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Abstract 

J-SEAL2 is a secure, portable, and efficient execution en- 
vironment for mobile agents. The core of the system is a 
micro-kernel fuljlling the same functions as a traditional 
operating system kernel: protection, communication, do- 
main termination, and resource control. This paper de- 
scribes the key concepts of the J -SEAL2 micro-kernel and 
how they are implemented in pure Java. 

1. Introduction 

Currently, an increasing number of research projects ex- 
plores mobility in object-oriented systems. Mobile objects, 
usually referred to as mobile agents, offer many advantages 
for distributed computing. Mobile agents support resource 
aware computations; object migration allows mobile agents 
to access necessary services locally. Therefore, expensive 
remote interactions, such as client-server communication 
over a network, can be minimized. Once a mobile agent 
has been transferred to a server, it may issue many requests 
locally at the server. In that way, the use of network band- 
width can be reduced. Other advantages of mobile com- 
putations include the support for offline operation, which 
allows users of mobile computing devices to minimize their 
connection costs. As a model for distributed computation, 
mobile agents ease load balancing and help to improve scal- 
ability and fault tolerance. Moreover, an agent-oriented pro- 
gramming model facilitates the design and implementation 
of complex distributed systems. 

In order to enable object mobility, dedicated execution 
environments - mobile agent systems - have to be devel- 
oped and to be deployed widely. For the success of a mo- 
bile agent platform, a sound security model, portability, 
and high performance are crucial. Since mobile code may 
be abused for security attacks (unauthorized disclosure and 
modification of information, denial of service attacks, tro- 
jan horses, etc.), mobile agent platforms must protect the 
host from malicious agents, a5 well as each agent from 

any other agent in the system. In order to support large- 
scale distributed applications, mobile agent systems have to 
be portable and to offer good scalability and performance. 
Currently, most mobile agent platforms fail to provide suf- 
ficiently strong security models, are limited to a particular 
hardware architecture and operating system, or cause high 
overhead. In contrast, the design and implementation of the 
J-SEAL2 mobile agent system, first described in [3],  recon- 
cile strong security mechanisms with portability and high 
performance. 

Recently, a large number of Java [7] based mobile agent 
systems has emerged. In fact, Java is a good choice for 
the implementation of execution environments for mobile 
agents, as it offers many features that ease the development 
of mobile agent platforms, such as portable code, language 
safety and classloader namespaces for isolation, serializa- 
tion for state capture, and multithreading. In addition to 
this, high performance Java runtime systems are available 
for many hardware platforms and operating systems. 

Despite these advantages, current Java environments do 
not provide sufficiently strong security mechanisms for the 
protection and isolation of mobile agents. Since the vast 
majority of current mobile agent platforms simply relies on 
the insufficient security features of Java, these systems are 
not suited for commercial mobile agent applications. There 
are no guarantees that the system and mobile agents are pro- 
tected from each other. Because of pervasive aliasing in 
the Java Development Kit (JDK), there is no real protec- 
tion boundary between different components. Furthermore, 
malicious agents can easily mount denial of service attacks 
against the platform, possibly even crashing the Java Vir- 
tual Machine (JVM) [8]. Moreover, if a misbehaving agent 
is detected, the platform does not guarantee that the agent 
can be safely removed from the system. 

Some researchers have shown that an abstraction simi- 
lar to the process concept in operating systems is necessary 
in order to create secure execution environments for mobile 
agents [I] .  However, proposed solutions were either incom- 
plete or required modifications of the Java runtime system. 
In contrast, the J-SEAL2 mobile agent micro-kernel [3] en- 
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sures important security guarantees without requiring any 
modifications to the underlying Java implementation. For 
portability reasons, J-SEAL2 is implemented in pure Java 
and runs every Java 2 platform. 

In traditional operating systems the kemel is responsible 
for protecting processes from each other. A process cannot 
access a foreign memory region unless that region has been 
explicitly declared to be shared. Furthermore, the operating 
system offers some Inter-Process Communication (IPC) fa- 
cilities, allowing for a controlled co-operation between dif- 
ferent processes. When a process is terminated, the kemel 
ensures that it is removed from the system freeing all re- 
sources the terminated process possesses. In addition to 
this, the kemel must ensure that the termination of a pro- 
cess does not corrupt any shared system state. Finally, the 
operating system guarantees that a process can only use the 
resources (CPU time, memory) it has been given. 

The J-SEAL2 micro-kemel fulfills the same role as an 
operating system kernel: It ensures protection of different 
agents and system components, provides secure communi- 
cation facilities, enforces safe domain termination with im- 
mediate resource reclamation, and controls resource alloca- 
tion. 

This article is structured as follows: In section 2 we 
give a brief overview of the J-SEAL2 mobile agent sys- 
tem. In section 3 we state requirements for kemel code 
written in Java and show how kemel entry and exit can 
be implemented efficiently. The following 4 sections deal 
with protection, communication, protection domain termi- 
nation, and resource control. In each section we state our 
requirements for the J-SEAL2 kemel and discuss various 
implementation issues and techniques that help to meet the 
requirements efficiently. In section 8 we compare the J- 
SEAL2 kemel to related work. The last section summarizes 
the current state of implementation of our mobile agent ker- 
nel. 

2. System overview 

' J-SEAL2 [3] is a complete redesign of JavaSeal [4], a 
secure mobile agent system developed at the University of 
Geneva. JavaSeal extends the Java programming environ- 
ment with a model of mobile agents and strong hierarchical 
protection domains. These extensions are based on a for- 
mal model of distributed computation, Jan Vitek's SEAL 
Calculus [9]. JavaSeal enables the expression and effec- 
tive enforcement of security policies, but it incurs rather 
high overhead and does not scale well. Due to performance 
problems (e.g., inefficient communication between different 
protection domains, enormous agent startup overhead, etc.), 
JavaSeal is not suited for large-scale applications. J-SEAL2 
is compatible with JavaSeal, but yields much better per- 
formance. J-SEAL2 provides an efficient communication 

model, a high-level communication framework built on top 
of the micro-kemel, a new component model for services, as 
well as a flexible and convenient configuration mechanism. 

The J-SEAL2 micro-kemel maintains a tree hierarchy of 
agents and services. Each agent and service executes in a 
protection domain of its own, called a sealed object or seal 
for short. The root of the tree hierarchy is the RootSeal, 
which is responsible for starting system services and appli- 
cations. Seals are multithreaded domains. Every seal can 
run an arbitrary number of strands (secure threads) concur- 
rently. The J-SEAL2 kemel ensures that a parent seal may 
terminate its children at any time. As a consequence, all 
strands in the child domain are stopped and all memory re- 
sources used by the child seal become eligible for garbage 
collection immediately. 

The J-SEAL2 kemel acts as a reference monitor, it en- 
sures that there is no sharing of object references with 
different seals. Communication between distinct seals re- 
quires kemel primitives, objects are passed always by deep 
copy within so-called capsules. J-SEAL2 offers 2 different 
communication mechanisms, channels and external refer- 
ences. Channels only supports direct communication be- 
tween seals that are neighbours in the hierarchy. Channel 
communication ensures that a parent seal is able to iso- 
late a child completely from other domains. Extemal ref- 
erences allow indirect sharing of objects by different seals, 
which enables efficient communication shortcuts in deep 
seal hierarchies. For security reasons, extemal references 
are tracked by the J-SEAL2 kemel and may be invalidated 
at any time. Extemal references are the basis for efficient 
high-level communication frameworks. 

3. Kernel code 

The core of the J-SEAL2 mobile agent system is a com- 
pact micro-kemel, which offers a minimal set of abstrac- 
tions necessary to program secure agent environments: pro- 
tection domains for agents and services (seals), concur- 
rent activities (strands), as well as communication facilities 
(channels and extemal references). 

3.1. Requirements 

Since seals are multithreaded and certain kemel struc- 
tures must be accessible from different seals, a kemel syn- 
chronization protocol must ensure proper synchronization 
and prevent deadlocks. Kemel code must not synchronize 
on objects that are accessible by agents. Otherwise, agents 
could cause kemel code to block infinitely. Instead, ker- 
nel code shall lock only intemal structures, such as private 
members of kernel abstractions. 

Kemel operations are to be performed atomically: they 
must either succeed or leave the kernel state unchanged. 
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Kemel operations must take care not to cause any un- 
caught exceptions. In particular, special attention has to be 
paid to exceptions that can occur asynchronously, such as 
ThreadDeathandOutOfMemoryError. 

ThreadDeath is thrown, if a thread stops another 
one with the aid of Thread. stop ( ) . The stopped 
thread immediately exits all monitors it holds and throws 
ThreadDeath. Since this may leave objects in an in- 
consistent state, Thread. stop ( ) has been deprecated 
in the Java 2 platform. However, because the Java 2 plat- 
form does not offer any alternative mechanisms for thread 
stopping, protection domain termination must be based on 
Thread. stop ( ) . The kemel has to ensure that stop re- 
quests are deferred while a thread is accessing kemel struc- 
tures. 

OutOfMemoryError is thrown whenever the virtual 
machine runs out of memory and the garbage collector fails 
to reclaim enough memory. Kemel operations must be de- 
signed to avoid OutOf MemoryError after the operation 
has modified some kemel state. A simple solution is to allo- 
cate all objects that might be required in advance before any 
changes are made. Following this approach, kemel struc- 
tures should not employ Java utility classes, such as the col- 
lections framework, since these classes allocate objects on 
demand. 

3.2. Implementation issues 

Operating systems employ a privileged processing mode 
for kemel operations. Only a process executing in kemel 
mode has access to all processor instructions and kernel in- 
ternals (special memory regions). The J-SEAL2 kemel uses 
a similar distinction: When a strand initiates a kernel oper- 
ation, it enters a privileged kemel mode. When the kemel 
operation completes (succeeds or fails), the strand leaves 
the kemel mode and continues execution in user mode. 

The main purpose of the kemel mode in J-SEAL2 is to 
prevent a strand from being stopped while accessing ker- 
nel intemals. Stop requests are deferred until the strand to 
be stopped leaves the kemel. In addition to deferring stop 
requests, kemel mode is used to synchronize primitives af- 
fecting the J-SEAL2 kernel abstractions, such as protection 
domain creation and termination, strand creation, as well as 
communication requests. 

We distinguish between exclusive and shared kemel 
mode. A strand entering exclusive kernel mode is blocked 
until no other strand is executing in the kemel. While 
a strand is executing in exclusive kemel mode, no other 
strand can enter the kemel. Protection domain termination 
is always performed in exclusive kemel mode. Therefore, 
strands executing in kemel mode are guaranteed not to be 
stopped asynchronously. 

The J-SEAL2 kernel uses a single-wrirer/multiple-reader 

lock for controlling access to the kemel: Entering exclu- 
sive kernel mode corresponds to acquiring the write lock, 
whereas shared kernel mode requires a read lock. The lock 
implementation ensures that a strand waiting for the write 
lock will enter the kemel before strands waiting for a read 
lock. This property makes sure that domain termination 
cannot be delayed infinitely. 

Since classloading affects the intemal state of the Java 
runtime system, we must ensure that classloading always 
occurs in kemel mode. A strand must not be stopped while 
it is loading a class, since this might corrupt some internal 
structures of the JVM. However, in general classloading oc- 
curs asynchronously, dependent on the virtual machine im- 
plementation. Therefore, we do not know whether a class- 
loading strand already executes in kemel mode or not. 

For this reason, the J-SEAL2 kemel offers a conditional 
kemel enter operation: A shared lock is only obtained, if 
the requesting strand is not yet executing in kernel mode. 
Implementing this operation requires keeping track of all 
strands that are executing in kemel mode. Because enter- 
ing kernel mode is a very frequent operation (for instance, 
each communication involves at least one switch into ker- 
nel mode), adding strands to and removing strands from the 
set of strands executing in kemel mode must be highly op- 
timized. 

Although kemel entry and exit are extremely frequent 
operations, measurements indicate that less than 3% of the 
overall CPU time is spent for obtaining and releasing kemel 
locks. Because operations requiring exclusive kemel mode 
are not executed frequently, the kernel lock does not become 
a significant performance bottleneck. Resource control (see 
section 7) ensures that an agent cannot enter the kemel ar- 
bitrarily. Therefore, the kernel lock cannot be abused for 
denial of service attacks. 

4. Protection 

The kemel of a traditional operating system ensures that 
a process can only access its own memory pages. The oper- 
ating system kemel relies on the memory management unit 
of the processor in order to detect illegal memory accesses. 
A mobile agent kemel has to enforce similar protection. The 
kemel must protect itself as well as each agent from any 
other agent in the system. 

4.1. Requirements 

Language safety in Java (a combination of strong typing, 
memory protection, automatic memory management, and 
byte-code verification) already guarantees some basic pro- 
tection, as it is not possible to forge object references. How- 
ever, language safety itself does not guarantee protection in 
a mobile agent execution environment. Pervasive aliasing 
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in object-oriented languages leads to a situation where it is 
impossible to determine which objects belong to a certain 
agent and therefore to check whether an access to a partic- 
ular object is permitted or not. It is crucial to introduce the 
concept of strong protection domains, similar to the process 
abstraction in operating systems. 

A protection domain draws a boundary around a compo- 
nent (i.e., a mobile agent or a service). It encapsulates the 
set of classes required by the component, some concurrent 
activities (strands), as well as all objects allocated by these 
strands. In general, strands shall only execute in their own 
protection domain. Special precaution is necessary to allow 
strands to cross domain boundaries. Furthermore, the ker- 
nel must prevent object references from being passed over 
protection domain boundaries. The kemel ensures that an 
object reference exists in only a single domain. This prop- 
erty is very important for memory accounting, too. 

Each protection domain has associated its own set of 
classes. In general, different components must not share 
the same classes, since this would mean to share also the 
static variables in these classes (i.e., shared static variables 
would introduce aliasing of object references between dif- 
ferent domains, or even worse, if static variables were not 
final, they could be used as covert communication chan- 
nels the kemel could not control). However, some classes 
from the JDK must be shared by all components in order to 
ensure correct function of the JVM. Nevertheless, mobile 
agents must not employ JDK classes comprising function- 
ality that undermines protection. For this reason, extended 
byte-code verification of agent classes is necessary. 

Another issue to be addressed by a mobile agent system 
is protection of resources, such as files or network ports. 
While in monolithic operating systems the kemel usually 
deals with resource protection, micro-kemel architectures 
simply ensure that security policies can be implemented 
at a higher level. Similarly, a mobile agent micro-kemel 
does not have to deal with security policies. Rather, it must 
make sure that only privileged domains can access system 
resources. For Java, t h s  means that agent domains must not 
have access to certain core packages, such as j ava . io or 
j ava . net. Such restrictions can be enforced by extended 
byte-code verification. 

4.2. Implementation issues 

The J-SEAL2 kemel employs a separate classloader 
namespace for each protection domain. A global configura- 
tion defines the set of classes to be shared by all domains. 
These classes are loaded by the JVM system classloader. 
All other classes are loaded by the protection domain class- 
loader (replicated classes). 

In order to ensure proper function of the Java runtime 
system, all JDK classes are shared. This does not introduce 

security problems, as the extended J-SEAL2 verifier assures 
that agents cannot use dangerous JDK functionality. Since 
replicating classes limits performance and increases agent 
startup overhead as well as memory consumption (above 
all, the same methods are compiled multiple times), the 
J-SEAL2 kemel is designed to minimize replicated kemel 
classes. In the current implementation only 3 small classes 
from the communication subsystem are replicated. This is 
n e c e s s q  to ensure that serialized object graphs received by 
a protection domain are resurrected using the classloader of 
the receiving domain. 

Agent classes as well as classes from the J-SEAL2 li- 
brary are replicated. To minimize the overhead of repli- 
cating library classes, the J-SEAL2 classloader can be con- 
figured to cache the class files residing in certain library 
packages. Since loading a class file from disk is the most 
significant performance bottleneck, a proper caching con- 
figuration yields a speedup in agent creation by more than 
factor 2. 

Agent class files are verified by a special J-SEAL2 ver- 
ifier in order to ensure that the agent does not use certain 
JDK and kemel classes. By this means the kemel protects 
itself and the underlying JVM from being corrupted by ma- 
licious or badly programmed agents. Each protection do- 
main can have its own directives declaring which classes 
may be referenced. Directives include the following types 
of restrictions: 

0 Access can be restricted to certain packages, eventu- 
ally including subpackages. 

0 Access to individual classes can be allowed or forbid- 
den. 

0 Access to individual class members can be allowed or 
forbidden. 

0 Extension of non-final classes can be prohibited. 

0 Agent classes must reside in a particular package or in 
a subpackage thereof. 

The possibility to prevent the extension of certain classes 
and to control access at the level of individual class mem- 
bers helps to structure the J-SEAL2 kernel in a clean way. 
For example, we used multiple packages to separate differ- 
ent parts of the kemel. Public access modifiers were nec- 
essary to allow the interoperation of distinct kemel com- 
ponents. The directives ensure that agents cannot access 
certain kemel intemals that had to be declared public for 
software engineering reasons. More generally, we think 
it is important to distinguish between software engineering 
practices and security engineering techniques: Java access 
modifiers and subtyping are very useful for software engi- 
neering purposes, whereas security engineering takes place 
in the specification of directives. 
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To ensure that a given class file does not violate a partic- 
ular set of directives it is sufficient to verify that the constant 
pool of the class file does not refer to forbidden classes or 
members and that extension of the superclass is not prohib- 
ited. Each member (field, method, constructor) that is ac- 
cessed by a method/constructor of the verified class has an 
entry in the class file constant pool. Thus, it is not necessary 
to verify method/constructor code. 

Benchmarks measuring agent startup overhead indicate 
that verification overhead is less than 9% of the CPU time 
spent for classloading. These measurements also include 
the costs for additional verification to ensure proper domain 
termination (see section 6). 

5. Communication 

In operating systems co-operating processes can ex- 
change messages through Inter-Process communication 
(IPC) facilities provided by the kernel. Process protection 
ensures that IPC is the only means to exchange information 
over process boundaries. As a mobile agent kemel isolates 
agents from each other, it must also provide some means 
for inter-agent communication in order to allow agents to 
collaborate. 

5.1. Requirements 

As we have stressed in the previous section, a secure mo- 
bile agent kemel has to provide strong protection domains. 
An agent executes within a protection domain, it is isolated 
from the rest of the system. If agents need to exchange some 
messages, all communication partners have to ask the kernel 
to establish a communication channel. The kemel ensures 
that communication partners can only access certain chan- 
nels if they have the necessary permissions. 

The J-SEAL2 kernel offers two different communication 
facilities, channels and extemal references. In both cases, 
messages are passed by value. The kemel creates a deep 
copy of the message before it passes it to the receiver. In 
that way, the kemel prevents direct sharing of object refer- 
ences between different protection domains. This property 
is crucial for protection domain isolation, as aliasing be- 
tween different domains would undermine protection. Fur- 
thermore, resource accounting is largely simplified by the 
fact that every object reference exists in only a single pro- 
tection domain. 

Channels support communication only between neigh- 
bours in the seal hierarchy. If two neighbour seals issue 
matching send and receive communication offers, the ker- 
nel passes the message from the sender to the receiver. De- 
tails about the channel matching algorithm can be found 
in [9 ] .  With the aid of channel communication it is pos- 
sible to achieve complete mediation. This means that it is 

possible to intercept all messages going in and out of an 
agent. However, channel communication becomes a signif- 
icant performance bottleneck, if messages must be routed 
through a series of protection domains, since communica- 
tion involves strand switches proportional to the communi- 
cation partners’ distance in the seal hierarchy. 

External references are an optimization, they support in- 
direct sharing of objects between distinct seals that are not 
necessarily neighbours in the hierarchy. An extemal refer- 
ence acts as a capability to invoke methods on a shared ob- 
ject. When an extemal reference is passed to another seal, 
the receiver gets a copy of the communicated extemal ref- 
erence. The sender may invalidate that copy (as well as, 
in a synchronized way, recursively all further copies of that 
copy) at any time with immediate effect, i.e., strands calling 
methods through the copy immediately leave the callee’s 
protection domain and throw an appropriate exception in 
the caller’s domain. This property clearly distinguishes ex- 
ternal references from capabilities in the J-Kemel [lo]. De- 
tails on the external reference communication model can be 
found in [3]. 

5.2. Implementation issues 

Since in J-SEAL2 there is no direct sharing of object ref- 
erences between different protection domains, all commu- 
nication involves the copying of messages. J-SEAL2 em- 
ploys Java serialization to create a deep copy of an object 
graph of serializable objects. Therefore, only serializable 
objects can be passed between different domains. The ker- 
nel ensures that a communicated serialized object graph is 
deserialized within the target domain. Thus, the deserial- 
ized object graph only refers to classes from the receiving 
domain. 

As serialization and deserialization are expensive op- 
erations, J-SEAL2 offers optimizations for certain object 
types that are frequently used in communication messages, 
such as Java primitive types, arrays of primitive types, as 
yell as strings. Primitive types do not include object ref- 
erences, they can be passed within simple wrappers. The 
classes for arrays of primitive types and for strings are al- 
ways loaded by the system classloader, thus we need not 
take care whether they are copied within the target domain. 
For arrays of primitive types, we can use array cloning or 
System. arraycopy ( 1 . For strings, there is a special 
constructor taking another string as argument. All these op- 
timizations are performed by the J-SEAL2 kemel, they are 
transparent to the programmer. Performance measurements 
show that capsule optimizations improve the performance 
of capsule creation and opening by a factor of 20-50. 

Extemal references complicate the serialization and de- 
serialization of object graphs. External references are not 
serializable, but they have to be treated in a very special 
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way. Since the kernel keeps track of external references and 
their copies, they must be separated from the rest of the se- 
rialized object graph. The kernel employs a dedicated copy- 
ing algorithm for extemal references, details can be found 
in [3]. 

The J-SEAL2 implementation of communication chan- 
nels ensures that a message is copied to the receiving pro- 
tection domain only after a communication match. Send 
and receive requests are treated as equivalent communica- 
tion offers. They are inserted in kemel queues residing in 
the same protection domain as the issuing strand. The ker- 
nel checks neighbour domains for matching offers. Only if 
the search is successful, the kemel copies the message to 
the receiving domain. This implementation is very different 
from traditional message passing, where a sender directly 
inserts a message into the receiver queue. By separating 
sender and receiver queues the J-SEAL2 kemel ensures that 
an agent cannot mount a denial of service attack against a 
neighbour domain by filling its receiver queues with mes- 
sages, eventually causing the receiver to exceed its memory 
limits. 

6. Domain termination 

Operating systems provide means to terminate running 
processes. ' All memory resources the terminated process 
had allocated before become available to other processes. 
The operating system kemel must ensure that neither its 
own resources nor any other shared resources are corrupted 
when a process is killed. 

6.1. Requirements 

When a protection domain is terminated, all strands be- 
longing to that domain have to be stopped. In Java the 
only means to stop a running thread asynchronously is 
Thread. stop ( ) . However, this operation has been dep- 
recated in the Java 2 platform, as it is inherently unsafe. 
When a thread is stopped, it exits all monitors immediately 
and throws ThreadDeath. As a consequence, objects 
may be left in an inconsistent state. 

In section 3 we have already stated requirements for ker- 
nel code to ensure that shared resources, such as internal 
structures of the kernel and of the Java runtime system, can- 
not be corrupted when a strand is stopped asynchronously. 
The idea is to defer stop requests if the strand to be stopped 
is accessing the kemel. A simple solution is to ensure that 
no other strand can access the kemel while a strand is stop- 
ping another one. 

When a thread is stopped, there is no guarantee that the 
stopped thread will really terminate. Depending on the ex- 
ecuted code, ThreadDeath might be caught or a f i -  
nally{ } clause might execute an infinite loop. Since the 
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kernel must ensure immediate resource reclamation when a 
protection domain is terminated, special verification is nec- 
essary to ensure that agent code cannot prevent or delay do- 
main termination. Thus, exception handlers of agents must 
immediately rethrow caught ThreadDeath exceptions. J- 
SEAL2 offers a class file rewriting tool to modify exception 
handlers accordingly. At runtime the extended byte-code 
verifier simply checks whether all agent classes have been 
rewritten correctly. 

In addition to these restrictions, agents must not define 
finalizers or class finalizers. These special methods are in- 
voked by the garbage collector before an object or a class is 
reclaimed. If these methods contained some infinite loops, 
they would hang up the whole system. 

6.2. Implementation issues 

Safe strand stopping is achieved through special kemel 
entry and exit sequences. A strand terminating a protection 
domain enters exclusive kemel mode. It is blocked until all 
other strands have left the kernel. Terminating a protection 
domain is an atomic kemel operation. All strands belonging 
to the domain are stopped within the same kemel operation. 
Since the strands to be stopped cannot enter the kemel, this 
approach enforces safe domain termination. Details can be 
found in section 3. 

In order to prevent agents from delaying their termina- 
tion, the J-SEAL2 verifier ensures that agent methods do 
not use forbidden Java constructs. The method signatures of 
all defined methods must be different from finalize ( 
and classFinalize ( )  . Furthermore, the exception ta- 
bles of all methods are examined in order to determine the 
types of caught exceptions. Agents are not allowed to catch 
ThreadDeath. If an exception handler catches a super- 
type of ThreadDeath (i.e., Throwable or Error), the 
handler code has to determine whether the actual type of a 
caught exception is ThreadDeath. In this case, the han- 
dler must rethrow ThreadDeath immediately. 

The JVM supports a special catch type in the exception 
table to indicate that all exceptions are caught by a par- 
ticular exception handler. Java compilers use this feature 
to compile finally{} clauses and synchronized{} 
statements [8]. The J-SEAL2 verifier ensures that these 
special exception handlers include code to rethrow a caught 
ThreadDeath exception immediately, too. 

Because exception handlers catching all exceptions are 
not present in the original Java code, we have implemented 
a byte-code rewriting tool to process agent classes gener- 
ated by standard Java compilers. This tool has to be used 
by J-SEAL2 programmers before they package their agents. 
It examines all exception handlers that could potentially 
catch ThreadDeath exceptions and inserts a short byte- 
code sequence (4 JVM instructions) to rethrow a caught 



ThreadDeath exception immediately. 
The rewritten exception handlers rethrow Thread- 

Death exceptions before any locks are released. This is 
important because the monitorexit instruction of the 
JVM might throw NullPointerExceptionor Ille- 
galMoni t orS t at eExcept ion. However, since we 
are rethrowing ThreadDeath before releasing locks, an 
eventually locked object will never be unlocked and could 
cause a deadlock, if another strand tried to lock it later. 
Since there is no direct sharing of objects between differ- 
ent protection domains and because kernel code must not 
lock objects that are accessible by agents (see section 3), 
only objects belonging to the terminated agent may be left 
in a locked state. This is not a problem, since the agent is 
removed from the system anyway. 

The J-SEAL2 verifier simply checks whether all agent 
classes have been rewritten accordingly. Benchmarks show 
that our verification mechanism does not introduce much 
overhead at runtime. Even for complex agents the total ver- 
ification costs, including constant pool verification as de- 
scribed in section 4, does not exceed 10% of the total time 
for classloading. 

7. Resource control 

Operating system kernels provide mechanisms to en- 
force resource limits for processes. The scheduler assigns 
processes to CPUs reflecting process priorities. Further- 
more, only the kemel has access to all memory resources. 
Processes have to allocate memory regions from the ker- 
nel, which ensures that memory limits are not exceeded. 
A mobile agent kemel must prevent denial of service at- 
tacks, such as agents allocating all available memory. For 
this purpose, accounting of physical resources (e.g., CPU, 
memory, network, etc.) and logical resources (e.g., number 
of threads, number of protection domains, etc.) is crucial. 

7.1. Requirements 

A generalization of CPU Inheritance Scheduling [6] ,  
a hierarchical scheduling protocol, fits. very well to the 
J-SEAL2 model of nested protection domains. At sys- 
tem startup the root domain, Rootseal, owns all physical 
and logical resources, for example 100% CPU time, some 
amount of virtual memory, the maximum number of strands 
the underlying JVM is able to cope with, an unlimited num- 
ber of subdomains, etc. When a nested protection domain is 
created, the creator donates some part of its own resources 
to the new domain. 

The J-SEAL2 kemel has to control the consumption of 
all resources it manages (CPU, memory, strands, domains). 
However, it is not responsible for limiting network usage, 

because the micro-kemel does not provide access to the net- 
work. Instead, network access can be provided by multiple 
services. These network services or some mediation layers 
in the hierarchy are responsible for network control accord- 
ing to application-specific security policies. 

Since J-SEAL2 is designed for large-scale applications, 
where a large number of services and agents are executing 
concurrently, design and implementation must minimize the 
overhead of resource accounting. Some domains, such as 
core services, are fully trusted. Their resource consumption 
need not be controlled by the kemel. 

In certain situations protection domains that are neigh- 
bours in the hierarchy may choose to share certain re- 
sources. In this case, resource limits are enforced together 
for a set of protection domains. As a result, resource frag- 
mentation is minimized. For example, consider an agent 
creating a subagent for a certain task. Frequently, the cre- 
ating agent does not want to donate some resources to the 
subagent, but it prefers to share its own resources with the 
subagent. 

Resource accounting also affects the kernel communica- 
tion facilities. A domain must be able to limit the size of 
incoming messages. Otherwise, malicious domains hold- 
ing more memory resources could easily mount denial of 
service attacks by sending large messages. For channels, 
this means that the receiver can specify the maximum size 
for incoming messages. Because extemal references sup- 
port two-way message exchange (argument and result mes- 
sages), the callee as well as the caller may limit incoming 
messages. 

7.2. Implementation issues 

The J-SEAL2 kernel guarantees accountability, because 
references to an object exist only within a single domain. 
Therefore, it is possible to account each allocated object to 
exactly one protection domain. This feature not only simpli- 
fies memory accounting, but it is also crucial for immediate 
resource reclamation during domain termination. 

For portability reasons, we employ byte-code rewriting 
techniques for memory and CPU accounting. In this ap- 
proach the byte-code of a Java class is modified before it is 
loaded by the JVM. Readers interested in an extensive tech- 
nical report presenting our byte-code transformations may 
contact the author by E-mail. 

Like in JRes [ 5 ] ,  code for memory control is inserted be- 
fore each memory allocation instruction. The J-SEAL2 ker- 
nel maintains weak references to allocated objects in order 
to detect when an object is reclaimed. Enforcing memory 
limits requires exact pre-accounting for memory resources, 
i.e., an overuse exception is raised before a strand can ex- 
ceed the memory limit of the domain it is executing in. In 
contrast to JRes, which controls a separate memory limit for 
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each thread, J-SEAL2 enforces a single memory limit for a 
multithreaded domain or even for a set of domains in the 
case of resource sharing. Therefore, memory accounting 
requires synchronization. 

CPU accounting is based on an abstract measure, the 
number of executed byte-code instructions. Instructions 
for CPU accounting are inserted in every basic block of 
code. Every strand in the system updates its own CPU ac- 
count. A high-priority scheduler strand executes periodi- 
cally in order to ensure that assigned CPU limits are re- 
spected. It is responsible for accumulating the accounting 
data of all strands executing in a set of domains sharing a 
CPU limit. The scheduler strand compares the number of 
executed byte-codes with the desired schedule and adapts 
the JVM thread priorities of individual strands in order to 
control the CPU consumption of different protection do- 
mains. 

be structured in a similar way as an operating system, where 
the kemel is separated clearly from all other parts of the sys- 
tem. The kemel is responsible for protection, communica- 
tion, protection domain termination, and resource control. 

The J-SEAL2 mobile agent system is based on a micro- 
kernel architecture providing the necessary security features 
for commercial mobile agent applications. The J-SEAL2 
kernel is implemented in pure Java, it is portable over dif- 
ferent operating systems and hardware platforms. 

The J-SEAL2 micro-kernel offers strong protection do- 
mains, an efficient communication mechanism, and safe 
protection domain termination with immediate resource 
reclamation. Currently, we are integrating resource control 
facilities into the J-SEAL2 kernel. Readers interested in 
getting an evaluation version of the J-SEAL2 platform may 
contact the author by E-mail. 
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