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Abstract: The current loaded tooth contact analysis of cycloid drives based on the assumption of
theoretical positions of ring pins ignores the deviations caused by manufacturing errors and elastic
deformations, which are not in agreement with reality. To fill this gap, an improved load distribution
model of the mismatched cycloid-pin gear pair with ring pin position deviations is presented for a
component-level analysis. Firstly, with the cycloid gear tooth profile geometry defined, the unloaded
tooth contact analysis is applied as a pre-processor to determine the potential contact points, the gear
backlash, and the rotation angle of the cycloid gear. Secondly, due to the statically indeterminate
structure of the multi-tooth contact, a varying nonlinear contact stiffness is introduced to establish
the relation between force and deformation. Then, the force and moment equilibrium equations with
compatibility conditions are solved by using an iterative approach. With this, detailed parametric
case studies are presented to verify the correctness of the proposed model by comparing it with those
predicted by the current model and to demonstrate the influences of ring pin position deviations
on the distributed load, contact stress, loaded transmission error, and instantaneous gear ratio of
the mismatched cycloid-pin gear pair. This study provides a deeper investigation into the load
distribution characteristics of the cycloid drive and therefore can be employed to assist in gear design.

Keywords: the mismatched cycloid-pin gear pair; ring pin position deviation; load distribution; tooth
profile modification

1. Introduction

Nowadays, more attention has been paid to the application of cycloid drives in the
areas of industrial robots, machine tools, and aerospace for precision transmission because
of the advantages of a large reduction ratio, light weight, compact size, high transmission
accuracy, and high shock-resistant ability [1–3]. The most representative one is a two-stage
2KV-type cycloid drive, known as the RV speed reduce, where RV is short for Rotate
Vector, K stands for Central Gear, and V stands for Equal Velocity Mechanism. It consists
of the involute planetary gear drive as the first reduction and the cycloid drive as the
second reduction. Figure 1a illustrates its typical structure and main elements, including
involute gears, two cycloid gears, the ring gear, several pins, crankshafts, bearings, and a
combined carrier. The cycloid-pin gear pair can transfer large torques at small sizes with
an accurate positioning precision and smooth motion. This advantage is subordinated
to the multi-tooth contact characteristic for sharing the total torque continuously and to
the use of two (sometimes three) cycloid gears reciprocally opposed by 180◦ to balance
the centrifugal forces. Theoretically, all gear teeth meshes with corresponding pins are
placed at equal intervals in pin grooves of the ring gear, and half of them are considered
to transfer the torque at any instant [4], as shown in Figure 1b. However, the tooth profile
modifications [5] and manufacturing and assembly errors [6] impede the ideal condition,
leading to the uncertain changes of load distribution among the components of the RV
speed reducer.
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among the components of the transmission system, making the load distribution analysis 
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pair to conduct a component-level analysis can provide a deeper understanding of com-
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namic analysis [12–15], lubrication, and efficiency [16–19] of cycloid speed reducers. Sev-
eral analytical load distribution models of cycloid drive at the component-level are devel-
oped, which are limited to an oversimplified description. Gorla et al. [20] presented a 
method to analyze the load distribution of the contact elements of a cycloid speed reducer, 
and the theoretical results are validated by an experiment. Malhotra et al. [21] calculated 
the loads distributed on components of the speed reducer under the hypotheses of perfect 
geometry and rigid contact. Li [22] developed an FEM program to analyze the tooth con-
tact characteristics of the cycloid drive. Kumar et al. [7] developed a method to determine 
the elastic torsional stiffness of cycloid drives in the experimental studies. Lin et al. [14] 
presented a method for the kinematic error analysis and tolerance design of cycloidal gear 
reducers based on the discretization of the cycloidal tooth profile. Blagojevic et al. [23] 
developed an approximate approach for the multi-tooth contact analysis of a two-stage 
cycloid speed reducer. Li et al. [24,25] proposed an analytical method to calculate the con-
tact stress and stiffness, the transmission error and its harmonic, and the gear ratio of cy-
cloid drives, considering the influences of tooth profile modification and eccentric error. 
Sun et al. [26] conducted the tooth contact analysis on a new type of CBR reducer based 
on the method of the discrete point of tooth profiles. Wang et al. [2] established a multi-
tooth contact model by dividing the contact area of tooth pairs into several differential 

Figure 1. (a) The schematic view of an RV speed reducer; (b) the 3D model of a cycloid-pin gear pair.

The cycloid-pin gear pair plays a vital role in fulfilling the mentioned specification but
is more complex in design and more difficult to produce. Furthermore, a great demand
is present in industry for design tools that can simultaneously reduce development time
and lead to significant performance improvement. Load distribution analysis is a topic of
broad literature and a useful tool to evaluate the performances of the gear drive, including
the contact strength, transmission accuracy, and efficiency. The complex joint interactions
and the continuously changing magnitudes and directions of forces occur among the
components of the transmission system, making the load distribution analysis hard to
conduct [7]. For the mechanics concepts, including the load distribution, contact stresses,
and deformations in regard to components, the system-level analysis seems to not help very
much. Therefore, in this study, taking consideration of a cycloid-pin gear pair to conduct a
component-level analysis can provide a deeper understanding of component interactions
and mismatched meshing caused by clearances or errors.

For providing some guidelines for the optimal design of cycloid drives [8], many re-
studies in literature mainly focus on the geometrical design [9–11], kinematic and dynamic
analysis [12–15], lubrication, and efficiency [16–19] of cycloid speed reducers. Several
analytical load distribution models of cycloid drive at the component-level are developed,
which are limited to an oversimplified description. Gorla et al. [20] presented a method
to analyze the load distribution of the contact elements of a cycloid speed reducer, and
the theoretical results are validated by an experiment. Malhotra et al. [21] calculated the
loads distributed on components of the speed reducer under the hypotheses of perfect
geometry and rigid contact. Li [22] developed an FEM program to analyze the tooth contact
characteristics of the cycloid drive. Kumar et al. [7] developed a method to determine
the elastic torsional stiffness of cycloid drives in the experimental studies. Lin et al. [14]
presented a method for the kinematic error analysis and tolerance design of cycloidal gear
reducers based on the discretization of the cycloidal tooth profile. Blagojevic et al. [23]
developed an approximate approach for the multi-tooth contact analysis of a two-stage
cycloid speed reducer. Li et al. [24,25] proposed an analytical method to calculate the
contact stress and stiffness, the transmission error and its harmonic, and the gear ratio of
cycloid drives, considering the influences of tooth profile modification and eccentric error.
Sun et al. [26] conducted the tooth contact analysis on a new type of CBR reducer based on
the method of the discrete point of tooth profiles. Wang et al. [2] established a multi-tooth
contact model by dividing the contact area of tooth pairs into several differential elements.
Hsieh et al. [13] presented a prediction method to estimate the stability and power loss
for various designs of cycloid speed reducers by using the finite element method (FEM)
implemented in the SolidWorks software. Li et al. [27,28] developed a multi-tooth contact
model for cycloid drives applied in RV speed reducers, considering the manufacturing error
effect. Xu et al. [29] developed a contact dynamic model of cycloid drives to analyze the
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load distribution, considering the cylindrical roller bearing effects. Zhang et al. [3] proposed
a semi-analytical method for cycloid-pin gear pairs, considering both the tooth profile and
longitudinal modifications for the load distribution analysis. Liu et al. [4] presented a
novel approach based on error tooth surfaces to evaluate the transmission accuracy of a
cycloid-pin gear pair. Csobán [30] investigated the impact of production failures on the
kinematic features of cycloid drive by supposing different levels of production accuracy
and tolerance zones created on different cog geometries. Yang et al. [6] studied the influence
of manufacturing tolerances on torque ripples and backlash. Ivanović et al. [31] studied
the effects of the geometrical parameters of a trochoidal gear on the gearing process,
clearance height change, and pulsation of a drive moment. Bednarczyk [32] conducted a
backlash distribution analysis considering the machining deviations of the elements and
surfaces forming the output mechanism of the cycloidal gear reducer. Blagojević et al. [33]
presented the stress state analysis of the cycloid disc by using numerical and experimental
methods for the most critical case of the single meshing. The literature review reveals that
the current loaded tooth contact analysis of cycloid drives based on the assumption of
theoretical positions of ring pins ignores the deviations caused by contact deformations
and manufacturing errors of the ring gear, including the ring pin radial position error and
angular position error, as shown in the measurement report of the pin-grooves of a ring
gear (See Figure 2), which are not in agreement with reality.
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Figure 2. The manufacturing errors of the ring gear: (a) the pin-groove radial error; (b) the pin-groove
position error.

To fill this gap, an improved load distribution model of a mis-matched cycloid-pin
gear pair is proposed with additional considerations of the ring pin position deviations
and the contact deformation of the pin-groove pair at a component-level to calculate the
load distributed among pins, the maximum contact stress, the loaded transmission error,
and the variation of the instantaneous gear ratio through a mesh cycle. Additionally, the
influence of the pin radial position error and angular position error on tooth contact is
investigated and discussed. The study presented in this article is considered a very good
and extensive approach to a better comprehension of cycloid drive technology.

2. Tooth Profile Geometry of Cycloid Gear
2.1. Tooth Profile Generation and Modification

The cycloid gear has an epitrochoid tooth profile, which is the envelope to the family
of planar circular curves based on the enveloping method [9,11,34,35]. Three coordinate
systems are defined for the tooth profile generation of cycloid gear, as shown in Figure 3.
Two movable coordinate systems, S1(x1, y1) and S2(x2, y2), and a fixed coordinate system,
S f (x f , y f ), stand for the ring pins, the gear disc, and the gearbox, respectively. The locus
of point M is a closed cycloid curve, and symbols ctip and croot represent the clearances
between the cycloid gear teeth and pins.
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The equation of the cycloid gear tooth profile can be represented in S2:

r2(θ, φ1) =



a cos(φ1/n2)− ρp cos(θ − φ1/n2)
−e cos(n1φ1/n2)
a sin(φ1/n2) + ρp sin(θ − φ1/n2)
−e sin(n1φ1/n2)

0
1

 (1)

where e is the eccentricity, a is the pin position radius, ρp is the pin radius. θ is the angular
parameter of the standard profile. Parameters φ2 and φ1 are the rotation angles with the
relationship of φ2/φ1 = n1/n2. n1 and n2 stand for the numbers of ring pins and cycloid
gear teeth with the relationship of n1 = n2 + 1.

The meshing equation is derived as:

f (θ, φ1) = a sin θ − en1 sin(θ + φ1) = 0 (2)

To guarantee the reasonable clearances, four types of the tooth profile modification
(TPM) [5] are proposed by means of changing ρ and a accordingly in Equation (1), as shown
in Figure 3a,b, respectively. Hence, the general equation of four modified profiles can be
rewritten as:

r2m =



(a + ∆a) cos(φ1/n2)− (ρp + ∆ρ) cos(θm − φ1/n2)
−e cos(n1φ1/n2)
(a + ∆a) sin(φ1/n2) + (ρp + ∆ρ) sin(θm − φ1/n2)
−e sin(n1φ1/n2)

0
1

 (3)

where ∆a and ∆ρ are the modification amounts. θm is the angular parameter of the
modified profile.

2.2. Curvature Radius of the Cycloid Gear Tooth Profile

The curvature radius of the cycloid gear tooth profile with TPM can be represented
as [25]:

ρci =
[e2n2

1 + (a + ∆a)2 − 2en1(a + ∆a) cos n2θci]
3/2

e2n3
1 + (a + ∆a)2 − en1(1 + n1)(a + ∆a) cos n2θci

− (ρp + ∆ρ) (4)
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where θci is the angular parameter.

3. Improved Load Distribution Modelling

The current load distribution model of the cycloid-pin gear pair is based on the as-
sumption of the theoretical positions of ring pins [3,24,25,28,29]. This model lacks the ability
to include the deviations effect accurately, which is caused by manufacturing errors and
elastic deformations, and fails to agree with the practical property of the gear mesh process.

The overall methodology is based on the following assumptions to establish the
improved load distribution model of the mismatched cycloid-pin gear pair:

1. The model is discussed in the two-dimensional plane because the teeth are straight
and parallel to the shaft axis.

2. The model is established under the quasi-static condition, neglecting the inertia forces.
3. Friction can be neglected to avoid the uncertainness about the Coulomb frictional

coefficient.
4. The influence of damaging will be negligible to avoid the uncertainness of the damag-

ing when the stresses are beyond the allowable value.

For an accurate analysis, an iteration procedure is proposed, as shown in Figure 4. The
main steps are summarized as follows:
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Figure 4. Flowchart of the load distribution analysis for the cycloid-pin gear pair.

Step 1 Defining the modified tooth profile of the cycloid gear with the design parameters
and the modifiaction ammounts.

Step 2 Applying the unloaded tooth contact analysis (TCA) to determine the meshing
information when two contact conditions are satisfied by transferring the tooth and
pin profiles into the fixed coordinate system.

Step 3 Determining the the initial guesses of angular parameters based on the geometrical
and kinetic relationships; the values will be updated after every iteration. The system
of nonlinear equations is then solved by the fsolve fuction provided in Matlab.

Step 4 Considering the meshing point as a linear spring with a contact stiffness along the
line of action where the contact deformation of the pin-groove pair is introduced.

Step 5 The force and torque system equations are solved by the fsolve fuction provided
in Matlab simultaneously by using an iterative technique after the initial load and
angular displacement are given.

Step 6 After several iterations, load and angular displacement changes will converge within
1%, and then the iterative procedure will be terminated.
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Step 7 Outputting the predicted rasults, including the distributed loads among pins, the
contact stress, the transmission error, and the variation of the instantaneous gear
ratio through a mesh cycle.

3.1. Unloaded Tooth Contact Analysis

As shown in Figure 5, two coordinate systems, S1(x1, y1) and S2(x2, y2), stand for the
pin-wheel and cycloid gear, respectively. A fixed coordinate system, S f (x f , y f ), coinciding
with S1 is fixed. Mi is the contact point.
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Then, the position and normal vectors of pin profiles r(1)f (θpi) and n(1)
f (θri) can be

expressed in S f :

r(1)f (θpi) =


(ρp + ερi) cos(θpi)+(a + εai) cos(iψ + εψi)
−(ρp + ερi) sin(θpi)+(a + εai) sin(iψ + εψi)

0
1

 (5)

n(1)
f (θpi) =

r(1)f (θpi)

∂θpi
× k∣∣∣∣∣ r(1)f (θpi)

∂θpi
× k

∣∣∣∣∣
(6)

where i is the pin number, ψ is the angle between two adjacent pins, k = [0, 0, 1] is the unit
vector, θpi is the angular parameter on the pin profile, εψi is the angular position error, εψi
is the radial position error, and ερi is the radial error of the ith pin.

The position vector r(2)f and the unit normal vector n(2)
f can be expressed in S f :

r(2)f (θci, φci, φin) = M f 2(φci, φin)r
(2)
2m(θci)

n(2)
f (θci, φci) = L f 2(φci)n

(2)
2 (θci)

(7)
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where φci is the rotation angle of the cycloid disc, and

M f 2(φci, φin) =


cos φci
− sin φci

0
0

sin φci
cos φci

0
0

0
0
1
0

(e + εe) cos φin
(e + εe) sin φin

0
1

 (8)

L f 2(φci) =

 cos φci
− sin φci

0

sin φci
cos φci

0

0
0
1

 (9)

where εe is the eccentricity error.
To apply the unloaded TCA, the coincidence of position vectors and the collinearity of

normal vectors should be satisfied. Therefore,

n(1)
f (θri) = n(2)

f (θci, φci)

r(1)f (θri) = r(2)f (θci, φci, φin)
(10)

where
∣∣∣n(1)

f

∣∣∣ = ∣∣∣n(2)
f

∣∣∣ = 1; therefore, in the vector equations, there are three independent
nonlinear equations with four unknowns: θpi, θci, φci, and φin. When the input crankshaft
angle φin is given, other unknowns will be solved by the above equation system.

Then, the backlash φbli and the rotational angle φc are represented as:

φbli = φc − φci, φc = max(φci) (11)

Note that the backlash angle is defined as the small amount of angular displacement,
which is necessary for all the mating tooth pairs to contact each other so that the torque can
be shared among them.

3.2. Initial Guesses Determination

To solve Equation (10), the initial guesses θp0i, θc0i, and φc0i are given based on the
geometrical and kinetic relationships:

θp0i = tan
(a + ∆a) sin(π − iψ)− en1 sin φin
(a + ∆a) cos(π − iψ) + en1 cos φin

(12)

θc0i = π − tan
(a + ∆a) sin(π − iψp)− (ρp + ∆ρ) sin θp0i − e sin φin

(a + ∆a) cos(π − iψp)− (ρp + ∆ρ) cos θp0i + e cos φin
+ φc0i (13)

φc0i = φin/n2 (14)

The above initial guesses corresponding to a crankshaft angle will be updated after
every iteration. Then, the parameters θpi, θci, and φci can be calculated in the unloaded
TCA such that the meshing information within a mesh cycle can be determined.

3.3. Compatibility and Equilibrium Conditions

As shown in Figure 6, to determine contact points, the compatibility conditions can be
expressed as:

in contact :
out of contact :

∆φc > φbli, αi = ∆φc − φbli
∆φc < φbli, αi = 0

(15)

where αi is the angular displacement caused by the contact deformation, ∆φc is the variation
of the rotation angle φc, and φbli is the backlash, as mentioned above.
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The static force and moment equations can be expressed as:

T = ∑ Fcili (16)

where Fci = Kniδci, δci = αili, and δci is the contact deformation of the ith cycloid-pin gear
pair. The arm of force can be represented as:

li =
a tan θricosiψ − e tan θpi cos φin − e sin φin + a sin iψ√

tan2 θpi + 1
(17)

Then, the external torque can be rewritten as:

T = ∑ Kniαil2
i (18)

where Kni is the mesh stiffness between the tooth and the pin, which is used to establish
the force-displacement relationships.

3.4. Hertzian Contact Stiffness

In this study, the contact deformation between the pins and pin-grooves is considered
in the Hertzian contact stiffness model. As shown in Figure 7, Fc and Fp represent the
load distributed on pins and pin-grooves, which leads to the contact deformations δc and
δp of the gear-pin pair and the pin-groove pair, respectively. Hence, the Hertzian contact
stiffness Kn on one cycloid-pin gear pair is defined as the applied force Fc divided by the
total displacement δtotal of the cycloid gear tooth getting close to the mating pin along the
line of action, which can be represented as:

Kn =
Fc

δtotal
(19)
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where δtotal = δc + δp cos β and Fp = Fc cos β, which can be obtained as follows:

δc =
2Fc

πB

[
1 − ν2

c
Ec

(
ln

4ρc

bpc
− 1

2

)
+

1 − ν2
p

Ep

(
ln

4ρp

bpc
− 1

2

)]
, bpc =

√
4Fcρ∗pc

πBE∗
pc

(20)

δp =
2Fp

πB

[
1 − ν2

g

Eg

(
ln

4ρg

bpg
− 1

2

)
+

1 − ν2
p

Ep

(
ln

4ρp

bpg
− 1

2

)]
, bpg =

√
4Fpρ∗pg

πBE∗
pg

(21)

where B is the width of cycloid gears, and β is the angle between the directions of two

forces. For the ith cycloid-pin gear pair, βi = arctan[
tan θpi−tan(iψ+εψi)

1+tan θpi tan(iψ+εψi)
], bpc and bpg are the

contact widths, E∗
pc and E∗

pg are the equivalent elasticity moduli, and ρ∗pc and ρ∗pg are the
equivalent radii of the curvature, which can be represented as:

E∗
pc =

EpEc

Ep(1 − v2
p) + Ec(1 − v2

c )
, ρ∗pc =

ρpρc

ρp + ρc
(22)

E∗
pg =

EpEg

Ep(1 − v2
p) + Eg(1 − v2

g)
, ρ∗pg =

ρpρg

ρp + ρg
(23)

where E, v, and ρ stand for the elasticity modulus, Poisson’s ratio, and curvature ra-
dius, respectively. Subscripts p, c, and g stand for the pins, cycloid gear teeth, and
pin-grooves, respecitvely.
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3.5. Contact Stress, Loaded TE, and Gear Ratio

One of the major concerns during the gear design process is the contact strength
examination of the cycloid-pin gear pair. Based on the Hertzian contact theory, the contact
stress σ is considered as the maximum contact pressure among the contact area, which can
be represented as:

σ =
2F

πwL
(24)

where F is the applied force, w is the contact width, and L is the contact length.
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The loaded transmission error (TE) is the difference between the actual and theoretical
rotation angle, φa and φt, of the cycloid gear disc, which is expressed as:

TE = φa − φt (25)

where φa = φc − ∆φc and φt = −φin/n2.
The instantaneous gear ratio is the ratio between the output and input angular velocity,

while the ideal gear ratio is a constant value which equals the cycloid gear tooth number.
Then, the instantaneous gear ratio can be represented as:

GR =
∆φa

∆φin
(26)

where ∆φa and ∆φin represent increments of the actual output and input rotation angles.

4. Analysis Results and Discussion

In this section, the proposed model is implemented by a computer program using
MATLAB software. The basic design parameters of an example cycloid-pin gear pair are
listed in Table 1. There is an assumption that the material of the cycloid gear and that of the
pins are the same, which is the steel with a Poisson’s ratio v = 0.3 and a Young’s modulus
E = 206 GPa. The applied torque is set as 250 Nm.

Table 1. Major design parameters for the example cycloid-pin gear pair.

Parameters Descriptions Values

n2 Tooth number 39
n1 Pin number 40
a Pin position radius 82 mm

ρp Pin radius 3.5 mm
ρg Pin-groove radius 3.505 mm
e Eccentricity 1.5 mm
B Cycloid gear width 12 mm

∆a TPM amount of a 0 µm
∆ρ TPM amount of ρ 8 µm
εe Eccentricity error 0 µm
ερ Radial error 0 µm

4.1. Comparison and Verification

In order to verify the correctness and availability of the proposed model, and also to
demonstrate the effects of the contact deformation of the pin-groove pair δp without a loss
of generality, four cases are analyzed and compared with the current model. The signs
indicate whether it is taken consideration in this case (

√
) or not (×), as shown in Table 2.

Table 2. Consideration judgment of TPM and δp for four cases.

Case 1 Case 2 Case 3 Case 4

TPM
√ √ × ×

δp × √ × √

Figure 8 shows the predicted load distributed among pins and pin-grooves at 0◦,
60◦, 120◦, and 180◦ crankshaft angles of four cases for comparison. It can be seen that,
for Case 3 and Case 4, without considering the TPM, as expected, almost half of the pins
(20) participate in the torque transmission, and the loads on the teeth change periodically
within a mesh cycle. For Case 1 and Case 2, with TPM, the number of pins mating with the
corresponding teeth decreases dramatically due to the existence of the backlash, leading
to an increase in the maximum load. By comparing Case 1 and Case 3 with Case 2 and
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Case 4, respectively, the result obtained by the proposed model is in accordance with
that predicted by the current model with respect to the pin numbers where the load is
distributed, although some discrepancies with respect to the magnitude of the load are
observed due to the contact deformation of the pin-groove pair.
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Figure 8. Comparison of the loads distributed among pins and pin-grooves at (a) 0◦, (b) 60◦, (c) 120◦,
and (d) 180◦ crankshaft angles for four cases.

Figure 9 shows the variations of the time-varying contact stress over the tooth profile
corresponding to pin number 20 for the four cases. It can be noted that the contact length
decreases dramatically when the TPM is considered in Case 1 and Case 2. Comparing
Case 1 with Case 3, the maximum contact stress of the cycloid-pin pairs increases from
about 868 MPa to 1017 MPa due to the increasing loads on a single tooth pair, as shown in
Figure 8. Because of the contact deformation of pin-groove pairs, for Case 2 and Case 4,
the magnitudes of maximum contact stress are a little bit higher than those for Case 1 and
Case 3.

Figure 10 shows the comparison of the loaded TE within one mesh circle for four
cases. It is observed that, for four cases, the loaded TE curves are periodical, continuous,
quasi-sinusoid, and parabolic curves. For Case 3 and Case 4, without TPM, the mean
and peak-to-peak values of the loaded TE are −4.745 arc seconds, 0.022 arc seconds,
−6.023 arc seconds, and 0.018 arc seconds, respectively. When the TPM is present for
Case 1 and Case 2, both the mean and peak-to-peak values of the loaded TE increase due
to the increase in meshing clearances, as expected. For Case 2 and Case 4, considering the
contact deformation of pin-groove pairs, the absolute mean values and magnitudes are
larger than those for Case 1 and Case 3. It can be concluded that the comparison results
obtained by the proposed model show a good agreement with those predicted by the
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current model, which could verify the correctness of the proposed model. The effects of the
contact deformation of pin-groove pairs on the distributed load, contact stress, and loaded
TE can also be seen, which should be taken seriously in the design stage.
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4.2. Effect of the Position Deviations of Ring Pins

In this section, to demonstrate the effects of the position deviations of ring pins on the
load distributed on teeth and pins, the contact stress, the loaded TE, and the instantaneous
gear ratio, three cases using the same example are considered and predicted by the proposed
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model. Case 1 is under ideal conditions without TPM or any errors. Case 2 and Case 3
both involve a mismatched gear pair. For Case 2, only the TPM is considered, while for
Case 3, both the TPM and position deviations of the ring pins are considered. Without a
loss of generality, the position errors of the ring pins are given randomly, with the ranges
of ±0.05 mrad for angular position errors and ±4 µm for radial position errors, which are
shown in Figure 11.
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Figure 12 shows the comparison of the load distribution among tooth pairs at 0◦,
60◦, 120◦, and 180◦ crankshaft angles. It can be noted that, for Case 1 and Case 2, the
variations of the load distributed on the adjacent pins are gentle and smooth. However, for
Case 3, large discrepancies are observed; the maximum value increases to about 1722 N on
pin number 11 at a 60◦crankshaft angle, where the pitting failure has already happened
in actual situations. There are the irregular and abrupt changes in the load distribution,
which can be explained by the fact that the random position errors on all pins cause more
reductions as well as abrupt changes in the number of mating tooth pairs.

Figure 13 shows the effects of the random position errors on the time-varying Hertzian
contact stress on all the pins and also on the corresponding pin-grooves. It can be seen
that, for Case 3, the variations of the Hertzian contact stress show many abrupt changes,
and the highest magnitude is on pin number 22. Comparing Figure 13a with Figure 13b,
due to concavo-convex contact characteristic, the maximum contact stress between the
pins and the corresponding teeth (1887 MPa) is much higher than that between the pins
and the corresponding pin-grooves (44 MPa), which may exceed the allowable stress of
the material used, leading to pitting failure on the gear tooth surfaces. In the improved
model, the influence of damaging will be negligible. With this assumption, the proposed
model can be used to predict whether the failure happens with the stress values to avoid
the uncertainness of the damage when the stress is beyond the allowable value.

Figure 14 shows the comparisons of the loaded TE for three cases. It is observed
that, for Case 1 and Case 2, the loaded TE shows a periodical change as the crankshaft
rotates. The mean values are −6.023 arc seconds and −37.89 arc seconds, as expected. Their
peak-to-peak values are 0.018 arc seconds and 0.21 arc-seconds. For Case 3, the loaded TE
is an irregular curve, and both the mean and peak-to-peak values change significantly to
−38.26 arc seconds and 5.83 arc-seconds due to the random angular position errors and
radial position errors. It can be concluded that the position deviations of ring pins have
a significant influence on the loaded TE of the cycloid-pin gear pair, leading in turn to
instability and a reduction in the positioning accuracy of the RV speed reducers.
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Figure 12. Comparison of the load distribution on ring pins at (a) 0◦, (b) 60◦, (c) 120◦, and (d) 180◦

crankshaft angles for three cases.
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corresponding pin-grooves.
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Figure 14. Comparisons of the loaded TE for three cases.

Figure 15 shows the comparisons of the instantaneous gear ratio for three cases.
Comparing Case 3 with Case 2, a large irregular fluctuation of the instantaneous gear ratio
is observed. The peak-to-peak value ranges from 8% to 44 % of the ideal gear ratio. Note
that the fluctuation of the instantaneous gear ratio is the main reason for the torque ripple,
which will lead to the harmonic resonance of the industrial robot. To avoid this, the position
deviations of ring pins should be confined to a certain extent in the design process.
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Figure 15. Comparisons of the instantaneous gear ratio for three cases.

Figure 16 shows the comparisons of the number of tooth pairs in contact for three
cases as the crankshaft rotates. Due to the TPM and contact deformation under loading con-
ditions, for Case 1 and Case 2, they alternate periodically between 19 and 20 and 9 and 10
with the period of a 9◦ crankshaft angle, respectively. For Case 3, the number of tooth pairs
in contact varies irregularly, and its minimum value reaches 4, which will lead to a larger
contact stress, at risk of pitting failure. This can be explained by the fact that the random
angular position errors and radial position errors change the clearances between all the
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tooth pairs. Therefore, due to their significant influence, the position deviations of ring
pins should be taken seriously in the predicted model and the design stage.
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Figure 16. Comparisons of the number of tooth pairs in contact for three cases.

5. Conclusions

In this study, an improved load distribution model of the mismatched cycloid-pin
gear pairs is proposed. The proposed model has the ability to analyze the gear pairs with
the position deviations of ring pins. The proposed model is applied for the investigation
of the influence of the random angular and radial position errors of the ring pins on the
distributed load, maximum contact stress, loaded transmission error, and instantaneous
gear ratio. On the basis of the obtained results, the following conclusions can be made:

1. In order to improve the precision of the prediction model, the contact deformation
of the pin-groove pairs under the cycloid drive design stage should be considered
indispensably, which is verified by the comparison with those obtained by the current
model. It has some effects on the maximum contact stress and the mean and peak-to-
peak values of the loaded TE.

2. The obtained results show the necessity of the consideration of the tooth profile
modification in the design and analysis of the cycloid-pin gear pair. It was observed
to significantly influence the distributed load, contact stress, loaded TE, and real gear
ratio of the cycloid drive. The number of contacting pins decreases from 20 to 9. The
stress increases to 149 MPa. The absolute mean values of the loaded TE increase by
about 30 arc seconds when the tooth profile modification is present.

3. Even minute random angular and radial position errors of the ring pins with the
ranges of ±0.05 mrad and ±4 µm of the pinion have considerable effects on the tooth
contact parameters. Large discrepancies are observed, the maximum contact stress
reaches 1887 MPa beyond the strength limit, the peak-to-peak values of the loaded TE
increase from 0.21 arc seconds to 5.38 arc seconds, and the peak-to-peak value of the
gear ratio increases to 44 % of the ideal gear ratio. The irregular change of meshing
clearances caused by the combined position error has a very strong influence on the
tooth contact, which will worsen the contact strength, transmission accuracy, and
torque ripple of the RV speed reducer.

This study provides some guidance for the analysis, design, and optimization of
cycloid-pin gear pairs, and it will be considered as a very good and extensive approach to a
better comprehension of cycloid drive technology.
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