistry studies; carbon cycle
research; and research on ocean–atmosphere and atmos-
phere–land interactions. In 2006, GEOS-5 is planned for
use in a satellite-era reanalysis in support of the CCSP.

Figure 2 shows GEOS-5 science components con-
nected for a standalone configuration of the coupled
atmosphere–land system. Each box in the GEOS-5 dia-
gram is an ESMF gridded component. GEOS-5 adopts the
hierarchical topology that is natural under ESMF. The
main computational modules are located in the leaves of
the hierarchy (finite volume dynamical core, catchment,
infrared, etc.). These are connected through composite
components (radiation, dynamics, physics, etc.), which
implement higher levels of integration. A single compos-
ite component (AGCM) integrates the entire standalone
GCM. At the same level is an I/O component, which han-
dles the diagnostic history interface. The whole system is
capped by a GEOS-5 gridded component and an applica-
tion driver.

One of the advantages of the hierarchical structure is
that branches of the tree can be easily pruned and capped
to form more limited standalone applications. For exam-
ple, the GEOS-5 single column model is constructed by
simply connecting physics to a new application “cap”
and discarding the dynamics branch, but retaining history
diagnostics. Another advantage of the architecture is that
standard interfaces at each level make it technically
straightforward to swap in new components; for exam-
ple, a new radiation module.

4 Component Implementation

The connection of specific subroutines to the initialize,
run, and finalize entry points is implemented using a vir-
tual function table. The function table code is imple-
mented in C++ but is callable from standard Fortran 90.
For each entry this table holds the name of the entry, an
enum that defines the types of arguments to be passed
to the subroutine, an array of argument pointers declared
as type (void *), and a pointer to the subroutine to be
called.

We can store a pointer to the subroutine to be called
because Fortran 90 allows subroutines or function names
to be passed as arguments. While the Fortran 90 language
does not mandate how subroutines are passed when
calling into C or C++ code, all compilers we have run on
pass the subroutine as a pointer to the start of the execut-

344 COMPUTING APPLICATIONS

able code. This is stored in the virtual function table as
void *func, and dispatched as (*func)(arg1,
arg2, ...). The framework uses this feature to popu-
late the virtual function table and to dispatch subroutines
from the table. Connections are defined at run-time and not
compile time. In the future this will allow components to
be dynamically replaced based on the evolution of a sim-
ulation, for example.

When a component method such as ESMF_Grid-
CompRun() is called, control is transferred to the
framework before user code is executed. The framework
determines which execution threads should be active in
the component, may optionally validate arguments, may
optionally supply default values for any missing argu-
ments, and then calls through the virtual function table to
execute the code for the requested method. This isolates
the components from any language dependence; compo-
nents written in Fortran 90, C, or C++ can call subcom-
ponents which are implemented in Fortran 90, C, or C++
without change.

A pointer to the virtual function table is stored as an
entry in standard ESMF component derived types as an
opaque 4- or 8-byte integer. All subroutines involving the
function table simply require that the Fortran 90 interface
has the component type as one of the arguments. The
opaque entry is then passed to a C++ subroutine which
uses it as the this pointer in the virtual function table
class method.

We find that ESMF components work well with the
module concept in Fortran 90, especially for controlling
the scope of symbols. Module data and methods can be pri-
vate to the module. The parent component includes the child
code with the Fortran use statement. Only the set services
subroutine name must be a public symbol, so it can be ref-
erenced by the parent component. All other module meth-
ods, even those which implement initialize, run, and
finalize, can be private. Applications are linked into a single
executable, which simplifies the interaction with the var-
ious batch systems common on high-end supercomputers,
and requires no run-time dynamic loading of user code.

Fig. 1 Application example showing two ESMF gridded components (atmosphere and ocean) and a coupler compo-
nent. These are the child components of a gridded component that simulates hurricanes. The entire assemblage is
called by an application driver.

345EARTH SYSTEM MODELING FRAMEWORK

5 The ESMF Virtual Machine and
Component Parallelism

Components are the building blocks of any ESMF appli-
cation. We extended the component concept to include
parallelism by making ESMF components the very units
of parallel execution. In ESMF, components offer both
data and task parallelism, and provide powerful concepts
that aid the computational scientist to write highly effi-
cient and scalable code.

The management of the available computational
resources maps quite naturally onto the component hier-
archy. When a component is created it obtains a set of
resources from its parent component. In turn, when the
component creates children of its own, it divides up
its resources and provides them to its children. Critical
in the design of the parallel aspects of components was
to guarantee that components remain self-contained and
could be written without detailed knowledge of the par-

ent component code. This has been achieved by running
each component in a separate parallel execution con-
text.2

In order to provide the desired transparent interface to
the parallel execution environment, ESMF components
utilize the ESMF VM class. VMs are not new; the idea of
a generic machine representation dates back to the 1960s
and has appeared in a wide diversity of software pack-
ages and languages, including early IBM systems (Adair
et al., 1966), Java (see http://java.sun.com), and, in the
high performance computing realm, Parallel Virtual
Machine (PVM; Geist et al., 1994).

The ESMF VM’s interaction with the rest of the
framework can be divided into two parts, as follows.

1. The execution engine provides separate parallel
execution contexts or VMs for every component.

2. The communication interface offers efficient com-
munications among elements of a VM.

Fig. 2 ESMF-based architecture of the GEOS-5 atmospheric general circulation model. Each box is an ESMF com-
ponent. Component and coupling interfaces are standardized to facilitate exchanges and extensions. The operations
in each component or coupling transformation can be easily customized.

346 COMPUTING APPLICATIONS

The VM abstracts away many details of the underlying
execution environment. Each VM can be viewed as a
generic representation of hardware and system software
resources available to each individual ESMF component.
There is exactly one VM object associated with each
component in an ESMF application. The VM handles
resource management tasks and provides a topological
description of the underlying configuration of compute
resources accessible to the component. The communica-
tions interface provided by the VM utilizes this informa-
tion to offer the best possible performance.

5.1 USING THE VIRTUAL MACHINE

At the beginning of every ESMF application, before mak-
ing any framework calls, the user must make a call to an
ESMF_Initialize method; likewise, at the end, the
user must call ESMF_Finalize. These calls set up and
shut down the whole framework, including the VMs. By
default, ESMF is based on MPI-1 (see http://www.mpi-
forum.org) and, as such, the main program is launched
like any other SPMD message passing interface (MPI)
application. ESMF does not directly interact with batch or
queue management systems, and obtains its computa-
tional resources through the system-dependent MPI star-
tup facility, such as mpirun, prun, poe, etc.

During the initialization phase, a default global VM is
created. The user code can gain access to this VM by
either providing an optional VM argument to ESMF_
Initialize() or by calling ESMF_VMGetGlobal()
anywhere in the ESMF application. The default global
VM is equivalent to MPI_COMM_WORLD and provides
the parallel execution context for the main program.
Although there is no component associated with the main
program, the default global VM can be seen as the parent
of all VMs of the ESMF application.

The basic elements of a VM are persistent execution
threads (PETs). PETs are equivalent to POSIX threads
and have a lifetime of at least that of the associated com-
ponent. By their nature, PETs provide an elementary OS
unit of execution, associated with the virtual address space
of the POSIX process in which the PET is running. Fur-
thermore, each VM contains a mapping of its PETs onto
the set of unique hardware processing elements (PEs) that
were discovered during the framework initialization phase.

The PEs in a VM correspond to the smallest process-
ing units that are recognized by the operating system.
The VM layer keeps internal information about the topol-
ogy of the PEs by noting whether they are part of a single
CPU, lie within a single system image, or are connected
via an interconnection fabric. All VMs in an ESMF
application share this hardware map.

ESMF-level threading and user-level threading are two
special features of the ESMF’s VM implementation.

ESMF-level threading provides coarse-grained parallel-
ism by allowing multiple PETs to run within the same
POSIX process. A component must be completely thread-
safe to utilize this type of threading but can expect major
reduction in its communication cost between threaded
PETs. The VM communication API is completely trans-
parent with respect to ESMF-level threading. User-level
threading, on the other hand, does not require the entire
component to be thread-safe. A typical user-level thread-
ing approach would employ OpenMP for fine-grained
loop-parallelization. The VM assists user-level threading
by controlling resource management, and allowing single
PETs to be associated with multiple PEs. When during
the execution of a component a region is encountered that
profits from user-level threading, the user code can
inquire how many PEs are associated with a particular
PET and spawn this number of temporary threads without
risking oversubscription of the available PEs. The decision
to use ESMF-level and/or user-level threading is made on
a per component basis, allowing a component writer to
choose the best approach for the particular problem.

5.2 COMPONENT–VIRTUAL MACHINE
INTERACTIONS

There are four distinct phases in the life cycle of an
ESMF component during which it interacts with the exe-
cution engine of the VM.

1. Component Creation. When a parent component
or driver creates a child component, by either call-
ing ESMF_GridCompCreate() or ESMF_Cpl-
CompCreate(), it needs to provide a reference
to its own VM. It is in the component creation call
that a parent indicates which of its compute
resources it wants to give to its child. This is done
by adding the optional parameter petList to the
arguments of the creation call. A petList is a
list of parent PETs that are to be given to the child.
The default, when no petList argument is pro-
vided, is to give all parent PETs to the child.

2. Component SetServices. As described in Section 2,
The ESMF Superstructure, for each component
the user writes a set services routine containing
calls to set entry point methods. These link the ini-
tialize, run, and finalize subroutines of the user’s
code with the associated ESMF component derived
type. In addition to setting entry points, during
the child’s set services method, the child com-
ponent can also set certain properties of its VM.
For example, when the call ESMF_GridComp-
SetVMMaxPEs(pop, rc=rc)is executed within
set services it will associate as many PEs as possi-
ble for each child component PET. It is important

347EARTH SYSTEM MODELING FRAMEWORK

to note that the set entry point code is executed
within the context of the parent VM, not the child
VM (which does not yet exist). This means that
users should not add additional operations such
as data allocations to the SetServices method
because they will not be associated with the cor-
rect VM. On return from the set services call the
framework starts up the child VM and puts it on
hold.

3. Call of standard component method. The child
VM becomes active and executes the initialize,
run, or finalize component method. When the end
of the routine is reached the VM is placed back on
hold, waiting for the next invocation, and control
is handed back to the parent VM.

4. Component Destroy. The child VM is shut down
and all resources are released.

5.3 CONCURRENT AND SEQUENTIAL
EXECUTION OF COMPONENTS

By default, ESMF components run sequentially in the
order in which they are called by their parent component
or driver. ESMF also provides a very easy to use concur-
rent component model. The approach is an extension of
the non-blocking concept well known from MPI’s com-
munication interface. In this model the run sequence
(item 3 in the previous list) is split into two separate phases:

(a) Non-blocking call of registered component method.
The child VM becomes active and executes the
registered component routine within the child VM.
When the end of the registered routine is reached
the VM is placed back on hold, waiting for the
next invocation. The parent VM does not wait
until the child method has reached the end but
continues execution in its own context immedi-
ately.

(b) Parent component calls wait. In order to synchro-
nize its children, the parent component uses
ESMF_GridCompWait() or ESMF_CplComp-
Wait() to wait for the completion of a previ-
ously invoked child component method. The wait
call will block all parent PETs until the child com-
ponent’s method has reached its end and the child
VM has been placed on hold.

Within ESMF’s concurrent component model, it is the
parent’s prerogative to decide if and which child compo-
nents it will run concurrently. The child component code
is unaffected by this. As with many other aspects, ESMF
does not ensure that it is semantically correct to run cer-
tain components concurrently. It is up to the application
writer to decide what makes sense and what does not.

The following segment shows how phase 3 of the parent
code must be split to run two Gridded Components,
gcomp1 and gcomp2, concurrently:

call ESMF_GridCompRun(gcomp1, … ,

 blockingFlag=ESMF_NONBLOCKING, rc=rc)

call ESMF_GridCompRun(gcomp2,...,

 blockingFlag=ESMF_NONBLOCKING, rc=rc)

call ESMF_GridCompWait(gcomp1, rc=rc)

call ESMF_GridCompWait(gcomp2, rc=rc)

6 Performance Overhead

At its relatively early stage of development, ESMF has
just begun to perform exhaustive performance tests and
optimizations for low-level communications, regridding
methods, halo operations, and other parts of the frame-
work. However, it has been a high priority from the start
of the ESMF project to ensure that the basic component
architecture of the framework is not associated with sub-
stantial performance overhead. In this section we describe
results of initial performance evaluations. Table 1 shows
the performance overhead associated with calling compo-
nent methods through a virtual function table. Tests were
run on the Compaq SC45 at NASA Goddard Space Flight
Center. The “w/o ESMF threads” columns show the over-
head for the case where ESMF threading is not enabled
(although the user may choose to implement threading
using OpenMP on their own). Timings are shown with and
without a barrier synchronization upon completion of the
component call.3

We have also examined the impact of ESMF on the
performance of a real code, albeit one that, unlike climate
models, emphasizes efficiency of initialization as well
as efficiency of run-time. The National Centers for Envi-
ronmental Prediction (NCEP) Spectral Statistical Inter-
polation (SSI) package (Parrish and Derber, 1992) is a
three-dimensional variational analysis of observations
used by the National Weather Service in their data
assimilation system to initialize their global atmospheric
model. The physical domain of SSI is the global atmos-
phere from the surface to the stratopause. Instead of
physics parametrizations, the SSI is comprised of for-
ward model elements and their adjoints. Some major
forward model elements are radiative transfer algorithms
for each satellite instrument, convective and large-scale
precipitation, spectral transform, grid interpolation, the
balance equation, and the divergence tendency equation.
The analysis minimizes a combination of fits to observa-
tions, fits to model background, and a set of dynamical
constraints. The minimization is performed in spectral
space. Computation of forward models and their adjoints
are required at every iteration, and both initialization

348 COMPUTING APPLICATIONS

and run routines are executed at every cycle. One cycle
of initialize and run was performed for this experi-
ment.

The version of the SSI code tested with ESMF used
only the superstructure classes. It was not coupled with
any other ESMF components nor did it use any part of
the ESMF infrastructure layer.

In addition to the general component overhead, the SSI
code with ESMF also had algorithmic overhead, due to
the lack of ESMF support for spectral fields at the time of
the experiment. The result was that there were three extra
data conversions in the ESMF code. The performance anal-
ysis was run on an IBM Power 3 cluster at the National
Center for Atmospheric Research (NCAR).

Table 1
Overhead associated with component-level calls

Overhead (microseconds)

Number of
PETs

w/o ESMF threads
w barrier

w ESMF threads
w barrier

w/o ESMF threads
w/o barrier

w ESMF threads
w/o barrier

1 55 55 54 55

8 65 475 46 425

80 120 675 55 450

Fig. 3 ESMF overhead in the NCEP SSI.

349EARTH SYSTEM MODELING FRAMEWORK

Figure 3 shows the total ESMF overhead including the
extra data conversion from the spectral fields into Gaus-
sian grids and vice versa. The overhead was about 4 sec-
onds (slightly increasing with increasing number of
processors), or 0.26% for eight processors to 1.82% for
128 processors. For the SSI application, this timing dif-
ference is insignificant.

7 Conclusions

The ESMF hierarchical, component-based architecture is
natural for the construction of climate and related applica-
tions. ESMF components are linked to a powerful VM
construct which offers integrated parallelization and a
generic representation of the high performance comput-
ing hardware and software environment. Initial perform-
ance tests indicate that the architecture will not impose a
prohibitive performance overhead on applications. The
ESMF project will continue to evolve and optimize its
software in close collaboration with the Earth system
modeling community.

ACKNOWLEDGMENTS

The ESMF Joint Specification Team defined the frame-
work architecture. Thanks to the many members of this
multi-agency team for their thoughtful advice, patience,
and persistence. The NASA Earth Science Technology
Office (under Cooperative Agreement CAN-00OES-01),
the National Science Foundation, and the Department
of Defense High Performance Computing Moderniza-
tion Program support the research and development of
ESMF.

AUTHOR BIOGRAPHIES

Nancy Collins is one of the lead architects of the Earth
System Modeling Framework. She designed and imple-
mented the component layer in ESMF, along with many
other aspects of the framework. Previously she worked at
IBM Research in Yorktown Heights, NY, in the Compu-
ter Science Department, where she specialized in the
development of software for scientific visualization on
parallel systems. She holds a Bachelor of Science in phys-
ics and chemistry from Whitworth College and a Masters
of Science in computer science from the University of
Colorado, Boulder.

Gerhard Theurich is an employee of Silicon Graphics
Incorporated (Professional Services) and is currently
part of the ESMF development team. His contributions
to date focus on the low-level communications and exe-
cution layer of the ESMF. Before joining the ESMF
development team, he was part of the applications team

at the NASA Center for Computational Sciences (NCCS)
at the Goddard Space Flight Center. His current interests
include performance portability of parallel applications
and multiparadigm parallel computing. He received a
degree in Diplom Physik from the University of Erlan-
gen, Germany, a Ph.D. in computational material science
from the University of California, Santa Barbara, and
worked as a postdoctoral associate at the University of
Pennsylvania. During this time he developed and contrib-
uted to several electronic structure and quantum chemis-
try codes.

Cecelia DeLuca is currently the manager of the Earth
System Modeling Framework implementation team at the
NCAR. In this position, she is responsible for translating
the needs of a broad scientific community and innova-
tions in computer science into a robust infrastructure for
climate and weather simulation. Previously she worked as
a lead developer of a framework for real time signal
processing at Massachusetts Institute of Technology Lin-
coln Laboratory. She is experienced with architecting
large geophysical codes, assessing and selecting computa-
tional advances for use in production models, and using a
systematic software process, including requirements collec-
tion. Ms. DeLuca holds a Masters of Science in engineering
from Boston University and a Masters of Science in mete-
orology from Massachusetts Institute of Technology.

Max Suarez is a Meteorologist at Goddard Space
Flight Center. He received a B.S. and M.E. in engineer-
ing science from the University of Florida, and an M.A.
and Ph.D. in geophysical fluid dynamics from Princeton
University. His interests include large-scale atmosphere/
ocean interactions, climate modeling, numerical meth-
ods, parametrization of subgrid-scale processes in atmos-
pheric models, maintenance of the atmospheric general
circulation, and climate sensitivity.

Atanas Trayanov is senior computational analyst at the
Global Modeling and Assimilation Office, NASA God-
dard Space Flight Center. He received an B.S and M.S. in
physics in 1979 from Sofia University, Sofia, Bulgaria,
and a Ph.D. in physics in 1988 from the Bulgarian Acad-
emy of Sciences, Sofia, Bulgaria. His interests include
climate modeling, high performance computing, and par-
allel algorithms.

V. Balaji is the Head of the Modeling Systems Group
at the NOAA Geophysical Fluid Dynamics Laboratory.
He received a M.Sc. in physics from the Indian Institute
of Technology and a Ph.D. in physics from Ohio State
University. His interests include climate simulation, high
performance computational systems and algorithms, and
collaborative, standardized approaches to modeling.

350 COMPUTING APPLICATIONS

Peggy Li received a B.S. and an M.S. in electrical engi-
neering from the National Taiwan University, Taiwan,
and a Ph.D. in computer science from the California Insti-
tute of Technology in 1986. She was the technical group
supervisor for the Parallel and Distributed Application
Technology Group (formally Automation and Scheduling
Technology) in the Applications Development Section
from 1996 to 1999. She has led several R&D tasks in the
parallel and distributed computing area since she joined
the Jet Propulsion Laboratory in 1989, including the
development of a distributed discrete event simulation
framework, a remote interactive visualization and analy-
sis (RIVA) system for planetary data visualization. She is
currently leading a parallel volume rendering project
(ParVox) and a Fault Detection, Isolation, and Recovery
(FDIR) Server task for TMOD Technology. Her research
interests include scientific visualization, parallel render-
ing, and distributed computing.

Weiyu Yang is a research scientist in the NOAA NCEP.
He received a B.S. and M.S. in atmospheric science from
Peking University, China, and a Ph.D. in atmospheric sci-
ence from the Institute of Atmospheric Physics, Chinese
Academy of Sciences in 1989. He is the lead developer of
the ESMF project at NCEP, developing the ESMF ver-
sions of the NCEP operational data assimilation systems,
the global forecast model, and the ensemble forecast system.
He designed the special parallel structure of the current
NCEP operational data analysis system to obtain the best
performance to fit the restrictive operational time require-
ment. Previously he worked at the Supercomputer Com-
putational Research Institute, Florida State University,
where he specialized in the development of the adjoint
models of the NASA GEOS1 model and the NASA SISL
model and researched on related data assimilation issues.

Chris Hill is a researcher in the Department of Earth,
Atmospheric and Planetary Sciences at the Massachusetts
Institute of Technology. His research is directed at apply-
ing advanced computing technology to the study of plan-
etary scale circulation. He is particularly interested in
how cutting edge technologies become effective research
tools and how algorithms, hardware and software com-
bine to make this possible and profitable. He received a
B.S. in physics from Imperial College, London.

Arlindo da Silva is a Meteorologist in the Global Mod-
eling and Assimilation Office at NASA Goddard Space
Flight Center. He received a B.S. and M.S. in physics
from Catholic University of Rio de Janeiro, Brazil and a
Ph.D. in meteorology from the Massachusetts Institute of
Technology. His current research interests include tech-
niques for global atmospheric data assimilation, physical-
space analysis systems, error covariance modeling, bias
estimation and correction, quality control, land-surface,
precipitation and aerosol data assimilation, and efficient
methods for assimilation of remotely sensed data. Other
research interests not in the area of data assimilation
include aerosol forcing of climate, hydrological cycle of
the subtropics, estimation of fluxes of heat, momentum
and fresh water over the global oceans for observational
studies and forcing ocean models.

NOTES
1 We took the set services terminology (along with many good

design ideas) from the Common Component Architecture
project.

2 ESMF does allow exceptions to this rule; a very fine grained
component may be run in its parent’s context (e.g. using the
same VM). The child component in this case faces restrictions
on its options for concurrency and resource use.

3 Times shown are reduced further in the special case in which
a child component shares its parent’s VM.

References

Adair, R. J., Bayles, R. U., Comeau, L. W., and Creasy, R. J.
1966. A virtual machine system for the 360/40. IBM
Cambridge Scientific Center Report 320-2007, Cam-
bridge, MA.

Boville, B. A. and Gent, P. R. 1998. The NCAR Climate System
Model, Version One. Journal of Climate 11:1327–1341.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.,
and Sunderam, W. S. 1994. PVM: Parallel Virtual
Machine. A Users’ Guide and Tutorial for Network Paral-
lel Computing, MIT Press, Cambridge, MA.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.
2004. The architecture of the Earth System Modeling Frame-
work. Computing in Science and Engineering 6(1): 18–28.

Parrish, D. F. and Derber, J. C. 1992. The National Meteorolog-
ical Center’s Spectral Statistical Interpolation Analysis
System. Monthly Weather Review 120:1747–1763.

