
1 

Design and Implementation of Web Services-
based NGOSS Technology Specific 

Architecture 
 

Mi-Jung Choi1, Hong-Taek Ju2, James W. Hong1, and Dong-Sik Yun3 
1 {mjchoi, jwkhong}@ postech.ac.kr, Dept. of Computer Science and 

Engineering, POSTECH, Korea 
2 juht@kmu.ac.kr, Dept. of Computer Science, Keimyoung University, 

Korea 
3 dsyun@kt.co.kr, KT Network Technologies Labs, KT, Korea 

 
To cope with frequent changes and functional additions of operation and support 

systems (OSSs), a guideline of OSS's architecture and development methods is 

needed. TeleManagement Forum (TMF) has provided NGOSS technology-neutral 

architecture (TNA), which describes major concepts and architectural details of 

the NGOSS architecture in a technologically neutral manner. The TNA can be 

mapped onto technology-specific architectures (TSAs) using specific technologies 

such as XML, Java and CORBA. Web Service, a distributed and service-oriented 

computing technology, can be also applied to NGOSS TSA. In this paper, we 

provide a design and implementation of Web Services-based TSA in accordance 

with the architectural principles of TNA and the performance evaluation of our 

proposed system. Our work can be used as a guideline for anyone planning to 

develop a Web Services-based NGOSS TSA. 

Keywords; NGOSS, TNA, TSA, CCV, Framework Services, Contract, Web 
Services 

 

I. Introduction 
The number and complexity of communication services have exploded in the last 

few years and this trend will likely continue in the near future. Due to a rapid 

evolution of telecommunication technologies, products and services are also 

multiplying. Moreover, as the data communications, telecommunications, and other 

forms of communication converge, the complexity and size of networks that 

support the growing number and range of services is quickly increasing. The 

rapid growth of the Internet and the convergence of communication networks 

have become the main drivers for a flexible and scalable operations support 

solution for today’s telcos’ services and systems [2]. For this reason, 

TeleManagement Forum (TMF) [1] has proposed a Next Generation Operations 

Systems and Software (NGOSS) [4] framework to improve the management and 

operation of information and communication services. The goal of NGOSS is to 

facilitate the rapid development of flexible, and low cost ownership, as well as 

Operations and Business Support Systems (OSS/BSS) solutions to meet the 

business needs.  

The service proliferation requires that new generation OSS/BSS system 

architectures must be capable of fulfilling a whole new set of unprecedented 

requirements that will arise due to the rapid service development. Irrespective of 

applications, platforms or technologies, OSS architectures must be able to:  

− Define service components with various attributes 

− Support short service development cycles 



2 

− Avoid service introduction delay, i.e., rapid launch of new services 

− Deliver new services or service bundles in a scalable, repeatable manner 

without massive duplication of effort 

− Automate configuration management to facilitate faster installation rates 

The TMF’s NGOSS technology-neutral architecture (TNA) [5], which is 

sustainable through technology changes, satisfies these requirements. NGOSS 

TNA describes major concepts and architectural details of the NGOSS 

architecture in a technologically neutral manner and emphasizes a service-

oriented approach based on integration of well-defined collaboration contracts. It 

also targets the use of commercial off-the-shelf (COTS) information technologies, 

instead of technologies unique to the telecommunications industry, as many 

legacy management systems have done in the past. This approach significantly 

reduces costs and improves software reuse and operational flexibility, enabling 

NGOSS-based systems to support a range of new services and new technology 

environments more easily.  

The TNA can be mapped to specific technologies for the purpose of implementing 

and deploying an NGOSS system. The separation of technology-neutral and 

technology-specific architectures (TSAs) enables OSS developers to choose the 

‘best fit’ management components and technologies for their management 

capability. TMF has proposed three technology application notes that describe the 

mapping of TNA onto specific technologies such as XML [6], CORBA [7], and 

Java [8]. However, these application notes do not explain detailed application 

methods of technologies to the TNA components or any implementation guidelines.  

Web Service [11], an emerging technology with the powerful support of 

standardization, is a promising solution for NGOSS TNA. Web Service is a 

distributed and service-oriented computing technology with strong support that is 

freely available from the industry. Therefore, it satisfies the service-oriented 

architecture (SOA) of NGOSS and supports COTS tools that can be applied to 

NGOSS TNA components [3]. The adaptation of the SOA to create an 

environment, where there are granular and loosely coupled OSS components with 

standardized interfaces, can plug and play over a common infrastructure [2]. In 

this paper, we summarize the state-of-the-art NGOSS architecture. We propose a 

technology-specific architecture using Web Services in accordance with TNA 

principles [5], and provide detailed application methods and implementation 

details using Web Services technologies. We also present performance evaluation 

results and determine a bottleneck component in our Web Services-based system. 

We hope that our work can be used as a guideline for anyone planning to develop 

a Web Services-based NGOSS TSA. 

The organization of this paper is as follows. In Section II, we give an overview of 

NGOSS architecture with NGOSS TNA and TSAs. Section II also investigates 

three technology application notes. In Section III, we examine the alignments with 

NGOSS TNA using Web Services technologies, and describe our design of Web 

Services-based TSA. In Section IV, we demonstrate a case study. In Section V, 

implementation details of Web Services-based TSA in accordance with the case 

study are given. Section VI shows performance evaluation results of our system 

and shares our experience for implementing a Web Services-based NGOSS 

system. Finally, we conclude our work and discuss possible future work in Section 

VII. 

 

II. Overview of NGOSS Architecture 
In this section, we first briefly describe an overview of NGOSS and NGOSS TNA. 

Next, we summarize three technology application notes of TSA proposed by TMF 



3 

and OSS/J initiative. 
 

II.1. NGOSS Framework 

    NGOSS [4] is a comprehensive and integrated framework for developing, 

procuring, and deploying operational and business support systems and software 

that enables service providers and their suppliers to automate business processes 

and have the agility to respond to ever changing customer needs and market 

landscapes. TMF has developed NGOSS as a toolkit of industry-agreed 

specifications and guidelines that cover critical business and technical areas. 

Figure 1 (a) illustrates the NGOSS framework and four views [4]. Conceptually, 

there are four quadrants, each representing the aspects of defining, designing, 

implementing and operating an NGOSS solution which are termed as Business, 

System, Implementation, and Deployment views, respectively. A key advantage of 

this approach is that it provides trace-ability from business definition of the 

solution through its architecture, implementation and deployment specification.  

Systems

ViewSys
tems

View

Business
View

Business
View

Implementation

View

Implementation

View

Deploym
ent

ViewDeploym
ent

View

NGOSSNGOSS
KnowledgeKnowledge

BaseBase

Sha
red

 D
ata

 (S
ID

) &

Tec
hn

ology N
eu

tra
l

Arch
ite

ctu
re 

(TNA)
Contract Interface &

Technology Specific 

Architecture
(TSA)

Complia
nce

Tes
ts

Business

Process Map

(eTOM)

(a) NGOSS Framework (b) NGOSS TNA
 

Figure 1. NGOSS Framework and TNA 

 

In this paper, we focus more on the System and Implementation views. The 

System view is primarily concerned with the modeling of system processes and 

information in a technologically neutral manner. The Shared Information Model (or 

SID) [9], an outcome of the System view, defines the shared data and information 

elements of NGOSS, addressing the information and communication service 

industry's need for shared information/data definitions and models. The 

Implementation view focuses on how to build hardware, software, and firmware 

that will implement the system being designed. This view uses a particular 

NGOSS architectural style to map from the technologically neutral specification of 

the system to the selected target architecture. 

Figure 1 (b) shows the detailed architecture of NGOSS TNA in the System view of 

NGOSS framework in Figure 1 (a). The NGOSS TNA [5] is the basic concept and 

component of NGOSS architecture. The core components of TNA are common 

communications vehicle (CCV), services, and contract. The service modules can 

communicate with each other through CCV [5], which is a generalized message 

bus that is independent of a specific technology. The CCV is responsible for the 

transport of information among application objects. The services are mainly 

divided into two parts: business services and framework services [5]. Business 

services provide the application level functionality that directly supports the 

implementation of a business process such as SLA management, billing mediation, 

QoS, etc. Framework services provide the infrastructure necessary to support the 

distributed nature of the NGOSS TNA. For example, they include naming and 

directory services, messaging services, and transaction management/monitoring 



4 

services. 

The mandatory framework services consist of repository, registration, location 

and naming services. The registration service provides services and functionality 

required to support location transparency. The repository service provides a 

logical view of all information on a deployed distributed system. The naming 

service is responsible for generating and resolving unique names for the various 

entities contained in the repository. The location service, often built on the 

naming service, provides a means to map a request for an object to its particular 

instance. 

An NGOSS contract is the fundamental unit of interoperability in an NGOSS 

system. A contract is used to define a specification of a service to be delivered, 

as well as to specify information and code that implement the service. In short, a 

contract is a way of reifying the specification, and implementing the functionality 

of the service including obligations to other entities in the managed environment. 

Thus, it is much more than a container of data or a specification of a set of 

methods. 

The insulation of system architecture from technology specific details provides a 

number of related benefits [5]. First, it ensures the validity of the NGOSS 

architecture over time by supporting the deployment of new technologies without 

having to re-architect the entire OSS solution. Second, it provides the 

architectural underpinnings for the simultaneous use of multiple technologies in a 

single integrated OSS environment, supporting legacy systems and enabling 

technology migration over time. Finally, insisting that the architecture remains 

technology-neutral helps to prevent system design decisions from being taken too 

early in the development lifecycle. An excess of design detail in the core of the 

architecture would make it more difficult to find technologies for implementation. 

The core architectural principles to be examined for the alignment of the NGOSS 

TNA and TSA are as follows. First, the architecture needs to provide distribution 

support. The architecture provides communication between business services and 

between process control and other system services. Second, the architecture 

should support the separation of business process from software implementation. 

Finally, the OSS needs to provide shared information for management information 

model. To design a technology-specific architecture, the technology must align 

with these NGOSS architectural principles. 
 

II.2. Technology Specific Architecture 

TMF has applied two technologies, namely XML [6] and CORBA [7], to the 

NGOSS TNA and specified technology application notes. The OSS/J initiative [8] 

proposed Java technology as a specific technology for TNA. The application notes 

present requirements of NGOSS TNA, overviews of each technology, and a 

guideline to direct technology maps to the concepts of the TNA. In this section, 

we present the alignment of NGOSS TNA and compare three TSAs using specific 

technologies: XML, CORBA, and Java. Table I [3] shows the comparison result of 

three technologies in accordance with the requirements of NGOSS TNA. 

XML has a natural affinity with communication management. Using XML to 

validate, manipulate, and define the structure of application specific information 

models using general-purpose tools is an attractive possibility. However, XML 

has a substantial overhead associated with the text-only encoding of data. Also, 

XML/HTTP solutions suffer from the lack of availability of common distributed 

processing support services provided by more mature platforms such as CORBA 

and J2EE services [6]. CORBA is a distributed processing platform and thus 

supports the communication method and framework services for distributed 

processing. It also supports the interface definition with specifying CORBA IDLs. 



5 

However, CORBA does not provide information modeling, hence it can define the 

shared information using XML or other languages [7]. J2EE directly implements 

the principles of the NGOSS TNA such as the distribution support and separation 

of business process from implementation. However, J2EE architecture does not 

have any explicit support for the concept of shared information or federated 

information services as defined in NGOSS TNA [8].  

Not specified
Can be 
defined by 
IDL

XML Schema 
(information 
adaptation: XSLT)

Shared 
information

Java interfaceCORBA IDLXML definitionContract 
interface

Define business 
process 
component

Define new 
servicesNot specified 

Business 
process 
management

Runtime discovery 
service: JNDI

CORBA 
services 
(naming,  
trading, etc.)

Runtime discovery 
service: UDDI

Runtime location of 
information: XPath, 
XLink, XPointer

Framework 
services

RMI-IIOP, JMSGIOP, IIOPHTTP, SOAPCommunication
JavaCORBAXMLAlignment

 
Table I. Comparison of Specific Technologies: XML, CORBA and JAVA 

 

III. Web Services-based NGOSS TSA 
In this section, we examine the principles of NGOSS TNA and alignments with 

NGOSS TNA using Web Services, and propose our Web Services-based TSA. We 

focus on application methods of Web Services technologies to the principles and 

components of NGOSS TNA. 

 

III.1. Alignments with NGOSS TNA using Web Services Technologies 

In this section, we examine the Web Services technologies such as WSDL, SOAP, 

UDDI, and WS-BPEL, and how they are mapped, satisfying the principles of 

NGOSS TNA mentioned in Section II.1.  

Web Services technologies are best described as a framework of self contained, 

modular applications that can be discovered and executed over the network by 

remote programs. Web Services allow searching for services, and listing of the 

services and contract details for further information using the Web Services 

registry, normally based on the Universal Description, Discovery and Integration 

(UDDI) [14]. The detailed information of the services is written in Web Services 

Description Language (WSDL) [12]; an XML document format for describing Web 

Services. The requests and responses between client and remote Web Services 

are generally carried out by the exchange of SOAP [13] messages protocol. Web 

Services business process execution language (WS-BPEL) [15] is used to 

describe service flows which show how service-to-service communications, 

collaborations, and flows are performed. These Web Services technologies are 

applied to NGOSS TNA components such as CCV, framework services and 

contract to meet the principles of NGOSS TNA.   

The information model is designed to be more than just a standard representation 

of data – it also defines semantics and behavior of, and interaction between, 

managed entities. The NGOSS SID model [9] provides the industry with a 

common vocabulary and set of information/data definitions and relationships used 

in the definition of NGOSS architectures. The XML Schema allows us to define the 

structure of management information with richer definitions of data types of XML 

documents including complex and data centric types. The XML Schema also 



6 

allows inheritance relationships between elements. Based on our defined XML 

Schema, we can define management operations and messages written in WSDL. 

By representing OSS/BSS data as XML, the myriad data formats used in any given 

OSS/BSS implementation can be integrated without requiring changes to the 

current system data models. With data integrity errors at the root of many 

OSS/BSS problems, one benefit of using XML is the framework it provides for 

executing sophisticated data validation and conversion from one model to another. 

The second requirement of the NGOSS TNA is to provide distribution 

transparency. The NGOSS system needs a communication mechanism and 

repository that records the information used during system execution. This 

requirement is achieved by CCV and framework services consisting of 

registration, repository, naming, and location services. UDDI provides a 

comprehensive mechanism for locating services at run time by storing service 

interfaces in their WSDL format.  

UDDI registration information is comprised of five data structure types: 

butinessEntity, businessService, bindingTemplate, tModel, and publisherAssertion. 

The businessEntity describes the business or other entity for which information is 

being registered. We can define service provider and consumer in management 

processes as the businessEntity. The businessService is the name and description 

of the services being published, which can be service information with service 

name, service publisher, etc. The bindingTemplate is information of the service 

including an entry-point address for accessing the service, which is used as 

operations binding information for the service access. The tMotel is a collection 

of information that uniquely identifies the service specification. We can use the 

tModel to store contract information, provide top-level searches of contract 

based tModel data structure and define a contract in a WSDL format. We do not 

use the publisherAssertion, which is a relationship structure that associates two 

or more businessEntity structures. 

Service providers can use UDDI to register and advertise the services they offer. 

Service consumers can use UDDI to discover services that suit their requirements 

and obtain the service metadata needed to consume those services. Application 

programs can search the UDDI repository to find the interface that they require, 

download the WSDL description and use the binding information to communicate 

with the interface over a suitable communication channel. UDDI supports basic 

functionalities of framework services such as repository, registration, and location 

services. Thus, UDDI can be served as framework services of NGOSS TNA.  

The requirement of separating business process from software implementation is 

achieved by the definition of contract and process. The contract, which is a 

definition of the service specification and message specification between service 

components, can be defined in WSDL based on the management information model 

in XML Schema format. WSDL is an XML document format for describing Web 

Services as a set of endpoints operating on messages containing either 

document-oriented or procedure-oriented messages. The operations and 

messages are described abstractly, and then bounded to a concrete network 

protocol and message format to define an endpoint. We can define functional parts 

of the contract including input, output, conditions, etc. with WSDL. WSDL is 

sufficiently extensible to allow description of endpoints and their messages 

regardless of the message formats or network protocols used for communication. 

The business process can be defined by WS-BPEL with the concept of process 

entities, process sequences, and interaction messages. Based on XML, WS-BPEL 

is now emerging and widely used in the industry as the standard for defining and 

executing business processes. Thus, we choose WS-BPEL as the process 

sequence definition. WS-BPEL includes four major sections in defining a business 

process: The <partnerLink> section defines the different parties that interact with 



7 

the management process in the course of processing the configuration. The 

<variables> section defines the data variables used by the process. Variables 

allow processes to maintain state data and process history based on the 

exchanged message. The <faultHandler> section defines the activities that must 

be performed in response to faults resulting from the invocation of services. The 

<sequence> section allows defining a collection of activities to be performed 

sequentially in a lexical order.  

We can define the relations among the systems, management processes, 

management messages, and exception handlings using WS-BPEL. The service 

provider and consumer can be defined in the <partnerLink> section, and the 

contract with management operations, messages and conditions in a WSDL format 

can be defined in the <variables> section. The management sequences in 

accordance with the management scenario are defined in the <sequence> section. 

Due to BPEL-enabled tools, designing, testing and deploying business processes 

have become much simpler, even for nonprogrammers. This means business 

processes can be easily modified, making the operator more agile at automating 

costly operations or leveraging new business opportunities. 

In general, Web Services are XML-based technologies that connect systems via 

Web. Thus, Web Services-based TSA is technically not much different from the 

application note of XML, which does not describe the details of applying XML 

technologies to NGOSS TNA.  

 

III.2. Architecture 

Web Services include many standard specifications. In Section III.1, we examined 

the alignments with NGOSS TNA using Web Services technologies. We focus 

more on the NGOSS specification from a Web Services perspective. Figure 2 

shows our Web Services-based TSA. Our architecture is extended from the TNA 

architecture using Web Services technologies. SOAP is used as CCV to 

communicate between process entities, and WSDL is used to define contracts 

between process entities through SOAP. UDDI supports the framework services 

of repository, registration, naming, and location services while WS-BPEL 

supports the process service that executes the management functions including 

framework services.  

W S -Security
Security  M anager

W S-B PE L
W S -P olicy

P olicy  M anagerU D D I

X M L D BS O A P  E ngin e

CC V Shared M essage B us R epositoryRepository

Policy
Serv ice

contract
Adapter

N am ing
Service
contract
Adapter

Locatio n
Serv ice
contract
Adapter

R egis tration
Serv ice
contract
Adapter

R epository
Serv ice
contract
Adapter

Serv ice
D elivery

M anagem ent

contract
Adapter

Security
Serv ice

contract
Adapter

Process
Service

contract
Adapter

Serv ice
Assurance

M anagem ent

contract
Adapter

Serv ice  
Q uality

contract
Adapter

O SS
Inform ation

M anagem ent

contract
Adapter

W orkforce
M anagem ent

contract
Adapter

Fac ility
M anagem ent

contract
Adapter

Access  
D om ain

M anagem ent

contract
Adapter

N etw ork
M anagem ent

contract
Adapter

W S D L

M essage 
H and ler &

SO A P  C lient

 
Figure 2. Web Services-based TSA 

 

The policy service can use the definition of WS-Policy [16] as the definition of 

information and policy manager as the engine. The security service can use the 

WS-Security specification [17] as the definition of information and security 

manager as the service engine. The management operation services such as 



8 

service assurance, service delivery and so on, can be defined as new services 

using WSDL. The adapter acts as a message handler with a SOAP client module 

while XMLDB can be used as the management repository instead of the traditional 

RDBMS. The native XMLDB stores the data structured as XML without having to 

translate the data to a relational or object database structure, which is especially 

valuable for complex and hierarchical XML structures that would be difficult or 

impossible to map to a more structured database. However, the XMLDB is not 

mandatory due to the performance issues of processing XML document.  
 

IV. Practical Use of Web Services-based TSA 
In this section, we present a case study to verify our technology specific 

architecture. We have selected the process of DSL fulfillment, which is one of the 

examples of eTOM's fulfillment process, as a sample case to verify our 

technology specific architecture. The eTOM fulfillment [10] is a vertical end-end 

process grouping responsible for providing customers with their requested 

products in a timely and correct manner. It translates the customer’s business or 

personal need into a solution, which can be delivered using the specific products 

or services in the enterprise. This process informs the customers of the status of 

their purchase order, ensures completion on time, as well as ensuring a delighted 

customer. In this section, we define management information and process 

sequences for DSL fulfillment. 

 

IV.1. Management Information 

As explained in Section III.1, we define our management information through XML 

Schema based on SID modeling [9]. The SID specification defines the business 

entities and their characteristics including data type, description and whether they 

are required or optional. Figure 3 shows the XML Schema defining the information 

model of customer, product and customer order. The information of customer 

order references one customer, and one or more products. The product includes 

the product name, description, product number, manufacturer, valid period and 

lifecycle status. The customer contains the customer ID, and customer status as 

mandatory elements. The customer order contains all contents of the customer 

and product and refers to each type defined as the complex type of customerType 

and productType, respectively. The customer order also contains an assigned 

priority (order handling priority) and assigned response date (order response 

date) as attributes. We define all management information such as service 

parameter, service order, resource parameter, and resource order followed by the 

SID modeling [9].  



9 

 
Figure 3. Shared Information of DSL Fulfillment 

IV.2. Management Process 

There are Order handling module, Service configuration & activation module, and 

Resource provisioning module in the management system for DSL fulfillment. The 
Order handling module receives the customer order request of DSL service from a 

customer and then sends the service order request to the Service configuration & 
activation module. The Service configuration & activation module requests the 

resource provisioning to the Resource provisioning module in order to acquire the 

resource after the service configuration in accordance with the service request. 

After acquiring the resource, the Service configuration & activation module 

activates the service and reports the result of service activation to the Order 
handling module.  

Order
handling

Service conf.
& activation

Resource 
provisioning

customer
Request order

Issue customer order

Request service order
Issue service order

Configure & activate service

Request resource

Issue resource order

Manage & track customer

Response & manage service
Response & report service order

Repository
service

Registration
service

Contract instance
location service

Register consuming contract instance
Add contract instance to repository

Request instance of providing contract
Request instance of providing contract

Respond with instance of providing contract
Located instance of providing contract

Located instance of providing contract

Resource provisioning

Register consuming contract instance
Add contract instance to repository

Request instance of providing contract
Request instance of providing contract

Respond with instance of providing contract

 
Figure 4. Management Scenario of Service Order 

 

Figure 4 shows the combination of interaction sequences between framework 

service components and the sequence for the service order. That is, there should 

be a process to make a contract between two modules for the Order handling 

module in order to request the service order to the Service configuration & 
activation module. In the process of making this contract, the Order handling 



10 

module becomes a consuming contract instance, and the Service configuration & 
activation module becomes a providing contract instance. When the contract 

between the Order handling module and the Service configuration & activation is 

agreed with, the service requester (the Order handling module) can send the 

service order request to the service provider (the Service configuration & 
activation module). 

<process name=“serviceOrder”>
<partnerLinks>

<partnerLink name=“customerManager” partnerLinkType=“customerManagerLT” />
<partnerLink name=“serviceManager” partnerLinkType=“serviceManagerLT” />
<partnerLink name=“resourceManager” partnerLinkType=“resourceManagerLT” />

</partnerLinks>
<variables>

<variable name=“CustomerOrderRequest” messageType=“CustomerOrderRequestType” />
<variable name=“ServiceRequest” messageType=“ServiceRequestType” />
<variable name=“ResourceRequest” messageType=“ResourceRequstType” />
<variable name=“CustomerOrderResponse” messageType=“CustomerOrderResponseType” />
<variable name=“ServiceResponse” messageType=“ServiceResponseType” />
<variable name=“Faullt” messageType=“FaultType” />

</variables>
<faultHandler>

<catch faultName=“cannotFindCustomer” faultVariable=“Fault” faultMessageType=“FaultType”>
<reply partnerLink=“customerManager” portType=“requestCustomerOrderPT”

operation=“sendRequestCustomerOrder”
variable=“Fault” faultName=“cannotFindCustomer” />

</catch>
</faultHandler>
<sequence>

<receive partnerLink=“customerManager” portType=“requestCustomerOrderPT”
operation=“sendRequestCustomerOrder” variable=“CustomerOrderRequest” />

<sequence>
<invoke partnerLink=“customerManager” portType=“requestCustomerOrderPT”

operation=“requestCustomerOrder” inputVariable=“CustomerOrderRequest”
outputVariable=“CustomerOrderResponse”> 

</sequence>
<sequence>

<assign> <copy> <from variable=“requestCustomerOrder” part=“serviceOrder” /> 
<to variable=“ServiceRequest” part=“serviceOrder” /> </assign>

<invoke partnerLink=“serviceManager” portType=“requestServicePT” operation=“requestService”
inputVariable=“ServiceRequest” outputVariable=“ServiceResponse”> </invoke>

</sequence>
<sequence>

<assign> <copy> <from variable=“ServiceRequest” part=“serviceOrder” /> 
<to variable=“ResourceRequest” part=“serviceOrder” /> </assign>

<invoke partnerLink=“resourceManager” portType=“reuqestResourcePT” operation=“reuqestResource” /> 
</invoke>

</sequence>
<reply partnerLink=“customerManager” portType=“requestCustomerOrderPT”
operation=“sendRequestCustomerOrder” variable=“CustomerOrderResponse”> </reply>

</sequence>
</process>

(a) Management Scenario: WS-BPEL

<Contract>
<General> … </General>
<View name=‘System_View’>

<Functional>
<Associated_System_Processes> manage_track_customer, issue_customer_order </Associated_System_Processes>
<Associated_System_Policies> </Associated_System_Policies>
<System_Capabilities>  

<Input_Entities> CustomerOrderRequest </Input_Entities>
<Output_Entities> CustomerOrderResponse </Output_Entities>
<Pre-Conditions> customer_is_registered, request_is_feasible_to_networkResources
</Pre-Conditions> 
<Termination> Successful </Termination>
<Post-Conditions> CustomerOrder_is_issued_accordingly </Post-Conditions>
<Post-Conditions_System_Exceptions> None </Post-Conditions_System_Exceptions> 
<Interaction_Points> manage_track_customer, issue_customer_order </Interaction_Points>
<Interaction_Roles> CustomerManager</Interaction_Roles>
<Security> None </Security>
<Context> This contract is used to progress handling of customer order and issue the order </Context>

</System_Capabilities>  
</Functional>
<Non-Functional> … </Non-Functional>
<Management> … </Management>

</View>
<Contract>

(b) Contract Example: RequestCustomerOrder  
Figure 5. Service Order: WS-BPEL Definition and Contract 

 

Figure 5 (a) defines the sample scenario in Figure 4 using WS-BPEL. First, we 

define the process entities in the partnerLinks, messages from senders and 

receivers in the variables, and management faults in the faultHandler. We also 

define the process sequence that is executed when the messages from some 

partnerLinks arrive in the Sequence.  

We have defined the contract of the system view in the XML format. The most 

important part in five parts of contract (General, Functional, Non-functional, 

Management and View specific) is the functional part, in which input, output 

variables and conditions need to be defined. Figure 5 (b) describes the system 

view contract of ‘RequestCustomerOrder’ between the Order handling module and 

the Service configuration & activation module for the DSL fulfillment in the XML 



11 

format. The General part contains Contract names, Versions and explanations 

while the Functional part contains Pre-condition, Post-condition, Input & Output 

Parameters and so on. The Non-Functional and Management parts need to be 

defined when it is necessary to extend the capability of QoS, policy, cost and 

management.  
 

V. Implementation of Web Services-based TSA 
In this section, we present the implementation details of our Web Services-based 

TSA. We have implemented TNA components and management functions using 

Web Services technologies based on our proposed design and named our OSS 

system as Web Services-based OSS (WS-OSS). 

Our WS-OSS system has been implemented on a Linux server. We used the 

Apache Tomcat 4.0 for the Web server and Servlet engine. The Apache Web 

Services project package [16], which is Java-based Web Services software, is 

also used. We used jUDDI 0.9rc4 for a UDDI implementation, Axis 2 v1.0 for a 

SOAP engine, Apache Addressing for a WS-Addr handler, and Pubscribe 1.0 for a 

Web Services notification handler. In addition, Agila BPM is used for a BPEL 

engine and Xindice v1.0 for an XML DB. Figure 6 shows the implementation 

architecture of our WS-OSS system.  

UDDI (jUDDI)

CCV
XMLDB

(Xindice)

Repository
(Store)

Contract
(WSDL)
Adapter
(Axis)

Repository
(MySQL)

Registration
(Register)
Contract
(WSDL)
Adapter
(Axis)

Location
(Discover)
Contract
(WSDL)
Adapter
(Axis)

Naming
(Set&GetName)

Contract
(WSDL)
Adapter
(Axis)

WS-BPEL Engine
(Agila BPM)

Contract
(WSDL)
Adapter
(Axis)

Order
Handling

Contract
(WSDL)

Adapter

Service 
Configuration

Contract
(WSDL)

Adapter

Service 
Activation

Contract
(WSDL)

Adapter

Resource 
Provisioning

Contract
(WSDL)

Adapter

Resource
Allocation

Contract
(WSDL)

Adapter

Repository
(Xindice)

<Adapter>

HTTP Client
SOAP Client

getRequest

HTTP Server
SOAP Server

Other Notification Handlers
Notification InformationInformation for Request Management Information

Method 
Invocation

Result 
from Method

XML-encoded 
Notification Data

setRequest Notify

Other Clients

XML Parser & WS-Addr Handler

SOAP Engine (AXIS)

 

Figure 6. Implementation Architecture 

 

The Adapter module of the rectangle in Figure 6 acts as a gateway for 

communication and message handling. The Adapter is implemented with Axis 

package; it uses a SOAP client module for requesting data to the other service 

modules and a SOAP server module for receiving notification from other service 

modules. In our implementation, the roles of CCV are distributed into the Adapter 
module. Using this adapter approach, we can integrate the existing OSS system 

into our WS-OSS with other types of clients and notification handlers. In the case 



12 

of the same management protocol (SOAP request), direct requests without going 

through other types of clients and notification handler are performed only through 

the SOAP client and server. In our WS-OSS system, we concentrate more on 

framework services and TNA components such as CCV and contract. We do not 

consider the policy and security services modules.  

We first implemented the framework services using existing UDDI APIs. The 

naming service checks the registration information and service name using the 

get_registeredInfo API, which provides a summary of all information registered on 

behalf of a specific user. The repository service provides an update of service 

information using publisher APIs such as save_business, save_service, 
save_binding, save_tModel, delete_business, delete_binding, etc. The registration 

service calls the repository service to register for the provided and consumed 

services. If it is necessary to check the naming, then it calls the naming service. 

The location service provides service information search using inquiry APIs such 

as find_business, find_service, find_binding, find_tModel, get_businessDetail, 
get_serviceDetail, etc. We omitted the request from the location service to 

repository service to inquire service information in Figure 4 by directly providing 

the search capability to the location service. This can reduce the operation calls 

and loads of the repository service.  

Then, we deployed these framework service functions into Web Services using a 

Java Web Service (JWS) provided by Axis. This deployment method automatically 

generates a WSDL file and proxy/skeleton codes for the SOAP RPCs. In order to 

enable the existing Java class as a Web Service, we simply copied the Java file 

into the Axis Web application, using the extension ‘.jws’ instead of ‘.java’. We 

implemented framework services such as repository, registration, location and 

naming services using this mechanism. Unlike this mechanism, we first defined 

WSDLs, generated Java stubs, and filled the codes in the stubs. We implemented 

other services, namely, management function modules such as order handling, 

service configuration, etc., using the second method. Finally, we defined the 

business process sequence in WS-BPEL, in which the defined process flows were 

stored in their own process repository, and Agila BPM engine executed the 

process in accordance with the WS-BPEL definition.   

The execution step of our order handling for a DSL fulfillment is as follows: A 

customer orders new DSL service through the service application form of Web-

based user interface. This request message is handed over to the BPEL engine, 

and the engine checks the request message and the partnership. Then, it directly 

calls the order handling service. The management processes are conducted in the 

sequence of Figure 4 and the BPEL engine processes these management 

sequences. The contracts between framework services are interface-level, which 

are operations in a WSDL format called by each other. The contracts between the 

management processes are registered and stored via registration and repository 

services, respectively, and preserved in the repository of UDDI itself. 

 

VI. Performance Evaluation 
In this section, we present performance evaluation results of our system. We 

evaluate the processing time of each TSA component and determine the 

bottleneck component. We also propose a method to reduce the processing 

overhead of the bottleneck component. 
 

VI.1. Performance Test Environment 

Figure 7 shows our performance evaluation environment. We independently 



13 

implemented a jUDDI server for the services registration, an Xindice DB server 

for information repository, and a server for service consumers, service providers, 

and a BPEL engine. We processed the DSL fulfillment in Figure 4. As shown in the 

sequence diagram of Figure 4, an actor can be a service provider or a service 

consumer, thus we implemented the service providers and consumers in the 

server. As mentioned in Section V, the servers were implemented on Linux OS 

with a Pentium-III 2.4 GHz CPU and 1GB RAM using Java language and connected 

via 100Mbps LAN. 

Service Provider & Consumer,
BEPL Engine

(2.4 GHz CPU, 1G RAM)

jUDDI Server
(2.4 GHz CPU, 1G RAM)

DB Server
(2.4 GHz CPU, 1G RAM)

100 Mbps

100 Mbps100 Mbps

Web UI
(Client)

 

Figure 7. Performance Evaluation Environment 
 

VI.2. Performance Test Result 

In this section, we examine an NGOSS TSA component which generates the 

biggest processing overhead. The Web Services-based NGOSS TSA is mainly 

composed of components such as a BPEL engine, a UDDI engine, and a DB server. 

We increase the concurrent service requests from 1 to 100 by 25 and investigate 

the processing time of each component. The concurrent requests are generated 

using a thread mechanism.  

Figure 8 shows the processing overhead of each component in accordance with 

the number of requests. As the number of requests increments, the UDDI engine 

which processes framework services becomes the bottleneck component. As 

mentioned in Section III.1, each part of contract is mapped to the UDDI data 

structure and four UDDI data structures such as butinessEntity, businessService, 

bindingTemplate, and tModel need to be registered to the UDDI registry to define 

only one contract. Moreover, the search of a contract also needs to investigate 

four UDDI structures. Thus, the UDDI engine generates more processing 

overhead as the number of simultaneous requests increases. In the case of only 

one customer’s request, the processing time of BPEL engine occupies the biggest 

of the entire processing time. However, as the number of requests increases, the 

portion of processing time of BPEL engine in the entire processing time relatively 

reduces compared to the processing time of UDDI engine. The processing time of 

XMLDB is comparatively low because most DB operations to process DSL 

fulfillment are insert operations to add customer’s order and correspondent 

service information. The insert operation is relatively shorter than the query 

operation in XMLDB. 



14 

 

Figure 8. Processing Time per Component 

 

VI.3. Performance Enhancement Method 

In this section, we investigate the performance enhancement method of 

processing time of UDDI registration and search, which generates the biggest 

processing overhead. To reduce the processing overhead of UDDI search, we use 

a cache mechanism. Instead of sending UDDI search operations to the jUDDI 

engine every time the service consumer requests, we can search the information 

for the same service in the cache. This reduces the search overhead of UDDI 

registry. Figure 9 shows the comparison result of processing time of UDDI search 

with and without the cache mechanism. As the result of applying the cache 

mechanism to the UDDI search, we gain 25% performance enhancement of 

processing time of UDDI. The enhancement by using the cache mechanism is 

obtained only in the search part, not the registration part. To reduce the 

processing overhead of registering contracts, we also need to devise a method to 

merge many contracts into one. 

 

Figure 9. Performance Enhancement with Cache Mechanism 

 

To decrease the overhead of XMLDB, we consider the use of a relational DB such 

as MySQL. We compared the processing time of Xindice DB and MySQL DB in 

terms of insert and query operations. Figure 10 shows the processing time of 



15 

adding and querying customer information to DB. We performed insert operations 

as the number of concurrent requests increased from 1 to 200 by 50. The 

processing time of insert operation in MySQL DB is roughly twice as faster than 

that in Xindice DB. The processing time of query operation in MySQL slightly 

increase as the number of insert request advances and remains almost static 

regardless of the number of existing data. However, the processing time of query 

operation in Xindice increases largely as the number of data in DB advances. This 

is because Xindice uploads the entire XML data into memory to parse. Thus, 

Xindice is not efficient when we need to process query operations with lots of 

data. Note that, this performance result is merely limited to Xindice XMLDB of the 

Apache group. 

 

Figure 10. Performance Comparison of Xindice and MySQL 

VI.4. Experience and Discussion 

Web Service satisfies the characteristics of NGOSS SOA and supports COTS and 

freely available tools that can be easily applied to NGOSS TNA components. 

Specifically, the management information using XML Schema supports powerful 

information definition. The contracts including service processors, pre/post 

conditions and input/output messages are also defined in WSDL. UDDI is used as 

framework services and SOAP acts as CCV. Moreover, the management scenario 

can be defined in WS-BPEL and processed in the BPEL engine. Partners in BPEL 

definition are acted as service providers and consumers in UDDI repository; 

operations and messages in BPEL are mapped to messages and operations in 

WSDL. The messages in WSDL are also mapped to actions in SOAP. In this 

manner, Web services technologies applied to each NGOSS TSA component are 

connected and operated together. Consequently, Web Services technologies fully 

support the principles and functionalities of NGOSS TNA. That is, it is important 

to understand the relationship between the elements of each technology and 

define the elements to organically operate services.  

We have used four data structures of UDDI such as butinessEntity, 

businessService, etc., to define the contract and implemented framework services 

using UDDI APIs such as get_registeredInfo, save_business, save_servic, 

find_business, find_servic, etc. To register a contract, we need to register four 

data structures by calling four save operations per each data structure, which 

generates much processing overhead of service registration. This overhead is the 

same as the search operations. Thus, we have applied a cache mechanism to 

search operations of UDDI registry to reduce the search processing overhead. But, 

this is only a temporary solution. Ultimately, we need to revise the mapping of 



16 

contract to UDDI data structure towards defining a contract using one or two 

UDDI data structures. Also, we can use a relational DB instead of XML DB to 

decrease the overall processing time. XMLDB is helpful to manipulate to data 

represented in XML format, but, requires much processing time and computing 

power to parse XML data. 

 

VII. Concluding Remarks 
In this paper, we examined the concept, architectural principles and components 

of the NGOSS TNA. We proposed an NGOSS technology-specific architecture 

using Web Services technologies in accordance with the principles of NGOSS 

TNA. Web Service is a distributed and services-oriented computing technology 

that can be applied to the NGOSS TNA. We examined the advantage of applying 

Web Services technologies to NGOSS TNA. To validate our proposed architecture, 

we implemented a prototype of Web Services-based TSA focusing on TNA 

components such as CCV, framework services, and contract and management 

functions using the DSL Service Order Fulfillment example. We also presented 

performance evaluation results, determined a bottleneck component in our system 

and proposed a performance enhancement method using the cache mechanism. 

Our work can be used as a guideline on how Web Services technologies are 

applied to the NGOSS components, for anyone planning to develop a Web 

Services-based NGOSS TSA. 

We are currently extracting the performance metrics of Web Services-based TSA 

and conducting performance analysis. We need to implement other service 

modules such as policy and security services and will also extend our system with 

more management functions based on eTOM operations. 

Acknowledgments 

This research was supported in part by the MIC (Ministry of Information and 

Communication), Korea, under the ITRC (Information Technology Research Cen

ter) support program supervised by the IITA (Institute of Information Technolo

gy Assessment) (IITA-2006-C1090-0603-0045), and by the Electrical and Com

puter Engineering Division at POSTECH under the BK21 program of the Minist

ry of Education, Korea. 
 

References 
[1] TM Forum, TM Forum, http://www.tmforum.org/, Refer Oct. 2007. 

[2] Georgalas (N), Azmoodeh (M), Using MDA in Technology-independent 

Specifications of NGOSS Architectures, 1st European Workshop on MDA 
(MDA-IA 2004), Enschede, The Netherlands, pp. 11~18, Mar. 2004. 

[3] Choi (M), Ju (H), Hong (J), Yun (D), Design of NGOSS TSA using Web 

Services Technologies, Proc. of Integrated Network Management 
Symposium (IM2007), Munich, Germany, pp. 868~71, May 2007. 

[4] TM Forum Technical Program, New Generation Operations Systems and 

Software (NGOSS), RN303 R6.0, Jun. 2006. 

[5] TM Forum, NGOSS Technology Neutral Architecture, TMF053 v5.3 r6.0, 

Nov. 2005. 

[6] TM Forum, NGOSS Phase 1 Technology Application Note-XML, TMF057 

v1.5, Dec. 2001. 



17 

[7] TM Forum, NGOSS Phase 1 Technology Application Note - CORBA, 

TMF055 v1.5, Aug. 2001. 

[8] Ashford (C), OSS through Java as an Implementation of NGOSS, White paper, 

Apr. 2004. 

[9] TM Forum, Shared Information/Data (SID) Model, GB 922, Release 6.0, Nov. 

2005. 

[10] TM Forum, Enhanced Telecom Operations Map (eTOM), GB921, Release 6.0, 

Nov. 2005. 

[11] W3C, Web Services Architecture, W3C Architecture WG Notes, Feb. 2004. 

[12] W3C, Web Services Description Language (WSDL) 1.1, W3C WSDL WG Note, 

Mar. 2001. 

[13] W3C, SOAP Version 1.2 Part 1: Messaging Framework, W3C 

Recommendation, Jun. 2003. 

[14] OASIS, UDDI version 3.0.2, UDDI Spec Technical Committee Draft, Oct. 

2004.  

[15] Business Process Execution Language for Web Services Version 1.1. 

Second Public Draft Release, BEA Systems, International Business Machines 

Corp., Microsoft Corp., SAP AG, Siebel Systems, May 2003. 

[16] W3C, Web Services Policy 1.5 - Framework, W3C Candidate 

Recommendation, Oct. 2007. 

[17] OASIS, Web Services Security: SOAP Message Security 1.1 (WS-Security 

2004), OASIS Standard Specification, Oct. 2006. 

[18] Apache Software Foundation, Web Services Project @ Apache, 

http://ws.apache.org, Refer Oct. 2007. 

 

Figure List 

Figure 1. NGOSS Framework and TNA 

Figure 2. Web Services-based TSA 

Figure 3. Shared Information of DSL Fulfillment 

Figure 4. Management Scenario of Service Order 

Figure 5. Service Order: WS-BPEL Definition and Contract 

Figure 6. Implementation Architecture 

Figure 7. Performance Evaluation Environment 

Figure 8. Processing Time per Component 

Figure 9. Performance Enhancement with Cache Mechanism 

Figure 10. Performance Comparison of Xindice and MySQL 

 

Table List 

Table I. Comparison of Specific Technologies: XML, CORBA and JAVA 

 


