
Design and Implementation of the J-SEAL2 Mobile Agent Kernel

Walter Binder
COCO Software Engineering GmbH

Margaretenstr. 22/9, A- 1040 Vienna, Austria
w.binder@coco.co.at

Abstract

J-SEAL2 is a secure, portable, and efficient execution en-
vironment for mobile agents. The core of the system is a
micro-kernel fuljlling the same functions as a traditional
operating system kernel: protection, communication, do-
main termination, and resource control. This paper de-
scribes the key concepts of the J -SEAL2 micro-kernel and
how they are implemented in pure Java.

1. Introduction

Currently, an increasing number of research projects ex-
plores mobility in object-oriented systems. Mobile objects,
usually referred to as mobile agents, offer many advantages
for distributed computing. Mobile agents support resource
aware computations; object migration allows mobile agents
to access necessary services locally. Therefore, expensive
remote interactions, such as client-server communication
over a network, can be minimized. Once a mobile agent
has been transferred to a server, it may issue many requests
locally at the server. In that way, the use of network band-
width can be reduced. Other advantages of mobile com-
putations include the support for offline operation, which
allows users of mobile computing devices to minimize their
connection costs. As a model for distributed computation,
mobile agents ease load balancing and help to improve scal-
ability and fault tolerance. Moreover, an agent-oriented pro-
gramming model facilitates the design and implementation
of complex distributed systems.

In order to enable object mobility, dedicated execution
environments - mobile agent systems - have to be devel-
oped and to be deployed widely. For the success of a mo-
bile agent platform, a sound security model, portability,
and high performance are crucial. Since mobile code may
be abused for security attacks (unauthorized disclosure and
modification of information, denial of service attacks, tro-
jan horses, etc.), mobile agent platforms must protect the
host from malicious agents, a5 well as each agent from

any other agent in the system. In order to support large-
scale distributed applications, mobile agent systems have to
be portable and to offer good scalability and performance.
Currently, most mobile agent platforms fail to provide suf-
ficiently strong security models, are limited to a particular
hardware architecture and operating system, or cause high
overhead. In contrast, the design and implementation of the
J-SEAL2 mobile agent system, first described in [3], recon-
cile strong security mechanisms with portability and high
performance.

Recently, a large number of Java [7] based mobile agent
systems has emerged. In fact, Java is a good choice for
the implementation of execution environments for mobile
agents, as it offers many features that ease the development
of mobile agent platforms, such as portable code, language
safety and classloader namespaces for isolation, serializa-
tion for state capture, and multithreading. In addition to
this, high performance Java runtime systems are available
for many hardware platforms and operating systems.

Despite these advantages, current Java environments do
not provide sufficiently strong security mechanisms for the
protection and isolation of mobile agents. Since the vast
majority of current mobile agent platforms simply relies on
the insufficient security features of Java, these systems are
not suited for commercial mobile agent applications. There
are no guarantees that the system and mobile agents are pro-
tected from each other. Because of pervasive aliasing in
the Java Development Kit (JDK), there is no real protec-
tion boundary between different components. Furthermore,
malicious agents can easily mount denial of service attacks
against the platform, possibly even crashing the Java Vir-
tual Machine (JVM) [8]. Moreover, if a misbehaving agent
is detected, the platform does not guarantee that the agent
can be safely removed from the system.

Some researchers have shown that an abstraction simi-
lar to the process concept in operating systems is necessary
in order to create secure execution environments for mobile
agents [I] . However, proposed solutions were either incom-
plete or required modifications of the Java runtime system.
In contrast, the J-SEAL2 mobile agent micro-kernel [3] en-

35
0-7695-0942-WOl $10.00 0 2001 IEEE

sures important security guarantees without requiring any
modifications to the underlying Java implementation. For
portability reasons, J-SEAL2 is implemented in pure Java
and runs every Java 2 platform.

In traditional operating systems the kemel is responsible
for protecting processes from each other. A process cannot
access a foreign memory region unless that region has been
explicitly declared to be shared. Furthermore, the operating
system offers some Inter-Process Communication (IPC) fa-
cilities, allowing for a controlled co-operation between dif-
ferent processes. When a process is terminated, the kemel
ensures that it is removed from the system freeing all re-
sources the terminated process possesses. In addition to
this, the kemel must ensure that the termination of a pro-
cess does not corrupt any shared system state. Finally, the
operating system guarantees that a process can only use the
resources (CPU time, memory) it has been given.

The J-SEAL2 micro-kemel fulfills the same role as an
operating system kernel: It ensures protection of different
agents and system components, provides secure communi-
cation facilities, enforces safe domain termination with im-
mediate resource reclamation, and controls resource alloca-
tion.

This article is structured as follows: In section 2 we
give a brief overview of the J-SEAL2 mobile agent sys-
tem. In section 3 we state requirements for kemel code
written in Java and show how kemel entry and exit can
be implemented efficiently. The following 4 sections deal
with protection, communication, protection domain termi-
nation, and resource control. In each section we state our
requirements for the J-SEAL2 kemel and discuss various
implementation issues and techniques that help to meet the
requirements efficiently. In section 8 we compare the J-
SEAL2 kemel to related work. The last section summarizes
the current state of implementation of our mobile agent ker-
nel.

2. System overview

' J-SEAL2 [3] is a complete redesign of JavaSeal [4], a
secure mobile agent system developed at the University of
Geneva. JavaSeal extends the Java programming environ-
ment with a model of mobile agents and strong hierarchical
protection domains. These extensions are based on a for-
mal model of distributed computation, Jan Vitek's SEAL
Calculus [9]. JavaSeal enables the expression and effec-
tive enforcement of security policies, but it incurs rather
high overhead and does not scale well. Due to performance
problems (e.g., inefficient communication between different
protection domains, enormous agent startup overhead, etc.),
JavaSeal is not suited for large-scale applications. J-SEAL2
is compatible with JavaSeal, but yields much better per-
formance. J-SEAL2 provides an efficient communication

model, a high-level communication framework built on top
of the micro-kemel, a new component model for services, as
well as a flexible and convenient configuration mechanism.

The J-SEAL2 micro-kemel maintains a tree hierarchy of
agents and services. Each agent and service executes in a
protection domain of its own, called a sealed object or seal
for short. The root of the tree hierarchy is the RootSeal,
which is responsible for starting system services and appli-
cations. Seals are multithreaded domains. Every seal can
run an arbitrary number of strands (secure threads) concur-
rently. The J-SEAL2 kemel ensures that a parent seal may
terminate its children at any time. As a consequence, all
strands in the child domain are stopped and all memory re-
sources used by the child seal become eligible for garbage
collection immediately.

The J-SEAL2 kemel acts as a reference monitor, it en-
sures that there is no sharing of object references with
different seals. Communication between distinct seals re-
quires kemel primitives, objects are passed always by deep
copy within so-called capsules. J-SEAL2 offers 2 different
communication mechanisms, channels and external refer-
ences. Channels only supports direct communication be-
tween seals that are neighbours in the hierarchy. Channel
communication ensures that a parent seal is able to iso-
late a child completely from other domains. Extemal ref-
erences allow indirect sharing of objects by different seals,
which enables efficient communication shortcuts in deep
seal hierarchies. For security reasons, extemal references
are tracked by the J-SEAL2 kemel and may be invalidated
at any time. Extemal references are the basis for efficient
high-level communication frameworks.

3. Kernel code

The core of the J-SEAL2 mobile agent system is a com-
pact micro-kemel, which offers a minimal set of abstrac-
tions necessary to program secure agent environments: pro-
tection domains for agents and services (seals), concur-
rent activities (strands), as well as communication facilities
(channels and extemal references).

3.1. Requirements

Since seals are multithreaded and certain kemel struc-
tures must be accessible from different seals, a kemel syn-
chronization protocol must ensure proper synchronization
and prevent deadlocks. Kemel code must not synchronize
on objects that are accessible by agents. Otherwise, agents
could cause kemel code to block infinitely. Instead, ker-
nel code shall lock only intemal structures, such as private
members of kernel abstractions.

Kemel operations are to be performed atomically: they
must either succeed or leave the kernel state unchanged.

36

Kemel operations must take care not to cause any un-
caught exceptions. In particular, special attention has to be
paid to exceptions that can occur asynchronously, such as
ThreadDeathandOutOfMemoryError.

ThreadDeath is thrown, if a thread stops another
one with the aid of Thread. stop () . The stopped
thread immediately exits all monitors it holds and throws
ThreadDeath. Since this may leave objects in an in-
consistent state, Thread. stop () has been deprecated
in the Java 2 platform. However, because the Java 2 plat-
form does not offer any alternative mechanisms for thread
stopping, protection domain termination must be based on
Thread. stop () . The kemel has to ensure that stop re-
quests are deferred while a thread is accessing kemel struc-
tures.

OutOfMemoryError is thrown whenever the virtual
machine runs out of memory and the garbage collector fails
to reclaim enough memory. Kemel operations must be de-
signed to avoid OutOf MemoryError after the operation
has modified some kemel state. A simple solution is to allo-
cate all objects that might be required in advance before any
changes are made. Following this approach, kemel struc-
tures should not employ Java utility classes, such as the col-
lections framework, since these classes allocate objects on
demand.

3.2. Implementation issues

Operating systems employ a privileged processing mode
for kemel operations. Only a process executing in kemel
mode has access to all processor instructions and kernel in-
ternals (special memory regions). The J-SEAL2 kemel uses
a similar distinction: When a strand initiates a kernel oper-
ation, it enters a privileged kemel mode. When the kemel
operation completes (succeeds or fails), the strand leaves
the kemel mode and continues execution in user mode.

The main purpose of the kemel mode in J-SEAL2 is to
prevent a strand from being stopped while accessing ker-
nel intemals. Stop requests are deferred until the strand to
be stopped leaves the kemel. In addition to deferring stop
requests, kemel mode is used to synchronize primitives af-
fecting the J-SEAL2 kernel abstractions, such as protection
domain creation and termination, strand creation, as well as
communication requests.

We distinguish between exclusive and shared kemel
mode. A strand entering exclusive kernel mode is blocked
until no other strand is executing in the kemel. While
a strand is executing in exclusive kemel mode, no other
strand can enter the kemel. Protection domain termination
is always performed in exclusive kemel mode. Therefore,
strands executing in kemel mode are guaranteed not to be
stopped asynchronously.

The J-SEAL2 kernel uses a single-wrirer/multiple-reader

lock for controlling access to the kemel: Entering exclu-
sive kernel mode corresponds to acquiring the write lock,
whereas shared kernel mode requires a read lock. The lock
implementation ensures that a strand waiting for the write
lock will enter the kemel before strands waiting for a read
lock. This property makes sure that domain termination
cannot be delayed infinitely.

Since classloading affects the intemal state of the Java
runtime system, we must ensure that classloading always
occurs in kemel mode. A strand must not be stopped while
it is loading a class, since this might corrupt some internal
structures of the JVM. However, in general classloading oc-
curs asynchronously, dependent on the virtual machine im-
plementation. Therefore, we do not know whether a class-
loading strand already executes in kemel mode or not.

For this reason, the J-SEAL2 kemel offers a conditional
kemel enter operation: A shared lock is only obtained, if
the requesting strand is not yet executing in kernel mode.
Implementing this operation requires keeping track of all
strands that are executing in kemel mode. Because enter-
ing kernel mode is a very frequent operation (for instance,
each communication involves at least one switch into ker-
nel mode), adding strands to and removing strands from the
set of strands executing in kemel mode must be highly op-
timized.

Although kemel entry and exit are extremely frequent
operations, measurements indicate that less than 3% of the
overall CPU time is spent for obtaining and releasing kemel
locks. Because operations requiring exclusive kemel mode
are not executed frequently, the kernel lock does not become
a significant performance bottleneck. Resource control (see
section 7) ensures that an agent cannot enter the kemel ar-
bitrarily. Therefore, the kernel lock cannot be abused for
denial of service attacks.

4. Protection

The kemel of a traditional operating system ensures that
a process can only access its own memory pages. The oper-
ating system kemel relies on the memory management unit
of the processor in order to detect illegal memory accesses.
A mobile agent kemel has to enforce similar protection. The
kemel must protect itself as well as each agent from any
other agent in the system.

4.1. Requirements

Language safety in Java (a combination of strong typing,
memory protection, automatic memory management, and
byte-code verification) already guarantees some basic pro-
tection, as it is not possible to forge object references. How-
ever, language safety itself does not guarantee protection in
a mobile agent execution environment. Pervasive aliasing

37

in object-oriented languages leads to a situation where it is
impossible to determine which objects belong to a certain
agent and therefore to check whether an access to a partic-
ular object is permitted or not. It is crucial to introduce the
concept of strong protection domains, similar to the process
abstraction in operating systems.

A protection domain draws a boundary around a compo-
nent (i.e., a mobile agent or a service). It encapsulates the
set of classes required by the component, some concurrent
activities (strands), as well as all objects allocated by these
strands. In general, strands shall only execute in their own
protection domain. Special precaution is necessary to allow
strands to cross domain boundaries. Furthermore, the ker-
nel must prevent object references from being passed over
protection domain boundaries. The kemel ensures that an
object reference exists in only a single domain. This prop-
erty is very important for memory accounting, too.

Each protection domain has associated its own set of
classes. In general, different components must not share
the same classes, since this would mean to share also the
static variables in these classes (i.e., shared static variables
would introduce aliasing of object references between dif-
ferent domains, or even worse, if static variables were not
final, they could be used as covert communication chan-
nels the kemel could not control). However, some classes
from the JDK must be shared by all components in order to
ensure correct function of the JVM. Nevertheless, mobile
agents must not employ JDK classes comprising function-
ality that undermines protection. For this reason, extended
byte-code verification of agent classes is necessary.

Another issue to be addressed by a mobile agent system
is protection of resources, such as files or network ports.
While in monolithic operating systems the kemel usually
deals with resource protection, micro-kemel architectures
simply ensure that security policies can be implemented
at a higher level. Similarly, a mobile agent micro-kemel
does not have to deal with security policies. Rather, it must
make sure that only privileged domains can access system
resources. For Java, t h s means that agent domains must not
have access to certain core packages, such as j ava . io or
j ava . net. Such restrictions can be enforced by extended
byte-code verification.

4.2. Implementation issues

The J-SEAL2 kemel employs a separate classloader
namespace for each protection domain. A global configura-
tion defines the set of classes to be shared by all domains.
These classes are loaded by the JVM system classloader.
All other classes are loaded by the protection domain class-
loader (replicated classes).

In order to ensure proper function of the Java runtime
system, all JDK classes are shared. This does not introduce

security problems, as the extended J-SEAL2 verifier assures
that agents cannot use dangerous JDK functionality. Since
replicating classes limits performance and increases agent
startup overhead as well as memory consumption (above
all, the same methods are compiled multiple times), the
J-SEAL2 kemel is designed to minimize replicated kemel
classes. In the current implementation only 3 small classes
from the communication subsystem are replicated. This is
n e c e s s q to ensure that serialized object graphs received by
a protection domain are resurrected using the classloader of
the receiving domain.

Agent classes as well as classes from the J-SEAL2 li-
brary are replicated. To minimize the overhead of repli-
cating library classes, the J-SEAL2 classloader can be con-
figured to cache the class files residing in certain library
packages. Since loading a class file from disk is the most
significant performance bottleneck, a proper caching con-
figuration yields a speedup in agent creation by more than
factor 2.

Agent class files are verified by a special J-SEAL2 ver-
ifier in order to ensure that the agent does not use certain
JDK and kemel classes. By this means the kemel protects
itself and the underlying JVM from being corrupted by ma-
licious or badly programmed agents. Each protection do-
main can have its own directives declaring which classes
may be referenced. Directives include the following types
of restrictions:

0 Access can be restricted to certain packages, eventu-
ally including subpackages.

0 Access to individual classes can be allowed or forbid-
den.

0 Access to individual class members can be allowed or
forbidden.

0 Extension of non-final classes can be prohibited.

0 Agent classes must reside in a particular package or in
a subpackage thereof.

The possibility to prevent the extension of certain classes
and to control access at the level of individual class mem-
bers helps to structure the J-SEAL2 kernel in a clean way.
For example, we used multiple packages to separate differ-
ent parts of the kemel. Public access modifiers were nec-
essary to allow the interoperation of distinct kemel com-
ponents. The directives ensure that agents cannot access
certain kemel intemals that had to be declared public for
software engineering reasons. More generally, we think
it is important to distinguish between software engineering
practices and security engineering techniques: Java access
modifiers and subtyping are very useful for software engi-
neering purposes, whereas security engineering takes place
in the specification of directives.

38

To ensure that a given class file does not violate a partic-
ular set of directives it is sufficient to verify that the constant
pool of the class file does not refer to forbidden classes or
members and that extension of the superclass is not prohib-
ited. Each member (field, method, constructor) that is ac-
cessed by a method/constructor of the verified class has an
entry in the class file constant pool. Thus, it is not necessary
to verify method/constructor code.

Benchmarks measuring agent startup overhead indicate
that verification overhead is less than 9% of the CPU time
spent for classloading. These measurements also include
the costs for additional verification to ensure proper domain
termination (see section 6).

5. Communication

In operating systems co-operating processes can ex-
change messages through Inter-Process communication
(IPC) facilities provided by the kernel. Process protection
ensures that IPC is the only means to exchange information
over process boundaries. As a mobile agent kemel isolates
agents from each other, it must also provide some means
for inter-agent communication in order to allow agents to
collaborate.

5.1. Requirements

As we have stressed in the previous section, a secure mo-
bile agent kemel has to provide strong protection domains.
An agent executes within a protection domain, it is isolated
from the rest of the system. If agents need to exchange some
messages, all communication partners have to ask the kernel
to establish a communication channel. The kemel ensures
that communication partners can only access certain chan-
nels if they have the necessary permissions.

The J-SEAL2 kernel offers two different communication
facilities, channels and extemal references. In both cases,
messages are passed by value. The kemel creates a deep
copy of the message before it passes it to the receiver. In
that way, the kemel prevents direct sharing of object refer-
ences between different protection domains. This property
is crucial for protection domain isolation, as aliasing be-
tween different domains would undermine protection. Fur-
thermore, resource accounting is largely simplified by the
fact that every object reference exists in only a single pro-
tection domain.

Channels support communication only between neigh-
bours in the seal hierarchy. If two neighbour seals issue
matching send and receive communication offers, the ker-
nel passes the message from the sender to the receiver. De-
tails about the channel matching algorithm can be found
in [9] . With the aid of channel communication it is pos-
sible to achieve complete mediation. This means that it is

possible to intercept all messages going in and out of an
agent. However, channel communication becomes a signif-
icant performance bottleneck, if messages must be routed
through a series of protection domains, since communica-
tion involves strand switches proportional to the communi-
cation partners’ distance in the seal hierarchy.

External references are an optimization, they support in-
direct sharing of objects between distinct seals that are not
necessarily neighbours in the hierarchy. An extemal refer-
ence acts as a capability to invoke methods on a shared ob-
ject. When an extemal reference is passed to another seal,
the receiver gets a copy of the communicated extemal ref-
erence. The sender may invalidate that copy (as well as,
in a synchronized way, recursively all further copies of that
copy) at any time with immediate effect, i.e., strands calling
methods through the copy immediately leave the callee’s
protection domain and throw an appropriate exception in
the caller’s domain. This property clearly distinguishes ex-
ternal references from capabilities in the J-Kemel [lo]. De-
tails on the external reference communication model can be
found in [3].

5.2. Implementation issues

Since in J-SEAL2 there is no direct sharing of object ref-
erences between different protection domains, all commu-
nication involves the copying of messages. J-SEAL2 em-
ploys Java serialization to create a deep copy of an object
graph of serializable objects. Therefore, only serializable
objects can be passed between different domains. The ker-
nel ensures that a communicated serialized object graph is
deserialized within the target domain. Thus, the deserial-
ized object graph only refers to classes from the receiving
domain.

As serialization and deserialization are expensive op-
erations, J-SEAL2 offers optimizations for certain object
types that are frequently used in communication messages,
such as Java primitive types, arrays of primitive types, as
yell as strings. Primitive types do not include object ref-
erences, they can be passed within simple wrappers. The
classes for arrays of primitive types and for strings are al-
ways loaded by the system classloader, thus we need not
take care whether they are copied within the target domain.
For arrays of primitive types, we can use array cloning or
System. arraycopy (1 . For strings, there is a special
constructor taking another string as argument. All these op-
timizations are performed by the J-SEAL2 kemel, they are
transparent to the programmer. Performance measurements
show that capsule optimizations improve the performance
of capsule creation and opening by a factor of 20-50.

Extemal references complicate the serialization and de-
serialization of object graphs. External references are not
serializable, but they have to be treated in a very special

39

way. Since the kernel keeps track of external references and
their copies, they must be separated from the rest of the se-
rialized object graph. The kernel employs a dedicated copy-
ing algorithm for extemal references, details can be found
in [3].

The J-SEAL2 implementation of communication chan-
nels ensures that a message is copied to the receiving pro-
tection domain only after a communication match. Send
and receive requests are treated as equivalent communica-
tion offers. They are inserted in kemel queues residing in
the same protection domain as the issuing strand. The ker-
nel checks neighbour domains for matching offers. Only if
the search is successful, the kemel copies the message to
the receiving domain. This implementation is very different
from traditional message passing, where a sender directly
inserts a message into the receiver queue. By separating
sender and receiver queues the J-SEAL2 kemel ensures that
an agent cannot mount a denial of service attack against a
neighbour domain by filling its receiver queues with mes-
sages, eventually causing the receiver to exceed its memory
limits.

6. Domain termination

Operating systems provide means to terminate running
processes. ' All memory resources the terminated process
had allocated before become available to other processes.
The operating system kemel must ensure that neither its
own resources nor any other shared resources are corrupted
when a process is killed.

6.1. Requirements

When a protection domain is terminated, all strands be-
longing to that domain have to be stopped. In Java the
only means to stop a running thread asynchronously is
Thread. stop () . However, this operation has been dep-
recated in the Java 2 platform, as it is inherently unsafe.
When a thread is stopped, it exits all monitors immediately
and throws ThreadDeath. As a consequence, objects
may be left in an inconsistent state.

In section 3 we have already stated requirements for ker-
nel code to ensure that shared resources, such as internal
structures of the kernel and of the Java runtime system, can-
not be corrupted when a strand is stopped asynchronously.
The idea is to defer stop requests if the strand to be stopped
is accessing the kemel. A simple solution is to ensure that
no other strand can access the kemel while a strand is stop-
ping another one.

When a thread is stopped, there is no guarantee that the
stopped thread will really terminate. Depending on the ex-
ecuted code, ThreadDeath might be caught or a f i -
nally{ } clause might execute an infinite loop. Since the

I

kernel must ensure immediate resource reclamation when a
protection domain is terminated, special verification is nec-
essary to ensure that agent code cannot prevent or delay do-
main termination. Thus, exception handlers of agents must
immediately rethrow caught ThreadDeath exceptions. J-
SEAL2 offers a class file rewriting tool to modify exception
handlers accordingly. At runtime the extended byte-code
verifier simply checks whether all agent classes have been
rewritten correctly.

In addition to these restrictions, agents must not define
finalizers or class finalizers. These special methods are in-
voked by the garbage collector before an object or a class is
reclaimed. If these methods contained some infinite loops,
they would hang up the whole system.

6.2. Implementation issues

Safe strand stopping is achieved through special kemel
entry and exit sequences. A strand terminating a protection
domain enters exclusive kemel mode. It is blocked until all
other strands have left the kernel. Terminating a protection
domain is an atomic kemel operation. All strands belonging
to the domain are stopped within the same kemel operation.
Since the strands to be stopped cannot enter the kemel, this
approach enforces safe domain termination. Details can be
found in section 3.

In order to prevent agents from delaying their termina-
tion, the J-SEAL2 verifier ensures that agent methods do
not use forbidden Java constructs. The method signatures of
all defined methods must be different from finalize (
and classFinalize () . Furthermore, the exception ta-
bles of all methods are examined in order to determine the
types of caught exceptions. Agents are not allowed to catch
ThreadDeath. If an exception handler catches a super-
type of ThreadDeath (i.e., Throwable or Error), the
handler code has to determine whether the actual type of a
caught exception is ThreadDeath. In this case, the han-
dler must rethrow ThreadDeath immediately.

The JVM supports a special catch type in the exception
table to indicate that all exceptions are caught by a par-
ticular exception handler. Java compilers use this feature
to compile finally{} clauses and synchronized{}
statements [8]. The J-SEAL2 verifier ensures that these
special exception handlers include code to rethrow a caught
ThreadDeath exception immediately, too.

Because exception handlers catching all exceptions are
not present in the original Java code, we have implemented
a byte-code rewriting tool to process agent classes gener-
ated by standard Java compilers. This tool has to be used
by J-SEAL2 programmers before they package their agents.
It examines all exception handlers that could potentially
catch ThreadDeath exceptions and inserts a short byte-
code sequence (4 JVM instructions) to rethrow a caught

ThreadDeath exception immediately.
The rewritten exception handlers rethrow Thread-

Death exceptions before any locks are released. This is
important because the monitorexit instruction of the
JVM might throw NullPointerExceptionor Ille-
galMoni t orS t at eExcept ion. However, since we
are rethrowing ThreadDeath before releasing locks, an
eventually locked object will never be unlocked and could
cause a deadlock, if another strand tried to lock it later.
Since there is no direct sharing of objects between differ-
ent protection domains and because kernel code must not
lock objects that are accessible by agents (see section 3),
only objects belonging to the terminated agent may be left
in a locked state. This is not a problem, since the agent is
removed from the system anyway.

The J-SEAL2 verifier simply checks whether all agent
classes have been rewritten accordingly. Benchmarks show
that our verification mechanism does not introduce much
overhead at runtime. Even for complex agents the total ver-
ification costs, including constant pool verification as de-
scribed in section 4, does not exceed 10% of the total time
for classloading.

7. Resource control

Operating system kernels provide mechanisms to en-
force resource limits for processes. The scheduler assigns
processes to CPUs reflecting process priorities. Further-
more, only the kemel has access to all memory resources.
Processes have to allocate memory regions from the ker-
nel, which ensures that memory limits are not exceeded.
A mobile agent kemel must prevent denial of service at-
tacks, such as agents allocating all available memory. For
this purpose, accounting of physical resources (e.g., CPU,
memory, network, etc.) and logical resources (e.g., number
of threads, number of protection domains, etc.) is crucial.

7.1. Requirements

A generalization of CPU Inheritance Scheduling [6] ,
a hierarchical scheduling protocol, fits. very well to the
J-SEAL2 model of nested protection domains. At sys-
tem startup the root domain, Rootseal, owns all physical
and logical resources, for example 100% CPU time, some
amount of virtual memory, the maximum number of strands
the underlying JVM is able to cope with, an unlimited num-
ber of subdomains, etc. When a nested protection domain is
created, the creator donates some part of its own resources
to the new domain.

The J-SEAL2 kemel has to control the consumption of
all resources it manages (CPU, memory, strands, domains).
However, it is not responsible for limiting network usage,

because the micro-kemel does not provide access to the net-
work. Instead, network access can be provided by multiple
services. These network services or some mediation layers
in the hierarchy are responsible for network control accord-
ing to application-specific security policies.

Since J-SEAL2 is designed for large-scale applications,
where a large number of services and agents are executing
concurrently, design and implementation must minimize the
overhead of resource accounting. Some domains, such as
core services, are fully trusted. Their resource consumption
need not be controlled by the kemel.

In certain situations protection domains that are neigh-
bours in the hierarchy may choose to share certain re-
sources. In this case, resource limits are enforced together
for a set of protection domains. As a result, resource frag-
mentation is minimized. For example, consider an agent
creating a subagent for a certain task. Frequently, the cre-
ating agent does not want to donate some resources to the
subagent, but it prefers to share its own resources with the
subagent.

Resource accounting also affects the kernel communica-
tion facilities. A domain must be able to limit the size of
incoming messages. Otherwise, malicious domains hold-
ing more memory resources could easily mount denial of
service attacks by sending large messages. For channels,
this means that the receiver can specify the maximum size
for incoming messages. Because extemal references sup-
port two-way message exchange (argument and result mes-
sages), the callee as well as the caller may limit incoming
messages.

7.2. Implementation issues

The J-SEAL2 kernel guarantees accountability, because
references to an object exist only within a single domain.
Therefore, it is possible to account each allocated object to
exactly one protection domain. This feature not only simpli-
fies memory accounting, but it is also crucial for immediate
resource reclamation during domain termination.

For portability reasons, we employ byte-code rewriting
techniques for memory and CPU accounting. In this ap-
proach the byte-code of a Java class is modified before it is
loaded by the JVM. Readers interested in an extensive tech-
nical report presenting our byte-code transformations may
contact the author by E-mail.

Like in JRes [5] , code for memory control is inserted be-
fore each memory allocation instruction. The J-SEAL2 ker-
nel maintains weak references to allocated objects in order
to detect when an object is reclaimed. Enforcing memory
limits requires exact pre-accounting for memory resources,
i.e., an overuse exception is raised before a strand can ex-
ceed the memory limit of the domain it is executing in. In
contrast to JRes, which controls a separate memory limit for

41

each thread, J-SEAL2 enforces a single memory limit for a
multithreaded domain or even for a set of domains in the
case of resource sharing. Therefore, memory accounting
requires synchronization.

CPU accounting is based on an abstract measure, the
number of executed byte-code instructions. Instructions
for CPU accounting are inserted in every basic block of
code. Every strand in the system updates its own CPU ac-
count. A high-priority scheduler strand executes periodi-
cally in order to ensure that assigned CPU limits are re-
spected. It is responsible for accumulating the accounting
data of all strands executing in a set of domains sharing a
CPU limit. The scheduler strand compares the number of
executed byte-codes with the desired schedule and adapts
the JVM thread priorities of individual strands in order to
control the CPU consumption of different protection do-
mains.

be structured in a similar way as an operating system, where
the kemel is separated clearly from all other parts of the sys-
tem. The kemel is responsible for protection, communica-
tion, protection domain termination, and resource control.

The J-SEAL2 mobile agent system is based on a micro-
kernel architecture providing the necessary security features
for commercial mobile agent applications. The J-SEAL2
kernel is implemented in pure Java, it is portable over dif-
ferent operating systems and hardware platforms.

The J-SEAL2 micro-kernel offers strong protection do-
mains, an efficient communication mechanism, and safe
protection domain termination with immediate resource
reclamation. Currently, we are integrating resource control
facilities into the J-SEAL2 kernel. Readers interested in
getting an evaluation version of the J-SEAL2 platform may
contact the author by E-mail.

References
8. Related work

Our work on the J-SEAL2 mobile agent micro-kernel
is related to work on protection in single-language mo-
bile code environments. Especially the Utah Flux Research
Group has worked on the design and implementation of se-
cure single address space operating systems implemented in
Java [l , 21.

Like J-SEAL2, the Aka [2] operating system is a micro-
kemel design. It provides a hierarchical process model sup-
porting CPU accounting through CPU Inheritance Schedul-
ing [6], where a process may donate some percentage of its
CPU resources to nested child processes. However, the Alta
design cannot be implemented in pure Java. Alta relies on
modifications to the JVM, whereas J-SEAL2 runs on every
Java 2 implementation. We are convinced that the portabil-
ity of a mobile agent platform is crucial for its successful
deployment in large-scale commercial projects.

J-Kemel [101 is a Java micro-kemel supporting multiple
protection domains. In J-Kernel communication is based on
capabilities. Java objects can be shared indirectly by pass-
ing references to capability objects. However, J-Kernel is
lacking the hierarchical model of J-SEAL2. Moreover, in
J-Kemel cross-domain calls may block infinitely and may
delay protection domain termination. J-Kernel supports per
thread memory accounting via byte-code rewriting [5] . Like
J-SEAL2, J-Kernel is implemented completely in Java, only
CPU accounting requires native code.

9. Conclusion

We have presented design and implementation issues
that must be addressed by Java based mobile agent .plat-
forms. For security reasons. a mobile agent system has to

G. Back and W. Hsieh. Drawing the red line in Java. In Sev-
enth IEEE Workshop on Hot Topics in Operating Systems,
Rio Rico, AZ, Mar. 1999.
G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lep-
reau. Java operating systems: Design and implementation.
Technical Report UUCS-98-015, University of Utah, De-
partment of Computer Science, Aug. 6, 1998.
W. Binder. J-SEAL2 - A secure high-performance.mobile
agent system. In IAT’99 Workshop on Agents in Electronic
Commerce, Hong Kong, Dec. 1999.
C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. In
First International Symposium on Agent Systems and Appli-
cations (ASA’99)IThird International Symposium on Mobile
Agents (MA’YY), Palm Springs, CA, USA, Oct. 1999.
G. Czajkowski and T. von Eicken. JRes: A resource ac-
counting interface for Java. In Proceedings ofthe 13dz Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA-98), volume 33, 10 of
ACM SICPLAN Notices, pages 21-35, New York, Oct. 18-
22 1998. ACM Press.
B. Ford and S. Susarla. CPU Inheritance Scheduling. In
Usenix Association Second Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 9 1-105,
1996.
J. Gosling, B. Joy, and G. L. Steele. The Java Language
Specification. . The Java Series. Addison-Wesley, Reading,
MA, USA, 1996.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, Reading, MA, USA, second edi-
tion, 1999.

191 J. Vitek and G. Castagna. Seal: A framework for secure
mobile computations. In lnfernet Programming Languages,
1999.

I IO] T. Von Eicken, C.-C. Chang, G . Czajkowski, and C. Haw-
blitzel. J-Kernel: A capability-based operating system for
Java. Lecture Notes in Computer Science, I603:369-394,
1999.

42

