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Design and Kinematic Modeling
of Constant Curvature Continuum
Robots: A Review

Robert J. Webster III1 and Bryan A. Jones2

Abstract

Continuum robotics has rapidly become a rich and diverse area of research, with many designs and applications

demonstrated. Despite this diversity in form and purpose, there exists remarkable similarity in the fundamental

simplified kinematic models that have been applied to continuum robots. However, this can easily be obscured,

especially to a newcomer to the field, by the different applications, coordinate frame choices, and analytical

formalisms employed. In this paper we review several modeling approaches in a common frame and notational

convention, illustrating that for piecewise constant curvature, they produce identical results. This discussion

elucidates what has been articulated in different ways by a number of researchers in the past several years, namely

that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and

applies to all continuum robots, and another that is robot-specific. These mappings are then developed both for the single-

section and for the multi-section case. Similarly, we discuss the decomposition of differential kinematics (the robot’s Jaco-

bian) into robot-specific and robot-independent portions. The paper concludes with a perspective on several of the themes

of current research that are shaping the future of continuum robotics.

Keywords

manipulation, grasping, manipulation and compliant assembly, dynamics, mechanics, design and control, continuum

robot, kinematics, hyperredundant robot, biologically inspired robot

1. Introduction

Biology has inspired researchers in many ways, and there

are few fields of study where this is more clearly evident

than in continuum robotics. The incredible capabilities

for locomotion, manipulation, and dexterity in cluttered

environments exhibited by snakes, elephant’s trunks,

tongues, and octopus tentacles have naturally inspired

researchers to work toward recreating their capabilities in

electromechanical devices. Recent progress toward this

end has made modern continuum robotics a rapidly

expanding area of research which promises to extend the

use of robots into many new environments where they have

not traditionally been applicable. A continuum robot can

be defined as a continuously bending, infinite-degree-

of-freedom robot with an elastic structure (see Figure 1 for

some examples). Continuum robots are thus related to, but

distinct from, hyperredundant robots which consist of

(finitely) many short, rigid links (see Figure 1 for an exam-

ple). Use of continuum robots in practical applications

requires models of robot shape and motion. Such models

must necessarily be more complex than those of traditional

robots, which have a small number of rigid links. The

purpose of this paper is to provide an overview of the state

of the art in continuum robot design and forward and

differential kinematic modeling for both single-section and

multi-section manipulators.

Our review is motivated by several factors. First, several

years have elapsed since the most often-cited reviews of

continuum robotics (Hirose 1993; Robinson and Davies

1999), during which many important advancements have

been made. This has motivated two new review papers

within the past year focusing on locomotion of mobile

snake-like robots (Transeth et al. 2009) and the biological

inspiration and design of soft (particularly pneumatic)

continuum robots (Trivedi et al. 2008b). These are

complementary to our current review of constant-

curvature kinematics, with little overlap. Second, the
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diversity of applications (see Section 2) for continuum

robots leads to a widely distributed literature, which can

make it challenging for newcomers to the field to collect all

relevant results expeditiously. An additional layer of com-

plexity in interpreting results is the variety of mathematical

formalisms and coordinate frame choices employed. Simi-

larly, the distinction between robot-specific and robot-

independent results can be subtle, which has led to some

of the same results being re-demonstrated in a number of

papers, including the authors’ own work. Interestingly and

productively, if it is clear that multiple approaches can

achieve the same results, this re-demonstration provides

a variety of techniques for continuum robot kinematics,

each of which may have unique advantages for future

modeling, design, and real-time implementation efforts.

Furthermore, the results in this paper will be particularly

useful for a newcomer to the field of continuum robotics

who desires simple and straightforward answers to ques-

tions such as ‘‘What is known about continuum robots?’’

and ‘‘How can I describe the shape and motion of my new

continuum robot design?’’

Unlike kinematics for traditional rigid-link robots where

the pose of any point on the robot can be fully defined

(in closed form) by link lengths and joint angles, the inher-

ent compliance of continuum robots requires consideration

of elasticity. To accurately define the pose of points of

interest on the robot (including its end-effector), one must

characterize forces and moments applied to the robot by

both its own actuators and the external environment. The

most general models available for this (see, e.g., Ivanescu

et al. (2007), Gravagne et al. (2003), Trivedi et al.

(2008a), Rucker et al. (2010a), Rucker et al. (2010b),

Dupont et al. (2010), Chirikjian (1995), and Jones et al.

(2009)) do not do so in closed form. Instead, they are eval-

uated numerically to compute statics or dynamics in lieu of

forward kinematics. Although some preliminary work

exists in the real-time evaluation of these models (Jones

et al. 2009), it is not yet clear whether such results can be

used to develop real-time Jacobians or can otherwise be

applied to facilitate closed-loop control of continuum

robots in a wide variety of applications.

Thus, both before and after the development of these

general models, researchers have sought suitable simplify-

ing assumptions and approximations that can be accurate

enough for practical implementation and are more analyti-

cally tractable. One approach begins by describing the

space curves desired, then fitting the physical robot (as

nearly as possible) to these theoretical curves (see, e.g.,

Andersson (2008)). For example, clothoid curves have

been proposed based on careful observations of biological

snakes and are particularly useful for mimicking biological

snake locomotion (Hirose 1993; Hirose and Yamada 2009).

Extending the basic approach of fitting the physical manip-

ulator to analytically desirable mathematical curves, the

work of Chirikjian and Burdick (1994) defines a curve as

the product of a Bessel function with sines and cosines

which enables a modal approach to inverse kinematics.

Similarly, wavelets are applied by Gravagne (2002) to

describe the shape of a continuum robot.

An alternative simplifying approach that permits

closed-form kinematics and facilitates closed-form

Jacobian formulation is to approximate the robot as a series

of mutually tangent constant-curvature arcs (‘‘piecewise

constant curvature’’). While most continuum robots are

composed of arcs that are not perfectly circular, many are

approximately so (see, e.g., Xu and Simaan (2008),

Neppalli and Jones (2007), and Webster et al. (2009)). The

remarkable usefulness of the piecewise constant-curvature

approximation across a wide variety of continuum robot

mechanical architectures (discussed in Section 2) combined

with its analytical attractiveness has lead to broad applica-

tion of this modeling approach. Thus, we focus on piece-

wise constant-curvature kinematics in this paper, before

returning in Section 6 to consider the future prospects for

both constant and variable curvature modeling and design.

1.1. Contribution

In this paper we contribute a unification of recent kinematic

and differential kinematic results for both single-section

and multi-section piecewise constant-curvature continuum

robotics into a common coordinate frame and notational

Fig. 1. (Left) The Tensor Arm of Anderson and Horn (1967) is generally regarded to be the first example of a hyperredundant robot.

(Center) The subsequent work of Hirose (1993) was the first sustained research program in continuum and hyperredundant robots,

beginning in the 1970s (image courtesy of Shigeo Hirose, and used by permission of Oxford University Press). (Right) An example of

a modern continuum robot used for medical applications is the Hansen Medical Sensei1 system, the kinematics and mechanics of

which have been described by Camarillo et al. (2008) (image courtesy of David Camarillo, # 2008 IEEE).
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convention, filling in small gaps in the literature where they

exist. We demonstrate that several different modeling

approaches produce a single, common result for piecewise

constant-curvature forward kinematics and we clearly

delineate the boundaries of robot-specific and robot-

independent mappings for both forward and differential

kinematics. We also provide a brief historical perspective

on continuum robots, discuss some of the basic mechanical

designs that have been developed, and provide a

perspective on the themes that are shaping future research

in continuum robotics.

2. Origin, Design, and Applications of

Continuum Robots

The origin of continuum robotics is generally traced back to

the creation of serpentine robots in the late 1960s (see

Moran (2007, p. 110) and Rosheim (1994, pp. 110–121)).

These hyperredundant robots employed a number of

closely spaced joints to emulate the motion of the backbone

of a snake. Examples include the Orm, which consisted of a

series of pneumatically controlled bellows (see Nocks

(2007, p. 68) and Thring (1983)), and the tensor arm

(Anderson and Horn 1967, 1970), a tendon-driven robot

intended for underseas applications. The weaknesses of the

continuum design at that time, which included low payload,

poorly understood kinematics and dynamics, and coarse

positioning accuracy, prompted the abandonment in the

1970s of promising research projects that began in the late

1960s (Moran 2007).

Sustained development of continuum and hyperredun-

dant robots re-emerged in the late 1970s and continued

throughout the 1980s and beyond with the pioneering work

of Hirose and his team, who developed many novel and

innovative designs, paying particular attention to inspira-

tion gleaned from biological systems. Much of this work

is summarized in Hirose (1993). Industrial continuum

manipulators developed during this time period include the

Spine robot, a high-dexterity spray-painting robot (Larson

and Davidson 1985), while other academic efforts included

the creation of trunk-like manipulators (Wilson et al. 1993;

Morecki et al. 1987), and miniature pneumatic or hydraulic

actuators applied as robot fingers (Suzumori et al. 1992).

Significant progress in modeling continuum robots was

made in the 1990s, including the introduction of a modal

approach (Chirikjian and Burdick 1994; Chirikjian 1995;

Chirikjian and Burdick 1995) establishing a theoretical

foundation for continuum robotics based on approximating

the shape of a continuum robot using a mathematically

tractable curve. Other significant contributions included

modeling the underlying continuum mechanics of the robot

(Ivanescu and Stoian 1995). In addition, continuum robots

continued to be applied in many new and innovative appli-

cations in both the commercial (Immega and Antonelli

1995) and academic research (Robinson and Davies

1999) forums.

The first decade of the 21st century has seen a great deal

of advancement in the design, modeling, and application of

continuum robotics. Much foundational work establishing

the theoretical framework for analysis of continuum robots

early in this decade has come from the group of Walker

et al. (Gravagne et al. 2003; Gravagne and Walker 2002;

Hannan and Walker 2003; Jones and Walker 2007,

2006a,b; Neppalli et al. 2009). Active areas of current

research by many groups include continued advancement

in the application of beam theory to create increasingly

sophisticated models of continuum robots (see, e.g.,

Gravagne et al. (2003), Camarillo et al. (2008), Webster

et al. (2009), Rucker et al. (2010a), Dupont et al. (2010),

and Trivedi et al. (2008a)), and the elucidation of various

parsimonious modeling simplifications, including the

constant-curvature approximation (see, e.g., Hannan and

Walker (2003), Jones and Walker (2006a), and Webster

et al. (2009)).

Many practical applications for continuum and hyperre-

dundant robots have been suggested and/or demonstrated

(as shown in Table 1), including undersea manipulation

(Anderson and Horn 1967; Lane et al. 1999), car painting

(Hirose 1993; Larson and Davidson 1985), nuclear decon-

tamination (Immega and Antonelli 1995), nuclear reactor

repair (OC Robotics 2008), waste storage tank remediation

(see http://www.templeallen.com/), liquid transport (Ciéslak

and Morecki 1999), sanding (see http://www.templeallen.

com/), inspection of unstructured environments and pipes

(Wakahara et al. 1984; Paljug et al. 1995; Osuka and Kitajima

2003; Suzumori et al. 2003; Takahashi et al. 1994; Wolf et al.

2003), and search and rescue (Tsukagoshi et al. 2001; Aoki

et al. 2002).

Continuum robots have also made a significant impact

in medicine. A large number of commonly used medical

devices such as catheters and colonoscopes can be consid-

ered continuum devices. While commonly applied as

manually operated instruments, noteworthy efforts have

been made to robotize these and other continuum devices

for surgery including forceps (Nakamura et al. 1995), flex-

ible needles (Webster et al. 2006a), laparoscopic tools

(Peirs et al. 2003), endoscopes (Ikuta et al. 1988), arthro-

scopes (Dario et al. 2000), colonoscopes (Phee et al.

1997), laser manipulators (Harada et al. 2007), and catheters

(Ohta 2001; Camarillo et al. 2008), among others. Examples

of continuum robots developed specifically for surgical

applications that do not directly mimic existing surgical

devices include the multibackbone throat surgery system

of Xu and Simaan (2008), the hyperredundant Cardio Arm

of Degani et al. (2006), and the concentric-tube active can-

nula of Webster et al. (Webster et al. 2006b; Rucker and

Webster 2009b; Webster et al. 2009; Rucker et al. 2010a,

b), also developed independently and concurrently by

Dupont et al. (Sears and Dupont 2006, 2007; Dupont et al.

2009, 2010), which is described in Section 3.2.3. In Table

1, ‘‘Surgical dexterity’’ refers to the ability to curve or steer

what have traditionally been straight devices such as needles

or rigid laparoscopic shafts, enabling them to ‘‘turn corners’’

inside the human body.

Earlier classifications of continuum robots have based

their taxonomy on the location of mechanical actuation

(Robinson and Davies 1999), on the backbone architecture,

extensibility, and actuation (Simaan et al. 2004), or

Webster and Jones 3
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presented a series of continuum robot prototypes (Hirose

1993). A review of soft robotics (Trivedi et al. 2008b)

contrasts rigid, hyperredundant, hard continuum, and soft

robots and provides a broader overview of biologically

inspired robotics including robotic fish, starfish, trunks,

worms, and other creative realizations of soft robots. All

of the above are useful ways to categorize continuum and

hyperredundant robots, and we draw inspiration from

them in compiling Table 1. However, our purpose here

is not a comprehensive taxonomy (given the rapidly

accelerating recent interest in continuum and hyperre-

dundant robots, such an objective would be perhaps

prohibitively challenging), but rather we seek to illustrate

the diversity of designs for which the constant-curvature

forward and differential kinematics we describe in the

remainder of this paper are applicable. Here, we omit

the subset of hyperredundant robots where constant cur-

vature has not been a primary consideration, either because

the robot commonly takes on other shapes, or because the

links are long enough that constant curvature is not a useful

approximation. This is in no way intended to diminish this

very useful class of robot (examples include Hirose and

Ma (1991), Paljug et al. (1995), Chirikjian and Burdick

(1994), Ebeert-Uphoff and Chirikjian (1996), Suthakorn and

Chirikjian (2001), and Wright et al. (2007)), and reviews of

many of these, particularly those that locomote in a snake-

like manner, are available to the interested reader in Hirose

(1993) and Transeth et al. (2009).

Table 1 illustrates the mechanical diversity of conti-

nuum robots that approximate piecewise constant curva-

ture. Backbones may be continuous or discrete

(hyperredundant robots), and some designs include extensi-

ble backbones. Continuum robots consist of multiple seri-

ally linked sections. Each section bends with between

one degree of freedom (DOF) (e.g. an inextensible planar

robot) and three DOFs (i.e. an extensible robot that can

bend about two axes without axial rotation). Continuum

robots may be under- or over-actuated, meaning that they

can have fewer or more actuators than DOFs. An example

of a prevalent over-actuated design is one whose cables lie

at 90� intervals about the central axis (see, e.g., Hannan and
Walker (2003)). An example of an under-actuated robot is a

cardiac catheter that uses four wires to actuate two 3-DOF

sections (Camarillo et al. 2009a). Many different actuation

strategies can and have been used, and a few robots are

designed to bend only in one plane, to enable enhanced

payload capability (see, e.g., Hirose and Ma (1991)) or for

simplicity of model verification (e.g. the experimental

setup in Li and Rahn (2002)). There have also been a num-

ber of approaches to coupling multiple sections together

(see the second column from the right in Table 1). In the

table, single-section robots are marked N/A, multi-section

robots in which each section is mechanically uncoupled

from other sections, such as that of Jones and Walker

(2006a), are labeled ‘‘Individual’’, and some other options

for actuator routing are illustrated in Figure 14, and dis-

cussed further in Section 4.

We proceed in subsequent sections of this paper to

address the kinematic modeling of robots such as those in

Table 1 that may be approximated as piecewise constant

curvature. Section 3 describes constant-curvature kine-

matics, Section 4 addresses multi-section forward and

inverse kinematics, and Section 5 describes constant-

curvature differential kinematics.

3. Piecewise Constant Curvature Kinematics

Constant curvature has often been viewed as a desirable

characteristic in continuum robots due to the simplifications

it enables in kinematic modeling. Variable curvature elastic

structures (Kim and Chirikjian (2006)) are described by

functions that are integrated, whereas constant-curvature

robots can be considered as consisting of a finite number

of curved links. These links are described by a finite set of

arc parameters, which can be converted into analytical frame

transformations, as discussed in this section. Thus, constant

curvature can facilitate additional analysis on topics such as

differential kinematics, real-time control, etc.

The constant-curvature approximation has been success-

fully applied to many continuum robots. For example, if a

constant moment is applied along a beam, Bernoulli–Euler

beam mechanics predict a constant-curvature result (Gra-

vagne et al. 2003). This is the case for the initial simple

models derived for the active cannula design described in

Section 3.2.3, in which concentric precurved tubes (under

the torsionless assumption) directly apply constant

moments to one another. Arguments of Li and Rahn

(2002) demonstrate that a constant moment can be applied

by a cable terminating at the end of a flexible rod and pass-

ing through a sufficient number of cable guides fixed along

the rod (see Section 3.2.2). Likewise, the pneumatically

actuated trunks described in Section 3.2.1 can be consid-

ered piecewise constant curvature because the actuators

closely approximate the application of a moment to the end

of the trunk (Jones and Walker 2006a). Many other conti-

nuum robots have also been observed to exhibit approxi-

mate constant curvature (e.g. Hannan and Walker (2003),

Simaan et al. (2004), Anderson and Horn (1967), Hirose

(1993), Ciéslak and Morecki (1999), and Immega and

Antonelli (1995), among others).

Fig. 2. The three spaces and mappings between them which

define the kinematics of constant-curvature robots. A robot-

specific mapping, discussed in Section 3.2, transforms actuator

space variables q to configuration space variables ðκ; φ; lÞ. Next,
a robot-independent mapping takes these configuration space

variables to the task space, as developed in the following section.

Section 4.2 reviews inverse mappings for both the robot-specific

and the robot-independent cases.
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The piecewise constant-curvature assumption has the

advantage of enabling kinematics to be decomposed into

two mappings (Jones and Walker 2006a), as visualized in

Figure 2. One is from joint or actuator space, q, to config-

uration space parameters that describe constant-curvature

arcs. The other is from this configuration space to task

space, consisting of a space curve which describes position

and orientation along the backbone. Examples of actuator

variables include lengths of cables, flexible push rods, or

pneumatic tubes. Arc parameters, which define the config-

uration space of the robot, consist of triplets of curvature

(�ðqÞ), the angle of the plane containing the arc (�ðqÞ), and
arc length (‘ðqÞ, or sometimes s 2 0 ‘½ �), as shown in Fig-
ure 3(b). Alternatively, the relationship � ¼ �s allows para-
meterization based on the angle � through which the arc

bends (see, e.g., Simaan et al. (2009)).

The mapping f specific from actuator space q to the config-

uration space of arc parameters ðκ; φ; lÞ is robot-specific,

since actuators in each unique robot design influence arc

parameters in different ways. In particular, consideration

of the forces and moments applied by actuators coupled

with suitable approximations (e.g. the application of a con-

stant moment as discussed earlier) yields this mapping

from actuator variables (pressure, length, etc.) to circular

sections described by arc parameters in configuration

space. In contrast, the mapping f independent from arc para-

meters to pose x along the backbone is robot-independent

because it is applicable to all systems that can be approxi-

mated as piecewise constant-curvature arcs. This is a purely

kinematic mapping, transforming from arc parameters to a

space curve in task space. In the following sections, we first

describe methods of accomplishing the robot-independent

mapping, then proceed to consider several case studies on

the robot-specific mapping for robots with varying types

of actuators.

3.1. The Robot-independent Mapping

A wide variety of conventions, formalisms, and coordinate

frame choices exist in the literature to accomplish forward

kinematics. In this section, we show that the various meth-

ods all fundamentally produce the same result for piece-

wise constant-curvature robots. To illustrate this, we

choose a frame convention and use it throughout the paper,

recasting results from the literature using this convention,

which Figure 3 illustrates. Specifically, we consider the

þz-axis to be tangent to the base of the continuum robot.

When � ¼ 0, positive curvature (� > 0) produces bending

about the þy-axis such that when the continuum robot

backbone has traced out an angle of � radians it will touch

the þx-axis. In the following, we describe several different

approaches to derive the position and orientation of the

centerline of the robot.

Referring to Figure 2, this section therefore defines

f independent in terms of the homogeneous transformation

matrix T parameterized by ðκ; φ; lÞ. This matrix gives task

space coordinates x ¼ T1...3;4. This section begins develop-

ment of this mapping with a geometric argument.

3.1.1. Arc Geometry. The geometry of a continuum robot

provides a means of determining the pose of points along

it (Hannan and Walker 2003; Bailly and Amirat 2005;

Neppalli and Jones 2007; Webster 2007). In Figure 3(a),

when � ¼ 0 the coordinates of a point on the circular

arc of radius r in the x–z plane centered at r 0 0½ �T are

p ¼ rð1� cos �Þ 0 r sin �½ �T. Note also that this motion

includes a rotation Ryð�Þ about the þy-axis, where

Ryð�Þ 2 SOð3Þ indicates a rotation about the y-axis by the

angle �. Rotating the entire arc about the þz-axis by �
moves the robot out of the x–z plane, producing a transfor-

mation from arc base to tip,

T ¼ Rzð�Þ 0

0 1

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Rotation

Ryð�Þ p

0 1

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Inplane transformation

: ð1Þ

Noting that � ¼ 1=r and � ¼ �s (where s 2 0 ‘½ �), this can
be written in terms of arc parameters (�; �; ‘) as follows.
Here, to emphasize that this transformation can be written

at any point s along the arc from 0 to ‘ we use the symbol s

and write,

f independent ¼

T¼

cos� cos�s �sin� cos� sin�s cos� ð1�cos �sÞ
�

sin� cos�s cos� sin� sin�s sin� ð1�cos �sÞ
�

�sin�s 0 cos�s sin�s
�

0 0 0 1

2

66664

3

77775
:

ð2Þ

Note that the tip frame in (1) and (2) is aligned so that the

x-axis points toward the center of the circle. In some appli-

cations (e.g. when a gripper is attached to the tip of the arc),

it may be useful to orient the tip frame such that it aligns

with the base frame when ‘‘slid’’ along the arc to the base

without rotation about the local z-axis (that is, use of a

Bishop’s frame (Bishop 1975)). This can be obtained by

post-multiplying T by a homogeneous transformation with

rotation Rzð��Þ and translation 0, yielding an alternate

f independent given in (3) on the following page.

As we review in the remainder of this section, these

results can and have been derived in a variety of ways,

including via Denavit–Hartenburg (D-H) parameters

x

z

r
1=

r

x

z

(r,0)

(r(1−cosθ),rsinθ)

(a) (b)

Fig. 3. (a) When � is zero, the arc lies in the x–z plane as shown.

(b) The angle � rotates the arc out of the x–z plane. The ‘‘arc

parameters’’ that describe a circular arc, namely curvature (�),
plane (�), and arc length (‘), are shown. The axes shown in both

figures are those of the fixed spatial frame.
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(Hannan and Walker 2003), Frenet–Serret (F-S) frames

(Hannan and Walker 2003), a similar integral formulation

that can account for zero curvature (Chirikjian and Burdick

1994) (the F-S frame is undefined when curvature equals

zero), and exponential coordinates (Sears and Dupont

2006; Webster et al. 2006a, 2009). Our review highlights

the fact that while derivations in the literature may appear

different at first glance due to the diversity of frame

choices, formalisms, and symbols employed, they arrive

at the same final result when piecewise constant curvature

is assumed.

3.1.2. D-H Parameters. Forward kinematics for a segment

of a piecewise constant-curvature robot as given in (2) and

(3) can be derived using the D-H method, augmented with

transformations between D-H parameters and arc para-

meters (�; �; ‘). In this section, #i variables describe rota-

tions about the local z-axis, not to be confused with the

separate use of � to define the angle through which the arc

bends as shown in Figure 3(a). One D-H table and mapping,

given in Jones and Walker (2006a), models a single curved

arc as consisting of a first pair and final pair of ball-

and-socket joints. Another approach introduced in Hannan

and Walker (2003) decomposes the problem, in a manner

similar to the geometric argument above, as an inplane

transformation together with a rotation of the arc about the

z-axis by #1 ¼ �.
Following this second approach, the inplane transfor-

mation (whose D-H parameters are given in links 2–4 of

Table 2) is illustrated in Figure 4(a). This is constructed

Tw¼

cos2 �ðcos�s� 1Þ þ 1 sin� cos� ðcos�s� 1Þ cos� sin �s cos� ð1�cos�sÞ
�

sin� cos�ðcos�s� 1Þ cos2 � ð1� cos�sÞ þ cos �s sin� sin�s sin� ð1�cos�sÞ
�

�cos� sin�s �sin� sin�s cos�s sin�s
�

0 0 0 1

2

66666664

3

77777775

: ð3Þ

Table 2. D-H parameter table for a single section of a piecewise constant-curvature continuum robot, as given in Figure 4. Here ‘‘link’’

refers to the several imaginary robot links used to model a single section of a continuum robot. Mappings from D-H to arc parameters

derived in the text are included.

Link # d a �

1 #1 ¼ � 0 0 ��/2
2 #2 ¼ �s=2 0 0 �/2
3 0 d3 ¼ 2=�ð Þsin�s=2 0 ��/2
4 #4 ¼ �s=2 0 0 �/2
5 #5 ¼ �� 0 0 0

Fig. 4. (a) D-H axes used to construct a hypothetical rigid-link representation of a continuum robot with the same tip frame as the

actual continuum robot. The resulting D-H table is given in Table 2. All vectors remain in the plane, except for z1 and z3 which extend
out of the paper and are therefore diagrammed as dots. (b) Given an arc which cuts through � degrees extending from the origin tangent

to the þz-axis and bending about the þy-axis, per the conventions established in this paper, the angle between the z-axis and a line

connecting the origin to the arc tip is �=2.
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by first rotating about z1 by #2 to point z2 toward the con-

tinuum robot’s tip, then translating by d3 along z2 to move

to the robot’s tip, and finally rotating about z3 by #4 to align

z4 with the backbone tangent direction. As discussed in the

previous section, an optional final rotation of #5 about

z4 provides an alternate choice of end-effector frame orien-

tation. Note that the entries in Table 2 have been modified

from Hannan and Walker (2003) so that the arc curves

about the y-axis, following the convention established

earlier.

The relationships between D-H parameters and arc para-

meters are given in Table 2. Insight on these relationships

can be obtained by observing that Figure 4 shows

#2 ¼ #4 ¼ �=2 and #1 ¼ �. Tip coordinates in two dimen-

sions, given in Figure 3(a), yield d3 ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos �Þ

p
¼ 2r sin �=2 (since 1� cos � ¼ 2 sin2 �=2).

The relationships � ¼ �s and � ¼ 1=r complete the map-

ping. With these relationships, the D-H table corresponds

to the transformation given in (2). Including the optional

#5 yields (3).

3.1.3. Frenet–Serret Frames. Differential calculus pro-

vides a rich set of tools for describing the evolution of a curve

in space, forming the basis for describing the static and dyna-

mic behavior of non-linearly elastic rods (Antman 2005). In

particular, use of the F-S formulas provide a third means of

deriving the forward kinematics of piecewise constant curva-

ture robots. Reviewing Hannan and Walker (2003), the F-S

equations parameterize a curve in terms of arc length s by

defining a local coordinate frame shown in Figure 5 which

moves along the curve in terms of a unit vector tangent to

the curve tðsÞ, a unit vector nðsÞ which is normal to the

curve, and a unit binormal vector bðsÞ ¼ tðsÞ � nðsÞ per-

pendicular to both the tangent and normal vectors. Two

functions, the curvature �ðsÞ and torsion �ðsÞ, determine

the evolution of the curve as

t0ðsÞ ¼ �ðsÞnðsÞ;
n0ðsÞ ¼ �� ðsÞtðsÞ þ �ðsÞbðsÞ; and
b0ðsÞ ¼ �� ðsÞnðsÞ;

where the prime indicates differentiation with respect to

s. Noting that many continuum robots are constructed

to reduce torsion where possible, and recalling the

constant-curvature assumption, �ðsÞ � � and �ðsÞ � 0.

The defining equations of a continuum robot are therefore

t0ðsÞ � �nðsÞ ¼ 0 and n0ðsÞ ¼ ��tðsÞ. Differentiating and

substituting, t00ðsÞ þ �2tðsÞ ¼ 0. Solving,

tðsÞ ¼ t0 cos�sþ n0 sin�s; ð4Þ

where t0 ¼ tð0Þ and n0 ¼ nð0Þ.
To obtain coordinates along the curve pð‘Þ, it is possible

to integrate the tangent vector

pð‘Þ ¼
Z ‘

0

tðsÞds ¼ t0 ��1sin�‘þ n0 ��1ð1� cos�‘Þ:

ð5Þ

Derivation of the above result for the planar case can

be found in Hannan and Walker (2003), and it can be

extended to three dimensions as follows. According to the

convention established in the previous section, the þz-axis

is tangent to the continuum robot at its base, making the

initial tangent vector t0 ¼ 0 0 1½ �T. The initial normal

vector is perpendicular to t0 and depends on the direction

of curvature defined by the angle �, so that n0 ¼ cos �½
sin � 0�T. Substituting these initial conditions into (4),

tðsÞ ¼ cos� sin�s sin� sin�s cos�s½ �T: ð6Þ

Integrating p in (5) under these initial conditions produces a

tip position identical to p in (2).

The local coordinate frame vectors t, n, and b provide

orientation for the tip frame. First, note that the choice of

an initial tangent vector t0 maps t in the base frame to the

þz-axis. Likewise, the initial normal vector n0 points

toward the center of the arc, agreeing with the frame con-

vention established in Section 3.1.1, implying that the

orientation is R ¼ n b t½ �. Substituting (6) into the rela-

tionship n0ðsÞ ¼ ��tðsÞ, we have

nðsÞ ¼ ��

Z
cos� sin�s sin� sin�s cos�s½ �T ds

yielding nðsÞ¼ cos �cos �s sin �cos �s �sin �s½ �Tand
bðsÞ ¼ tðsÞ�nðsÞ¼ �sin � cos � 0½ �T: Assembling

these columns gives the rotational portion of the matrix

in (2).

3.1.4. Integral Representation. While differential curve

representations other than F-S are possible (see, e.g.,

Bishop (1975)), another approach given in Chirikjian and

Burdick (1994) is the integral representation of a curve,

also used in the dynamics formulation of Ivanescu et al.

(2007). This integral formulation avoids difficulties which

Fig. 5. An illustration of the Frenet–Serret coordinate frame used

to describe a constant-curvature continuum robot. This local

coordinate frame consists of a vector t tangent to the curve, a

vector n normal to the curve, and a binormal vector b to complete

the frame. The constant curvature � defines the radius of the

resulting arc, while the initial condition n0 defines the angle of the
plane containing the arc. The choice of t0 to lie along theþz-axis
causes the curve to extend along that axis, per convention.
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arise in the F-S formulas when � ¼ 0 and avoids the neces-

sity of solving a differential equation to extract the curve,

given arc length parameterized curvature and torsion

functions.

Like the F-S approach, integration of a vector tðsÞ tan-
gent to the curve at s determines the shape of the curve,

where

tðsÞ ¼
lðsÞ sinKðsÞ cos TðsÞ
lðsÞ cosKðsÞ cos TðsÞ

lðsÞ sin TðsÞ ds

2

4

3

5: ð7Þ

In this equation, lðsÞ specifies dilation, where l ¼ 1 pro-

duces a curve that is neither compressed (when l < 1) or

extended (l > 1). The angle KðsÞ gives the orientation of

the tangent vector t in the x–y plane, measured clockwise

from the y-axis, and TðsÞ gives the angle between t and the

x–y plane, as shown in Figure 6. From Chirikjian and

Burdick (1994), tip position is defined as

pð‘Þ ¼
Z ‘

0

tðsÞ ds: ð8Þ

Applying this formulation to the constant-curvature

inextensible case implies that lðsÞ � 1. Referring again to

Figure 6 or, equivalently, setting (7) equal to (6), the angles

KðsÞ ¼ �=2� �
TðsÞ ¼ �=2� �s

ð9Þ

define a vector t tangent to a constant-curvature arc using

the frame convention chosen for this paper. With these def-

initions, integrating (8) produces a tip position identical to

p in (2) and (3).

With respect to orientation, Chirikjian and Burdick

(1994) defined an ‘‘induced’’ reference frame along the

backbone, which differs from the F-S frame by a rotation

about the tangent vector. To see how this representation

agrees with (2) for the constant-curvature case, one must

simply relabel axes (Chirikjian and Burdick (1994) has the

e2 or y-axis of the local frame tangent to the curve) such

that the frame remains right handed, with e3 (or z) tangent

to the curve. This results in a shuffling of the columns of the

induced rotation matrix QIR provided in Chirikjian and

Burdick (1994). Then, substituting (9) into the resulting

QIR yields the rotation matrix given in (2).

3.1.5. Exponential Coordinates. Similar results can be

obtained using exponential coordinates based on Lie group

theory (Sears and Dupont 2006; Webster et al. 2006a,

2009). See also Murray et al. (1994) for a thorough treat-

ment of exponential coordinates – in this section we follow

the notation and conventions outlined therein. Recalling

from (1) that the homogeneous transformation for a circular

arc can be decomposed into a rotation and an inplane trans-

formation, we can write the twist coordinates associated

with each as

ξrot ¼
υrot
ωrot

� �
¼ 0 0 0 0 0 1½ �T and ð10Þ

ξinp ¼
υinp
ωinp

� �
¼ 0 0 1 0 � 0½ �T; ð11Þ

respectively, where υ and ω are linear and angular differen-

tial motions. Then, writing the twist coordinates as twists,

bξrot ¼
ω̂rot υrot

0 0

� �
¼

0 �1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

2

6664

3

7775 and

bξinp ¼
ω̂inp υinp

0 0

� �
¼

0 0 � 0

0 0 0 0

�� 0 0 1

0 0 0 0

2

6664

3

7775

T

;

ð12Þ

where as shown, ^maps from R
3 to soð3Þ (the Lie algebra

of SOð3Þ) and also from R
6 to seð3Þ (the Lie algebra of

SEð3Þ), as used in Murray et al. (1994). Applying the prod-

uct of exponentials formula yields

T ¼ e ξ̂rot�ð Þe ξ̂inp‘ð Þ; ð13Þ

which is identical to (1) and evaluates to (2). Similarly, the

single set of twist coordinates

ξ ¼ 0 0 1 ��sin� �cos� 0½ �T ð14Þ

exponentiated as e ξ̂‘ð Þ yields (3).

3.1.6. Summary of Robot-independent Mapping. In sum-

mary, we have shown in this section that the derivation of a

robot-independent mapping for the forward kinematics of a

piecewise constant-curvature robot can be accomplished

with a variety of approaches. Our primary purpose here was

to show that many seemingly disparate approaches produce

identical results (namely (2) and (3) when written in homo-

geneous matrix form) when placed in a common coordinate

frame and stated using consistent symbols and mathemati-

cal terminology. While this may be clear to researchers

experienced in the field, it is our experience that for new-

comers to continuum robotics, arriving at this conclusion

Fig. 6. The integral representation defines the tangent vector t

(given in (7)) to the arc in terms of one function (KðsÞ) which
gives the angle in the x–y plane measured clockwise from theþy-
axis, and another (TðsÞ) which specifies the elevation. The con-

nection to the arc parameters (�; �; ‘) used throughout this paper

can be made by observing that based on the geometry above

K ¼ �=2� � and T ¼ �=2� �, where � ¼ �s.
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requires significant effort and an intensive literature sur-

vey, which has led to some results being redemonstrated

multiple times in the literature. It is our hope that this expo-

sition will provide an easier entry into continuum robotics

for new researchers, and also illustrate the diversity of

approaches available to those pursuing extensions to basic

constant-curvature theory, as discussed in Section 6.

3.2. Robot-specific Arc Parameter Mappings

The robot-independent mapping f independent (see Figure 2)

developed thus far results from the solution of a purely

kinematic problem, namely that of mapping a piecewise

constant-curvature arc described in configuration space

ðκ; φ; lÞ to a task space position and orientation (x, which

can be expressed as a homogeneous transformation matrix).

In contrast, the robot-specific mapping f specific maps from

actuator or joint space (e.g. tendon lengths, pneumatic

chamber pressures, etc.) to configuration space ðκ; φ; lÞ.
This mapping is usually developed by examining the forces

and moments applied by the actuators and transmitted

through the structure of a continuum robot. Sometimes sim-

plifying assumptions are introduced into this analysis, the

most common being that constant moments are applied

along the robot, implying (by Bernoulli–Euler beam

mechanics) that it will assume a circular arc.

Because the manner in which actuators define arc para-

meters is generally unique to each actuation strategy,

developing this mapping requires modeling of actuator–

support structure interaction. In this section we provide

several case studies for how the robot-specific mapping has

been obtained for continuum robots with different actuation

methods. Herein, we provide references to original source

material, then present results (simplified where possible,

and cast in the notation of this paper) for several common

continuum robot designs, which cover most of the actuation

strategies currently in use.

3.2.1. Robots Shaped by Continuously Bending Actuators.

One common style of continuum robot construction (see,

e.g., Chen et al. (2004), Jones and Walker (2006b), Ohno

and Hirose (2001), and Bailly and Amirat (2005), and Xu

and Simaan (2008), among others) is composed of actua-

tors which bend continuously, such as flexible rods or

pneumatic tubes. Figure 7 shows two realizations of such

designs. A closed-form relationship between actuator

lengths and the resulting shape is useful for real-time con-

trol which enables applications such as those discussed in

Section 2.

Therefore, we seek to derive expressions for the

arc parameters (‘ðqÞ; �ðqÞ; �ðqÞ) for a single-section,

three-actuator continuum robot, as a function f specific (see

Figure 2) of the ‘‘joint variables’’ q ¼ l1 l2 l3½ �T which

describe the lengths of three pneumatic chambers or three

flexible rods. What follows is a simplified version of deri-

vations which can be found in Bailly and Amirat (2005)

and Chen et al. (2005); Xu and Simaan (2008) provides

an equivalent approach using a two-angle parametrization

rather than the angle-curvature approach presented in this

paper.

Figure 8(a) provides a view of the base and top of a

single-section continuum robot, while Figure 8(b) shows

the base of the same section viewed from above while look-

ing down along the z-axis. As shown by the geometry in the

figure, the radius of curvature r measured from the robot’s

center relates to the radius of curvature for each individual

actuator (denoted by i 2 1 . . . 3) according to

ri ¼ r � d cos �i; ð15Þ

where d is the distance from the center of a section of the

robot to the center of the actuator (which is the same for all

actuators) and �i specifies the angle between the robot’s

bending direction and the location of actuator i.

Multiplying (15) by the arc angle � illustrated in

Figure 8(b) and recalling that ‘ ¼ �r and li ¼ �ri, the rela-
tionship between the arc length of the robot (‘) and the arc

Fig. 7. Examples of flexible push-rod (left) and pneumatic (right) continuum robots with three actuators spaced at 120� radial

intervals, whose kinematics are derived in Section 3.2.1. The 4.2-mm diameter multi-backbone robot by Xu and Simaan (2006) is

designed for teleoperated surgery in the throat and airways. The OctArm robot (Jones and Walker 2006a) is mounted on a tracked,

mobile base and actuated by latex rubber tubes, which are covered by a mesh which produces extension when pressurized. Left photo

courtesy of Nabil Simaan, # 2006 IEEE. Right photo courtesy of Chris Rahn, # 2006 IEEE.
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length of the ith actuator (li) is

‘ ¼ li þ �d cos�i: ð16Þ

Given this relationship, it is possible to determine ‘ðqÞ by
noting that actuator locations (as shown in Figure 8) are

related to the bending plane of the robot �ðqÞ by

�1 ¼ 90� � �, �2 ¼ 210� � �, and �3 ¼ 330� � �. There-

fore,
P3

i¼1 cos�i ¼ 0. Thus, combining (16) from

i ¼ 1 . . . 3 yields

‘ðqÞ ¼ l1 þ l2 þ l3

3
: ð17Þ

Equation (16) determines �ðqÞ as follows. Applying (16) to
the first two actuators and setting the right-hand sides equal

yields �d ¼ ðl2 � l1Þ=ðcos�1 � cos�2Þ. To obtain �, apply
the same procedure to actuators 2 and 3, equate the results,

and insert the above-mentioned relationships between �i

and � to obtain

�ðqÞ ¼ tan�1

ffiffiffi
3

p
l2 þ l3 � 2l1ð Þ
3 l2 � l3ð Þ

� �
: ð18Þ

To obtain the curvature of the robot �ðqÞ, first recall that
� ¼ �‘ ¼ li=ri, so that ri ¼ li=�‘, which when combined

with (15) yields � ¼ ð‘� liÞ=‘d cos�i. Considering a sin-

gle actuator (e.g. i ¼ 1 so that �1 ¼ 90� � �) in (17)

implies that � ¼ ðl2 þ l3 � 2l1Þ= l1 þ l2 þ l3ð Þ d sin�ð Þ.
Combining this and (18) with the identity sin tan�1 y=xð Þð Þ
¼ y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and simplifying yields the desired result,

namely,

�ðqÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23 � l1l2 � l1l3 � l2l3

p

dðl1 þ l2 þ l3Þ
: ð19Þ

In summary, Equations (17)–(19) give the robot-specific

map fspecific from actuators to arc parameters (‘ðqÞ;
�ðqÞ; �ðqÞ). The shape of the robot’s section can then be

obtained via the results given in Section 3.1. This frame-

work also applies to multi-section robots; each section can

be independently considered and will yield one set of arc

parameters.

The kinematics for the four-actuator case can be consid-

ered in a similar manner to the three-actuator derivation

above, although it has not specifically been articulated in

this way in the literature as far as the authors are aware. For

continuum robots with four actuators, �1 ¼ cos�, �2 ¼
cos 90� � �ð Þ ¼ sin�, �3 ¼ cos 180� � �ð Þ ¼ �cos�, and
�4 ¼ cos 270� � �ð Þ ¼ �sin�. Following the same steps

as the three-actuator derivation above yields the desired

result. Specifically, combining (16) from i ¼ 1 . . . 4 yields

‘ðqÞ ¼ l1 þ l2 þ l3 þ l4

4
: ð20Þ

Similar to the three-actuator case, applying (16) to actua-

tors 1 and 3, then setting the right-hand sides equal pro-

duces an expression which can be solved for �d.
Repeating this for actuators 2 and 4 produces a second

expression for �d. Equating the two and solving,

�ðqÞ ¼ tan�1 l4 � l2

l3 � l1

� �
: ð21Þ

Again, following the three-actuator case, choosing i = 2 in

� ¼ ð‘� liÞ=‘dcos�i then substituting (20) for ‘ gives an

expression for � in terms of l1:::4 and �. Substituting � from

(21) and simplifying,

�ðqÞ ¼
l1 � 3l2 þ l3 þ l4ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � l2ð Þ2þ l3 � l1ð Þ2

q

d l1 þ l2 þ l3 þ l4ð Þ l4 � l2ð Þ ; ð22Þ

which completes the derivation.

However, before we leave this topic, a few words are in

order regarding the mechanical arrangement of some

robots, particularly those actuated by push rods (Xu and

Simaan 2006, Xu and Simaan 2008) that are over-

actuated. Here, an additional inextensible central rod

defines a constant length ‘ of each section of the robot.

In this case, (17) shows that knowledge of two rod lengths

l1; l2 defines the required length l3 for the third rod,

Fig. 8. (a) An illustration of an arc section in which various arc parameters are defined. (b) A diagram of the base section seen from

above, from which (15) results.
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assuming all three rods bend with constant curvature.

This kinematic over-determination is valuable: one can

choose a redundancy resolution that minimizes the load

on each backbone and thus reduces the risk of buckling

(Simaan 2005). We also note that for wire-actuated robots,

which may be either under- or over-actuated, additional

complexities arise in constructing multi-section robots,

due to coupling between cables which pass through

multiple sections. The multi-section case is discussed in

Section 4.

3.2.2. Robots Shaped by Tendons. A second frequently

applied continuum robot design (see, e.g., Hannan and

Walker (2003), Ciéslak and Morecki (1999), Jones and

Walker (2006b), and Immega and Antonelli (1995)) uti-

lizes three cables, as shown in Figure 9. Cable guides

placed at equally spaced intervals along the robot cause its

shape to approximate a circular arc, while dividing the

cables into line segments which inscribe the arc formed

by the robot. Measuring and controlling cable length then

enables shape description and control based on the analyti-

cal relationships developed below.

One derivation for the forward kinematics of a

single-section three-cable cable-driven continuum robot was

provided in Jones and Walker (2006a). Here we contribute a

simplified derivation, which is similar to that described in

the previous section for robots shaped by continuously bend-

ing actuators. As in the previous section, this procedure can

then be repeated to derive four-cable kinematics.

Here, we assume that cables travel in a straight line

from one cable guide to the next in a uniformly bending

section of the robot, subdividing each section into n units

that begin and end at the nþ 1 cable guides as shown in

Figure 10. Examining one unit of an n-unit section, note

that Equation (15) applies where ri now specifies the radius

of curvature of a circle into which line segments (defined

by cables of length li passing from cable guide to cable

guide) can be inscribed as illustrated in Figure 10. Like-

wise, r gives the radius of a circle into which a hypothetical

cable of length lc, which passes through the center of each

segment, can be inscribed.

As shown in Figure 10, a unit of radius r ¼ ��1 which

bends through �=n radians (where � ¼ �s) produces a cable
length

lc ¼ 2nr sin ð�=2nÞ: ð23Þ

Fig. 9. Three examples of cable-driven robots. (Left) A latex rubber tube with three cables at 120� intervals creates an extensible

wire-actuated continuum robot (Neppalli and Jones 2007). Copyright# 2007 IEEE. (Center) Similarly, the Air-OCTOR multi-section

continuum robot consists of a pressurized hose around which cables are spaced at 120� intervals (Jones and Walker 2006a), # 2006

IEEE. (Right) The Clemson Elephant Trunk hyperredundant robot (Hannan and Walker 2003) consists of a series of U-joints with

springs between jointed sections, producing an inextensible robot with approximately constant curvature within each section. Photo

courtesy of Ian Walker, copyright # 1999 IEEE).

Fig. 10. Schematic of a single circular section of a cable-driven

continuum robot. This section includes one cable guide (often

there are several guides per section) that subdivides it into two

units (n ¼ 2). This two-dimensional, in-plane view omits one

wire for simplicity and shows the special case where the bending

plane happens to make the wires equidistant from the central

backbone; however, results derived here also apply to general

bending planes. The geometry presented shows that

sin �=2nð Þ ¼ lc=2nð Þ=r, producing (23).
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Again referring to the figure, the same principle also

applies to the per-cable lengths and radii, so that

li ¼ 2nri sin ð�=2nÞ. Multiplying (15) by 2n sin ð�=2nÞ,
substituting, and solving gives

lc ¼ li þ d2n sin ð�=2nÞ cos�i: ð24Þ

In the samemanner as the continuously bending actuator case

in (17), combining (24) over all three actuators produces

lc ¼
l1 þ l2 þ l3

3
: ð25Þ

By the same reasoning, one can apply (24) to two cables

and equate the results to yield d2n sin ð�=2nÞ ¼
ðl2 � l1Þ=ðcos�1 � cos�2Þ. The same procedure can then

be applied to the second and third cables. Equating and sol-

ving gives (18).

The derivation for �ðqÞ is also similar to the pro-

cedure described for continuously bending actuation,

and yields the same result. This can be derived from (23)

and following, which yield sin �=2nð Þ ¼ lc=2nr ¼ li=2nri,
implying that ri ¼ li=�lc. Equating this with (15) and sol-

ving, we obtain � ¼ ðlc � liÞ=lc d cos ð�iÞ. Choosing

i ¼ 1 so that �i ¼ 90� � � and substituting (25) yields

� ¼ ðl2 þ l3 � 2l1Þ=ðl1 þ l2 þ l3Þd sin�. The remainder

of the derivation is then identical to the pneumatic case and

yields (19).

The arc length of the robot ‘ðqÞ can be determined from

(23), which yields ‘ ¼ 2n=�ð Þ sin�1 lc�=2nð Þ. Applying

(19) and (25) yields

‘ðqÞ ¼ ndðl1 þ l2 þ l3Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23 � l1l2 � l1l3 � l2l3

p sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23 � l1l2 � l1l3 � l2l3

p

3nd

 !

:

ð26Þ

In summary, the expressions for �ðqÞ in (19) and �ðqÞ in
(18) for tendon-driven continuum robots are identical to

those for the robots with continuously bending actuation

described in the previous section. Therefore, (18), (19), and

(26) define f specific for these robots. The only difference

between the two types, arising from the fact that wires go

straight between support disks rather than through curved

paths, is in the arc length parameter ‘ðqÞ in (26). The

four-actuator case follows similarly. Imitating the proce-

dure above but using actuators 1, 3 and 2, 4 as in the con-

tinuously bending actuation case yields � qð Þ in (21) and

� qð Þ in (22). Applying (26) with these updated formulas for

� and � then produces ‘ qð Þ. See Hannan andWalker (2003)

for an alternate derivation.

The inextensibility of many cable-driven robots such as

those of Buckingham (2002), Hannan and Walker (2003)

and Ciéslak and Morecki (1999), leads to an over-

actuated system. Similar to the previous section, (25) pre-

scribes one of the cable lengths when the other two are

known, assuming the robot retains a constant-curvature

shape. However, additional difficulties arise due to cable

extension resulting from loading, which requires examina-

tion of the statics of the continuum robot and the resulting

forces applied to its cables to properly regulate cable ten-

sion, avoid cable slack, and address both under- and

over-actuation in these systems (Camarillo et al. 2008,

2009a). Section 4.2 treats these problems in the more chal-

lenging context of a multi-section robot.

3.2.3. Concentric Tube Continuum Robots. Concentric

tube continuum robots, also known as active cannulas due

to their potential medical applications (Figure 11), are a rel-

atively new type of continuum robot (Sears and Dupont

2006; Webster et al. 2006b; Sears and Dupont 2007;

Rucker and Webster 2009b; Webster et al. 2009; Dupont

et al. 2010; Rucker et al. 2010a, b). A distinguishing char-

acteristic of the active cannula design (aside from its small

diameter) is that bending actuation is built into the back-

bone, which is composed of telescoping, precurved elastic

tubes. These can be rotated and translated with respect to

one another to transmit bending moments.

The joint variables for an active cannula are the transla-

tions (ρ) and rotations (θ) of component tubes. Thus, joint

space consists of q ¼ ½�1 �1 � � � �n �n�T. Neglecting tor-

sion, actuators at tube bases directly specify tube axial

0.8 mm

2.39 mm

Fig. 11. A three-tube active cannula with inset line drawing

showing degrees of freedom (Webster et al. 2009),# 2009 IEEE.
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Fig. 12. (a) When two circularly precurved tubes are placed

concentrically and rotated at their bases, their resultant shape can

be approximated by a circular arc lying in a plane between the

tubes’ individual planes. (b) Cross section showing tube

individual frames and equilibrium frame. (c) An active cannula

consists of 2n such sections for n tubes: black lines denote

straight tube segments while gray lines denote circularly

precurved tube segments. Images adapted from Webster et al.

(2009), original source # 2009 IEEE.
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rotation angles at all points along the active cannula.1

Under this assumption and with circular curvature pre-

formed into each component tube, the active cannula con-

sists of piecewise constant-curvature links (Webster et al

2006b Sears and Dupont 2006; Webster et al. 2009) as

shown in Figure 12. To determine the arc parameters of a

given link, one can apply Bernoulli–Euler beammechanics.

For a collection of tubes with circular precurvatures ki and a

deformed resultant circular curvature common to all tubes

�, moments will be constant along the length of each tube

in a given section and can be described by �� ki ¼ M=EI ,
where M is the bending moment, E is the elastic modulus,

and I is the cross-sectional inertia of the tube. Writing a

moment balance in the equilibrium coordinate frame in

component form, one can obtain curvature components of

�x ¼

Pn

i¼1

EiIiki cos �i

Pn

i¼1

EiIi

; �y ¼

Pn

i¼1

EiIiki sin �i

Pn

i¼1

EiIi

; ð27Þ

where �i are the angles input at the base of the link. These
can be converted into arc parameters by observing that the

equilibrium plane and curvature are

�ðqÞ ¼ tan�1 �y

�x

� �
and �ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x þ �2

y

q
; ð28Þ

which defines f specific for this type of continuum robot.

Tube transition points (points where tubes either end or

transition from straight to curved) bound each link in an

active cannula, and together with actuator displacements

directly define link lengths through straightforward linear

algebraic relationships. The exact functions depend on the

order of transition points, and examples and methods for

calculation of link lengths are given in Webster et al.

(2009) and Sears and Dupont (2006).

3.2.4. The Steerable Needle. Needles can be ‘‘steered’’

(guided through curved trajectories) inside soft tissue in a

variety of ways (for an overview, see Webster (2007)). One

means of steering needles is to make the needle shaft flexible

(e.g. use a material such as Nitinol) and harness the asym-

metric forces of a beveled tip. Work in Webster et al.

(2006a) shows that the trajectory of such a bevel-steered

needle can be modeled as having piecewise constant

curvature. Curves begin and end when the needle is rotated

axially, redirecting the bevel and thus the direction of for-

ward progression. A distinguishing feature of bevel steering

is that the backbone (needle shaft) can have as many arcs as

desired (a new one begins with each bevel reorientation),

and with constant axial rotation during insertion steerable

needles can also achieve helical trajectories. However, in

contrast to other continuum robots, only arcs forward of the

current tip position can be affected by the actuators. Arcs

embedded in tissue will stay in place with constant arc para-

meters, regardless of actuator motion, because they are held

by the tissue (Webster et al. 2005). When retracted, the nee-

dle will return along the path through which it entered the

tissue.

Steerable needle kinematics can be described by consid-

ering body velocity. The body frame twist coordinates cor-

responding to insertion and rotation of the needle are the

same as those given in (10)–(11), namely,2

ξrotation ¼ 0 0 0 0 0 1½ �T and

ξinsertion ¼ 0 0 1 0 � 0½ �T:

Converting these to twists, we have

ξ̂insertion ¼
�ê2 e3
0 0

� �
	̂rotation ¼

ê3 0

0 0

� �
; ð29Þ

where ei are standard basis vectors and the ^ notation is

used as in (12).

If the sequence (and distances) of insertion and rotation

motions for a complete needle trajectory are known a

priori, the product of exponentials formula can be applied

directly in a similar manner to (13), as

T ¼ e ξ̂insertion‘1ð Þe ξ̂rotation�1ð Þ � � � e ξ̂insertion‘nð Þe ξ̂rotation�nð Þ.3 How-

ever, normally the input degrees of freedom will be dyna-

mically manipulated by a control system, in which case

the forward translation of the needle will be given by

_TðtÞ ¼ TðtÞ u1ξ̂insertion þ u2ξ̂rotation
� 	

; ð30Þ

where u1 and u2 are the insertion and rotation velocity

inputs, respectively, applied at the needle base. When the

needle is used under closed-loop control with feedback

from a medical imaging system, a needle controller (see,

e.g., Kallem and Cowan (2009)) determines u1 and u2 in

Fig. 13. Photo of a steerable needle inserted into simulated muscle, with model prediction superimposed and offset below the needle,

so that the needle can be seen.
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real-time and applies them using motors connected to the

needle base (see Webster et al. (2005) and Reed et al.

(2008)). To determine needle pose, (30) can be integrated

(see Webster et al. (2006a) for details and Park and Chung

(2005) for an in-depth discussion on several numerical inte-

gration techniques) to determine needle pose.

4. Multi-section Forward and Inverse

Kinematics

4.1. Forward Kinematics

Many continuum robot applications require multi-section

robots, in order to provide a sufficient number of DOF for

task requirements. Since a single section generally provides

two or three DOF, positioning the robot’s tip with six DOF

requires a minimum of two to three sections, and more are

desirable to increase workspace size and provide redundant

solutions. Actuator length limits can also constrain single-

section robot motion to a subspace of the theoretical work-

space, producing a relatively small workspace for many

single-section manipulators (see Jones and Walker

(2006b) for one example). Furthermore, whole-arm grasp-

ing and the ability to work in cluttered environments often

require one or more sections dedicated to the task, while

other sections toward the robot’s base support and position

distal sections. All of these factors provide ample motiva-

tion for multi-section robots; indeed, many of the existing

designs listed in Table 1 are equipped with multiple

sections.

However, multi-section continuum robots can introduce

additional complexity in the mappings illustrated in Figure

2. In general, the robot-independent forward kinematic

results are straightforward to generalize to the multi-

section case. One simple way to see this is to consider each

section as having its own transformation (Equations (1) or

(2) when expressed using the homogeneous matrix repre-

sentation), then simply multiplying these transformations

as one would for traditional serial robot link transforma-

tions. However, the robot-specific mapping cannot always

be so cleanly decoupled, and doing so sometimes requires

consideration of the whole robot and simultaneous solution

of all sections.

In terms of the example designs given in Section 3.2, the

cables and push-rods that actuate distal sections of the robot

(those toward the robot’s tip) pass through and therefore

affect the shape of proximal sections, requiring a whole-

robot solution. In contrast, the latex rubber tubes in pneuma-

tically actuated robots terminate at each section boundary,

producing a mechanically decoupled design solvable on a

per-section basis. While distal sections in concentric-tube

continuum robots also pass through proximal sections and

affect their shape, this coupling is directly built into the

model as expressed in Section 3.2.3. For the steerable nee-

dle, there is no coupling, and each section in an a priori

determined actuator trajectory does not affect other sections.

Thus, the designs where extension to multiple sections

requires additional analysis are those involving push rods

and cables. Referring to Figure 14, co-located actuators

provide a straightforward method to determine distal actua-

tor length as the sum of all co-located proximal actuators.

For example, the robot in Xu and Simaan (2008) features

hollow push rods, in which distal rods lie inside proximal

rods. In the more common case of distributed actuation, the

length of a distal actuator must be computed by referring to

the arc parameters for proximal sections then using a

single-section mapping to compute these lengths as they

pass through each proximal section, a process termed ‘‘tan-

gle/untangle’’ in Jones and Walker (2006b). If actuator

forces cause compression of the robot and extension of the

actuating cables, a consideration of statics can enable cal-

culation of cable lengths (Camarillo et al. 2009a).

4.2. Inverse Kinematics

As with all serial robots, and particularly in the case of

redundant robots, inverse kinematics is challenging. For a

constant-curvature continuum robot, one usually begins

by computing the inverse mapping between task space and

configuration space (the robot-independent inverse map-

ping). This produces the arc parameters of all sections of

the robot, which correspond to the desired tip pose. Com-

puting all possible solutions to this problem for a conti-

nuum robot with a large number of sections is clearly not

trivial, but several approaches for inverse kinematics do

exist. A closed-form geometric approach is given for single

and multiple sections in Neppalli et al. (2009), based on

modeling each section using a spherical joint and a straight

rigid link, then applying an analytical process to solve

inverse kinematics for this model before converting back

to arc parameters. This approach provides simple access

to the entire solution space of the rigid-link robot and can

easily be applied to an n-link robot. However, this

Fig. 14. A two-section robot illustrates the ‘‘tangle/untangle’’

process. Co-located concentric proximal and distal actuators (as

is the case with the flexible push-rod design: the sketch above

indicates actuators that pass directly through one another)

simplify the process because the section lengths of all rods, both

those that actuate the base and tip section, passing through the

base section are identical. When cables for multiple sections lie

at equal angles about the central axis of the device (termed

‘‘co-radial’’ above), a slightly more complex process of mapping

outer actuator lengths to shape, and then back to inner actuator

lengths, decouples the actuator lengths. In the most complex case

for multi-section cable-driven designs, where the cables for

proximal and distal sections cannot be coaxial (and are therefore

distributed around the edge of each disk), an iterative procedure

known as tangle/untangle (Jones and Walker 2006b) or a statics

model with optimization (Camarillo et al. 2009a) can be used to

determine multi-section cable lengths.
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formulation does not yet account for physical actuation

limits, such as limited actuator lengths, forces, or locations.

The Jacobian (see Section 5.1) provides another

approach to robot-independent inverse kinematics. It finds

a single solution to the problem by servoing a virtual copy

of the robot from any initial guess (including the robot’s

current configuration) to the desired configuration (see,

e.g., Sears and Dupont (2007) and Webster et al. (2008) for

active cannula results). In this Jacobian-based inverse kine-

matics strategy, it is possible to build actuator limits into

the control law so that the robot’s trajectory is always phy-

sically realizable.

The inverse mapping from arc parameters to actuator

parameters differs for each kind of continuum robot, simi-

lar to the forward mapping. Bevel-steered needle inverse

kinematics are the most straightforward, since the desired

� for each section directly defines the amount of axial rota-

tion necessary after each forward translation along the pre-

vious section. Inverse kinematics of concentric-tube

continuum robots are only slightly more complex, given

a set of arc parameters in their workspace. For these robots,

one can work backward from the distal section (see Figure

12), where �n is equivalent to the axial angle of the single

tube it contains. The second-to-last section contains two

tubes, so given its arc parameters and the fact that we have

already determined the axial angle of one of the two tubes it

contains, Equations (27) and (28) have only one unknown,

and can be solved in closed form for a second axial tube

angle. Repeating this procedure for each subsequent sec-

tion as one moves toward the robot’s base, one tube angle

is completely defined by each section.

Additional single-section inverse mappings from arc

parameters to actuator parameters include derivations for

push rod-actuated robots (Xu and Simaan 2008) and for

single-section cable and pneumatically actuated robots

(Jones and Walker 2006a). Using these mappings, Jones

and Walker (2006b) produced an analytical derivation of

the workspace of these robots under actuator length limit

constraints and describes a ‘‘tangle/untangle’’ algorithm for

multi-section cable-actuated robots with actuators equally

spaced about the base of the trunk.

The above algorithms restrict their attention to constant-

curvature kinematics, and thus do not include real-world

effects that can be important in some continuum robot

designs, such as gravitational loading or friction. For exam-

ple, friction can cause non-circular deformation in the flex-

ible push-rod design. Fortunately, this can be overcome by

compensation that makes use of redundant actuation in the

single- (Xu and Simaan 2006) and multi-section cases

(Simaan et al. 2009). Likewise, some continuum robot

designs undergo appreciable axial compression due to

actuator forces, necessitating a static analysis of the system

to compute cable lengths which correspond to desired arc

parameters (Camarillo et al. 2009a).

5. Differential Kinematics

One approach to derive the Jacobian matrix for a conti-

nuum robot is to compute the full kinematics as described

in Section 3 using both the system-specific and system-

independent mappings, then to directly differentiate the

components of the resulting homogeneous transformation

(see, e.g., Jones and Walker (2006a) and Hannan and

Walker (2003)). While this is conceptually straightforward,

in practice it can become computationally cumbersome.

A multi-section robot would require multiplication of sev-

eral copies of (2) or (3) and substitution of potentially

lengthy robot-specific definitions of arc parameters, such

as those derived in Section 3.2.

However, a robot-specific/robot-independent approach

similar to that taken with forward kinematics earlier in

this paper can also be applied to differential kinematics

(Webster et al. 2008). To accomplish this, first observe that

forward kinematics is a composition of maps, namely

T ¼ TðκðqÞ; φðqÞ; lðqÞÞ. This implies that we can use the

chain rule to compute differential kinematics.

5.1. Robot-independent Jacobian

At first glance, applying the chain rule to (13) is not

straightforward, because both �ðqÞ and ‘ðqÞ appear in the

second exponential. However, following (Webster et al.

2008), we begin by computing spatial velocity for one sec-

tion (the jth section) of a continuum robot as

V̂ s
j ¼ _TjT

�1
j ¼ ê6D _�j þ eê6D�j

d

dt
eðê3þê4�jÞ‘j

� �
T�1
j ; ð31Þ

where Tj is given in (13) but with �j replaced with

D�j ¼ �j � �j�1 to enable the result to be used with a

multi-section robot. Using trigonometric series it can be

shown that the final term of (31) reduces to

eê6D�j Âje
�ê6D�j , where

Âj ¼

ê2 _�j‘j _‘j þ _�jð�j‘j�sin ð�j‘jÞÞ
�2
j

� �
e3 þ _�jðcos ð�j‘jÞ�1Þ

�2
j

e1

0 0

2

4

3

5:

Converting (31) from seð3Þ to R6 yields V s
j ¼ e6D _�j þ

Ad
e
ê6D�jAj, which reduces to

V s
j ¼

cosD�j ðcosð�j‘jÞ � 1Þ=�2
j 0 0

sinD�j ðcosð�j‘jÞ � 1Þ=�2
j 0 0

�ðsin ð�j‘jÞ � �j‘jÞ=�2
j 0 1

�‘j sinD�j 0 ��j sinD�j

‘j cosD�j 0 �j cosD�j

0 1 0

2

6666664

3

7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J

s

j

_�j

D _�j

_‘j

2

664

3

775:

ð32Þ

Note that J sj is well defined for all ð�j;D�j; ‘jÞ, even in the

limit as �j approaches 0.

Given this single-section Jacobian, one can generalize to

multiple sections by expressing individual section Jaco-

bians in the spatial frame. Applying the relevant adjoint

transformations,
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J srobot ¼ J0 AdT0
J1 AdT01

J2 � � � AdT0ðm�1ÞJm

 �

ð33Þ

where Jj is the jth section Jacobian (32), and

T0j ¼ T 0T1 � � � T j. This result can then be used to determine

the spatial velocity (see Murray et al. (1994) for an in-depth

discussion of the proper interpretation of spatial and body

velocities) of the tool frame by multiplying it on its right

by a vector consisting of a stack of all m triplets of arc

parameter velocities.

5.2. Robot-specific Derivatives

Some continuum robots permit direct control of arc para-

meters. With such robots, the robot-independent result

above can be applied directly. In others, including some

of our examples in Section 3.2, the mapping between joint

variables and arc parameters may be written in closed form

(see, e.g., Bailly and Amirat (2005), Jones and Walker

(2006a), and Sears and Dupont (2007)). When this is pos-

sible, one can directly differentiate the expressions for the

arc parameters. In still other cases, including active cannu-

las when they are approximated as piecewise constant cur-

vature, with torsion modeled in straight sections only as in

Webster et al. (2009), obtaining arc parameters requires

numerical energy minimization. Even this does not neces-

sarily preclude a closed-form Jacobian. It has been shown

in Webster et al. (2008) that by applying a local version

of the implicit function theorem, one can arrive at a

closed-form Jacobian for an active cannula. Efficient meth-

ods for obtaining the Jacobian for non-circular continuum

robots, including piecewise constant-curvature robots of all

designs under significant external loading (as well as active

cannulas with variable precurvature and/or under external

loading (Rucker et al. 2010a)) is an open research question

that is discussed below in terms of future challenges in the

field of continuum robots.

6. Opportunities For Future Research

The efforts of many researchers have led to significant

advancements in the design, application, and theoretical

foundation for continuum robotics, as has been reviewed in

previous sections of this paper. However, before continuum

robots become as pervasive as their rigid-link counterparts, a

number of ongoing research challenges must be addressed.

Here, we discuss several of the many themes that will be

important in the future of continuum robotics research.

6.1. Design

The diversity of applications and sizes of continuum robots

provide fertile ground for design innovation, as can be

clearly seen from the examples in Section 2. The coupling

of actuation and elastic support structure is an active area of

research, as are the tradeoffs between distributed, discrete,

and remote (e.g. cable) actuation, and the best combina-

tions of these strategies. Related to this are the challenges

of concatenating multiple sections (the actuators for distal

sections can often influence the shape of proximal ones

as described in Section 4.2), appropriately tuning or con-

trolling overall robot stiffness to match application objec-

tives, and identifying and using robust materials with

long functional lifetimes. Similarly, it is not always clear

how to incorporate actuator or structural limits (see, e.g.,

Jones et al. (2006)) into models to prevent robot self-

damage or damage under load. Furthermore, many of the

continuum robots developed to date have not yet been fitted

with end-effectors. Depending on design, weight, and

actuation, these end-effectors may require mechanical or

algorithmic compensation for their effect on robot shape.

Each of the above factors provide researchers with many

opportunities for innovation in continuum robot design

when approaching each new application.

6.2. Static Modeling

As we have described in this paper, the piecewise constant-

curvature approximation is often useful and has been widely

applied. However, general methods to characterize the error

induced by this assumption do not currently exist. The com-

mon approach to justify the assumption is to (1) photograph

the robot and observe that a circle fits the actual backbone

shape ‘‘rather well’’, (2) proceed with the subject matter of

the paper (design, kinematics, application requirements, etc.),

(3) experimentally assess overall performance of the entire

robot system, and (4) conclude that if the experiments were

successful then the piecewise constant-curvature approxima-

tion was sufficiently accurate. This process does not provide

an early means of testing a single section of the robot to

extrapolate whether a multi-section robot will be likely to

meet design requirements. Thus, general results on error pro-

pagation based on metrics for the circularity (or lack thereof)

of the physical robot shape would be valuable. Furthermore,

in cases where piecewise constant curvature is not sufficient,

advancements will be needed in working with more complex

variable curvature models. There is a great deal of current

interest in obtaining deeper understanding of the fundamental

mechanics of continuum robots in terms of general theories

of elasticity, and both energy minimization (see, e.g., Rucker

et al. (2010b), among others) and Cosserat rod theory (see,

e.g., Trivedi et al. (2008a), Dupont et al. (2010), and Rucker

et al. (2010a), among others) have yielded useful recent

results. The ability to include the effects of gravity, torsion,

and external loading in such models is particularly useful.

Based on the current trajectory of this area of research, it

appears likely that advancements will first come in the form

of general models that account for these effects, and research-

ers will then seek parsimonious simplifications that capture

salient features and are sufficiently accurate and efficient for

use in real-time control.

6.3. Dynamic Modeling

In this paper we have reviewed static modeling results for

constant-curvature robots. A particularly challenging emer-

ging area of research involves deriving and practically

applying dynamic models of continuum robots in a
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numerically stable form amenable to real-time implementa-

tion. The dynamic equations of continuum robots under

various assumptions have been derived in the planar case

(Gravagne et al. 2003; Tatlicioglu et al. 2007) and deriva-

tions based on an energy–work relationship (Ivanescu

et al. 2007), conservation laws (Chirikjian 1995), and a

Newtonian formulation of Cosserat rods (Trivedi et al.

2008a) exist. We note that some of the earliest, yet most

advanced work in terms of practical implementation is that

of Chirikjian (1995), where a variable geometry truss pro-

vided a means of computing planar continuum robot

dynamics rapidly. We note also that several non-robotic

applications of Cosserat rod dynamics address these issues

(Spillmann and Teschner 2007; Lang et al. 2009) and show

promise for future application in continuum robotics. In

summary, efficient implementation of dynamic models for

various kinds of continuum robots is an open and active

area of research. It is likely that over the next few years

dynamic models will become increasingly more general

(many existing formulations are done in two dimensions

and/or assume constant curvature), and that increasingly

efficient and stable numerical techniques for real-time

implementation will be developed, both of which facilitate

the practical application of continuum robots in dynamic

environments that require rapid motion.

6.4. Sensing, Control, and Calibration

Traditional encoders are not generally sufficient for deter-

mining continuum robot shape, since continuum robots

have an infinite number of DOFs (they bend continuously).

However, feedback on robot shape is necessary to enable

closed-loop control. This has lead several researchers to

explore computer vision for shape sensing (see, e.g.,

Chitrakaran et al. (2007), Camarillo et al. (2009b), and

Croom et al. (2010)) and visual servo control. Developing

imaging methods that are both accurate and efficient will

be a key to real-time control. Control advancements may

include methods of servoing the entire shape of the robot

curve to a desired curve. Promising sensing possibilities

other than computer vision include embedded strain gages

or fiber optic techniques such as ShapeTape (see http://

www.measurand.com/), while medical systems will likely

employ intraoperative medical imaging. Such medical ima-

ging may be similar to optical cameras (e.g. biplane fluoro-

scopy), or provide direct three-dimensional information

(e.g. three-dimensional ultrasound (Burdette et al. 2010)).

We note also that in addition to control, sensors can be used

for robot calibration, enabling fitting of imprecisely known

robot parameters (e.g. stiffnesses, lengths, etc.) to experi-

mental data. This can be done in a variety of ways with

many different sensors and continuum robot types, and

Webster et al. (2009) and Xu and Simaan (2008) provide

two specific examples this technique.

6.5. Complete Systems

Complete integrated systems are likely to include user

interfaces and must address efficiency in order to

implement the computations relating to robot motion in real

time (see, e.g., Jones and Walker (2006b)). It is not yet

clear what the optimal kinematic mappings between human

user input and the curve of a continuum robot will be,

although some promising initial studies have been done

(see, e.g., Csencsits et al. (2005) and Immega and Antonelli

(1995)). With regard to efficiency, deriving closed-form

inverse kinematics (see, e.g., Neppalli et al. (2009), Rucker

et al. (2009), and Sears and Dupont (2007)) may provide an

alternative to Jacobian-based techniques, and one must also

address limiting cases in a computationally robust way

(Jones and Walker 2007). Furthermore, advancements are

needed in motion planning and obstacle avoidance for con-

tinuum robots (see Lyons et al. (2009) for one approach).

We also note that these topics have been addressed for

hyperredundant robots (see, e.g., Hannan and Walker

(2003) and Choset and Henning (1999)). Continuum robots

also offer the possibility to manipulate objects with the

whole arm (Mochiyama et al. 1999; Braganza et al.

2006), which can help the robot to securely grasp objects

whose geometry or position is imprecisely known. In med-

ical applications complete systems will include use of pre-

operative and intraoperative image data, statistical

information about anatomical geometry, appropriate and

interchangeable end-effectors, human interfaces, and assis-

tance that can be provided to the doctor in the form of vir-

tual fixtures (Kapoor 2007).

7. Conclusion

Continuum robots have been adopted in a wide variety of

applications, as discussed in Section 2, and are becoming

increasingly valuable tools for the robotics community.

Precisely because their most useful characteristics (dexter-

ity in cluttered and unstructured environments, gentle and

compliant interaction with objects, etc.) differ from those

of traditional robots (rigidity, precision, suitability for

highly structured environments), they require correspond-

ing advancements in robotics theory. As reviewed in this

paper, the most general models describing continuum robot

shape (forward kinematics) involve numerical integration.

Thus, in order to achieve closed-form results and thus facil-

itate real-time control, differential kinematics, inverse

kinematics, etc., many researchers have applied the

closed-form piecewise constant-curvature approximation

and found it to be sufficiently accurate for their objectives.

Herein, we have reviewed many mechanical continuum

robot architectures for which the piecewise constant-

curvature approximation has been found to be applicable.

Further, we have described important results in piecewise

constant-curvature kinematics, setting them in a single

coordinate frame and notational convention and indicating

which results are robot-specific and which are robot-

independent. The latter may be applied directly to each new

(approximately) piecewise constant-curvature continuum

robot design developed in the future.

In summary, continuum robots offer the potential to

extend the benefits of robotics to applications that have not

previously been approachable with robots. These include
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working in unstructured or constrained environments and

manipulating delicate objects or those with imprecisely

known shapes or locations. The study of continuum

robotics is entering an exciting era. While useful general

results such as those reviewed in this paper have been

developed, there remain many avenues for future research

and many promising new applications that have not yet

been explored. Given the accelerating pace of fundamental

progress in design, modeling, and practical implementa-

tion, continuum robots appear poised to become increas-

ingly useful tools that will play key roles in the future of

robotics.

Notes

1. Note that when torsion is included the shape of an active

cannula becomes a general curve, as described by Rucker

and Webster (2008, 2009a,b), Rucker et al. (2010b), and

Dupont et al. (2009, 2010), although closed-form solutions are

still possible in some cases. This is also true when external

forces and moments are applied (Rucker et al. 2010a).

2. Note that the insertion twist given here is slightly different

than the 	insertion¼ 0 0 1 � 0 0½ �T given in Webster III et al.

(2006a) to be consistent with the frame convention used

throughout this paper.

3. The order of exponentials within each pair describing a section

is reversed here, with respect to (13), because the axial rotation

at the end of the ith link affects the plane of link iþ 1.
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