
Advances in Internet of Things, 2016, 6, 65-91

http://www.scirp.org/journal/ait

ISSN Online: 2161-6825

ISSN Print: 2161-6817

DOI: 10.4236/ait.2016.64005 September 20, 2016

Design and Implementation of the Sense Egypt

Platform for Real-Time Analysis of IoT Data

Streams

A. S. Rozik, A. S. Tolba, M. A. El-Dosuky

Faculty of Computers and Information, Mansoura University, Mansoura, Egypt

Abstract

Nowadays, we experience an abundance of Internet of Things middleware solutions

that make the sensors and the actuators are able to connect to the Internet. These

solutions, referred to as platforms to gain a widespread adoption, have to meet the

expectations of different players in the IoT ecosystem, including devices [1]. Low

cost devices are easily able to connect wirelessly to the Internet, from handhelds to

coffee machines, also known as Internet of Things (IoT). This research describes the

methodology and the development process of creating an IoT platform. This paper

also presents the architecture and implementation for the IoT platform. The goal of

this research is to develop an analytics engine which can gather sensor data from dif-

ferent devices and provide the ability to gain meaningful information from IoT data

and act on it using machine learning algorithms. The proposed system is introducing

the use of a messaging system to improve the overall system performance as well as

provide easy scalability.

Keywords

Internet of Things, IoT Platforms, IoT Big Data Analytics, MQTT (Message Queue

Telemetry Transport)

1. Introduction

With the enormous improvement in technology nowadays, there are billions of devices

that are producing data continuously. Examples of such devices are temperature sen-

sors, motion detectors, humidity sensors or even the luminosity sensor in a smart

phone. Due to the vast amount of sensors that exist, the volume of data that get pro-

duced every second, will make it difficult to organize in a good and easy way. There are

How to cite this paper: Rozik, A.S., Tolba,

A.S. and El-Dosuky, M.A. (2016) Design

and Implementation of the Sense Egypt

Platform for Real-Time Analysis of IoT Data

Streams. Advances in Internet of Things, 6,

65-91.

http://dx.doi.org/10.4236/ait.2016.64005

Received: July 26, 2016

Accepted: September 16, 2016

Published: September 20, 2016

Copyright © 2016 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative

Commons Attribution International

License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ait
http://dx.doi.org/10.4236/ait.2016.64005
http://www.scirp.org
http://dx.doi.org/10.4236/ait.2016.64005
http://creativecommons.org/licenses/by/4.0/

A. S. Rozik et al.

66

many attempts to create platforms that allow users to register their sensors, actuators

and visualize the data produced from theses sensors/actuators, such as Xively [2] and

Thing speak [3]; each of them focuses on different features. This is the main reason be-

hind the creation of the IoT Platform in this paper, in an effort to easily view, handle

and interact with IoT data streams. In the platform system users can enroll their devices

and transfer data streams to the IOT platform for data visualization and further pro-

cessing. In addition, the system has the capability to analyze sensors data and according

to analysis results, the system can send commands to other actuators registered in the

system. In addition the analytics engine is able to also predict the data generated by

sensors. The IoT Platform also supports the creation of triggers attached to streams. A

trigger [4] is a mechanism that notifies the user by sound alerts, SMS and Email or send

commands to other actuators when specific criteria are met or specific thresholds are

reached. The Internet of Things IoT [5] is a concept that has become more popular

lately; the main principle of IoT is to connect any device to the internet. The concept of

internet of things (IoT) leads to big and great ideas, such as the smart city [6]. Suppose

that you have just landed in this city airport then you head out to the airport to get a

ride to the hotel. A sensor attached to the back of your ear asks if you need a ride for

one person or more and you confirm your needs. At the curb [7], a vehicle stops in

front of you and a green light on the door indicates it is yours. When you get in the car,

there is no driver. In fact, there is no driver’s seat or steering wheel. Instead, four seats

face each other around a small central worktable. The car knows where you are going

because of your hotel reservation information in your phone. As you approach the ho-

tel, your room location appears on your phone. You are checked in automatically when

you walk in the hotel entrance. Your phone unlocks your room. This is an example of

how the Internet of Things will change our lives to the better. Innovative technologies

working together seamlessly over the internet will transform how we interact with al-

most everything. There is exponential growth in the number of unique, sensor-rich and

cyber-enabled devices processing data and communicating with other devices and

computers around the world [7].

The IoT is estimated to consist of almost 50 billion devices by 2020 [8]. A smart city

is a city where sensors are placed all around it and they would monitor, for example, air

pollution, amount of traffic or how full a garbage can is. The information could then be

used to make smart decisions, for example in the case of traffic monitors it could redi-

rect traffic to lower the risk of traffic jams or with the garbage sensor one could make

garbage collection more efficient by only collecting where it is needed. All of this devic-

es will be too much and headache to be monitored by humans, so we need to build sys-

tems to handle data and then either provide a good overview of the data, suggest what

to do (so a human can easily take the needed decisions) or automatically do it by the

analytics engine that should send alerts and also send commands to the actuators based

on the analysis results. Such a system would also need to have meta data regarding the

devices to be able to decide how useful the data given from the device is. Ultimately

what is envisioned here would be a platform that could handle 50 billion devices, gather

A. S. Rozik et al.

67

data by polling or pushing, have a good visual overview of the data but also be able to

create virtual streams, have triggers on these streams and be able to analyze the data

stream by making forecasts [9]. All these things were to be done in a user friendly way

where the users could seamlessly add their own sensors and actuators to the system.

The remainder of the paper is organized as follows. Section 2 describes the related

work. Section 3 describes the proposed architecture for IoT platform. Section 4 demon-

strates the proposed implementation for IoT platform. Section 5 describes the results &

discussions. Section 6 concludes the paper. Section 7 describes the future work.

2. Related Work

In this section, we present two of the most used IoT platforms as shown in Table 1 that

provide for smart objects or things (devices) the internet connectivity and the ability to

analyze the data generated from these devices [1]:

Reference architectures for integrating sensors with cloud services and IoT platforms

have been discussed in the literature [10]-[12]. These works propose the general archi-

tecture that can be used to connect sensors to IoT platforms and the potential issues. In

this paper and in our work, we propose a framework that can be used to send the data

generated from sensors to the IoT platform using MQTT protocol which is one of the

best protocols most fitted to be used in sensors and low power devices as well as show-

ing how to analyze the data and extract meaningful information within a generic

framework. We also discuss how to transfer data and process it in a scalable way, topics

that are not fully addressed in the previous papers. In addition we are showing the full

details to build an IoT platform from scratch using open source technologies and we

explored the machine algorithms that can be used to build the real-time analytics layer

more efficiently than the previous techniques used in the previous papers that depend

on thresholds checking.

Table 1. IoT platforms overview.

Platform Protocol Capabilities Architecture Open Source

Thing Speak [3] HTTP

• Visualization

• Data Analytics

• Store Data

• Integrate with Matlab

Centralized/Cloud

Based
Yes

Xively [2] HTTP

• Visualization

• Data Analytics

• Integrate with Sales Force

Cloud Based Yes

Sense Egypt (proposed

in this paper)
MQTT

• Visualization

• Data Analytics

• Send SMS/Email Alerts

• Send Commands to Actuators

based on Analytics results

• Store Raw and analyzed Sensors

Data

Cloud Based Yes

A. S. Rozik et al.

68

Figure 1. Architectural overview of Sense Egypt.

3. Proposed Platform Architecture

We adopt the architecture of a typical IoT system proposed in [10] as shown in Figure

1 consists of the following layers:

1) Devices layer

2) Communication layer

3) Messaging layer

4) Real-time Data analytics layer

5) Data Storage layer

6) Visualization layer

Each layer in Sense Layer proposed architecture as shown in Figure 1, is briefly de-

scribed as follows:

Figure 2. IoT devices types.

Visualization

Layer

Data Storage Layer

Real Time Data Analytics
Layer

Messaging Layer

Communication Layer

Device Layer

A. S. Rozik et al.

69

3.1. Devices Layer

We consider a device as a set of sensors and actuators. The below diagram shows the

IoT devices and their connection to internet.

The diagram shown in Figure 2 shows the different classes of devices [10] as follows:

1) Devices that don’t have operating system like Netduino and Arduino.

2) Devices that may run operating system like linux or another suitable operating

system. These devices may be used as a gateway for sensors and small devices, e.g. if a

wearable sensor connects to a smart phone via Bluetooth or Raspberry Pi, which then

enable sensors to connect to the internet.

3.2. Communication and Connectivity Layer

This layer provides the connectivity of the devices and IoT gateway to the rest of IoT

platform pipeline. The gateway is the interface between sensors and the rest of the IoT

pipeline. The role of IoT gateway is to abstract and encapsulate the sensors platform,

aggregate data from sensors and then sending sensors data to the rest of IoT pipeline.

There are different communication models between IoT devices, IoT gateway and

the Internet:

1) Direct WIFI or Ethernet connectivity via UDP or TCP/IP.

2) Connectivity through IoT Gateway.

There are different protocols for communication between IoT devices, IoT gateway

and the internet. The most well-known three potential protocols are:

• HTTP/HTTPS (and RESTFUL approaches on those) [13]

• Universal Plug and Play (UPnP) [14]

• Constrained application protocol (COAP) [15]

• MQTT (MQTT official website) [16]

• Extensible Messaging and Presence Protocol (XMPP) [17]

1) Hypertext Transfer Protocol (HTTP):

HTTP has become much more than navigation between pages on the Internet. Today,

it is also used in Internet of Things, among other things. So much is done on the Inter-

net today, using the HTTP protocol, because it is easily accessible and easy to relate

Figure 3. HTTP request/response pattern.

A. S. Rozik et al.

70

to. HTTP is a stateless request/response protocol where clients request information

from a server and the server responds to these requests accordingly as shown in Figure

3. A request is basically consists of a method, a resource, some headers, and some op-

tional content. A response is a three-digit status code, some headers and some optional

content. The following diagram shows the HTTP request/response pattern [13]:

2) Universal Plug and Play Protocol (UPnP)

UPnP is a protocol or an architecture that uses multiple protocols, helps devices in

ad hoc IP networks to discover each other, detects services hosted by each device and

reports events. Ad hoc networks are networks with no predefined topology or configu-

ration. Devices can find themselves and adapt themselves to the surrounding environ-

ment. UPnP is used by almost all network-enabled consumer electronics products used

in your home or office, and as such, it is a vital part of Digital Living Network Alliance

(DLNA). UPnP is largely based on an HTTP application where both clients and servers

are participants. This HTTP is, however, extended so that it can be used over TCP as

well as UDP, where both use unicast addressing (HTTPU) and multicast addressing

(HTTPMU) [14].

3) Constrained Application Protocol (CoAP):

CoAP is a very light weight protocol based on HTTP but the main difference be-

tween CoAP and HTTPU is that CoAP replaces the text headers used in HTTPU with

more compact binary headers, and furthermore, it reduces the number of options

available in the header. This makes it much easier to encode and parse CoAP messages.

CoAP also reduces the set of methods that can be used; it allows you to have four me-

thods: GET, POST, PUT, and DELETE. Also, in CoAP, method calls can be made using

confirmable and non confirmable message services. When you receive a confirmable

message, the receiver always returns an acknowledgement. The sender can, in turn, re-

send messages if an acknowledgement is not returned within the given time period. The

response code has also been reduced to make implementation simpler.

4) Message Queue Telemetry Transport (MQTT):

The MQTT protocol is based on the publish/subscribe pattern, as opposed to the re-

quest/response in the previous protocols. The publish/subscribe pattern has three types

of actors:

• Publisher (MQTT Client): The role of the publisher is to connect to the message

broker and publish the content.

• Subscriber (MQTT client): They connect to the same message broker and subscribe

to content that they are interested in.

• Message broker: This makes sure that the published content is related to interested

subscribers.

Content is identified by topic. When publishing content, the publisher can choose

whether the content should be retained by the server or not. If retained, each subscriber

will receive the latest published value directly when subscribing. Furthermore, topics

are ordered into a tree structure of topics, much like a file system.

5) Extensible Messaging and Presence Protocol (XMPP)

A. S. Rozik et al.

71

The XMPP [15] open protocol, standardized by Internet Engineering Task Force

(IETF) as are HTTP and CoAP. It uses message brokers to bypass firewall barriers. But

apart from the publish/subscribe pattern, it also supports other communication pat-

terns, such as point-to-point request/response and asynchronous messaging, that allow

you to have a richer communication experience. XMPP was originally designed for use

in instant messaging applications (or chat).

3.3. Messaging Layer

Data generated by the many sensors and devices of an IoT system typically needs to be

delivered to the storage and analytics systems using (HTTP - UPnP - COAP - MQTT -

XMPP) protocols as discussed in the previous section.

It is an important layer of the architecture because that it aggregates and brokers

communications. It is a very important layer for the following reasons:

1) It supports MQ Telemetry Transport broker and HTTP Server in order to connect

IOT devices to the Internet.

2) It’s ability to mediate and route communications between different devices in sys-

tem that may be connected via IoT gateway.

3.4. Real-Time Data Analytics Layer

Big Data generated by IoT devices is categorized into volume, velocity, and variety of

the data [18]. Big Data analytics systems like Hadoop handles only the Volume and

Varity but in real time big data analytics systems like Apache Storm and Apache Spark

need to handle the velocity of the data in addition to volume and Varity as well.

There are more than one step for real-time analytics systems to be able to handle the

data velocity, volume and Varity as follows:

1) Real-time data analytics system should collect the data produced by IoT devices

coming in at a rate of thousands and millions of event/second [18].

2) Real-time analytics system should support parallel processing for collected data.

3) The real time system should be a low latency – and fault tolerant distributed sys-

tem [18].

Objectives of Real-time Data analytics

1) Process data produced by IoT devices in real time or near real-time.

2) Extract meaningful information from data produced by IoT devices by performing

event correlation using CEP (Complex Event Processing).

3) Provide predictive analytics for data produced by IoT devices.

4) Take actions based on results of analysis like sending SMS and Email alerts or

sending commands to actuators registered in system.

3.5. Data Storage Layer

The data produced by IoT devices needed to be stored at each processing phase like the

raw data produced IoT devices, pre-processed data, and analytics results. Storing data

makes it possible to perform additional analytics later using the tool of your choice.

A. S. Rozik et al.

72

3.6. Visualization Layer

Visualization is critical for IoT application as this allows interaction of the user with the

environment. This layer presents the raw data produced by sensors and the analysis to

the end users of the platform.

4. Implementation of Sense Egypt Platform

Figure 4 shows the components of the real-time data analytics system that based on

MQTT protocol. The data produced by IoT devices can be collected via MQTT broker

and then can be processed in real time using Apache Storm, and then analytics results

can be stored in a database. In between, the MQTT Broker and Messaging system

(Apache Kafka) are used for storing/buffering the messages.

The implementation and components of the IoT platform is depending on the com-

munication protocol between the IoT devices, IoT gateway and the internet so if HTTP

is used as a communication protocol between IoT devices and the internet then the IoT

devices will act as HTTP clients and the IoT analytics platform will act as HTTP server.

So IoT devices (HTTP client) will emit their data to IoT analytics platform (HTTP

Server). In Sense Egypt IoT platform (Proposed in this paper) we selected the MQTT as

a communication protocol because as described in the communication and connectivi-

ty layer in the proposed architecture section, MQTT compares with other protocols like

(HTTP, CoAP) is designed mainly for devices and is lightweight on the wire, this

enables low cost device communication. MQTT is able to keep the bandwidth at an ab-

solute minimum and it can deal with unreliable networks without the need for complex

error handling and a huge effort in implementation. It was designed for keeping an

steady line to your devices at a minimal cost to support real push notifications and real

time communication. So if we need to connect IoT devices to Sense Egypt IoT platform

for real time analysis of their data then the IoT devices will act as MQTT clients that

Figure 4. Structure and components of the Sense Egypt IoT platform.

A. S. Rozik et al.

73

publish their data periodically to the MQTT broker which will forward and send the

data received from IoT devices to the rest of IoT pipeline for real time analysis and

processing. After that MQTT Broker send the data to the Apache Storm framework that

is a real time analytics engine and it’s role is to analyze the data generated from IoT de-

vices in real time and extract the meaningful information which will help in taking de-

cisions. After the real time analysis is completed then we visualize the results and take

actions accordingly such as send SMS and Email alerts as a notifications to the owners

of IoT devices or sending commands to actuators registered in Sense Egypt IoT plat-

form. The raw data gathered from IoT devices and the analyzed data are stored in

apache Cassandra DataBase.

The proposed structure of Sense Egyp IoT platform is shown in Figure 4, and it’s

components are described as follows:

4.1. IoT Devices

Every IoT system is consisting of a set of devices and we each device is a set of sensors

and actuators. IoT devices such as (Netduino, Arduino, Intel Galileo and Raspberry Pi)

will act as MQTT client. The role of any of the mentioned devices is to read inputs from

sensors such as (Temperature sensor, Light sensor, Motion detection sensor) and turn

it into an output (actuators such as turning on a motor, turning on an LED).

The process of capturing of IoT Devices Data as shown in Figure 5:

1) IoT device which is a set of sensors and actuators should be registered on Egypt

Sense platform portal. IoT device is acting as MQTT client that connects to MQTT

broker. MQTT client is responsible for collecting information from a telemetry devices

and publishing the readings to the MQTT broker. It can also subscribe to topics, receive

messages, and use this information to control the telemetry devices so it can be a pub-

lisher and a subscriber to the MQTT broker at the same time. MQTT clients implement

the published MQTT v3 protocol [16].

2) Sense Egypt platform is generating a unique topic (MQTT Id) for each sensor and

actuator registered in the system.

3) The IoT device sensors should publish events (readings) to MQTT broker using

the generated topic from the previous step.

Figure 5. Shows the capturing process of IoT devices data in Sense Egypt IoT platform in real-time using MQTT protocol.

A. S. Rozik et al.

74

4) The IoT device actuators should subscribe to MQTT broker to receive commands

using the topic generated from step no 2.

5) MQTT broker will emit the received sensors data to the IoT platform for advanced

analytics as will shown below in the next sections.

MQTT client libraries are available in many different programming languages such

as (Java, .Net .PHP, C#, Java Script, Node.Js, C++, C, Arduino) [19]. The owner of IoT

devices should first register the sensors and actuators on the Sense Egypt platform to

get specific topics to publish sensor readings on specific topic or subscribe to specific

topic on the MQTT broker.

Structure of MQTT client application:

1) Create a client object

2) Set the options to connect to an MQTT server

3) Set up callback functions

4) Connect the client to an MQTT server

5) Subscribe to any topics the client needs to receive

6) Repeat until finished:

i) Publish any messages the client needs to

ii) Handle any incoming messages

7) Disconnect the client

8) Free any memory being used by the client

4.2. MQTT Broker (Hive MQ)

MQTT broker provides the ability to connect your devices over the Internet. It provides

the capability to deliver messages in real time and it guarantees messages delivery.

Connect thousands of devices to your platform, what makes MQTT truly excels is

sending instant updates and broadcast push notifications. There are different imple-

mentations for message broker for example (Hive MQ, mosquito). Hive MQ [20] is se-

lected in our proposed implementation for the following features:

1) High performance MQTT broker

2) Open Source Plugin System

3) Native Web sockets Support

4) Cluster functionality

5) Embeddable.

4.3. Messaging System (Apache Kafka)

MQTT Broker doesn’t provide any buffering mechanism and is not scalable. When a

large amount of data is coming in from multiple different sources, then both of these

features are necessary. Systems like Apache Kafka should be used as an intermediate

messaging system. Using intermediate messaging system between the MQTT broker

and the rest of IoT pipeline system can help to improve the overall system performance

as well as provide easy scalability. Apache Kafka is a publish/subscribe open source

messaging system. A message broker is a programming module which translates mes-

A. S. Rozik et al.

75

sages from sender messaging protocol to receiver messaging protocol. Kafka is a pub-

lish/subscribe messaging system which can handle huge amounts of reads and writes

per second from thousands of clients [21]. The major components of any messaging

system are the producer of the message, the consumer of the message, and the message

broker. The message broker uses message queues internally for asynchronous inter

process communication between the message producers and consumers. Any messag-

ing system supports both point to point in addition to the publish/subscribe communi-

cations model. In point to point communication model, the messages sent to the queue

by the producer and multiple consumers may be registered with this queue, but the sent

message to the queue will be consumed by one consumer only. In the publish/subscribe

communication model, there are multiple producers that can produce messages for a

specific topic, and multiple consumers can be subscribed for this topic. For each sub-

scriber, it will receive the message sent to this topic. In the messaging system, the mes-

sage broker is the core component which connects message producers and consumers.

4.4. Real Time Stream Analytics Engine (Apache Storm)

The real-time analytics engine is the brain of the IoT platform as the raw data received

from IoT devices through the MQTT broker in real time need further processing.

MQTT is already supported by Apache Kafka which makes integration effortless. The

data received from an MQTT broker will be sent by Apache Kafka to different con-

sumers. For example, one Kafka consumer could be used to send data to Apache Storm

for data analysis and the other Kafka consumer could be used to send raw data to a da-

tabase. The data received from Apache Kafka need further processing, such as adding a

time stamp (if not already existed), expecting missing readings, filtering, analysis, pre-

dictions etc. We used Apache Storm [22] to achieve these goals. Storm has many fea-

tures as it is a distributed, fault tolerant, reliable system for data streams processing.

Storm topologies consist of two different components (Spouts and Bolts) and each of

them is responsible for a specific processing task. Spout component is responsible for

emitting the input streams of a storm cluster to other components for processing. The

spout sends the data to a Bolt component, which transforms data in some way. A bolt

either store the data into database, or sends it to some other bolt.

Storm Cluster as shown in Figure 6 consists of the following components:

• Nimbus node:

Executes uploaded computations

Responsible for code distribution across the cluster

Starting workers across the cluster

Computations monitoring and workers reallocation as required

• Zookeeper nodes: coordinates between nimbus and supervisor nodes in the Storm

cluster

• Supervisor nodes—starting and stopping workers nodes

In Figure 7 the diagram shows storm topology components that consist of spouts

and bolts. Spouts are responsible for data stream injection into the topology [18]. Bolts

A. S. Rozik et al.

76

Figure 6. Storm cluster nodes.

Figure 7. Storm topology components [21].

are responsible for doing some computations and processing over the data received

from spouts or received from other bolts.

In Storm Cluster you run topologies. Stream is the core abstraction in Apache Storm

framework. A stream consists of unlimited sequence of tuples. Apache Storm has three

high level entities which actually run Topologies in Storm cluster [18]:

1) Worker Process

2) Executors

3) Task

A machine in a storm cluster may run one or more worker processes for one or more

topologies. Each worker process runs executers for a specific topology and has it’s own

A. S. Rozik et al.

77

Figure 8. Workflow to extract meaningful information from raw sensor data [23].

JVM. One or more executers may run within a single worker process.

Storm based Sensors Data Analytics in SenseEgypt

In the following section, we introduce a general workflow [23] to extract meaningful

information from raw sensor data that has been defined by examining several different

approaches for information abstraction in the domain of sensor data [24]. The ap-

proaches that have been examined follow the workflow as shown in Figure 8.

The phases of extracting meaningful information from the raw Data are as follow:

1) Pre-processing

2) Dimensionality reduction

3) Features Extraction

4) Classification

5) Visualization

The components of the data analytics layer as shown in Figure 8 are:

1) Kafka Consumer Spout:

Storm kafka spout [25] role is to fetch messages streams from apache kafka cluster

and emit that stream to apache storm bolts for advanced processing. This spout will

emit messages to pre-processing bolt.

2) Preprocessing Bolt:

IoT devices generate data in a raw form which is not necessarily suited directly for

analytics engine implemented using Apache Storm framework. The generated Data

may be missing, requiring an enrichment step, additional preparation or representa-

tions of values may need transformation (such as add time stamp for sensors readings)

and we achieve this by applying any of the Pre-processing techniques.

Figure 9 is showing the most used pre-processing techniques and they are divided

into the following:

i) Mathematical/Statistical Methods

a) Z-Normalization Algorithm

b) Min, Max Algorithms

c) Mean, Median Algorithms

d) Variance and Standard Deviation

e) Correlation and Integration techniques.

ii) Signal Processing Methods

a) Low Pass Filter

b) High Pass Filter

c) Band Pass Filter

The Pre-processing is consisting of the following phases:

i) Data Cleaning Phase:

In real time dynamic environment, a faulty or a missing sensor reading may occur

due to bad communication channel or loss of service so we propose the following steps

A. S. Rozik et al.

78

Figure 9. Pre-processing techniques.

for data cleaning phase:

a) Filtering out-of-range value:

To filter the sensor data values that are out of specific range we can use the Bandpass

Filter. A Bandpass Filter has two cutoff frequencies, the lower and the upper frequen-

cies and will only pass the signal in between.

b) Filling out missing values:

Missing values can be filled by the mean value of the sensor over some time window,

by last recorded value and this can be done using mean/median algorithm

ii) Data Transformation Phase:

The second phase in pre-processing process is the data transformation and it in-

volves transforming the data into the form which is optimum for machine learning

process and this can be done using Z-Normalization.

Z-Normalization features:

i) Allows comparison of one time series data with another directly.

ii) Simplifying and enhancing the algorithm complexity.

The transformation formula is shown below:

()' , whereX i xi i Nµ σ= − ∈

As shown, the time series mean is subtracted from original values at first, and then

the difference is divided by the standard deviation value second.

3) Analytics Bolt:

A. S. Rozik et al.

79

In the Pre-processing bolt we implemented the pre-processing technique that is the

first phase of the proposed workflow to extract a meaningful information from the raw

data. In the Analytics bolt we will implement the remaining phases of workflow.

i) Dimensionality Reduction Phase

After the raw data has passed to the pre-processing phase, we will pass the pre-pro-

cessed data to the dimension reduction phase to reduce the data size. Several variants of

aggregation techniques are used in order to reduce the data size without any loss of in-

formation. PAA and extended version of PAA called SAX are the most commonly used

aggregation techniques in IoT for data reduction [26] as shown in Figure 10.

We will use Piecewise Aggregation Approximation (PAA) algorithm for the dimen-

sion reduction phase.

Piecewise Aggregation [27] divides the original data of length N into n equally sized

windows by taking the mean of each window. This results in a reduction of data size

from N to N/n data points. A shorter window length n results in a better reconstruction

of the original data, however more data space is needed to store the data and eventually

higher energy consumption by higher communication costs.

The pseudo code of the PAA Algorithm

Suppose the following:

“D” is the list of data that containing the raw values that we will reduce it’s size,

“L” is the desired output length,

“w” is the number of equally sized windows,

“output” is the result vector of PAA function,

“p” is the pointer to the data list,

“s” is the segment.

“n” is the iterator over output vector

function PAA(L, D)

 w:= length(D)/L

 p=0

 n=0

 output[] // initialize the output vector of length L

 while p < length(D) do // iterate over the

 s:= D(p,p+w) //return segment of the original data of size “w”

outputn = mean(s) //calculate the mean of the segment values

 p = p + w //increase the value of the pointer with value of “w”

 n++ // increase the value of the output vector iterator

 end while

 return output // return the output vector after iterating over the data

end function

Figure 10. Dimensionality reduction techniques.

A. S. Rozik et al.

80

ii) Features Extraction Phase

Feature extraction is another technique used widely for data reduction where the

number of features of data are large and mostly correlated to each other. Feature ex-

traction enables to extract most relevant and uncorrelated features in order to perform

optimum analysis [28].

There are many techniques developed for Feature Extraction as shown in Figure 11,

but PCA is one of the most famous feature extraction technique which form new un-

correlated features based on the statistical properties in order to represent the same da-

ta with less dimensions.

The pseudo code of the PCA Algorithm

Input: x1, ..., xn d length vector, k

Output: Transform matrix R

X ⇐ n × d data matrix with xi in each row;

1

1
x '

n

i
i

x
n =

= ∑

X ⇐ subtract x' from each row
i

x in X;

1
COV

1

T

X X
n

⇐ +
−

 Compute eigenvalue e1, ..., ed of COV, and sort them;

Compute matrix V which satisfy V−1 × COV × V = D, D is the diagonal matrix of eigenvalue of COV;

R ⇐ the first k column of V

iii) Data Classifications Phase

After the raw data has passed to the dimensionality reduction and the features of the

data produced by IoT devices have been extracted [23] to detect the outliers [29]. In

analysis of the time-series the similarity can be computed by comparing the observed

values and can be computed also using meta information such as time or type. After

features are extracted from sensors data we need to classify these features and there are

many techniques [30] developed for this purpose as show in the figure below.

There are many techniques developed for IoT data classification as shown in Figure

12, but Support vector machine (SVM) is one of the most widely used classification al-

gorithm.

Figure 11. Features extraction techniques.

Figure 12. Data classifications techniques.

A. S. Rozik et al.

81

The two main advantages which gives SVM an edge on others are:

a) Its ability to generate nonlinear decision boundaries using kernel methods.

b) It gives a large margin boundary classifier.

We can conclude the following workflow for IoT Data Analytics Process the selected

algorithms for each phase as shown in Figure 13:

All the above algorithms and techniques can be implemented using Apache Mahout

Library [31].

iv) Storage Bolt:

Storage Bolt is used to interact with various databases. To store the generated raw

data from IoT devices and the data generated from the preprocessing bolt, Apache

Cassandra DB, Apache Couch DB or Mongo DB are good alternatives.

v) Alerts Bolt:

When any of the matching rules and thresholds are met then the appropriate action

handlers in the alerts bolt can be executed such as sending SMS or Email to users. For

example, if we have temperature sensor and we set rules and thresholds for this sensor

such as minimum threshold is 10 and the maximum threshold is 60 and we selected to

send SMS if any of these matching rules are met, and if the sensor reading is below the

minimum threshold or above the maximum threshold then SMS should be sent to a

certain mobile phone number.

vi) Visualization Bolt:

This bolt just send analytics results to Apache Kafka which sends it to the MQTT bro-

ker so that results are visualized to the system users using a dashboard and then act on it.

4.5. Storage Layer: Apache Cassandra

Apache CassandraTM [32] is a scalable open source NoSQL database. World is moving

to big data low cost, highly scalable, and reliable solutions that can store endless amounts

of data. Well, we are handling real-time analytics, and everything we need should be

accurate, fail-safe, and lightning fast. Therefore, Cassandra is the best choice because:

• It has the fastest writes amongst its peers such as HBase and so on.

• No single point of failure.

• Read and write requests can be handled without impacting each other’s performance.

• Handles search queries comprising millions of transactions and lightning-fast speeds.

• Fail-safe and highly available with replication factors in place.

4.6. Visualization Layer Node.JS

For the visualization of sensor data, we have developed a simple dashboard to display

Figure 13. Data abstraction process workflow [24].

A. S. Rozik et al.

82

charts of raw and analyzed data received from sensors through a Message Broker (Hive

MQ) and to display the analyzed data. The dashboard is a simple Node.JS [33] web ap-

plication in addition using front end technologies such as jQuery, and D3 visualization

libraries. The web app gets the data from the historical storage and subscribes to sen-

sors real-time updates MQTT over Web sockets as shown in Figure 14.

Real-Time Analysis of Sensors Data:

After discussing all the components and the structure of Sense Egypt platform now

we are concluding how the real-time analysis of sensors data is done.

Sense Egypt IoT platform handling the real time analysis of the sensors data as

shown in Figure 15 as follow:

1) The IoT devices acting as MQTT clients to the MQTT broker so that the data

generated from sensors will be published periodically to the MQTT broker.

2) The MQTT broker (Hive Mq) receive sensors data and send them to the messag-

ing system (Apache Kafka) for buffering.

3) The data received from an MQTT broker will be sent by Apache Kafka to different

consumers. For example, one Kafka consumer could be used to send data to Apache

Storm for data analysis and the and the other Kafka consumer could be used to send

raw data to a database.

4) Apache Kafka send the data received to Apache Storm through kafka consumer

spout. The data received from Apache Kafka need further processing, such as adding

a time stamp (if not already existed), expecting missing readings, filtering, analysis,

Figure 14. Shows the visualization layer components. It shows how the web dashboard gets the data from MQTT

broker (Hive MQ) over HTML web sockets.

Figure 15. Shows how Sense Egypt IoT platform perform the real-time analytics of sensors data.

A. S. Rozik et al.

83

predictions etc. We used Apache Storm to achieve these goals.

5) Apache storm is responsible for the real-time analytics of sensors data and the

proposed system is using machine learning algorithms for real time analytics of data as

shown above. The analyzed data are stored in Apache Cassandra DB through Apache

storm storage bolt. Actions also are taken based on analytics results so that SMS/Email

alerts can be sent to users and also commands can also be sent to the subscribed actua-

tors(IoT device) through MQTT broker to take an action.

6) The results of real-time analytics of sensors data are visualized and displayed in

charts in a simple dashboard developed using D3 library in Node.Js framework.

5. Results & Discussions

5.1. Platform Portal

The main objective of this research is to build a platform for real time analysis of IoT

data streams. The Web portal consist of the following pages:

5.1.1. Main Page

IoT Platform Main page from which the user can Sign In, Sign up and open channels

page that enables the user to enroll sensors and actuators to the system.

5.1.2. Channels Page

The first step for users to be able to use the portal is to create an account from Sign up

page on the platform to be able to add sensors and actuators to their channels. After the

user has created his account in the system, he can now be logged on from the Sign on

page and then he can add new sensors and actuators to his account. To add a new de-

vice to your channel then user should click on the new device button in the channel

page then a new form will be displayed and these data should be entered (Device Type,

Device Name, Device Description, Mobile No, Device Latitude and Longitude, Mini-

mum and maximum thresholds, Select the triggered actuator if found, Check SMS Box

if needed to send SMS message to user using the mobile number entered above if any of

the threshold rules is true and Check Email Box if needed to send email messages to

users using the email entered during account registration if any of the thresholds rules

applies and then click Save button.

After the user Click on the save button in the devices registration page Figure 16,

The devices table will be displayed and it contains all the devices registered to this user

as shown below in Figure 17.

Device Registration Sequence Diagram:

The below sequence diagram in Figure 18, shows how the registration of devices is

done.

5.1.3. Dashboard Page

Figure 19 shows the Dashboard page from which the user can select from “Device”

drop down list the sensor that needed to be monitored. When sensor is selected then

the data generated by this sensor is displayed in a customized chart in addition to the

A. S. Rozik et al.

84

analyzed data. In addition the location of each sensors is displayed in Google map as

shown in the above figure.

Sensors Interaction with IOT platform sequence diagram as shown in Figure 20.

Figure 16. Shows channels page from which we can add a new device (sensor or actuator).

Figure 17. Shows the list of registered sensors and actuators in a table that consists of device

name, unique MQTT topic generated by system for the registered device and the creation date.

The MQTT topic generated by system should be used by the user to subscribe his devices (sen-

sors and actuators) to the MQTT message broker so any device should send it’s data to this

MQTT topic.

A. S. Rozik et al.

85

Figure 18. Shows device registration sequence diagram.

Figure 19. Dashboard and navigation pane.

Figure 20. Sequence diagram for devices interaction with IOT platform.

A. S. Rozik et al.

86

5.2. MQTT Broker (Hive MQ) Performance Evaluation

The MQTT Broker (Hive MQ) is one of the main components in the system that enables

sensors and actuators to connect to the rest of IoT pipeline, so we need to evaluate it’s

performance as follows. All Tests were executed on Amazon Web Services (AWS), a

cloud infrastructure provider.

Hive MQ Server Instance Hardware specs as shown below in Table 2: The following

EC2 Instance Type was used for the Hive MQ installation:

1) Latency Test:

This test shows the latency of Hive MQ for different Quality of Service levels for dif-

ferent amounts of MQTT clients and high throughput.

Latency is key for IoT systems at high scale where responsiveness and the real time

experience are key acceptance factors of end users or downstream systems. The follow-

ing benchmark shows how Hive MQ performs in an end-to-end scenario with real

network round trip for latencies.

QoS 1 Results:

This benchmark tests the end-to-end latency of MQTT messages with QoS 1 guaran-

tees. This means, Hive MQ uses disk persistence for every outgoing MQTT message

due to the at least once semantics of QoS 1. No messages were lost in this test since the

TCP connection was stable all the time and the QoS 1 guarantees were in place as

shown in Figure 21.

Discussion

This test shows that the throughput and latency was stable all the time for the whole

measurement time (45 minutes) of every individual test. With an increasing number of

clients and messages per second the latency did not increase significantly. Average

round trip time was always in the lower one-digit milliseconds. Even with linearly in-

creasing throughput and number of subscriptions all measured latencies remain very

low. Every single message was persisted to disk before delivering so the additional la-

tency compared to QoS 0 messages are a result of the additional disk I/O overhead.

This benchmark demonstrated that Hive MQ delivers very high QoS 1 message

throughput (>15,000 messages per second) with a one-digit latency by average, while

complying to the QoS 1 at-least-once guarantees as Table 3 shows.

2) Telemetry Test:

Table 2. Shows the hardware used in the performance evaluation process.

Name Value

Instance Type C4.2x large

RAM 15 GiB (~16 GB)

v CPU 8

Physical Processor Intel Xeon E5-2666 v3

Clock Speed (GHz) 2.9

A. S. Rozik et al.

87

Figure 21. Number of clients/messages per second.

Table 3. QoS 1 latency results.

 2.500 5.000 7.500 10.000 12.500 15.000

Mean 0.415047152 0.604632525 0.767690498 1.062635311 1.163355852 2.032116374

75th 0.358394 0.389408 0.461854 0.525717875 0.675208875 0.857987

95th 1.17566645 1.2139728 1.374251375 1.3377911 2.4430323 3.134619025

98th 2.64368922 3.07982922 2.95271823 3.6996623 7.28728491 13.49425474

99th 2.8415169 5.4699688 7.403215115 12.88660823 19.44312396 32.44365795

Median 0.3032895 0.328127 0.3717255 0.40715475 0.481312 0.55862825

Std Dev 0.506549184 2.889852539 5.889325998 7.383906539 5.198095769 12.02608314

MQTT brokers are often deployed in environments where it’s key to collect data

from a huge amount of devices while only a few subscribers process the data published

by the devices. A typical use case are telemetry scenarios where the MQTT broker

needs to process a very high incoming MQTT message rate. The following benchmarks

focus on the throughput of Hive MQ in such a scenario. In order to understand the

runtime behavior of Hive MQ in a telemetry scenario, all relevant runtime statistics like

CPU usage, and RAM and used bandwidth are measured. So this benchmark is focused

on resource consumption of Hive MQ while delivering constant message throughput.

QoS 1 Results

This benchmark tests the resource consumption of Hive MQ with incoming QoS 1

messages. As discussed in the Benchmark Setup section, the subscribing clients subscribe

with QoS 0. The following measurements were executed during the test executions: Av-

erage CPU utilization as shown in Figure 22, used total memory as shown in Figure 23,

A. S. Rozik et al.

88

Figure 22. CPU utilization.

Figure 23. RAM usage.

incoming and outgoing traffic per minute as shown in Figure 24. No messages were lost

in this test since the TCP connection was stable all the time.

Discussion

Increasing the total number of QoS 1 messages per second linearly result in linear

bandwidth increase while CPU and RAM usage grow at a predictable level. A notable

observation is, that while the bandwidth usage increases linearly with the number of

messages/second, the CPU and RAM usage do not increase linearly. Hive MQ delivers

A. S. Rozik et al.

89

Figure 24. Bandwidth usage.

constant and predictable results until CPU limits of the EC2 instance are reached.

RAM is negligible in this test since 3 GB of RAM usage were never exceeded al-

though the machine was configured to reserve up to 10 GB of RAM for Hive MQ. The

limiting factor in this test is clearly CPU and even higher throughput can be expected

for machines with more computing power. The multithreaded nature of Hive MQ al-

lows to scale with the number of CPUs.

6. Conclusion

In this paper, we proposed a platform for real time IoT Data analytics using MQTT

Protocol to support delivery of large volumes of data. An architecture is presented for

IOT data analytics platform and also the implementation for each layer in the proposed

architecture. Also we presented the open source technologies that can be used in mes-

saging layer (Apache Kafka, Hive MQ), Analytics (Apache Storm) layer, Storage

(Apache Cassandra) layer and Visualization layers (Node.JS Framework) layer. In addi-

tion to analytics layer, a workflow to extract meaningful information that is human

and/or machine-understandable from raw data generated by sensors and the algorithms

that should be applied in each of the work flow stage is also presented. Also a dash-

board is implemented to visualize sensors data and commands to actuators registered

in platform.

7. Future Work

Future research will focus on extending the platform with new analytics techniques to

work with high performance computing and Big Data analytics tools such as Hadoop

A. S. Rozik et al.

90

[23]. In addition revamp the current system architecture to apply lambda architecture

that consists of Batch, Serving and real time layer. Also we will use Symbolic Aggregate

Approximation (SAX) Algorithm for Dimensionality Reduction layer as some studies

indicate that the SAX algorithm performs better in preserving the features of data and

also use the Hidden Markov Model Algorithm for features extraction.

References

[1] Mineraud, J., Mazhelis, O., Su, X. and Tarkoma, S. (2016) A Gap Analysis of Internet-of-

Things Platforms. Computer Communications, 89-90, 5-16.

http://dx.doi.org/10.1016/j.comcom.2016.03.015

[2] Xively—Public Cloud for the Internet of Things. https://xively.com/

[3] Thing Speak—Internet of Things. https://www.thingspeak.com/

[4] Vandikas, K. and Tsiatsis, V. (2014) Performance Evaluation of an IoT Platform. 8th Inter-

national Conference on Next Generation Mobile Apps, Services and Technologies, 10-12

September 2014, 141-146. http://dx.doi.org/10.1109/NGMAST.2014.66

[5] Ashton, K (2009) That “Internet of Things” Thing: In the Real World Things Matter More

than Ideas. RFID Journal. http://www.rfidjournal.com/articles/view?4986

[6] Mahizhnan, A. (1999) Smart Cities: The Singapore Case. Cities, 16, 13-18.

http://lkyspp.nus.edu.sg/wp-content/uploads/2013/04/pa_Arun_Smart-Cities-The-Singapo

re-Case_99.pdf

http://dx.doi.org/10.1016/S0264-2751(98)00050-X

[7] Mcpherson, D. (2016) Big Data and the Internet of Things.

http://blog.edx.org/big-data-and-the-internet-of-things

[8] Evans, D. (2011) The Internet of Things: How the Next Evolution of the Internet Is Chang-

ing Everything.

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[9] Arias Fernández, J., et al. (2013) IoT-Framework. Product Report, Uppsala University.

http://www.it.uu.se/edu/course/homepage/projektDV/ht13/ProductReport.FINAL.pdf

[10] Fremantle, P. (2015) A Reference Architecture for the Internet of Things.

http://wso2.com/wso2_resources/wso2_whitepaper_a-reference-architecture-for-the-intern

et-of-things.pdf

[11] Dash, S.K., Sahoo, J.P., Mohapatra, S. and Pati, S.P. (2012) Sensor-Cloud: Assimilation of

Wireless Sensor Network and the Cloud. In: Meghanathan, N., Chaki, N. and Nagamalai,

D., Eds., Advances in Computer Science and Information Technology. Networks and

Communications, Springer, Berlin, 455-464.

http://dx.doi.org/10.1007/978-3-642-27299-8_48

[12] Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A. and Hossain, M.A.

(2013) A Survey on Sensor-Cloud: Architecture, Applications, and Approaches. Interna-

tional Journal of Distributed Sensor Networks, 9, Article ID: 917923.

http://dx.doi.org/10.1155/2013/917923

[13] Hypertext Transfer Protocol—HTTP/1.1. https://tools.ietf.org/html/rfc2616

[14] Universal Plug and Play (UPnP).

https://jan.newmarch.name/internetdevices/upnp/upnp.html

[15] Constrained Application Protocol (CoAP). http://tools.ietf.org/html/draft-ietf-core-coap-18

[16] OASIS Message Queuing Telemetry Transport (MQTT) TC.

http://dx.doi.org/10.1016/j.comcom.2016.03.015
https://xively.com/
https://www.thingspeak.com/
http://dx.doi.org/10.1109/NGMAST.2014.66
http://www.rfidjournal.com/articles/view?4986
http://lkyspp.nus.edu.sg/wp-content/uploads/2013/04/pa_Arun_Smart-Cities-The-Singapore-Case_99.pdf
http://lkyspp.nus.edu.sg/wp-content/uploads/2013/04/pa_Arun_Smart-Cities-The-Singapore-Case_99.pdf
http://dx.doi.org/10.1016/S0264-2751(98)00050-X
http://blog.edx.org/big-data-and-the-internet-of-things
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.it.uu.se/edu/course/homepage/projektDV/ht13/ProductReport.FINAL.pdf
http://wso2.com/wso2_resources/wso2_whitepaper_a-reference-architecture-for-the-internet-of-things.pdf
http://wso2.com/wso2_resources/wso2_whitepaper_a-reference-architecture-for-the-internet-of-things.pdf
http://dx.doi.org/10.1007/978-3-642-27299-8_48
http://dx.doi.org/10.1155/2013/917923
https://tools.ietf.org/html/rfc2616
https://jan.newmarch.name/internetdevices/upnp/upnp.html
http://tools.ietf.org/html/draft-ietf-core-coap-18

A. S. Rozik et al.

91

https://www.oasis-open.org/committees/mqtt/

[17] Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence.

http://xmpp.org/rfcs/rfc3921.html

[18] Bhattacharya, D. and Mitra, M. (2013) Analytics on Big Fast Data Using Real Time Stream

Data Processing Architecture. EMC Proven Professional Knowledge Sharing.

[19] MQTT Client Libraries. https://github.com/mqtt/mqtt.github.io/wiki/libraries

[20] Hive MQ Official Website. http://www.hivemq.com/mqtt/

[21] Apache Kafka Official Website. http://kafka.apache.org/

[22] Apache Storm Official Website. http://storm.apache.org/

[23] Ganz, F., Puschmann, D., Barnaghi, P. and Carrez, F. (2015) A Practical Evaluation of In-

formation Processing and Abstraction Techniques for the Internet of Things. IEEE Internet

of Things Journal, 2, 340-354. http://dx.doi.org/10.1109/JIOT.2015.2411227

[24] Hall, D.L. and Llinas, J. (1997) An Introduction to Multisensor Data Fusion. Proceedings of

the IEEE, 85, 6-23. http://dx.doi.org/10.1109/5.554205

[25] Storm-Kafka Spout Code.

https://github.com/apache/storm/tree/master/external/storm-kafka-client

[26] Li, X., Lu, R., Liang, X., Shen, X., Chen, J. and Lin, X. (2011) Smart Community: An Inter-

net of Things Application. IEEE Communications Magazine, 49, 68-75.

http://dx.doi.org/10.1109/MCOM.2011.6069711

[27] Ganz, F., Barnaghi, P. and Carrez, F. (2013) Information Abstraction for Heterogeneous

Real World Internet Data. IEEE Sensors Journal, 13, 3793-3805.

http://dx.doi.org/10.1109/JSEN.2013.2271562

[28] Eid, M., Liscano, R. and El Saddik, A. (2007) A Universal Ontology for Sensor Networks

Data. IEEE International Conference on Computational Intelligence for Measurement Sys-

tems and Applications, Ostuni, 27-29 June 2007, 59-62.

http://dx.doi.org/10.1109/cimsa.2007.4362539

[29] Hodge, V.J. and Austin, J. (2004) A Survey of Outlier Detection Methodologies. Artificial

Intelligence Review, 22, 85-126. http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

[30] Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F. and Barnaghi, P. (2014) A

Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and Processing.

2014 IEEE International Conference on Internet of Things (iThings), and Green Compu-

ting and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing

(CPSCom), Taipei, 1-3 September 2014, 215-222. http://dx.doi.org/10.1109/ithings.2014.39

[31] Apache Mahout: Machine Learning Library Official Website. http://mahout.apache.org/

[32] Apache Cassandra Official Website. http://cassandra.apache.org/

[33] Node JS Express Framework Official Website. http://expressjs.com/

https://www.oasis-open.org/committees/mqtt/
http://xmpp.org/rfcs/rfc3921.html
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://www.hivemq.com/mqtt/
http://kafka.apache.org/
http://storm.apache.org/
http://dx.doi.org/10.1109/JIOT.2015.2411227
http://dx.doi.org/10.1109/5.554205
https://github.com/apache/storm/tree/master/external/storm-kafka-client
http://dx.doi.org/10.1109/MCOM.2011.6069711
http://dx.doi.org/10.1109/JSEN.2013.2271562
http://dx.doi.org/10.1109/cimsa.2007.4362539
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1109/ithings.2014.39
http://mahout.apache.org/
http://cassandra.apache.org/
http://expressjs.com/

Submit or recommend next manuscript to SCIRP and we will provide best service

for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

Or contact ait@scirp.org

http://papersubmission.scirp.org/
mailto:ait@scirp.org

	Design and Implementation of the Sense Egypt Platform for Real-Time Analysis of IoT Data Streams
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Platform Architecture
	3.1. Devices Layer
	3.2. Communication and Connectivity Layer
	3.3. Messaging Layer
	3.4. Real-Time Data Analytics Layer
	3.5. Data Storage Layer
	3.6. Visualization Layer

	4. Implementation of Sense Egypt Platform
	4.1. IoT Devices
	4.2. MQTT Broker (Hive MQ)
	4.3. Messaging System (Apache Kafka)
	4.4. Real Time Stream Analytics Engine (Apache Storm)
	4.5. Storage Layer: Apache Cassandra
	4.6. Visualization Layer Node.JS

	5. Results & Discussions
	5.1. Platform Portal
	5.1.1. Main Page
	5.1.2. Channels Page
	5.1.3. Dashboard Page

	5.2. MQTT Broker (Hive MQ) Performance Evaluation

	6. Conclusion
	7. Future Work
	References

