
Design and Implementat ion of Parallel Algorithms for
Gene-Finding*

James Put hu kat tu karan
Suresh Chalasani

Electrical & Comp. Engr. Dept.
Univ. of Wisconsin-Madison

Madison, WI 53706-1691

Abstract

Finding genes unequivocally in DNA sequences is one of
the key goals of the Human Genome project. The hu-
man genome is a 9 billion character long DNA sequence
and i s estimated to contain about 100,000 genes. It has
been shown by several biologists that genes in a DNA se-
quence satisfy certain special properties. In this paper,
we use a combination of these properties to design a se-
rial algorithm for gene-finding. To speed up the process
of finding genes in long DNA sequences (of the order of
2 100,000 characters), we design a parallel algorithm
for gene-finding. We have implemented the parallel gene-
finding algorithm on the CM-5 multicomputer as well as
on a network of H P Apollo workstations under PVM.
Experimental results indicate that our algorithms predict
genes with reasonable accuracy.

1 Introduction

The discovery of DNA and genes and their relationship
to medicine has revolutionized genetics in the past few
decades. One of the main goals of the Human Genome
Project, which is a federally funded Grand Challenges
Project, is to unequivocally find genes in the entire hu-
man genome; there are an estimated number of 100,000
genes in the 3-billion character long human DNA se-
quence [lo, ll. Finding genes is an important task, since
it facilitates novel approaches to cure several diseases (for
example, cancer) by correcting the defective genes.

Computational techniques have become increasingly
important in genetics, especially to map and sequence
the genomes of different organisms [15, 141. Determining
biologically significant patterns in raw DNA sequences
will almost be an impossible task for a human being.

In this paper, we present parallel algorithms for find-
ing genes in DNA sequences. Our algorithms make use
of a few statistical rules that the DNA sequences follow.
We also present experimental results from our implemen-
tation of these algorithms on a network of HP Apollo
workstations running under PVM and compare it to an
implementation on the CM-5 parallel computer.

The genome is often called the blueprint for the species.
Roughly speaking, the genome is a concatenation of genes;
each gene contains the plans for one or more proteins; and
proteins are the building blocks of the body.

*This research has been supported in part by a grant from
the Graduate School of UW-Madison and the NSF grants CCR-
9308966 & ECS-9216308.

0-8186-6395-2/94 $4.00 0 1994 IEEE

Periannan Senapathy

Genome International Corporation
579 D’Onofrio Drive
Madison, WI 53719

A fragment of a long DNA sequence

S’rr 3’11 5’11

splicing of fhc CXOM to form

1- ’
Gene

Figure 1 : An overview of the DNA and gene.

A few definitions. The DNA sequence is made up
of four nucleotides (or base-pairs or bases) called Ade-
nine (A), Cytosine (C), Guanine (G), and Thyamine (T).
Bases C and T are pyrimidines; A and G are purines. The
DNA sequence for each organism can be very long; for ex-
ample, in human beings, the DNA sequence is estimated
to be three-billion nucleotides (or, equivalently, charac-
ters) long. The DNA has a double-helix structure and is
double-stranded; further, one strand is the complement
of the other [17]. The bases A and T o n one strand match
G and C on the complementary strand.

A codon is a three-character sequence of nucleotides
A, C, T, and G. Thus 43 = 64 different codons are possi-
ble out of which three specific codons - TAG, TGA, and
TAA - are known as stop-codons. Each DNA sequence
can be viewed as consisting of coding regions called exons
and non-coding regions called introns (see Figure 1). Ex-
ons are the portions of DNA that, are finally translated,
according t,o some genet,ic code, int,o proteins. An intron
just separates two consecutive exons. Finding genes in
a given DNA sequence is equivalent to finding the exact
location of exons (or the coding regions). The boundary
between an exon and intron is known as the 5 splice site
(5’-ss) and that between an intron and an exon is known
as a 3‘ splice site (3‘-ss) (see Figure 1).

Problem definition. The problem of finding genes in
a given DNA sequence is equivalent to finding the exact
location of exons in the sequence. Our approach to solve
the gene-finding problem uses a combination of rules that
exons in a DNA sequence seem t,o obey. Two important
facets of a gene-finding algorithm are speed and accuracy.
Sequential gene-finding algorithms can be slow when ap-
plied on DNA sequences that are a few hundred thousand
characters long. To speed up the gene-finding algorithms,
we design parallel algorithms and present implementa-
tion results on the CM-5 parallel computer as well as on
a distributed system running under the PVM environ-
ment. The second important aspect of gene-finding is

,

186

accuracy. Accuracy is often measured as rules are applied. One of the novelties of our method . . is
the fact that we combine various techniques using dif-
ferent weights to get a high accuracy. The individual
features and parameters of genes may occur randomly in

exons found by the algorithm
Total # exons present in the DNA sequence ‘

Missing exons, which are the exons that cannot be found
by the algorithm, are measured by accuracy. However,
accuracy does not give an indication of the number of
false exons; false exons are portions of introns that are
incorrectly identified as exons by the algorithm.

a DNA sequence; however acombination of these features
occur only in genuine exons and that is the basis for using
a combination of techniques.

2.1 Splice sites

Literature survey. Computational methods to identify
splice sites (5’-ss and 3’-ss) in DNA sequences were de-
veloped in the mid 1980s by Staden [19] and Senapa-
thy [18]; they also suggested methods to use splice-site
information in detecting genes. More recently, Lapedes
et al. applied neural network techniques to the gene-
finding problem [7]. Fields et al. have incorporated sta-
tistical sequence asymmetries to improve gene-finding al-
gorithms [9]. Uberbacher and Mural have developed a
neural-network based coding-recognition module (CRM)
for recognizing genes [24]. However, none of the above
methods are able to unequivocally identify eukaryotic
genes [l]. For example, the CRM located 80% of cod-
ing exons of 100 or more bases. It also identified about
18% false exons. The problem is more complicated be-
cause approximately 30% of exons in genes are shorter
than 100 nucleotides [23], which are more difficult to lo-
cate [24, 71. The method of Uberbacher and Mural was
successful only 30% of the time in identifying such short
exons. Thus the overall accuracy of the best gene-finding
algorithms is 70%x80%+30%x30% = 65%. In addition,
every gene-finding method reports several false exons.

Exons can be identified if we find the 3’ ,and 5’ s p p
sites. To find exons, one should find the 3 -ss and 5 -ss
for each exon. We use the method developed by Shapiro
and Senapathy [18] and Senapathy et al. [4] to find the
most likely splice sites in a given DNA sequence. We
illustrate this method for 5’ splice sites.

Table 1: Statistical Table for 5’-ss for Primates

A

Table 1 is a statistical table that was formed from ex-
periments made on various genes of the primate species.

~-
A 5’-ss sequence for the primates has a length of 9 charac-

at location 2 Of the -ssj for 5 5 8. For
character A appears with 28% frequency in position 0 of

Difference between Our approach and existing work’ ters. Row i of Table 1 gives the percentage of each base
Our approach, unlike existing techniques for gene-finding,
combines a variety of features based on splice sites, branch
sites, open reading frames, codon bias and RNY period-

I

icity. The motivation to use a combination of various
features is as follows: A false exon may satisfy one or a

a SS for primates. 111 row Z , the final entry (under Col-
umn CN) is the character that is most likely to be found

few individual features, where as only the genuine exons
will have all the features. For instance, a false exon may
have highly accurate splice sites and branch points; but
it may not have a high codon bias and RNY periodicity.
Implementation of parallel gene-finding algorithms on a
distributed system and on the CM-5 is another significant
contribution of this paper.

This paper is organized as follows. Section 2 will de-
scribe the various techniques used in finding genes in a
DNA sequence, We will also discuss some of the im-
plementation issues here. Section 3 discusses the results
from our serial and parallel implementations of the gene-
finding algorithms. Section 4 concludes this paper.

2 Gene Finding Concepts

in location i of a 5’-ss. Thus, the final column of Table 1
forms the consensus sequence for a 5 -ss (for primates).
The following rule was used in arriving a t the consensus
sequence. If the highest percentage computed in row :
for a part.icular charx ter equals or exceeds 40, choose
the corresponding character in that row; if there is more
than one such character, there is a slightly more complex
rule described in [4]. A similar table is constructed for
the 3’-ss except t,hat t.he length is 15 characters rather
than 9 characters used for 5I-s~.

We use the statistical table to find the 5’ splice sites
in a given DNA sequence as follows. We take a window of
9 characters at a time and match i t against the statistical
table given above. Let, zo . . . z g be the current window of
9 characters. Let vt be the value for character 5: in row i

I

of the statistical table. Similarly, let h, and 1, be the high-

Define total = 2, , , mast = z-1: h, , and mint =
1 : . In other wolds, total, mazt and mint represent

the total score for the current window, maximum possible
score for any window and the minimum possible score for
any window, respectively. For example, mazt in Table 1
equals 40 + 59 + 81 + 100 + 100 + 54 + 74 + 85 + 45 = !38.
Similarly, mznt ecluals 62. We obtain a score for the 5 -ss
in the current window using the following formula.

The basic idea in finding (and thus finding genes) est and the least values in row % of the statistical table.
is as follows. The sequence of nucleotides in and around
exons exhibit certain special characteristics. Any subse-
quence of the DNA sequence that exhibits these charac-
teristics will be classified as an exon.

this section, we will describe various rules used in
identifying regions in a DNA sequence. we dis-
CUSS these rules primarily from a computer science per-
spective, and do not elaborate on their biological signif-
icance. Figure 5 describes the sequence in which these

3’ss S’ss 3’ss 5“

I
Exon2

1 1
Intron

Exon1

’Ihe splicing “nim rcmovca the intron and
corium" the aons togaher

Figure 2: T h e branchsite position for a DNA sequence.

(total - mint)
(mast- mint)

score = 100

For example, for a window AAGTGAGTA,

total = 28 + 59 + 81 + 0 + 0 + 54 + 11 + 4 + 16 = 253.

Thus the score for the window AAGTGAGTA is 43.9.
The above procedure is repeated and scores are com-

puted for all the windows in the given DNA sequence.
The windows that have the highest scores are considered
good candidates for 5 -ss. The computation of scores for
3’-ss is slightly more complex and is discussed in [18, 41.

Once we find the 3 -ss and 5 -ss with highest scores, a
3‘-ss and its closest 5‘-ss form a candidate exon. Not all
candidate exons are genuine exons. The next few meth-
ods described in this section help in differentiating gen-
uine exons from false exons.

,

I I

2.2 Branch Sites

Another signal sequence that helps the gene finding mech-
anism is called a branch site or branch point signal. The
branch site lies within the intron usually between 30 and
50 characters before the 3 -ss corresponding to an exon
(see Figure 2). The biological function of a branch site
is t o signal the gene-finding mechanism on how to join
the eFons. Methods similar t o those discussed above for
the 5 -ss also exist for computing the scores of branch
sites. One such method was developed by Harris and
Senapathy [ll], which we use in our algorithms. Keller
and Noon [13] also present a different method to identify
branch sites.

After finding candidate exons in the given DNA se-
quence, we also find all the branch sites in the DNA se-
quence. For each candidate exon, we determine whether
there is a branch site before its 3 -ss; the presence of a
branch sites before the 3’-ss increases the probability of
the candidate exon being a real exon.

I

I

2.3 Open Reading Frame (ORF) Technique

A sequence of characters can be an exon in any of the
three reading frames. Reading frame 1 (or RFl) is the
original sequence itself. Reading frames 2 and 3 are ob-
tained from RF1 by removing the the first and the first
two characters, respectively, from RF1 (see Figure 3).

A reading frame is said to be open if it does not con-
tain any stop codons. For example, RF2 contains the stop
codon TAA for the sequence ATCGTAATGTTACTA as
shown in Figure 3; hence, RF2 is not an open reading
frame, while other reading frames are open. We use the

RFl RF3

Stop codon TAA ATCGTAATGTTACTA
inm

R E

J . 4

StOD
r -

S&I codons in RF1,AGTTAA’ITGACTAG t-
and RF3 w w

Figure 3: Example for the Open Reading Frame method.

following biological rule to prune the list of candidate ex-
ons : A candidate exon can be a real exon only if a t least
one of its reading frames i s open.

In Figure 3, the third sequence has stop codons in all
three reading frames. Hence, it cannot be an exon and
will be removed from the list of candidate exons.

2.4 RNY Periodicity Technique

Recall that bases C and T are termed pyrimidines, and
A and G are known as purines. Let us denote a purine
with R and a pyrimidine with Y; further, let N denote
any of the bases A, C, T, G. It has been statistically
observed that the codons found in exons have a purine in
the first position, any base in the second position, and a
pyrimidine in t,he third position. That. is, a codon found
in an exon is most, likely to have the form RNY, while
a codon found in t,he int,ron regions will not have any
special structure associated with them.

Thus, given a. canc1idat.e exon, we count the fraction
of codons of the RNY form in that exon as follows.

codons of the form RNY
RNY factor =

Total # codons in the candidate exon

The higher t,he RNY fact,or for a given candidate exon,
the greater is t,lie probability for it. t,o be a real exon.

2.5 Codon Bias Technique

There are 64 codons out of which three are stop codons.
Proteins, which are the final products of gene-expression,
are made of 20 amino acids’. Any codon, other than a
stop codon, can be an amino acid. Thus, there are 61
codons which are mapped into 20 amino acids. Since
there are more codons than amino acids, multiple codons
code for the same amino acid. However, the frequency
with which a specific codon codes for an amino acid differs
widely between exons a.nd introns.

As an example, let u s assume that codons C,, C, and
c k code for amino-acid dl. Codon C, is preferred by
amino acid dl over codons c, and c k in exons, while
no such preference exists in introns. This phenomenon
according to which exons tend to show bias to a specific
codon to code a particular amino acid is known as codon
bias (or codon preference).

Staden and McLachlan [20] and Staden [5] used the
codon bias met,liod t,o ident,ify prot,ein coding regions. We
use a method similar t,o that, discussed in [20] to distin-
guish exons from introns. Let

S = nlblcla,2b2c?. anbncnnn+lbn+lcn+l

‘ A n amino acid I S thc l j a w Ihilding block for a protein

188

be a given candidate exon sequence. Let f a b c be the
frequency of the codon abc. Let q, be the product of the
frequencies of all codons in reading frame i. We compute
q, using the formulae given below.

Let pi be the probability that frame i is the correct frame
in which the given sequence S will be read by the gene-
splicing process. We compute pa using

P: = qa/(ql + q2 + q3)i a = 1 , 2 , 3 .

Next the codon bias value is computed using the equation

codon-bias-value = max{pl,pz,p3}. (4)

We declare that the sequence S exhibits codon bias if the
codon-bias-value exceeds a user-defined threshold.

codm B i r

".l' T
I n n

I . i
I i i 1

Figure 4: Forming the codon bias list and computing
scores for the candidate exons.

Creating the codon bias list. Figure 4 shows the
codon bias for a sample DNA sequence. The x-axis shows
the locations of the characters in the DNA sequence and
the y-axis shows the codon bias value at each location.
We compute the codon bias value for a character in the
DNA a t location i by taking a window of w + l characters
from location i to location i + w (see Figure 4) and us-
ing the Equation 4 in Section 2.5 . The codon bias value
is computed for all the characters in the DNA. Typical
window sizes used are around 65 characters [20 , 51.

Computing the codon bias score for each candidate
exon. Once the codon bias list is const,ructed and the
codon bias values for each location in the DNA obtained,
we use this information to compute the codon bias scores
for the exons in the candidate exon list. As shown i n
Figure 4, the shaded region of the candidate exon is said
to have a cogon bias. If the location of the 3'-ss is a and
that of the 5 -ss is a + m , then the exon length is m + l . If
the length of the codon bias region that overlaps with the
exon is z (length of the shaded region), then the codon
bias score Scb of the candidate exon is

That is, s c b is a quantitative measure of the portion of
the candidate exon that has codon bias.

2.6 Uneven Positional Base Frequencies (UPBF)
Method

The method that we describe in this section is attributed
to Fickett [8]. Exons (or coding sequences) tend to show
unequal use of the four bases in the three positions of
codons. From biological experiments, it has been shown
that this inequality in the usage of bases is more pro-
nounced in coding than in non-coding regions.

To apply the UPBF method, let us consider the given
DNA sequence S. From S, we calculate N , , , the number
of times base i occurs in position j of a codon, for each
base i and each posit,ion j. Since there are four bases
A, C, T and G and three positions in each codon, 12
different combinations exist for N,, . We then calculate
the expected value E, for each base in each position of a
codon using the following formula

Now we measure the divergence D of the usage of bases
in sequence S using t.he formula given below.

D = IE, - X, , I , 2 E { A , C , T , G } , j E { 1 , 2 , 3 }
L b J

(5)
That is, we measure the absolute differences between ob-
served and expected positional base frequencies. The di-
vergence D gives us a measure of the amount of varia-
tion there is in the usage of the four bases in the three
locations of the codon. The higher this divergence, the
greater the probability for a sequence to be an exon. The
implementation of the UPBF list is done exactly in the
same manner as the codon bias list [12].

2.7 Main Routine

Figure 5 gives a flowchart for the entire procedure. On
each candidat,e exon, the techniques based on codon bias,
branch sites, RNY periodicit,y and UPBF are applied and
the corresponding scores are obtained. We can compute
the overall score for each candidate exon using

So = Woe*So..+PUbs*Sbr+lUcb+ScbfZU,ny*Srny+Wupbj*Supbf.

where s o , soer s b s , s c b , s u p b j are the overall, splice site,
branch sit,e, codon bias, RNY and UPBF scores respec-
tively; wo, wss , W b s , tu&, t u m y , w U p b j are the weights for
overall, splice sit,e, branch site, codon bias, RNY and
IJPBF t.ecniques respect,ively. We t,hen sort the candi-
date exons based on their overall scores and select the
top few exons as t,lie exons fouud by the algorithm. A
discussion on how to choose weights for individual meth-
ods will be given in Section :3 .

Analysis of the serial algorithm. Let n be the length
of the DNA sequence. The overall complexity is domi-
nated by the step i n which splice sites and branch sites are
found; this step involves sorting of splice sites and branch
sites based on their scores and thus, requires O(n log n)
time. Each of the remaining methods requires scanning
the input DNA sequence at most once, and hence can be
completed i n O(7 1) time.

2.8 Parallel Implementation

The basic outline of t.he parallel implementation is given
below.

189

Figure 5: The flowchart explaining the serial algorithm
for gene finding.

0 Divide the DNA sequence among the processors.

0 Each processor then creates a candidate exon list
and is responsible for the 3’-ss location that lies in
the DNA subsequence assigned to it.

0 Each processor applies the steps in Figure 5 on its
list of candidate exons.

The only difference between the parallel and serial
versions arises from the communication requirements of
the parallel version. The step in which splice sites are
found dominates the computation as well as the com-
munication time of the parallel algorit,hm. Hence, we
describe only the communication complexity in finding
splice sites.

2.8.1 Splice sites

To get the splice sites with the highest scores, we need to
first sort the splice sites in each processor by their scores.
The sorting takes O(f log f) . The number of best can-
didates required is specified by LIMIT. The best LIMIT
candidates from each processor are merged together into
one processor. This merging step takes O(1og p * L I M I T) .
This array of the best candidates is then broadcasted to
all the processors in O(p * L I M I T) time.

Once every processor has computed its candidate exon
list, it is possible that, for a given 3’-ss region, the match-
ing 5 -ss lies on another processor. The communication
pattern used in obtaining the missing part of the candi-
date exon from other processors forms an ucyclic graph.
This is because each processor needs to send sequences
to only those processors whose number is lower than its
number. The first processor only receives subsequences
while the final processor only sends. The number of mes-
sages sent under this communication pattern is O (p 2) ,
since, in the worst case, each processor sends to every
processor whose number is lower than itself. Computa-
tion in the parallel algorithm is dominated by the term

,

o(; log f).

3 Implementation Results

In this section, we first give a brief summary of the Think-
ing Machines CM-5 and the PVM software running on a

network of 7 HP Apollo Workstations. We then give re-
sults on the performance of the parallel implementations
of our algorithm on the Thinking Machines’ CM-5 using
the CMMD version 3.2 message passing library and the
PVM distributed system.

3.1 CM-5 Summary

The CM-5 is the latest massively parallel computer (MPP)
developed by Thinking Machines Corporation. The CM-
5 is capable of offering a peak performance of up to 1 ter-
aflops. I t uses the Single Program Multiple Data (SPMD)
programming model. I t h a s three networks: a data net-
work, a control network and a diagnostic network. The
data network provides high performance point-to-point
data communication between processors and has a fat-
tree structure [16]. The control network provides c o o p
erative operations, including broadcast, synchronization
and scans.

The CM-5 uses CMMD as its message-passing library
[21, 221. The current version is CMMD 3.2 and runs un-
der the CMOST operating system. The current version of
the operating system is CMOST Version 7.2 beta l . l -P4 .

3.2 P V M Summary

PVM (Parallel Virtual Machine) is a software package
developed a t the Oak Ridge National Laboratory [6]; it
allows the use of a set. of het,erogenous computers as a
single comput,ational resource (just, like a MIMD parallel
computer). The computers networked together could be
workstations, vect,or machines, and multiprocessors in-
terconnected by one or more networks. We have PVM
installed on 7 HP Apollo Workstations in the Computer-
Aided Engineering Laboratory of UW-Madison.

The PVM consists of two parts: the pumd daemon
and the library of PVM routines. Application programs
must be linked with the library to use PVM. The PVM
libraries cont,ain all syst.em calls for commnnication and
synchronization. The programming model used by our
program is the SPMD paradigm (Single Program Multi-
ple Data), which is similar t,o Chat, used on the CM-5.

Na ol PlaC”..C.

Figure 6: Overall execution time versus number of pro-
cessors for small sequence.< on PVM.

3.3 Results from Parallel Implementations

190

Table 2: The Description of the Benchmark Sequences
Used (Human Genes)

Description Sequence Name No. of
base pairs

HUMFABP

HUMILlBX
HUMALBGC
HUMAFP
HUMNEUROF

Table 2 gives a rief listing of all the sequences that we
used in ourkxperiments. These sequences were obtained
from the Genbank, which is a public domain software
that contains a database of all the known genes and their
locations in the DNA [3]. Each sequence in the database
gives information about the locations of the known exons
and introns, the number of base pairs and other relevant
information. The exons in these sequences were known;
this fact helped us in measuring the degree of accuracy
with which our implementations find genes. We took
several DNA sequences whose length varied from 5000 to
above 100,000 characters.

Accuracy of gene-finding for benchmark sequences.
Table 3 reports the accuracy of our gene finding algo-
rithm. It should be noted that the parallel version im-
plemented on both the PVM and the CM-5 give the same
accuracy because they use the same algorithms. As seen
from the table, most of the sequences we used show an
accuracy of close to 65%. This accuracy is better than
the accuracy that we obtained if only a particular method
was used (instead of a combination of various methods)
t o find exons. The HUMNEUROF sequence is one of the
longest sequences that we ran and since there are only
23 exons in such a long sequence makes it difficult to get
high accuracies. We observed that, for those exons that
had not matched in the ,HUMNEUROF sequence, most
of them had either the 3 -ss matched to the wrong 5 -ss
or vice-versa. Ultimately, the accuracy of gene-finding
can be improved only if new biological rules related to
exons are discovered.

Table 3: Exons Found by Our Algorithm for a Few
Benchmark DNA Sequences

I Sesuence Name I No. of I Exons I Accuracy I

HUMFABP
HUMILlBX
HUMALBGC
HUMAFP
HUMNEUROF

exons I found

14 9
23 10

1 (in percent)

43%

Choosing Weights.
ble 3 were for a specific combination of weights.

The accuracies reported in Ta-
The

set of weights we chose for the sequences given in Table 3
were those that gave us the highest accuracy.

However, we found that modifying the weights could
lead to the uncovering of new exons at the expense of
masking some other exons found with the old set of weights.
The accuracy can vary widely for different weight combi-
nations. For example, for the sequence HUMALGBC, a

gives an accuracy of 57%; for the same sequence, ex-
ons are found with an accuracy of 64% with weights
w,, = O.5,wcb = 0.2, Wbs = 0.2, and wrny = 0.1. At this
time, an optimal combinat.ion of weights which yields best
accuracies can only be found by t.horough experimenta-
tion.

Comparison of implementations on PVM & CM-5.
In our implementation, we chose t.0 run DNA sequences
of different lengths for processor sizes ranging from 1 to
7 on the CM-5. We ran similar experiments on the dis-
tributed system of workstations running under PVM by
varying the number of workstations networked together
(from 1 to 7 as well). We however did run the gene-
finding program for upto 32 processors on the CM-5 in
order to see the performance of the algorithm for larger
number of processors. We were limited to a set of seven
workstations t,liat, were available to run PVM.

Figures 6 and 7 show t,he overall execution times for
short and long sequences t,hat, were run on PVM. The
PVM measurements were taken when we had exclusive
access to t,he ent,ire iiet,work of workstat,ions (no other
users were on the system). We ran the same experiments
on the CM-5 and got graphs with similar shapes (except
different execution times as discussed later).

Set Of weights Wcs = 0.6, WCb = 0.2, Wbs = 0.1, W r n y = 0.1

+- --. L 1

Figure 7: Overall execution time V ~ I S U S number of pro-
cessors for large sequences 011 PVM.

2 0 I O I O I O
No dPr=r.on

In Figure 7, we see that when going from 1-processor
to a 2-processor case, t.here is an increase in the overall
execution time. This is because there is absolutely no
communication overhead in the serial case, while in the
’-processor case the communication overhead is high due
to large data sizes. However, as we use more than 2 pro-
cessors, the execution time starts to decrease because the
message sizes start decreasing drastically. On the CM-
5, the communication cost is significantly higher than
the computation cost on the CM-5 [2] . The decrease in
the message sizes with larger number of processors makes
computation dominate comIiiunication, and this results

191

in lower execution times as the number of processors in-
creases. Similar behavior is seen when we run the same
algorithm on the CM-5. This trend is not observed for
smaller sequences as shown in Figure 6. We observed that
the overall execution times on PVM are lower than those
obtained from the CM-5; the reasons are given below.

U .I RI..m

Figure 8: Percent of time spent in communication for
DNA sequences run on PVM.

Comparison of Computation time between PVM
and CM-5. Figure 9 gives a comparison of the time
spent only in computation on the CM-5 and the PVM.
This comparison is done for the sequence HUMALBGC.
As mentioned earlier, the PVM gives lower execution
times than CM-5. We ran a few experiments to com-
pare the processing power of a CM-5 node to that of an
H P Apollo workstation. We found that the HP worksta-
tion was about five times foster than a single CM-5 node;
hence the reason for the lower execution times on PVM
than that on the CM-5. In Figure 9, we notice that, as
we increase processors, this gap between the computa-
tion times starts decreasing. This is because the amount
of computation per node starts to decrease as the num-
ber of processors increases, thus reducing the effect of
computation on the overall execution t,ime.

N. d R D I . l m

Figure 9: Comparison of computation times for the CM-5
and PVM for the sequence HUMALBGC (19002 charac-
ters).

Comparison of communication time between PVM
and CM-5. Figure 8 shows the percent of time spent

in communication by the algorithm when run on PVM.
We obtained this as follows:

Communication Time
Overall Execution Time

Percent of Communicat,ion =

As expected, for a smaller number of workstations we see
that computation dominat,es and thus a smaller amount
of time is spent in communication. For a larger number of
workstations, the number of messages exchanged between
workstations increases and, as a result, we see an increase
in the percent of time spent in communication. As we go
to 7 processors, we see that PVM spends around 50%
of its time in communication. Compared to PVM, the
percentage of time spent in communication for the CM-5
is negligible.

Parallel comput,ers are required to solve problems in com-
putational genetics because of the following reasons:

192

-

Figure 11: Overall execution time versus number of pro-
cessors for large sequences for 32 nodes on CM-5.

0 Data sizes in the DNA sequences are very large, and

0 The rate a t which data is being sequenced is high
thus leading to a rapid influx of raw DNA sequences.

In this paper, we have developed a parallel algorithm
for finding genes in DNA sequences. This algorithm uses
of a combination of biological rules that the exons in the
DNA sequence obey statistically. Various investigators
have used individual techniques such as splice site, codon
bias, branch site and RNY periodicity to find exons. In
this paper, we used a combination of these various tech-
niques t o get accuracies better than those that can be
obtained by one technique alone. We have experimented
with different weights given to these techniques and have
found that different combinations of these weights give
rise to different accuracies in gene-finding. We achieve
accuracies in the range of 65% for sequences of vary-
ing lengths. Ultimately, the accuracy can be improved
only if new biological rules about exons are discovered.
Our implementation results show that the performance
of the parallel gene-finding algorithms implemented on
a distributed system using PVM is comparable to that
implemented on the CM-5 supercomputer. We are in-
vestigating the possible use of more biological rules to
improve the accuracy of gene-finding.

References

[I] Cited in the Special Issue on “The Human Genome

[2] G. Bell. Ultracomputers: A teraflop before its time.

Project”. Los Alamos Science, 20:162-163, 1992.

Comm. of the ACM, 35(8):27-47, Aug. 1992.

[3] M. L. Cinkosky, J. W. Fickett, P. Gilna, and
C. Burks. Electronic data publishing and genbank.
Science, 252:1273-1277, May 1991.

[4] R. F. Doolittle, editor. Methods in Enzymology, vol-
ume 183, pages 252-278. Academic Press, 1990.

[5] R. F. Doolittle, editor. Methods in Enzymology, vol-
ume 183, pages 163-180. Academic Press, 1990.

(61 J. D. et al. A Users’s Guide to P V M Parallel Virtual
Machine. Oak Ridge Nat’l Lab, July 1991.

[7] R. Farber, A . Lapedes, and I<. Sirotkin. Determina-
tion of eukaryotic protein coding regions using neu-
ral networks and informat,ion theory. J . Mol. Biol.,

Recognition of protein coding re-
Nucleic Acids Research,

226:5305-5318, 1992.

[8] J . W. Fickett.
gions in dna sequences.
10(17):5303-5318. 1982.

[9] C. A. Fields and C. A. Soderlund. gm : A practical
tool for aut,omating DNA sequence analysis. Com-
put . Appl . Biosci., 6:263-270, 1990.

[lo] I<. A. Frenkel. The human genome project and infor-
matics. Communications of the ACM, 34(11):41-51,
November 1991.

[11] N. Harris and P. Senapathy. Distribution and con-
sensus of branch point signals in eukaryotic genes :
A computerized statistical analysis. Nucleic Acids
Research, 18:3015-3019, 1990.

[12] S. Chalasani, J. Puthukattukaran and P. Senapathy.
Design and implement.at~ion of parallel algorithms for
gene-finding. Tech. Report ECE 94-7, UW-Madison,
1994.

[13] E. B. Keller and W. A . Noon. Proc. Natl. Acad. Sci.,

[14] E. S. Lander et. al. Comput,ing in molecular biol-
ogy: mapping and interpreting biological informa-
tion. IEEE Computer, ?4(11):6-13, 1991.

[15] E. S. Lander et. al. Mapping and interpreting bio-
Comnirtnications of the ACM,

81:7417-7420, 1984.

logical information.
34(11):33-39, NOV 1991.

[16] C. Leiserson. Fat trees: Universal network for
hardware-efficient, super cornput,ing. IEEE Trans.
on Computers, C-34(10):892-901, Oct 1985.

[17] J. A . Peters. Classic Papers in Genetics. Prentice
Hall Inc., N e w Jersey, 1964.

[18] P. Senapathy and M. B. Shapiro. RNA splice
junctions of different classes of eukaryotes : Se-
quence st.atistics and functional implications in gene-
expression. Nucleic .4cids Research, 15:7155-7175,
1987.

[19] R . St,aden. Mea.surement,s of t.he effects that coding
for a prot,ein has on a dna sequence and their use for
finding genes. Nucleic Acids Research, 12(1):551-
5 6 7 , 1984.

[20] R. Staden and S. McLachlan. Codon preference and
its use in identifying prot,ein coding region in the
dna sequences. Nitcleic i lc ids Research, 10(1):141-
156, 1982.

[21] Thinking Machines Corporation, Cambridge, Mas-
sachuset,t,s. The CiZlAlD Reference Manual, 2.0 beta
edition, August, 1992.

[22] Thinking Machines Corporat,ion, Cambridge, Mas-
sachusetts. The CflfflfD [[set’s hfantral, 1.1 edition,
January 1992.

[23] T . W. Tra.ut. Proc. Natl. Acad. Sci., 85:2944-2948,

[24] E. C. Uherbacher a.nd R . J . Mural. Proc. Natl. Acad.
1988.

Sci . , 88:11261-11265, 1991.

193

