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Abstract

Clustering is a useful technique that divides data points into groups, also known as
clusters, such that the data points of the same cluster exhibit similar properties. Typical
clustering algorithms assign each data point to at least one cluster. However, in practical
datasets like microarray gene dataset, only a subset of the genes are highly correlated and
the dataset is often polluted with a huge volume of genes that are irrelevant. In such cases,
it is important to ignore the poorly correlated genes and just cluster the highly correlated
genes.

Automated Hierarchical Density Shaving (Auto-HDS) is a non-parametric density based
technique that partitions only the relevant subset of the dataset into multiple clusters while
pruning the rest. Auto-HDS performs a hierarchical clustering that identifies dense clusters
of different densities and finds a compact hierarchy of the clusters identified. Some of the
key features of Auto-HDS include selection and ranking of clusters using custom stability
criterion and a topologically meaningful 2D projection and visualization of the clusters
discovered in the higher dimensional original space. However, a key limitation of Auto-HDS
is that it requires O(n2) storage1, and O(n2logn) computational complexity, making it scale
up to only a few 10s of thousands of points2. In this thesis, two extensions to Auto-HDS are
presented for lower dimensional datasets that can generate clustering identical to Auto-HDS
but can scale to much larger datasets. We first introduce Partitioned HDS that provides
significant reduction in time and space complexity and makes it possible to generate the
Auto-HDS cluster hierarchy on much larger datasets with 100s of millions of data points.
Then, we describe Parallel Auto-HDS that takes advantage of the inherent parallelism
available in Partitioned Auto-HDS to scale to even larger datasets without a corresponding
increase in actual run time when a group of processors are available for parallel execution.
Partitioned Auto-HDS is implemented on top of GeneDIVER3, a previously existing Java
based streaming implementation of Auto-HDS, and thus it retains all the key features of
Auto-HDS including ranking, automatic selection of clusters and 2D visualization of the
discovered cluster topology.

1Java Based Auto-HDS reduces the space complexity by streaming the distance matrix to the secondary
storage nevertheless storage required is O(n2).

2limited by the computation time and not the memory, since the O(n2) storage is on the hard drive.
3Java based Implementation of Auto-HDS http://www.ideal.ece.utexas.edu/~gunjan/genediver.



1 Introduction

Clustering is a very useful unsupervised learning technique that partitions data points into a
number of groups such that the data points within a group exhibit similar properties. Clus-
tering techniques are extensively used in many areas such as data mining, machine learning,
bioinformatics, marketing, astronomy, pattern recognition, image processing, etc. Exhaustive
clustering techniques are quite common in which each data point is assigned to at least one
cluster. However, such exhaustive clustering techniques are not appropriate for datasets that
have a significant fraction of irrelevant data points. As an example, identifying genes that
exhibit similar properties on a microarray gene dataset is difficult using an exhaustive cluster-
ing method as the dataset often consists of a set of experiments as clustering dimensions that
only correspond to correlated activity across a small subset of genes that are involved for that
specific set of experimental conditions [9]. For example in the Gasch data set [9], only a few
hundred genes involved in stress response cluster well while the remaining need to be pruned
to discover the stress related gene clusters. In such cases, useful clusters can be obtained more
easily if the clustering is performed on the highly correlated gene subset after discarding the
irrelevant genes. Several clustering techniques have been formulated to partition a smaller
subset of the data into multiple clusters [14, 17, 15, 5]. Automated Hierarchical Density Shav-
ing (Auto-HDS) [10] is a non-parametric density based hierarchical clustering technique that
partitions only the relevant subset of the dataset into multiple disjoint clusters and finds a
compact hierarchy of the clusters identified. A key limitation of Auto-HDS is that it requires
O(n2) storage 4 and O(n2logn) computational complexity, making it scale up to only a few
tens of thousands of points 5. Many industry-based data mining applications involve very large
volumes of data that are constantly being produced by hundreds, or even thousands of servers
serving millions of consumers. In order to cluster such datasets, it is important that the clus-
tering techniques employed can scale by taking advantage of a parallel environment to address
such industrial-scale clustering problems.

We present Partitioned Automated Hierarchical Density Shaving (Partitioned Auto-HDS)
and Parallel Automated Hierarchical Density Shaving (Parallel Auto-HDS), that are extensions
to Auto-HDS and that improve the overall performance by exploiting the inherent parallelism
available in Auto-HDS. The new extensions find a compact hierarchy of dense clusters in the
dataset after ignoring the irrelevant data and can easily scale up to huge datasets using either
a single processor or distributed systems. In Partitioned Auto-HDS, by dividing the large
dataset into p smaller partitions, the computational and storage complexities associated with
Partitioned Auto-HDS is approximately 6 reduced to O(p×((n/p)2log(n/p))) and O(p×(n/p)2)
respectively. With Parallel Auto-HDS in a distributed environment, the computational and
storage complexities are further reduced by a factor of m, where m is the number of machines.
If m is equal to p, then the computational and storage complexities can be approximated
as O(((n/p)2log(n/p))) and O((n/p)2) respectively. Even if m is less than p, Parallel Auto-
HDS scales up linearly with the number of machines available. There is not much increase
in the communication overhead with increase in the number of machines as the amount of

4Java Based Auto-HDS reduces the space complexity by streaming the distance matrix to the secondary
storage nevertheless storage required is O(n2).

5limited by the computation time and not the memory, since the O(n2) storage is on the hard drive.
6this is an approximation because in the current implementation, the multiple partitions created are of equal

size only if the data points are evenly distributed across the feature space.

1



communication required between machines is small. However, performance improvement is
possible only for low dimensional datasets. As the dimensionality of the dataset increases,
there is not much improvement in performance due to the curse of dimensionality.

2 Motivation and Problem Setting

Clustering in general and density based clustering in particular has been useful in the field of
Astronomy that contain billions of data points, often polluted with large volumes of irrelevant
data [12]. Recently, researchers have been particularly interested in identifying the halos 7 and
subhalos 8 that can be used to solve the well known N-Body Simulation problem [12]. The
halos and subhalos in the Halo dataset can be easily identified from the compact hierarchy of
dense clusters determined by Auto-HDS. However the computational (O(n2logn)) and storage
(O(n2)) complexity associated with Auto-HDS makes it unsuitable for solving the astronomy
clustering problem. An approximate solution to the problem is possible by subsampling the
data and computing the coarse clusters. Using the non-overlapping property of sub-clusters
within two different clusters, Auto-HDS can be directly applied on each coarse cluster to obtain
more refined sub-clusters within the coarse clusters identified from the sampled subset. The
clusters identified would be an approximation of Auto-HDS clusters and at the same time, and
hence this shortcut solution is prone to noise. This approximation may be needed for high
dimensional datasets like Gasch microarray gene dataset [9] but for lower dimensional datasets
such as Halo, it is possible to find the exact Auto-HDS hierarchy, and at the same time reduce
the computational and storage complexities associated with Auto-HDS. Although algorithms
such as DBSCAN [8] can be used in conjunction with a multi-dimensional database index to
find dense clusters, on Astronomy datasets such as Halo, such methods are tied to a single
database and are difficult to find partitions and hence parallelize.

The main idea behind the Partitioned and Parallel Auto-HDS is that the large dataset is
split into multiple smaller partitions based on the feature space. The clusters in each partition
are identified using Auto-HDS. The clusters are merged to ensure the correctness of the clusters
that are spread across multiple subsets. This divide-and-conquer approach gives very good
speed-up on large datasets; however, as the dimensionality increases beyond 10, not much
speed-up is possible due to the curse of dimensionality. The highly scalable new extensions can
be used to find halos and subhalos (within a halo) from the compact hierarchy of dense clusters
identified in the astronomy dataset since that dataset is only 3-dimensional. The Partitioned
and Parallel Auto-HDS could also be useful in clustering extremely complex datasets such as
market basket data [11, 16] that have a very limited subset of customers who exhibit similar
buying behavior and a relatively huge subset of customers who exhibit completely random
buying patterns (irrelevant data).

Typically, Partitioned Auto-HDS involves a single machine whereas Parallel Auto-HDS can
involve hundreds or thousands of machines. With Partitioned Auto-HDS, there is a noticeable9

decrease in the execution time and temporary storage as compared to Auto-HDS running on
a comparable single machine. Even better, the relative difference in run-time gets larger as
the data-sets get larger. This is due to the fact that in terms of time complexity, Partitioned

7a group of celestial bodies that are closely packed - example the Milky Way Galaxy.
8subhalos refer to smaller halos within a halo.
9by several orders of magnitude.
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Auto-HDS is up to p×log(p) times faster than the standard Auto-HDS, where p is the number
of partitions. As one would expect, the run-time for Parallel Auto-HDS on a distributed
environment is less compared to Partitioned Auto-HDS on a single processor.

3 Thesis Outline

The rest of the thesis is laid out as follows: A brief introduction to the Auto-HDS framework
and its key limitations are provided in Chapter 4. Then, in Chapter 9, we present an improved
version of Auto-HDS, Partitioned Auto-HDS, that addresses the performance issues with clus-
tering on large volume datasets. The detail in Chapter 15. In Chapter 23, a quick introduction
to Parallel Auto-HDS, Map-Reduce framework and HADOOP along with the design overview
and implementation details of HADOOP based Parallel Auto-HDS are presented. Speed-ups
obtained, time and space complexities, memory usage and future work are discussed for both
Java based Partitioned Auto-HDS and HADOOP based Parallel Auto-HDS in Chapter 15 and
Chapter 23 respectively. Finally, results and conclusions are discussed in Chapter 31.

4 Background

Clustering techniques can be classified in many different ways but the classification that is most
relevant to this thesis is parametric and non-parametric clustering. A brief introduction to the
existing parametric and non-parametric clustering techniques is presented in this chapter. The
non-parametric density based clustering technique, Auto-HDS, is discussed later in the chapter.

5 Parametric Clustering

Parametric clustering techniques generally make an assumption about the dataset and the
clusters identified are based on the assumption. The most widely stated example of parametric
clustering is k-means clustering that makes an assumption on the total number of clusters
in the dataset k. Another set of parametric clustering techniques tend to assume that the
dataset comes from a distribution, say mixture of Gaussians. In such cases, inferences about
the parameters of the underlying assumed distribution will divide the dataset into multiple
clusters. Bregman Clustering [3] is a parametric clustering technique that is highly scalable
and can find clusters on large, high dimensional datasets. Bregman Bubble Clustering (BBC) [1]
is an extension of Bregman clustering that can cluster a subset of the data into dense clusters.

6 Non-Parametric Clustering

The alternative to parametric clustering techniques is non-parametric clustering that does
not need prior information about the number of clusters and usually does not make strong
assumptions about the underlying distribution generating the clusters. In many practical ap-
plications, it is not easy to pre-determine the number of clusters due to insufficient knowledge
of the dataset. The clusters in such datasets can sometimes be better determined using non-
parametric clustering techniques. Density based clustering is a specific type of non-parametric
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clustering technique that identifies arbitrary shaped clusters using kernel density estimation at
each data point.

7 Non-Parametric Density Based Clustering

Density based clustering algorithms can find multiple clusters in the relevant subset of the
dataset after ignoring the data points that do not cluster well. DBSCAN [8] is a well known
kernel based density based clustering techniques. DBSCAN takes 2 parameters to find the
dense clusters - neighborhood size nε and radius rε. If a data point has at least nε data points
within a hypersphere of radius rε centered at the data point, all the data points within the
hypersphere including the data point itself belong to the same cluster. A faster implementation
of DBSCAN is possible for two to three dimensional datasets where multi-dimensional indexes
for range queries are feasible. Three limitations of DBSCAN are: (1) difficulty in selecting
input parameters nε and rε as they are highly data-dependent. Also, the shape and size of
the clusters identified change drastically based on these input parameters, (2) As the database
indices are not possible for higher dimensional datasets, DBSCAN cannot scale very well on
high dimensional datasets, (3) Clustering is dependent on the order of the data. This happens
due to the consideration of non-dense neighbors of points as belonging the cluster of the dense
points.

OPTICS [2] is a hierarchical density based clustering algorithm that partially addresses
the parameter selection problem by providing a visualization that enables the selection of
parameters manually. However, significant human intuition is required to achieve that goal. An
interactive exploration of the cluster hierarchy identified is also possible using the visualization
framework. OPTICS however still suffers from some of the same limitations as DBSCAN, such
as the clustering being dependent on the order in which the data is presented, and database
driven limited scalability 10 for 2-D or 3-D datasets.

Hierarchical Mode Analysis (HMA) [19] is a non-parametric density based clustering tech-
nique that was introduced by D. Wishart in 1968 and largely unifies both the DBSCAN [8]
and Auto-HDS [10] presented in this paper. DBSCAN falls out as a special case of HMA,
mentioned as a footnote in Wishart’s original paper, and rediscovered later by [8]. Density
Shaving, a sub-algorithm of Auto-HDS, corresponds to one of the levels in HMA, and maps to
one of the levels in Auto-HDS also. Just like other density based clustering methods, HMA
can ignore the irrelevant data and divide only a subset of the dataset into multiple dense clus-
ters. HMA also finds a compact hierarchy of the dense clusters identified. Hierarchical Mode
Analysis is not as popular as DBSCAN and OPTICS that were developed after HMA, perhaps
because in its original form it was slow and memory intensive, requiring O(n3) computation
and O(n2) memory. Just like HMA, Automated Hierarchical Density Shaving (Auto-HDS) also
identifies clusters of different densities and finds a compact hierarchy of the dense clusters iden-
tified. Besides better computational scaling, a significant extension in Auto-HDS over HMA is
the compact 2-D projection and visualization of the clusters that still maintain their relative
topological positions in the original high-dimensional space. The visualization is very useful
for cluster selection and browsing, and is exploited in the Java implementation of Auto-HDS
known as GeneDIVER.

10Database scaling is limited by the size of the single database host. The Auto-HDS clustering scaling we
describe in this thesis can map-reduced to unlimited sizes since it does not use a database index for scaling.
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8 Automated Hierarchical Density Shaving (Auto-HDS)

Auto-HDS [10] is a non-parametric density based clustering technique that is a faster and more
scalable extension to Hierarchical Mode Analysis. Auto-HDS includes several features such as
the ability to use multiple distance measures that determine the notion of density at a point,
the ability to prune irrelevant data, the ability to simultaneously identify clusters of different
densities, the ability to find compact hierarchy of dense clusters identified and the ability to
project and browse clusters from the original high-d space into a topologically meaningful 2-D
projection. However, Auto-HDS in its present form scales well only on medium-sized clustering
problems involving up to 105 points11. Auto-HDS is very useful in the field of bioinformatics as
the high dimensional microarray gene datasets [9, 13, 18] tend to be very noisy with a significant
fraction of irrelevant data.

Auto-HDS requires three parameters from the user: (1)nε, minimum neighborhood size re-
quired for a data point to be classified as dense, (2)fshave, the fraction of least dense points that
are to be ignored before partitioning the remaining dataset into clusters of different densities,
(3)rshave, the fraction of least dense points to be ignored at each level. nε is perhaps the only
significant parameter and acts as a smoothing parameter. Less significant and smaller clusters
disappear from clustering results as nε increases. The clustering results are fairly robust to
rshave which is more useful for controlling clustering speed, by trading off for slight degrada-
tion of discovered cluster boundaries. fshave is also used for speeding up clustering by simply
ignoring the least dense fraction. This property is useful when the user is only looking for the
most dense and small clusters. The absence of too many critical parameters for clustering is
another important and an often useful (especially in a highly unsupervised setting) feature of
Auto-HDS.

8.1 Dense Points

Auto-HDS uses a kernel-based notion of density where the density at a point is measured by
the number of points within a pre-defined radius around the point. In Auto-HDS, a data point
is considered as dense if there are at least nε data points within a hypersphere of certain radius,
say rε, centered at the data point. Also it can be stated that a data point is considered to be
non-dense if that neighborhood size is less than nε.

8.2 Density Shaving (DS)

The notion of density at a data point is theoretically determined by two parameters: neighbor-
hood size nε and radius rε (Section 8.1). However nε is an input parameter that is held constant
over all points, hence the notion of density is technically dependent on just the radius rε. Then
in Density Shaving, which is one of steps in the Auto-HDS clustering algorithm, the task is
to find the clusters from the dense points identified using this rε. Two dense points belong
to the same cluster if they lie within the distance of rε. Note that this results in a chain of
dense points, such that if there is at least one other dense point belong to the chain within the
distance of rε from each dense point in the chain, then the entire chain of dense points belong

11Beyond that size even Auto-HDS requires too much hard drive space and computation time on a standard
2010 desktop. This is still better than its ancestor HMA, which would only scale to a few 1000 points on a
modern desktop.
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to the same cluster. Note that all the points that are not dense get pruned or ”shaved”, and
do not end up in any of the dense clusters. This is the key difference between density-based
clustering, where we discover dense clusters only, vs. traditional partitional clustering such
as K-Means, where we cluster all the points into some cluster. This shaving is important for
finding pure dense clusters since it removes less dense regions. Other density based clustering
methods such as [1] and [7] use other ways of pruning such less dense points.

8.3 Hierarchical Density Shaving (HDS)

HDS finds a compact hierarchy of clusters of different densities identified by Density Shaving.
Conceptually in HDS, the dense clusters of different densities are identified by repeatedly
applying Density Shaving by holding nε constant and the only varying parameter is rε which is
not an input to the algorithm. Let dnε denote the vector of distances of each data point from
its nthε closest point and the distances are sorted in an ascending order. There are two possible
ways for determining this rε in order to find dense clusters.

Linear Shaving:
A straight forward method is to increase rε gradually in a linear fashion by setting rε to
dnε(1), dnε(2), dnε(3), etc. The compact hierarchy of dense clusters thus identified using
linear shaving is identical to the HMA cluster hierarchy.

Exponential Shaving
Another option is to increase rε exponentially based on a desired shaving fraction of least
dense points fshave.

When rε is set as dnε(2), that is to the closest neighbor, the only point that is classified
as dense for this rε is that closest neighbor with dnε set as rε. Similarly, if rε is set as dnε(3),
only up to two dense points, besides the point itself, are present within this rε and the rest are
’pruned’ or ’shaved’ or ’ignored’ as irrelevant. HDS cluster hierarchy is thus a sampled subset
of the HMA cluster hierarchy, and is obtained using the Exponential shaving using the shaving
parameter rshave. The corresponding list of rε values and hence the number of HDS iterations
niter can be determined using the input parameter rshave, using the following equation:

niter = d− log(n)

log(1− rshave)
e (1)

The list of rε values is given by

rεlist = dnε(nnclist) (2)

where nnclist is given by

nnclist = sortd(unique({dn× (1− rshave)
te}jmaxt=0 )) (3)

where sortd represents a sort by decreasing value and niter = |nnclist| represents the number
of iterations, with the jth entry of nnclist corresponding to the jth iteration of HDS.
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8.4 Pseudo-code

Auto-HDS consists of levels or iterations, given by d− log(n)
log(1−rshave)e with each iteration finding

dense clusters of specific density determined by rε corresponding to each level (Equation 2).
Notice that the iterations are independent of each other and therefore dense clusters of different
densities can be identified independently. Density Shaving (Algorithm 1) is used for finding
dense clusters corresponding to a specific density (iteration) and the inputs to Density Shaving
are nε, distance matrix MS and rε or nc. Note that either rε or nc that determines rε can be
passed as an input to Density Shaving. In summary, an Auto-HDS algorithm would involve
d− log(n)

log(1−rshave)e calls to Density Shaving to find dense clusters of different densities. Finally,
relabeling of clusters, also known as ’compaction’ of clusters, is performed to find a compact
hierarchy of the dense clusters identified over all the HDS levels.

Algorithm 1 DS
Input: Distance matrix MS , nε, nc or rε
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: {labi}ni=1 = 0
// Sort each row of the distance matrix

5: [Mnbr
rad,M

nbr
idx ] = sortrows(MS)

//Sort nε
th column of matrix Mnbr

rad

[radxnε , idxnε ] = sort(Mnbr
rad(·, nε))

// Recover the rε threshold
if (exists(nc) rε = radxnε(nc)

10: // Recover the nc densest points
G = {x(idxnε(i))}nci=1

/* Lines 17-33: For each point in G, find other dense points
within rε distance of it and make sure they have the same
labels, if not, relabel */

15: for i = 1 to nc do
/* Find the position of the last point within
distance rε of dense point x(idxnε(i)). */
idxb = binSearch({Mnbr

rad(idx
nε(i), j)}nj=nε)

/* Neighbors of x(idxnε(i)) are the idxb closest points, all
20: within rε distance. */

Xnbrs = Mnbr
idx (idxnε(i), l)idxbl=1

// save the neighbors
// Identify neighbors that are dense points
Xdnbrs = Xnbrs ∩ G

25: // Recover their labels that are not 0
Ldnbrs = unique(lab(Xdnbrs))/{0}
// Relabel all points that share this label to label i
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i
lab(indexOf(Xdnbrs)) = i

30: end for
Count clusters: k = |unique(lab)|/{0}
Remap the non-zero labels in lab to the range 1 to k.
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9 Partitioned Automated Hierarchical Density Shaving (Parti-
tioned Auto-HDS)

10 Introduction

Auto-HDS is a non-parametric density based clustering algorithm that finds a compact hierar-
chy of dense clusters of different densities. Some of the key features of Auto-HDS include an
interactive 2D visualization framework, ability to address large clustering problems, ability to
filter out irrelevant data, ability to identify clusters of different densities and the ability to select
and rank clusters using a custom stability criterion. All these key features make it a good fit
for addressing several problems with the bio-informatics datasets. Although the GeneDIVER
implementation of Auto-HDS is suitable for solving the clustering problems in several domains,
it takes relatively long time and more memory when it comes to large volume datasets. For
example, it takes approximately 1.5 days to run GeneDIVER on a 3-D astronomy dataset of 2
million data points on a 8 Core AMD machine. In this chapter, we present ’Partitioned Auto-
HDS’ that is an improved version of the Auto-HDS algorithm. The statistics presented in this
chapter were collected using the MATLAB based Partitioned Auto-HDS on a modest dual core
AMD desktop machine. A more detailed explanation of Java based Partitioned Auto-HDS,
which runs even faster, is presented in Chapter 15.

An overview of Partitioned Auto-HDS is as follows: divide the dataset into multiple parti-
tions followed by stitching the clusters obtained from each partition. The theory behind Par-
titioned Auto-HDS, an overview of the components in Partitioned Auto-HDS, the correctness
of the new framework and the speed up achieved have been discussed in the following sections.
The issues that have been addressed to ensure the correctness of Partitioned Auto-HDS are
also explained briefly in this chapter.

11 Partitioned Auto-HDS

As mentioned earlier, Auto-HDS identifies clusters of different densities and finds a compact
hierarchy of dense clusters. The dense clusters in the hierarchy are recovered from an inde-
pendent set of iterations where each iteration finds clusters of a specific density. A simple
Auto-HDS algorithm involves repeated calls to the density shaving algorithm with different
but automatically computed rε. Partitioned Auto-HDS consists of three steps: partitioning
the feature space into overlapping partitions, repeated calls to Modified Density Shaving on
each partition followed by Stitching. In Auto-HDS, clusters of a specific density would involve
a call to density shaving algorithm. In case of Partitioned Auto-HDS, this would involve par-
titioning (Partitioner), Auto-HDS on each partition (SlaveDIV ER), followed by stitching
(Stitcher). The proof of correctness12 of Partitioned Auto-HDS can be narrowed down to
verifying the correctness of clusters identified in a specific iteration (i.e clusters of a specific
density).

Lemma 11.1. Given a dataset, the number of clusters is always either less than or equal to
the number of dense points in the dataset.

12correctness is defined here as results of Partitioned Auto-HDS being identical to those of Auto-HDS.
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Assume the number of clusters is greater than the dense points. In Auto-HDS, the dense
points are identified and the rest are classified as non-dense points. In identifying the clusters,
only dense points are considered and hence a non-dense point can never belong to a cluster. In
density based clustering, each (dense) data point can belong to just one cluster (unlike in some
other clustering techniques where a data point can belong to more than one cluster). Since
only dense points can be clustered, even in the worst case of each dense point belonging to a
different cluster, the number of clusters is equal to the dense point count. Hence, the number
of clusters is always less than or equal to the number of dense points in the dataset.

11.1 Partitioner

In this stage of Partitioned Auto-HDS, the dataset is divided into p partitions of approximately
equal extent along each dimension of the feature space. In very simple terms, the feature space
is diced up into segments of equal length along each dimension, resulting in each partition
occupying a contiguous region. Furthermore, the partitions are created so that they partially
overlap along each dimension. Furthermore, we create partitions that are overlapping along
each dimension by exactly 3 ×rε. We now show why that is required in the Partitioner for
Partitioned Auto-HDS to work correctly.

Lemma 11.2. An overlap of at least rε between adjacent partitions along each feature dimen-
sion is required to guarantee that each point in the dataset is correctly clustered in at least one
of the p partitions.

From the definition of the Auto-HDS algorithm, a data point is labeled as a dense point if
at least nε data points (including itself) are enclosed within the radius rε. Therefore, for all the
data points in a partition to be correctly classified as dense or non-dense point, the partition
should include data points from the adjacent partitions that are within a certain distance from
the partition border. An extra band of width of rε guarantees the accurate classification of the
data point that lies exactly on the partition border. Since a border point (that lies exactly on
the border of the partition) is an upper bound case, it is guaranteed that all the other partition
(border) data points will be accurately classified as a dense/non-dense point. It is important
to note that an extra band of width of rε into the adjacent partition results in a total overlap
of 2 × rε between any two adjacent partitions.

Note that the resulting partitions get populated based on the distribution of the data points
in the feature space. Therefore, the number of points in each partition may not be the same.
Hence the computing load may not be equally distributed across all partitions13.

From Property 11.2, an overlapping width of at least rε guarantees correctness of the clusters
that are confined in the non-overlapping region of a partition. To verify the correctness of
clusters across all partitions, we need to ensure the following:

1. Clusters should have unique labels across all partitions.

2. A cluster that is split across multiple partitions should be assigned a unique label.

13We do not address this issue in this thesis; for future work, a more advanced partitioning strategy that
results in approximately equal load in each partition could be developed using estimates derived from a random
sample of the original distribution.
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The first case can be handled by relabeling clusters such that no two clusters from different
partitions have the same label. But this solution does not solve the second problem of clusters
spread across multiple partitions. Since each partition has unique cluster labels, a cluster that
is spread across multiple partitions will be assigned different labels.

A solution to handle both cases would therefore be to relabel the clusters that are confined
to a single partition. However clusters, that are spread across multiple partitions, should be
handled separately such that a cluster gets the same label irrespective of the partition. The
first step towards solving this special case would be to identify these clusters and we claim that
this is possible with an overlap of at least 3 × rε between adjacent partitions. (This claim will
be proved eventually in Property 13.1)

In an overlap of 3 × rε between adjacent partitions, 1.5 × rε will come from each partition.
Hence each partition will include an extra band of width of at least 1.5 × rε from the adjacent
partitions along each dimension.

Figure 1: Two Adjacent Partitions PartitionOne and PartitionTwo of Partitioned Auto-HDS
overlapping along feature dimension x.

This overlapping section of 3 × rε can be divided into three regions of width rε each. Let
these sections be A, B and C shown in Figure 1. Note that if the overlap between partitions
increases beyond rε, the width of Section A and C remain the same but Section B linearly
increases with increase in the overlap. The data points of a partition can be categorized into
three categories:

1. points from this partition that are correctly classified (Category 0).

2. points from the adjacent partition that are incorrectly classified (Category 1).

3. points from the adjacent partition that are correctly classified (Category 2).

A pictorial representation of the three data point categories is in Figure 2.
From Property 11.2, an extra band of width of at least rε is required for identifying the

dense points. Hence the dense points in Section A and Section B of PartitionOne will be
identified correctly because of the extra band of width rε formed by Section C. Likewise, the
dense points in Sections B and C are identified correctly in PartitionTwo with the extra band
of width rε formed by Section A. Note that the dense points in Section A and C are wrongly
identified in PartitionTwo and PartitionOne respectively.

To summarize
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Figure 2: Three Categories of Data Points in a Partition of Partitioned Auto-HDS

• The dense points in Section B are clustered correctly in both PartitionOne and Parti-
tionTwo.

• The dense points in Section A are correctly clustered in PartitionOne.

• The dense points in Section C are correctly clustered in PartitionTwo.

• The dense points in Section C cannot be clustered correctly in PartitionOne.

• The dense points in Section A cannot be clustered correctly in PartitionTwo.

• In each partition, data points are either correctly clustered or incorrectly not clustered.

• The data points that are incorrectly not clustered come from the adjacent partitions.

12 SlaveDIVER

Once the partitions are created, Auto-HDS on each partition is then used to find clusters for
different Auto-HDS levels, each of which correspond to different densities as given by Equa-
tion 2. With the dense clusters obtained from this module, the Stitcher merges the dense
clusters across all partitions.

13 Stitcher

The job of the stitcher is to relabel clusters found across multiple partitions thus giving us the
final clustering that is identical to the non-partition Auto-HDS. Stitching is the second main
component, next to partitioner, that is responsible for the correctness of the algorithm. Since
the dataset can have multiple partitions and multiple dimensions, stitching can be thought
of as having three stages. A typical stitching component may or may not include all the
three stages depending on the number of partitions and dimensionality. The three stages of
Stitching - Stitching Between Two Partitions, Stitching Along One Dimension and Stitching
Along Multiple Dimensions - are discussed in more detail in the following sections.
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13.1 Stitching Two Partitions

In the overlapping region of 3 × rε between adjacent partitions, dense clusters in Section A&B
of first partition and Section B&C of second partition are identified. Section B is present in
both the partitions and stitching of the cluster is done based on the dense points in Section B.
There are two main cases that should be considered for stitching:

No Dense points in Section B
In the case where there are no dense points found in Section B, it can be concluded
that the clusters in PartitionOne are independent of the clusters in PartitionTwo. Hence
Stitching need not be performed.

Dense points in Section B
In this case, there is at least one dense point found in Section B. The cluster labels from
PartitionOne and PartitionTwo of the dense points in Section B will not match since
labels from different partitions are guaranteed to be unique. However the dense points in
Section B will be identified in both PartitionOne and PartitionTwo. Taking advantage
of this fact, stitching is performed by iterating through each dense point in Section B
and finding the labels from both the partitions, say LabelOne and LabelTwo. Once the
labels are identified, the dense points with LabelOne from PartitionOne and dense points
with LabelTwo from PartitionTwo are relabeled to a new cluster label, say LabelNew.
The complexity associated with Stitching is therefore dependent on the number of dense
points in Section B.

Hence this optimized stitching logic offers significant performance improvement in practice
as the number of dense points to the number of clusters ratio can be very high for many
problems.

13.2 Stitching Along One Dimension

13.2.1 Linear Traversal

In this approach, if there are p partitions along a dimension, then the partitions are stitched
in a linear fashion, say (1, 2), followed by (2, 3) and this goes on till (p − 1, p). It can be
seen that there are totally (p − 1) stitches involved along a dimension that has p partitions.
The time complexity associated with Linear Traversal can be approximated as O(p× clusavg),
where clusavg is the average number of clusters in Section B of the p− 1 stitches performed.

13.3 Stitching Along Multiple Dimensions

The number of partitions in Partitioned Auto-HDS increases exponentially with increase in di-
mensionality. Stitching performed in an organized manner will avoid unnecessary computation
and will therefore improve performance. The idea is to perform Stitching along one dimension
at a time and then move on to the second dimension.

The fact that partitions once merged can be considered as a single unit for further processing
is extensively used in stitching along multiple dimensions. The dimensions already stitched are
considered as a single unit if there are multiple partitions involved along this dimension. In
case of a 2D dataset with 8 partitions along the first dimension, the entire row stitched earlier
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can be considered as a single unit. Based on the same argument, the first two partitions along
the second dimension can be represented as ((1, 2, 3, 4, 5, 6, 7, 8), (9, 10, 11, 12, 13, 14, 15,
16)). Stitching along the second dimension is again performed in a linear fashion. So if there
are 4 partitions along the second dimension, totally three stitches are performed in two (log 4
= 2) rounds. On a 2 dimensional dataset with m × n partitions, if linear stitching is performed,
the stitching time complexity can be approximated as O(m × n × clusavg).

Lemma 13.1. A minimum overlap of at least 3 × rε is required for the correctness of the
clusters across all partitions after stitching.

From Property 11.2, an overlap of 3 × rε will ensure that the dense points in Section B
of width rε between adjacent partitions are correctly identified. The dense points separated
by a distance of less than or equal to rε should belong to the same cluster irrespective of the
partitions. If the width of Section B is less than rε, the two border dense points separated by
a distance of rε (upper bound case) will belong to different clusters as the dense points do not
lie in Section B. Since merging of clusters is based on the dense points in Section B, the width
of Section B should at least be rε (upper bound case). As mentioned earlier, Sections A and
C have a fixed width of rε each. Hence, it has been proved by contradiction that an overlap of
at least 3 × rε is required for the correctness of the Partitioned Auto-HDS algorithm.

14 Results

The scale-up factor can be defined as ratio of the time taken by the Auto-HDS to the time
taken by Partitioned Auto-HDS to solve a problem. The scale-up achieved with Partitioned
Auto-HDS comprises of two components: scale-up based on the dataset size and scale-up
based on the number of partitions. The dataset scale-up increases with increase in the dataset
size, whereas the partition scale-up increases with increase in the number of partitions until
a threshold, after which there is no noticeable scale-up. The increase in the dataset scale-up
is due to the fact that the computational and storage complexity associated with Auto-HDS
increases drastically with increase in the dataset size, whereas the complexity associated with
Partitioned Auto-HDS is relatively low because of multiple smaller subsets. The increase in
partition scale-up is because the kernel density estimate needs to be done only for a smaller
neighborhood of data points within a partition; however, beyond a certain point, the overhead
associated with the partitioning and stitching dominates the overall complexity and hence there
is no increase in the partition scale-up.

The results in this section are from the MATLAB implementation of Partitioned Auto-
HDS. The speed-up achieved using Partitioned Auto-HDS was tested on an artificial dataset
Sim-2 [10]. The Sim-2 dataset was generated containing five 2-D Gaussian distributions of
different variances, where each distribution corresponds to a cluster. Since the ground truth
is known, this simulated dataset is very useful in verifying the correctness of the clustering
algorithms. Figure 3 captures the behavior of Partitioned Auto-HDS based on the dataset size.
The time complexity increases with increase in the dataset size as expected. The speed-up
achieved with respect to Auto-HDS also improves gradually as the dataset size increases. In
these experiments, both the dimension(2) and partitions(4) were held constant and the dataset
size was varied.

Figure 4 and 5 capture the behavior of Partitioned Auto-HDS based on the number of
partitions created in the dataset of size 9000. The time complexity decreases gradually as
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Figure 3: Execution time for varying size of the 2-D Sim-2 Dataset (4 Partitions).

the number of partitions increases and after a certain point, the curve gets almost flattened
and there is not much decrease in the computational time complexity. This behavior could be
attributed to two reasons: (1) the decrease in computational time complexity is small beyond a
certain number of partitions such that the curve looks flattened relative to other sections in the
graph (2) the time complexity of stitching is directly dependent on the number of partitions
and hence the computational time complexity is dominated by the stitching operation as the
number of partitions increases.

In the experiments shown in Figure 6, the dataset size (3000) and the number of partitions
(4) are held constant and the dimensionality of the dataset is varied. It is evident from the
plot that not much speed-up is achieved with increase in the dimensionality of the dataset, due
to the curse of dimensionality. As dimensionality increases, the fraction of data points that lie
in the overlapping region outweighs the fraction of data points that lie in the non-overlapping
region. The amount of unnecessary computation, that is performed to ensure the correctness of
the algorithm, increases as the volume of data points in the overlapping region increases. Hence
it can be concluded that Partitioned Auto-HDS outperforms Auto-HDS on lower dimensional
datasets (approximately up to 10D), whereas Auto-HDS outperforms Partitioned Auto-HDS
on higher dimensional datasets. Unlike Partitioned Auto-HDS, Auto-HDS depends only on the
dataset size and hence the time complexity is constant irrespective of the dimensionality of the
dataset.

15 Java Based Partitioned Auto-HDS

This chapter discusses the Java implementation of Partitioned Auto-HDS in more detail. It has
been shown from the MATLAB implementation of Partitioned Auto-HDS that given a complex
dataset, clusters that are identical to Auto-HDS are obtained in a more efficient manner. A few
limitations with the MATLAB implementation are (1) memory is taxed heavily due to the lack
of features like streaming and therefore cannot scale up to large datasets, (2) Implementation
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Figure 4: Execution time of Auto-HDS and Partitioned Auto-HDS for varying number of
partitions on the 2-D Sim-2 Dataset of size 9k.

requires the commercial platform ’MATLAB’ for finding clusters in the dataset, (3) MATLAB
interpreter runs much slower than Java. The advantages of the Java based implementation
include efficient use of memory using streaming and ability to use the implementation to solve
clustering problems on most of the platforms. Also, a Java based implementation does not
require proprietary MATLAB license to run.

The existing Java heap-based implementation of Auto-HDS, GeneDIVER, can be used
to handle reasonably large clustering problems. GeneDIVER includes an interactive SWING
based interface that enables the user to visually analyze the hierarchy of clusters obtained from
Auto-HDS. The improvement in time and space complexities is achieved by various optimiza-
tions including a custom heap sort that reuses the partially sorted heaps present in secondary
storage and does not load the entire distance matrix into memory. By building Java based
Partitioned Auto-HDS as an extension of GeneDIVER, several useful features of GeneDIVER
are retained. An introduction to Java based Partitioned Auto-HDS followed by a detailed
explanation of the modules in Partitioned Auto-HDS is presented in this chapter.

16 Introduction

Recall from Property 13.1, an overlap of 3 × rε is required between adjacent partitions to ensure
correctness of the algorithm. Partitioning of the dataset is based on rε, as this determines
the degree of overlap required between adjacent partitions. Therefore the first major challenge
associated with the Java Implementation is to obtain the list of rε for hierarchical clustering rεlist
to find clusters of different densities. In GeneDIVER, once the distance matrix is sorted, rεlist is
calculated from the distance matrix based on the parameter rshave. Sorting the distance matrix
and calculating rεlist is a cumbersome task with large volume datasets as the O(n2) distance
matrix may not fit into memory of a single machine. GeneDIVER handles this problem with
such large datasets by not loading the O(n2) distance matrix into memory at any point of
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Figure 5: Execution time of Density Shaving and Modified Density Shaving (Partitioned Auto-
HDS) for varying number of partitions on the 2-D Sim-2 Dataset of size 9k.

time and by sorting distances from one data point at a time. GeneDIVER estimates rε for
each of the Auto-HDS levels based on the desired shaving fraction rshave given by Equation 2
and 3. However, for the Partitioned based extension, the correct rε cannot be computed from
the partitions as the number and distributions of data points in each partition can be very
different. This problem is addressed by finding an approximation for rεlist using a sampling
of the whole data, which takes considerably much less time. Note that this only leads to
approximations in the overall shaving rates and not the correctness of the Auto-HDS clusters.
We still get a subset of the HMA cluster hierarchy that follows an approximately exponential
shaving rate. Hence Java based Partitioned Auto-HDS includes ’Parameter-Estimator’ phase
in addition to the ’Partitioner’, ’SlaveDIVER’ and ’Stitcher’ phases discussed in Chapter 9.

Java based Partitioned Auto-HDS includes five modules that are listed below:

1. Parameter-Estimator

2. Partitioner

3. SlaveDIVER

4. Stitcher

5. Compact-HDS

The first four modules form the major components of Partitioned Auto-HDS and the im-
provement in performance over Auto-HDS can be attributed to these modules. A block diagram
that indicates control flow and data flow between different components of Partitioned Auto-
HDS is displayed in Figure 7.

17 Parameter-Estimator

In this module, a sampled subset of the complete dataset is used for estimating rεlist. A random
sampling of the dataset is performed with the subset size determined by the configurable
parameter - ’random rate’. GeneDIVER returns a list of rε on the sampled subset.
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Figure 6: Execution time of Auto-HDS and Partitioned Auto-HDS for varying number of
dimensions of the Sim-2 Dataset of Size 3k (4 Partitions).

Parameter−Estimator phase gives an estimate of rε for the large dataset from its sampled
subset. The rεlist value estimated is used in the succeeding stages to find dense clusters. Since
Partitioned Auto-HDS takes much less time relative to Auto-HDS, the overhead associated
with adjusting rεlist and re-running the algorithm is very less. This stage is optional if the user
has an idea of rεlist to be used for the dataset.

The overhead associated with this phase is dependent on the configurable parameter randomrate
and the overhead increases as randomrate increases. This is because as randomrate increases,
the subset size increases and hence the time complexity of GeneDIVER on this sampled subset
increases. Note that an estimate of rεlist is calculated using the first few steps of Auto-HDS
(Algorithm 2). Hence, estimating the rεlist is not as time consuming and complex as Auto-HDS
since the major overhead is associated with finding dense clusters in the dataset.

Algorithm 2 Parameter-Estimator
Input: Sampled Distance matrix MS , nε, rshave
Output: n× niter Cluster hierarchy matrix L.

Initialize all values in L to 0.
[Mnbr

rad,M
nbr
idx ] = sortrows(MS)

5: [idxnε , radxnε ] = sort(Mnbr
rad(·, nε))

Compute nnclist using Equation 3.
rεlist = radxnε(nnclist)

17.1 Discussion and Future Work

In this implementation, the O(n2) distance matrix is never loaded into memory and is persisted
in the secondary storage. By sorting one data point at a time, memory is not taxed heavily,
thereby making it possible to address large clustering problems. rεlist depends only on the nthε
closest neighbor of each data point. As only the first nε neighbors of a data point are sorted,
the memory usage of Parameter-Estimator can be approximated as O(n × nε).
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Figure 7: Overview of the Java Based Partitioned Auto-HDS Implementation.

Sorting of each data point is independent of any other data point and this fact leaves room
for further optimization using multiple machines. The speed up achieved is directly dependent
on the number of machines nmachine. The memory usage using nmachine machines is given by
O((n × nε)/nmachine).

18 Partitioner

The dataset is partitioned into overlapping subsets and Auto-HDS is run on each subset.
Recollect the fact that partitioning is based on the feature space. Hence, two data points of
the same cluster can belong to different subsets due to their overlapping nature. For example,
in a 3D dataset, a data point can belong to up to 8 partitions. An upper bound on the total
number of partitions possible for a data point depends on the number of dimensions and is
given by 2d, where d is the dimensionality of the data. A major step in this phase is therefore
to identify all possible partitions that a data point belongs to as it is read from the file.

In Chapter 9, we discussed three sets of data points in a single partition.

1. data point from this partition that is correctly classified (0).

2. data point from the adjacent partition that is incorrectly classified (1).
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3. data point from the adjacent partition that is correctly classified (2).

In each partition, along with the data point, an additional flag is maintained. A flag value
of 0 refers to data points from the same partition, whereas a flag value of ’1’ and ’2’ refer to
data points from adjacent partitions. Only the data points with flag value of 0 and 2 will be
correctly clustered. This information is used in the Stitcher module that stitches the clusters
from all the partitions. The pseudo-code of Partitioner is shown in Algorithm 3.

18.1 Discussion

Some of the key features and limitations of Java based Partitioner are as follows:

1. As the data point is read from the input file, all the partitions that the point might belong
to are calculated in O(d) time, where d is the dimensionality of the data. Therefore the
time complexity of Partitioner is approximately O(n×d), where n is the dataset size. Note
that the time complexity is independent of the total number of partitions. For example,
the time taken for a dataset with 25 partitions and a dataset with 100 partitions are
comparable.

2. The partition(s), found in O(n × d) time, are updated with the data point for further
processing. After the update, the data point is no longer needed in this phase. Hence a
space complexity of O(1) is achieved by immediately clearing the data point from memory.
Since partitioning is performed on a point by point basis, the entire dataset will not be
loaded into memory at any point of time. The fact that the memory is not heavily loaded
is very helpful when it comes to large volume datasets.

3. The border points might belong to more than one partition due to the overlapping nature
of the partitions. As dimensionality of the dataset increases, the border points can belong
to multiple partitions (upper bound given by 2d). Multiple partitions, that a data point
belongs to, are found using a recursive algorithm and the time complexity associated
with this operation is O(d × 2d). But in the case of low dimensional datasets, there are
very few border points that belong to multiple partitions. Also, the number of dimension
is negligible compared to the dataset size. The time complexity of the Partitioner is
therefore not dominated by this O(d×2d) recursion logic and hence the overall complexity
can still be approximated to O(n× d) time and O(1) space.

4. Partitioning is further optimized (explained below) as the storage complexity is just
dependent on the dataset size and the number of partition, and is independent of the
total number of iterations required for obtaining clusters of different densities.

5. Auto-HDS can accept either a vector space matrix or a distance matrix as input. As
mentioned earlier, the data points are partitioned based on the feature space. Hence,
unlike Java based Auto-HDS, this implementation cannot just take the distance matrix
as the input. Java based Partitioned Auto-HDS will need the vector space input matrix
irrespective of the existence of the distance matrix.
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Algorithm 3 Partitioner

Input: Dataset (feature space) x, Partition Matrix partition, rε
Initialize: maxaxis,minaxis
ndp = length(x)
naxis = length(partition)

5: np = prod(partition)
for i = 1 to naxis do

maxaxis(i) = max(x(:, i))
minaxis(i) = min(x(:, i))

end for
10: Initialize boundaxis for storing the boundary info

for i = 1 to naxis do
boundaxis(i, 1) = minaxis(i);

end for
// find the boundaries for each partition along all the axes

15: for i = 1 to naxis do
for j = 1 to partition(i) do

boundaxis(i, j + 1) = (maxaxis(i) ∗ j)/partition(i)
end for

end for
20: // track the partition along each dimension

partitiondpaxis = ones(1, naxis)
finalaxis = zeros(1, naxis)
initaxis = zeros(1, naxis)
for i = 1 to np do

25: subset = [1 : ndp]
for k = 1 to naxis do

initaxis(k) = boundaxis(k,partitiondpaxis(k))

finalaxis(k) = boundaxis(k,partitiondpaxis(k) + 1)
finalaxis(k) = finalaxis(k) + (1.5 ∗ rε)

30: initaxis(k) = initaxis(k)− (1.5 ∗ rε)
subsetfinal = intersect(find(x(:, k) >= initaxis(k)), find(x(:, k) <= finalaxis(k)))
subsetfinal = intersect(subsetfinal, subset)

end for
xsubset = x(subsetfinal, :)

35: // update the subset data to the file system
// update the partitions along each dimension
for j = 1 to naxis do

if partitiondpaxis(j) < partition(j)) then
for m = 1 to j − 1 do

40: partitiondpaxis(m) = 1
end for
partitiondpaxis(j) = partitiondpaxis(j) + 1
break

end if
45: end for

end for
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18.1.1 Optimized Partitioning

For a given rε, it has been proved that the dense clusters of Partitioned Auto-HDS are identical
to the Auto-HDS clusters. In order to perform hierarchical clustering, a list of rε (represented
by rεlist) that is obtained in the Parameter −Estimator phase is used. Let the total number
of partitions be npartition and the total number of iterations be niter. Recall that for a single
iteration, npartition partitions are created with the degree of overlap between adjacent partitions
determined by rε. For niter different rε values maintained in the list rεlist, the total number of
partitions across all the iterations are given by O(npartition × niter). This mandates the need
for maintaining (npartition × niter) separate files in the file system. As interaction with the file
system is an expensive operation, communication and maintenance of O(npartition × niter) files
is the most expensive step involved in this phase.

Note that rεlist gives the list of rε to be used for each iteration in descending order. From
Property 13.1, the minimum overlap between adjacent partitions is 3 × rε. Therefore, an
overlap with the adjacent partitions that is greater than 3 × rε will still produce the same
results. Hence unnecessary I/O File System Communication in this module as well as in the
succeeding modules is avoided by just partitioning using the maximum(rεlist). For the first
iteration, the partitioning just meets the minimum overlap requirement of 3 × rεlist, whereas for
the rest of the iterations, overlap exceeds the minimum overlap requirement. This optimization
gives a steep decrease in interaction with the file system as the files are reduced from O(npartition
× niter) to O(npartition). The decrease in file count improves the performance of Partitioner
and reduces I/O communication overhead in Partitioner, SlaveDIVER and Stitcher.

18.2 Future Work

In a future extension, it would be possible to reduce the file system communication further by
decreasing the file count from npartition × niter to npartition. This is possible because with high
dimensional large datasets, due to the curse of dimensionality, an overlap of 3×rε involves a lot
of unnecessary computation. Recall from Property113.1 that identical results can be achieved
with lesser computation and increased performance by using an overlap of just 3 × rε.

The problem caused by the CurseofDimensionality can be addressed by maintaining an
additional flag for each data point in the final partition. The flag indicates the maximum
number of iterations that a data point can be used for. For instance, a flag of 1 indicates
that the data point can be used only in the first iteration of the partition, whereas a flag of
2 indicates that the data point can be used in both first and second iterations. Recall that
the rεlist list will be sorted in descending order. In a typical problem, flag is at least 1 for
each data point, whereas it is niter for a few data points. This is explained by the decreasing
nature of rε as the number of iterations increases. At the expense of an additional flag, this
optimization will reduce a lot of unnecessary computation that might be performed due to the
curse of dimensionality.

19 SlaveDIVER

In this module, the cluster label of each data point at the partition level is obtained using Auto-
HDS. The parameters to this phase would include the estimated rεlist (from the Parameter-
Estimator), a subset of the original dataset based on the partition (from Partitioner), distance
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matrix and nε.

The optimizations included in GeneDIVER give very good scalability and performance.
In the standard implementation of Auto-HDS, a lot of computation is involved in sorting the
distance matrix (one data point at a time for scalability) to find the nthε neighbor required for
computing rε. We modified the Java code so that it is now possible to pass rε as a parameter
to the GeneDIVER clustering module. Therefore sorting each data point now involves only
finding the neighbors within the distance of rε. Thus the unnecessary computation associated
with finding the first nε neighbors of both dense and non-dense points is avoided. Given that
most datasets have few clusters and a large amount of irrelevant data, the overhead associated
with sorting non-dense points is reduced.

The Density Shaving algorithm used in this phase is similar to the standard Density Shaving
algorithm with a few modifications. The main change to Density Shaving is that rεlist is passed
as a parameter and hence the first few steps that are performed for calculating rεlist can be
ignored. The overall complexity of the algorithm remains the same but for a considerable
reduction in computation. The pseudo-code of this Modified Density Shaving algorithm is
shown in Algorithm 4.

Partitioned Auto-HDS results in a compact hierarchy of clusters that are obtained in
d− log(n)

log(1−rshave)e iterations. The SlaveDIVER module operates on one partition at any point of
time. The SlaveDIVER module can be summarized as repeated calls to Modified Density Shav-
ing for each rε in the estimated rεlist (obtained from Parameter-Estimator). Since Auto-HDS
typically involves repeated calls to the Density Shaving algorithm, the term ’Modified Auto-
HDS’ can be used to refer to repeated calls to Modified Density Shaving. The pseudo-code of
SlaveDIVER is shown in Algorithm 5.

Recall that there are three types of data points in each partition. When the cluster labels
are updated to the file system, labels are updated only for those data points that are classified
correctly (Catefory 0 and Category 2). The cluster label of each data point in Category 1 (may
or may not be correctly classified) is updated as zero and is therefore never used in merging
the clusters across partitions.

20 Stitcher

The next phase is the Stitcher that stitches the clusters obtained from different partitions in
order to generate the final clusters. The pseudo-code of the Stitcher is shown in Algorithm 6.
The logic is based on the approach described earlier in Section 20.

20.1 Discussion

In Stitcher, a local copy of the cluster label (initialized to zero) for each data point is maintained
in memory. The cluster labels corresponding to each partition are read from the file system
sequentially and the labels are updated in the local copy. Some of the key features of this
implementation are presented below:

1. Only one partition is considered at a time and hence only the file corresponding to the
partition is opened for communication. Once a data point cluster label is read, either
the same label is used or a new label is generated and the local copy is updated. As the
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Algorithm 4 Modified DS
Input: Distance matrix MS , nε, rε
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: {labi}ni=1 = 0
nc = dn(1− fshave)e

5: // sort each data row of the distance matrix such that all the
// neighbors within a distance of rε are sorted
[Mnbr

rad,M
nbr
idx ,M

nbr
len ] = sortrows(MS , rε)

// find the data points that has at least nε neighbors
idxnε = find(Mnbr

len ≥ nε)
10: // recover the dense points that has at least nε

// neighbors within the distance of rε
G = x(idxnε)
// update the dense points count in nc
nc = length(idxnε)

15: /* Lines 17-33: For each point in G, find other dense points
within rε distance of it and make sure they have the same
labels, if not, relabel */
for i = 1 to nc do

/* Find the position of the last point within
20: distance rε of dense point x(idxnε(i)). */

idxb = Mnbr
len (i)

/* Neighbors of x(idxnε(i)) are the idxb closest points, all
within rε distance. */
Xnbrs = Mnbr

idx (idxnε(i), l)idxbl=1

25: // save the neighbors
// Identify neighbors that are dense points
Xdnbrs = Xnbrs ∩ G
// Recover their labels that are not 0
Ldnbrs = unique(lab(Xdnbrs))/{0}

30: // Relabel all points that share this label to label i
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i
lab(indexOf(Xdnbrs)) = i

end for
Count clusters: k = |unique(lab)|/{0}

35: Remap the non-zero labels in lab to the range 1 to k.
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Algorithm 5 SlaveDIVER
Input: nε, rεlist, npartition
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: lab = 0
for p = 1 to npartition do

5: Compute Distance matrix: Mp
S

// compute the total number of iterations
niter = length(rεlist)
// call Modified Density Shaving for each rε
for i = 1 to niter do

10: // extract the rε value
rε = rεlist(i)
// extract the cluster labels for each rε on all partitions
labpi = ModifiedDS(Mp

S , nε, rε)
end for

15: end for

data point can be immediately cleared from memory, it is not required to load the entire
partition into memory.

2. As discussed in the algorithm, once a new label is generated, the data points with the old
labels are updated. Hence whenever stitching is performed, it is mandatory to perform
a linear search to extract the subset with the old labels. Therefore the time complexity
associated with this operation is O(n× clusteravg), where n is the original dataset count
and clusteravg is the average number of clusters that are spread across partitions. The
time complexity associated with this merging of clusters across partitions increases with
increase in the complexity of the dataset. This problem has been addressed by maintain-
ing a two way association such that given a label, the list of data points with the label
can be retrieved in time O(1). This two way association is obtained by maintaining an
array of labels and a hash map of lists of data points. Though the space complexity is
increased by n, the overall space complexity is still O(n), but the time complexity has
been reduced considerably from O(n × clusteravg) to O(clusteravg). A linear search is
not required whenever a new label is generated; however, cleanup should be performed
immediately. The hash map has to be updated with the new label and cleared of the
old labels, but still, these operations can be performed in constant time. Hence this two
way association gives considerable improvement in performance, even though the space
complexity is increased by n.

21 Auto-HDS

With Stitcher, the cluster labels generated are as accurate as the Auto-HDS algorithm. The
next task is to smoothen the clusters and to generate a compact hierarchy of clusters. In
Partitioned Auto-HDS, the Auto-HDS hierarchy generation module of GeneDIVER has been
reused to generate a compact hierarchy of clusters and this hierarchy is presented to the user
using the interactive 2D visualization framework that comes with the GeneDIVER.
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Algorithm 6 Stitcher
Input: npartition, niter
Output: Clusters label− n× niter matrix

Initialize: label = 0
Initialize: labc = 0

5: for p = 1 to npartition do
Extract from File System: indexp, labp
// generate a new set of labels to make sure labels across
// all partitions are unique - usually by adding labc
labnew = labp + labc

10: labc = labc + length(unique(labp))
// track the data points that belong to this partition
nc = length(indexp)
// perform stitch on all iterations
for i = 1 to niter do

15: for d = 1 to nc do
// find the global index from the local index
global = indexp(d)
if labeli(global) == 0) then

// point does not lie in the Section B - straightforward
20: labeli(global) = labnew(d)

else
if labeli(global) 6= labnew(d) then

// point lies in Section B
// find the points that should be relabeled

25: idx1 = find(labnew == labnew(d))
idx2 = find(labeli == labeli(global)
// generate a new unique label and update the points
labc = labc + 1
labnew(idx1) = labc

30: labeli(idx2) = labc
end if

end if
end for

end for
35: end for
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22 Evaluation

The results for Java based Partitioned Auto-HDS are described in this section. A brief introduc-
tion of the datasets used in the experiments and results from scalability testing are presented
in this section.

22.1 Datasets

We have used two datasets for testing Partitioned Auto-HDS. A brief summary of the datasets
used is presented in the Table 22.1. The Sim-2 dataset [10] is an artificial dataset generated
using five 2-D Gaussian distributions of different variances, where each distribution can be
considered as a cluster. Since the ground truth of the Sim-2 dataset is known, this dataset
is very useful in the verification phase of the clustering algorithms. In Table 22.1, n refers to
the dataset size, d refers to the dimension and D refers to the distance measure employed in
Partitioned Auto-HDS.

Table 1: Datasets used for evaluating Java based Partitioned Auto-HDS.

Dataset Source n d D
Halo Astronomy 600-18,000 3 Euclidean
Sim-2 Synthetic 1,298 2 Euclidean

22.2 Results

From Figure 8, it can be seen that as number of partitions increases, Partitioned Auto-HDS
takes relatively less time compared to Auto-HDS. However after a certain point, the scale-up
achieved is very small and this can be attributed to the Stitcher module. The time complexity of
the Stitcher is heavily dependent on the data points in the overlapping region between any two
adjacent partitions. With increase in the number of partitions, the overlapping region volume
increases and hence the number of overlapping data points increases. Figure 8 demonstrates
that a scale-up factor as high as 4 is easily obtained on a dataset of size 17500.

Figure 8: Execution time of Java Based Partitioned Auto-HDS for varying number of partitions
on the 2-D Sim-2 Dataset of size 17.5k.
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Figure 9 shows the average running times of Auto-HDS and Partitioned Auto-HDS on the
Sim-2 dataset of various sizes. It can be seen from Figure 9 that as the dataset size increases,
the scale-up achieved with Partitioned Auto-HDS relative to Auto-HDS increases. Scale-up
factor as high as 2.5 is obtained in Figure 9. However these experiments were performed on
2-D datasets with a fixed number of partitions (2*2) and from Figure 8, it is evident that the
scale-up achieved increases with increase in the number of partitions.

Figure 9: Execution time of Java Based Auto-HDS and Partitioned Auto-HDS for varying size
of the 2-D Sim-2 Dataset (4 Partitions).

As part of scalability testing, Partitioned Auto-HDS was used to identify halos in the
astronomy dataset and the experimentation results are shown in Table 22.2. It can be seen
that it takes approximately 70-80 minutes to find clusters on the dataset of size in 100Ks using
a normal desktop machine, whereas Auto-HDS on a normal desktop cannot handle such a huge
dataset due to the huge computational and storage complexity associated with it. Notice that
the number of partitions is in 100s and it is important to recall that the scale-up increases with
increase in the number of partitions. Hence there is a possibility of achieving a better scale-up
if more number of partitions are used to solve the astronomy problem.

Table 2: Execution Time of Java based Partitioned Auto-HDS on the Astronomy Dataset.

Dataset Size Time (minutes) Partitions
Halo100 110K 77 1000
Halo125 200K 83 500
Halo150 350K 90 1000
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23 Parallel Auto-HDS - A Distributed Implementation using
Map-Reduce

24 Introduction

In this chapter, we present Parallel Auto-HDS, an extension to Partitioned Auto-HDS (dis-
cussed in Chapter 9) that takes advantage of the inherent parallelism in Partitioned Auto-HDS.
A typical implementation of Parallel Auto-HDS will involve multiple machines and therefore
a single machine implementation of Parallel Auto-HDS is identical to Partitioned Auto-HDS
except for the initialization costs. A Hadoop Map-Reduce based Parallel Auto-HDS has been
implemented and this implementation re-uses a few modules of Java based Partitioned Auto-
HDS. An introduction to Parallel Auto-HDS and Hadoop Map-Reduce framework followed by
the implementation details of the Hadoop Based Parallel Auto-HDS is discussed in the following
sections.

25 Parallel Automated Hierarchical Density Shaving (Parallel
Auto-HDS)

Similar to Partitioned Auto-HDS, Parallel Auto-HDS includes the following modules:

• Parameter-Estimator

• Partitioner

• SlaveDIVER

• Stitcher

• Compact-HDS

The massive scope for parallelization in the SlaveDIVER and Stitcher modules have been
exploited to a certain extent in Parallel Auto-HDS. The modules that have been modified in
Parallel Auto-HDS are being discussed in this chapter.

25.1 SlaveDIVER

In this module, dense clusters are identified by repeated calls to Modified Density Shaving
(Algorithm 4) on each partition. Since the partitions are independent of each other, Modified
Auto-HDS can be run on multiple partitions simultaneously using groups of hundreds and
thousands of machines. Parallel Auto-HDS on a distributed environment gives an almost
linear speed-up with increase in the number of machines.

25.2 Stitcher

Stitching, like discussed in Partitioned Auto-HDS, includes three stages - Stitching Between
Partitions, Stitching Along One Dimension and Stitching Along Multiple Dimensions. Stitching
Between Partitions and Stitching Along One Dimension have been optimized further and this
optimization makes best use of the distributed environment.
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25.2.1 Parallel Implementation and Stitching (Between Partitions) Optimization

A typical parallel implementation of SlaveDIVER involves a group of machines that indepen-
dently run Modified Auto-HDS on each partition to find dense clusters. In the stitching logic
discussed in Section 13, the amount of communication between any two partitions is linearly
dependent on the dense points in Section B. An improvement in performance is possible if
there is much less communication between machines in the distributed environment. This op-
timization is achieved by identifying the clusters in Section B. Once the clusters are identified,
the first point in each cluster (based on the feature space) and the corresponding cluster labels
from PartitionOne and PartitionTwo are determined. In the stitching module, with labels of
the first point from each cluster as input, a new label ’LabelNew’ is presented as the output.
The next step is to relabel the dense points with the old labels from PartitionOne and Parti-
tionTwo with the new label. This way, the clusters that are spread across PartitionOne and
PartitionTwo are merged and by giving a new label (usually greater than the total number
of clusters identified so far), it is easy to keep track of the new merged clusters as well as to
maintain the unique cluster label invariant.

The correctness of this optimization step is proved as follows: The dense points of the same
cluster should have the same label. This optimized stitching involves generating a new label for
the two labels passed to the algorithm. The major step in this algorithm is therefore to ensure
that the labels that are passed should belong to the same cluster. Recall that the clusters and
dense points in Section B are correctly identified. By considering the first point in each cluster
of Section B from PartitionOne and PartitionTwo, it is guaranteed that the (old) cluster labels
of the same dense point and hence the same cluster is passed to the algorithm. The dense
points of the same cluster from PartitionOne and PartitionTwo are finally relabeled to the new
label returned from the algorithm. Hence the correctness of this optimization is proved.

In this case, it is evident that the amount of communication between partitions is totally
dependent on the number of clusters in Section B, as just the first point in each cluster is
required. For this stitching to be implemented in a distributed environment, the first dense
point from each cluster (in Section B of the overlap) along with its labels from PartitionOne
and PartitionTwo has to be communicated. The final output of this operation is a new label
’LabelNew’ for the old set of labels (LabelOne and LabelTwo from both the partitions) for the
clusters in Section B.

25.2.2 Stitching Along One Dimension

In Partitioned Auto-HDS, Stitching along one dimension is performed using Linear Traversal
(Section 13.2). We present Hierarchical Traversal that improves the overall performance of
Stitching when used in a distributed environment.

25.2.3 Hierarchical Traversal

In this case, stitching along a dimension is performed in a hierarchical fashion. The logic behind
Hierarchical Traversal is that when the partitions 1 and 2 are stitched, the partitions (3, 4), (5,
6), etc., can be stitched in parallel as they are independent of each other. Please note that once
the partitions are stitched, they can be considered as a single unit. For example, the partition
(1) and (2), once stitched, can be represented as (1, 2).
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Therefore, if there are 8 partitions along a dimension, the initial representation is (1), (2),
(3), (4), (5), (6), (7), (8). After the first round of stitching (that involves multiple parallel
stitches), the state can be represented as (1, 2), (3, 4), (5, 6), (7, 8). A clearer and easier
representation of the same is presented below.

Round 0: (1), (2), (3), (4), (5), (6), (7), (8)

Round 1: (1 , 2), (3 , 4), (5, 6), (7, 8)

Round 2: (1, 2, 3, 4) ,(5, 6, 7, 8)

Round 3: (1, 2, 3, 4, 5, 6, 7, 8)

It is important to note that all the stitches (represented by brackets) that belong to the
same round can be performed in parallel.

The total number of stitches performed is p − 1, which is the same as Linear Traversal.
However, there is massive scope for parallelization in this approach as stitches can be performed
simultaneously and independently in each round using multiple machines. Hence the time
complexity associated with this traversal is not dependent on the total number of stitches
required. But it is dependent on the total number of rounds involved, which is given by
O(logp). The overall complexity associated with this approach can therefore be approximated
as O(log(p) × clusavg) where clusavg is the average number of clusters in Section B.

To summarize, two main categories of stitching, namely hierarchical and linear stitching,
have been discussed so far. The same amount of computation is involved in both the stitching
techniques; however, hierarchical stitching has an edge over linear stitching in a distributed
environment.

25.2.4 Stitching Along Multiple Dimensions

Stitching is performed along one dimension at a time and is similar to the Stitching performed
in Partitioned Auto-HDS. However with hierarchical stitching, the overall performance of this
module can be improved further. On a 2-D dataset with m × n partitions, if linear stitching is
performed, the time complexity can be approximated as O(m × n × clusavg) whereas the time
complexity of hierarchical stitching is given by O(log(m) × log(n) × clusavg). It can therefore
be seen that Hierarchical stitching gives increased speed-up on large volume datasets.

25.3 Conclusion

Parallel Auto-HDS is similar to Partitioned Auto-HDS, with the single machine implementation
of Parallel Auto-HDS being identical to that of Partitioned Auto-HDS. Partitioned Auto-HDS
optimizes Auto-HDS by using the divide-and-conquer approach. Parallel Auto-HDS takes a step
further and optimizes Auto-HDS by using the divide-and-conquer approach and using groups of
machines that make effective use of the massive scope for parallelization in Partitioned Auto-
HDS. Using multiple machines, Parallel Auto-HDS can easily scale up to applications that
involve billions of data points.

26 Introduction to Map-Reduce

In early days, serial programs were used where one instruction was executed after another.
Such serial programs were sufficient to solve medium size clustering problems in reasonable
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time. However these days, some clustering problems involve large amounts of data in terabytes
and petabytes [12]. Serial execution is very slow for today’s problems that involve processing
large amounts of data. Parallel programming reduces the time complexity by making better
use of hardware resources and will usually involve multiple processors. Given that the cost of
medium hardware is relatively cheap compared to a supercomputer, parallel programming that
uses multiple cheap machines is the solution to handle cumbersome tasks. Map-Reduce is one
such parallel programming framework that has been used to implement Parallel Auto-HDS.

Map-Reduce [6] is a parallel programming framework developed by Google that provides a
simple abstraction that hides the complications behind distributed systems like task scheduling,
fault tolerance, task monitoring and load balancing. The simple abstraction enables the user
to be concerned only about the computations involved in the problem and not to worry about
the huge data and the multiple machines employed to solve the problem. Map-Reduce is
getting popular in the machine learning community with numerous machine learning algorithms
being implemented in Map-Reduce [4]. Hadoop [hadoop.apache.org] is an open source Java
implementation of Map-Reduce software framework.

With a single machine, Parallel Auto-HDS performs well compared to Auto-HDS. Parallel
Auto-HDS has massive parallelism inherent in the algorithm that can be effectively used in a
distributed system. Taking advantage of the parallelism, a Hadoop Map-Reduce based Parallel
Auto-HDS has been implemented to handle large volume datasets. The implementation details
of Hadoop Map-Reduce based Parallel Auto-HDS are presented in this chapter.

27 Background - Map-Reduce

Map-Reduce is a parallel programming framework developed for processing huge volumes of
data using hundreds or thousands of machines together. Map-Reduce is a functional program-
ming framework that solves a problem in terms of map and reduce functions. The communica-
tion to, from and between the mapper and reducer functions is in terms of 〈key, value〉 pairs.
The user input is the input to the Mapper stage and the Reducer stage output is the final
output that is presented to the user. The intermediate output from the Mapper stage is the
input to the Reducer stage.

map: <key_in, value_in> -> <key_inter_out, values_inter_out>

reduce: <key_inter_out, list<values_inter_out>> -> <key_out, value_out>

A quick overview of the Map-Reduce framework [6] (Figure 10) is presented to get a clear
picture of the restricted data flow model. Map-Reduce is based on the master-slave architecture
with a single master JobTracker and multiple slaves, also known as worker nodes. JobTracker
schedules tasks on the mapper/reducer worker nodes, re-schedules tasks on the workers in
case of a failure, monitors and reports the progress. With the user input, the JobTracker
schedules tasks on the mapper worker nodes. Once the TaskTracker in the mapper worker
nodes completes the assigned task, the intermediate output file locations are reported to the
JobTracker. With the mapper output from JobTracker, the TaskTracker in the reducer worker
nodes sorts the intermediate data based on the key and processes the data. The final output
file locations from the reducer stages are reported back to the JobTracker.

In addition to the mapper and the reducer stages, there is an optional stage called the
combiner. The combiner is similar to the reducer functionally and is basically an optimization
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Figure 10: Execution Overview - Source [6]

step. In most cases, the combiner class is same as the reducer class. The only difference
between the combiner and the reducer stage is that the combine job is run on each mapper
output independently, whereas the reduce job is applied to the accumulated output from the
mapper stage. By adding the combiner stage, the amount of communication from the mapper
to the reducer stage is reduced to a reasonable extent. Also, notice that as the reduce jobs
work on the accumulated output from the mapper stage, the reducer stage cannot start before
the user input is completely converted into mapper intermediate output.

27.1 Example

Before getting into the implementation details of Hadoop Map-Reduce based Parallel Auto-
HDS, a simple Map-Reduce application is presented for better understanding of the Hadoop
Map-Reduce framework. WordCount application [6], that counts the frequency of each word
in the documents provided, is the most common example used for explaining the hadoop
architecture. The pseudo-code of the ’WordCount’ application is shown below:

Mapper(String key_in, String value_in):

// key_in: document name

// value_in: document contents

for each word w in value_in:

EmitIntermediate(w, "1");
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Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a word

// values_inter_out: a list of counts

int result = 0;

for each v in values_inter_out:

result += ParseInt(v);

Emit(AsString(result));

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a word

// values_inter_out: a list of counts

int result = 0;

for each v in values_inter_out:

result += ParseInt(v);

Emit(AsString(result));

Input to the ’WordCount’ application is a list of documents. The mapper will process one
line of input at any point of time. Each mapper takes ’document name + line number’ as the
input key and the document content as the input value. In the mapper function, for each word
in the document content, a value of ’1’ is emitted as the intermediate output. Notice that there
is an additional stage - combiner - before the reducer and in this case, combiner class is same
as reducer at the functional level. This combiner works on the output of each mapper before
moving onto the reducer stage thereby cutting down on the network communication. In the
reducer function, the intermediate output values are added to get the frequency of each word
in the document.

Input to the Map-Reduce application includes 2 documents:

document 1: Hadoop Reduce Hadoop Reduce

document 2: Map Hadoop Map Hadoop

For instance, the output of the first mapper:

<Hadoop, 1>

<Reduce, 1>

<Hadoop, 1>

<Reduce, 1>

The output of the second mapper:

<Hadoop, 1>

<Map, 1>

<Hadoop, 1>

<Map, 1>

With a combiner stage, the optimized first mapper output:

<Hadoop, 2>

<Reduce, 2>
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With a combiner stage, the optimized second mapper output:

<Hadoop, 2>

<Map, 2>

The final output from the reducer:

<Hadoop, 4>

<Map, 2>

<Reduce, 2>

WordCount application, once written in the form of mapper and reducer functions, can be
effortlessly scaled to huge number of machines.

28 Hadoop based Parallel Auto-HDS

The main ideas discussed in Parallel Auto-HDS are generic and may have to be modified to
a certain extent to suit the distributed environment. Since Hadoop Map-Reduce framework
has a pre-determined and restricted data flow model, not all the ideas discussed in Parallel
Auto-HDS have been implemented in the Hadoop based Parallel Auto-HDS. As discussed in
Section 25, Parallel Auto-HDS includes the following modules:

• Parameter-Estimator

• Partitioner

• SlaveDIVER

• Stitcher

• Compact-HDS

Of all the modules specified above, the most time consuming and parallelizable opera-
tions are performed by the Partitioner, SlaveDIVER and Stitcher. Multiple Map-Reduce jobs
are used to implement the Partitioner, SlaveDIVER and Stitcher. The reasons for not han-
dling the Compact-HDS and Parameter-Estimator modules in the Map-Reduce environment
are as follows: In Compact-HDS, the input data should be loaded into memory at a single
point for compacting the clusters. However in Map-Reduce, the input data is usually split
into fixed width blocks called shards and the shards are distributed across multiple machines.
Hence a distributed system like Map-Reduce cannot be used to implement Compact-HDS. Since
Parameter-Estimator has low time complexity relative to the other modules, a map-reduce job
is not used for this phase.

28.1 Implementation Details

In a map-reduce application, multiple jobs can be configured within the same application.
Each job will have the mapper, combiner (optional) and reducer classes defined in the job
configuration. Recall that the reducer stage will begin right after the completion of the mapper
stage and therefore both the mappers and the reducers cannot run in parallel. Similarly, even
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though multiple jobs can be configured in a map-reduce application, jobs are executed in a
serial fashion. In a map-reduce application, if the input to each job is the same, reducing the
number of jobs will improve the performance to a considerable extent as unnecessary network
communication and computation are avoided.

The main tasks that are to be solved using Map-Reduce involve extracting a subset from the
dataset (for the Parameter-Estimator phase), dividing the dataset into partitions (Partitioner),
finding the cluster labels of each partition (SlaveDIVER) followed by stitching (Stitcher). To
perform these, three map-reduce jobs have been designed and each of these will be explained in
the following sections. The first map-reduce job performs some pre-processing required for the
Parameter-Estimator, Partitioner and Stitcher phases. The second map-reduce job includes
both the Partitioner and SlaveDIVER, whereas the third map-reduce job is the Stitcher.

Figure 11: Overview of Hadoop Map-Reduce Based Parallel Auto-HDS

28.1.1 First Map-Reduce Job: Preprocessor for the Parameter-Estimator, Parti-
tioner and Stitcher

For Parameter-Estimator phase, a subset of the dataset is extracted so that an estimate of rεlist
is obtained by running GeneDIVER on the subset. This is achieved by randomly selecting data
points using a random number generator and ’random rate’ parameter as discussed in Section
17. For the Partitioner, in order to divide the dataset into multiple partitions, the maximum
and minimum along each dimension are required (Algorithm 3). For the Stitcher, dataset size
is required for tracking cluster labels.

Notice that the input to subset extraction (for Parameter-Estimator), maximum and min-
imum along each dimension (for Partitioner) and dataset size (for Stitcher), is the original
dataset. In an effort to reduce the number of map-reduce jobs, these three tasks have been
combined to a single map-reduce job. The pseudo-code of the first map-reduce job is shown
below:

Mapper(String key_in, String value_in):

// key_in: line number

// value_in: data point feature space (list)

for each dim in dimension_list:
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Figure 12: First Map-Reduce Job - Parallel Auto-HDS

EmitIntermediate(dim, (value_in(dim), value_in(dim)));

// extract subset

value = Math.rand();

if (value < random_rate)

EmitIntermediate(dim + 1, value_in);

// calculate total

EmitIntermediate(dim + 2, 1);

Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a dimension

// values_inter_out: a list of data points

int min_result = 0;

int max_result = 0;

int total = 0;

list subset;

// max and min calculation

if (key_inter_out is a dimension)

for each v in values_inter_out:

min_result = Math.min(ParseInt(v), min_result);

max_result = Math.max(ParseInt(v), max_result);

end for

Emit(AsString((min_result, max_result)));

elseif (key_inter_out is (dimension + 1))

// subset extraction
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for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

else

// dataset count

for each v in values_inter_out:

total += 1;

Emit(AsString(total));

endif

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a dimension

// values_inter_out: a list of data points

int min_result = 0;

int max_result = 0;

int total = 0;

list subset;

// max and min calculation

if (key_inter_out is a dimension)

for each v in values_inter_out:

min_result = Math.min(ParseInt(v), min_result);

max_result = Math.max(ParseInt(v), max_result);

end for

Emit(AsString((min_result, max_result)));

elseif (key_inter_out is (dimension + 1))

// subset extraction

for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

else

// dataset count

for each v in values_inter_out:

total += 1;

Emit(AsString(total));

endif

Notice that there is a combiner stage in addition to the mapper and the reducer stages.
The combiner has been added to reduce the volume of communication between the mapper and
the reducer. The total number of reduce jobs has been set as d+2, where d is the number of
dimensions. First d reducer jobs find the maximum and minimum value along each dimension.
The (d + 1)th reducer job collects the sampled data points to create a subset for Parameter-
Estimator. The (d + 2)th reducer job calculates the dataset size. In the reducer class, there is
an if-else condition that handles this logic.
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28.1.2 Second Map-Reduce Job: Partitioner and SlaveDIVER

After the first Map-Reduce job, GeneDIVER is run on the extracted subset for estimating
rεlist. In the second Map-Reduce job, the dataset is partitioned into overlapping subsets using
the estimated rεlist. The pseudo-code of the second map-reduce job is as follows:

Figure 13: Second Map-Reduce Job - Parallel Auto-HDS

Mapper(String key_in, String value_in):

// key_in: line number

// value_in: data point feature space (list)

// find the partitions

partition_list = Partitioner(value_in);

for each partition in partition_list

EmitIntermediate(partition, value_in);

Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: partition

// values_inter_out: a data point

list subset;

// collects the subset

for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: partition

// values_inter_out: a data point
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list subset;

// collects the subset

for each v in values_inter_out:

subset.add(v);

// run SlaveDIVER to find dense clusters

clusters = SlaveDIVER(subset);

Emit(AsString(clusters));

The Partitioner module is used in the mapper, whereas the SlaveDIV ER logic is in-
corporated in the reducer stage. Each data point passed as an input to the mapper uses the
’Partitioner’ to determine the partitions that the data point belongs to. Once the partitions are
determined, 〈partition, data point〉 is emitted for each partition from the mapper stage. The
combiner collects the data points based on the ’partition’ key at the mapper level. The number
of reducer jobs is equal to the total number of partitions created. Each reducer collects the data
points of a specific partition based on the input key which denotes the partition. Once the data
points are collected, the dense clusters in each partition are identified using SlaveDIV ER. The
clusters generated are presented as the output of the second Map-Reduce job. The Auto-HDS
in SlaveDIVER includes multiple iterations that generate dense clusters of different densities.
The output of each partition (same as reducer) is in the form of 〈iteration, cluster − labels〉
pairs where iteration is the iteration number and cluster − labels are the clusters found in
iteration iteration.

28.1.3 Third Map-Reduce Job: Stitcher

The output of the second Map-Reduce Job is the input to the last Map-Reduce Job. Final Map-
Reduce job is the stitcher for merging the dense clusters across all partitions. Notice that the
optimizations added to the Stitcher module in Parallel Auto-HDS have not been implemented in
this Hadoop based Parallel Auto-HDS. This is because the communication among the machines
is handled by the Hadoop framework itself and not by the user. The pseudo-code of the third
map-reduce job is shown below:

Mapper(String key_in, String value_in):

// key_in: iteration

// value_in: data points and cluster labels

// identity function

for each partition in partition_list

EmitIntermediate(key_in, value_in);

Combiner(String key_inter_out, Iterator values_inter_out):

//key_inter_out: iteration

// values_inter_out: list of data points and cluster labels

list label-list;
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Figure 14: Third Map-Reduce Job - Parallel Auto-HDS

// collect the data points and cluster labels

for each v in values_inter_out:

subset.add(v);

Emit(AsString(label-list));

Reducer(String key_inter_out, Iterator values_inter_out):

//key_inter_out: iteration

// values_inter_out: list of data points and cluster labels

list label-list;

// list of data points and cluster labels from each partition

for each v in values_inter_out:

label-list.add(v);

// perform stitching

clusters = Stitcher(label-list);

Emit(key_inter_out, AsString(clusters));

The input to the mapper class is the iteration number and the cluster label of each data
point in the partition (second map-reduce output). The mapper acts as an identify function
and therefore the mapper input 〈iteration, cluster − labels〉 is re-emitted as the intermediate
output. In the combiner stage, labels corresponding to an iteration (rε) are collected at each
mapper level. The number of reducer jobs is equal to the total number of iterations that is
determined using rεlist. In the reducer stage, clusters corresponding to an iteration (rε) from
the partitions are collected and stitched. In other words, each reducer stitches the clusters
of a specific density corresponding to the iteration given by key inter out. The final stitched
clusters of different densities are presented as the output of the third Map-Reduce job.
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28.1.4 Compact-HDS

Since clusters from each partition should be loaded into the memory for compacting and gener-
ating a hierarchy of dense clusters, no Map-Reduce jobs are used for this operation. Once the
clusters identical to the clusters in Auto-HDS are obtained from the Stitcher, the Java based
Auto-HDS is reused to generate the compact hierarchy of the dense clusters identified.

29 Experiments

The term ’speed-up’ can be defined as the ratio of the time taken by one processor to the
time taken by multiple processors for a computation. With Parallel Auto-HDS in a distributed
environment, a speed-up proportional to the number of cores used is achievable.

29.1 TACC Hadoop Map-Reduce Framework

The Hadoop Map-Reduce Implementation of Parallel Auto-HDS was initially tested in the
pseudo-distributed mode on a single machine. After the initial testing, the Hadoop Map-
Reduce Parallel Auto-HDS was tested in a distributed environment, Longhorn, provided by
Texas Advanced Computing Center (TACC). The Longhorn system consists of 256 dual-socket
nodes, each with significant computing and graphics capability. Total system resources include
2048 compute cores (Nehalem quad-core), 512 GPUs (128 NVIDIA Quadro Plex S4s, each
containing 4 NVIDIA FX 5800s), 13.5 TB of distributed memory and a 210 TB global file
system. Up to 128 compute cores in the Longhorn system have been used for testing the
Hadoop Map-Reduce based Parallel Auto-HDS.

29.2 Dataset

The Hadoop Map-Reduce Parallel Auto-HDS was tested on the Sim-2 dataset [10], an artificial
dataset generated using five 2-D Gaussian distributions of different variances. The correctness
of the implementation was verified by comparing with the results from Partitioned Auto-HDS
on relatively small datasets. As part of scalability testing, the implementation was also tested
on the Astronomy Halo dataset [12] that has information about 14 Million celestial bodies.
Parallel Auto-HDS was tested on a subset of the Astronomy Halo dataset with the subset
size ranging from 50K to 450M data points. The total number of cores used for running
the Hadoop Map-Reduce application have been varied ranging from 16 to 128 compute cores.
TACC Hadoop Map-Reduce framework has a minimal requirement of 16 cores, as up to 8 cores
are used just for scheduling the task, fault tolerance, etc. The additional number of cores
provided are used for executing the map-reduce tasks scheduled by the JobScheduler. The
correctness of Parallel Auto-HDS on the Astronomy dataset was not tested, as the dataset and
the partitions created from the dataset are too large to fit in a single machine (Partitioned
Auto-HDS).

29.3 Experiments

Table 29.3 shows the execution time of Parallel Auto-HDS on the Astronomy dataset [12].
The column ’Subset Size’ refers to the size of the sampled subset extracted in the Parameter-
Estimator phase. Note that the 1500k Halo dataset takes lesser time than the 750k Halo
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dataset. This behavior is due to two reasons: the number of partitions created from the
dataset and the sampled subset size in the Parameter-Estimator phase. As the number of
partitions increases, there is more scope for parallelism in a distributed environment. As the
sampled subset in the ’Parameter-Estimator’ phase is used for estimating the parameters, a
small subset size will result in weak estimation of the parameters, whereas a large subset will
increase the computational and storage complexity associated with this phase. Since the overall
time complexity associated with Parallel Auto-HDS is much less compared to Auto-HDS, the
optimal subset size can be estimated by just re-running Parallel Auto-HDS multiple times.
The number of map and reduce tasks was set dynamically based on the dataset size and in
most cases, it was usually set higher than the number of cores (maximum of 128 cores) used
by the Hadoop Map-Reduce Framework. With more cores, there is scope for improvement in
performance, provided the number of map-reduce tasks outweighs the number of cores.

Table 3: Execution Time of Hadoop Map-Reduce Parallel Auto-HDS on the Astronomy
Dataset.

Dataset Size Time (seconds) Partitions Subset Size
Halo50 25k 141.734 27 1/10
Halo100 110k 330.925 125 1/10
Halo150 340k 341.945 125 1/10
Halo200 750k 923.418 375 1/20
Halo200 750k 1009.807 1000 1/10
Halo200 750k 642.317 1000 1/20
Halo250 1500k 555.638 1000 1/100

Figure 15 shows the execution time of Parallel Auto-HDS on the astronomy dataset of size
100k and 125 partitions, with the number of cores varied between 16 and 128. From Figure 15,
the execution time decreases gradually with increase in the number of cores used. There is not
much improvement in performance with the number of cores ≥ 80 and this could be because
there are just 125 partitions in the dataset. Note that 80 cores14 (roughly half the number of
partitions used), with each core running approximately two partitions, seems to be an optimal
setting as the curve flattens out beyond 80.

Figure 16 shows the speed-up achieved by Parallel Auto-HDS on the astronomy dataset of
size 100k and 125 partitions. It can be seen that there is a close to linear increase in speed-up
as the number of cores increases. After a certain threshold, that is approximately equal to half
the number of partitions created, there is not much speed-up and hence the curve flattens out
beyond this threshold. If the number of cores is greater than half the number of partitions, the
additional cores (beyond the threshold) do not improve the speed-up further.

30 Limitations and Future Work

In this implementation, parallelization at the partition level of Parallel Auto-HDS has been
exploited. Recollect that in Auto-HDS, there are multiple iterations for generating clusters

14note that 8 cores are responsible for job scheduling, fault tolerance, etc., and hence only up to 72 cores are
used for the Map-Reduce jobs.
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Figure 15: Execution time of Hadoop Map-Reduce based Parallel Auto-HDS for varying number
of cores on the Astronomy dataset of size 100k and 125 partitions.

of different densities and these iterations can be run independently. This parallelism at the
Auto-HDS level has not been exploited. Exploiting this parallelism will involve updating both
the Parameter−Estimator and SlaveDIV ER phases, which in turn use Auto-HDS. By per-
forming each iteration in Auto-HDS independently (in parallel), the overall performance and
speedup can be improved further. In the Parameter − Estimator and SlaveDIV ER, the
initial step is to sort each data point such that either first nε neighbors or all the neighbors
within a certain distance rε are in sorted order. Recall that sorting each data point is again
independent of any other data point and this fact leaves room for further optimization in a
distributed environment. The speed up achieved is dependent on the number of machines
used. Hadoop Map-Reduce based Parallel Auto-HDS presented in this thesis does not support
the GeneDIVER User Interface that enables interactive visualization of the cluster hierarchy
identified. It will be useful to create a GeneDIVER framework with an abstract user interface
hiding the technical details of the underlying environment (either a single machine or a dis-
tributed environment). Such an interface would also abstract the algorithm used (Auto-HDS
or Partitioned Auto-HDS or Parallel Auto-HDS) to find the dense clusters.

31 Conclusions

In this thesis, two extensions to Auto-HDS have been presented for solving large clustering
problems that exist in the fields of bioinformatics, astronomy, marketing, etc. A key limitation
of both the approaches is that they are not suitable for high dimensional datasets due to the
curseofdimensionality. A simple and scalable extension to Auto-HDS is Partitioned Auto-
HDS that works on smaller subsets of a large dataset to identify the compact hierarchy of
dense clusters. With this approach, if data points are uniformly distributed across the feature
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Figure 16: Speed-up of Hadoop Map-Reduce based Parallel Auto-HDS for varying number of
cores on the Astronomy Dataset of size 100k and 125 partitions.

space, the computational and storage complexity associated with the operation is reduced by a
factor of the number of subsets created. However, if data points are not uniformly distributed,
the performance improvement is not as high. Therefore, it would be worthwhile to partition
datasets in such a way that data points are uniformly distributed across all partitions.

We presented Parallel Auto-HDS which extended Partitioned Auto-HDS to a distributed
environment. Parallel Auto-HDS facilitates the use of a large number of cheap machines in a
distributed environment instead of expensive super computers. Parallel Auto-HDS was imple-
mented on a Hadoop Map-Reduce framework and the results were presented in Chapter 23.
Experiments revealed that when data points were uniformly distributed across partitions, Par-
allel Auto-HDS achieved linear speed up with the increase in the number of machines used.
It would be interesting to compare the performance of Hadoop Map-Reduce based Parallel
Auto-HDS to Parallel Auto-HDS implemented on top of several other Parallel Programming
frameworks.
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