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The IBM System z10e microprocessor is currently the fastest
running 64-bit CISC (complex instruction set computer)
microprocessor. This microprocessor operates at 4.4 GHz and
provides up to two times performance improvement compared with
its predecessor, the System z9t microprocessor. In addition to its
ultrahigh-frequency pipeline, the z10e microprocessor offers such
performance enhancements as a sophisticated branch-prediction
structure, a large second-level private cache, a data-prefetch
engine, and a hardwired decimal floating-point arithmetic unit. The
z10 microprocessor also implements new architectural features that
allow better software optimization across compiled applications.
These features include new instructions that help shorten the code
path lengths and new facilities for software-directed cache
management and the use of 1-MB virtual pages. The innovative
microarchitecture of the z10 microprocessor and notable
differences from its predecessors and the IBM POWER6e

microprocessor are discussed.

Introduction

IBM introduced the System z10* Enterprise Class (z10

EC*) mainframes in early 2008. A key component of the

system is the new z10* processor core [1]. It is hosted in a

quad-core central processor (CP) chip, which together

with an accompanying system controller (SC) chip (which

includes both the L2 cache and storage controller

functions) makes up the microprocessor subsystem. Both

CP and SC chips are manufactured in IBM CMOS

(complementary metal-oxide semiconductor) 65-nm SOI

(silicon-on-insulator) technology. The resulting CP chip

has a die size of 454 mm2 and contains 993 million

transistors.

The CP chip die is shown in Figure 1. Each core, shown

in purple, is accompanied by a private 3-MB level 2 cache

(L1.5), shown in gold. In addition, two coprocessors

(COPs), each shared by a pair of cores, are shown in

green. The I/O controller (GX) and memory controllers

(MCs), shown in blue, an on-chip communication fabric

responsible for maintaining interfaces between on-chip

and off-chip components, and the external SC chip make

up the cache subsystem. The cache subsystem mainly

provides the symmetric multiprocessing (SMP) fabric and

interprocessor memory coherency. For a detailed

description of the cache subsystem, see Mak et al. [2], in

this issue.

A key z10 development goal was to provide

performance improvements on a variety of workloads

compared to its System z9* predecessor platform. Many

of the performance gains achieved by prior System z*

microprocessors were derived from technology

improvements in both circuit density and speed.

However, although the 65-nm technology provides a

great improvement in circuit density, gate and wire delays

no longer speed up proportionately to the density gain

and thus cannot provide as much of a performance gain

as was previously possible. An innovative

microarchitecture was needed to meet our goal of a

significant performance improvement.

Traditional mainframe workloads are characterized by

large cache footprints, tight dependencies, and a sizable

number of indirect branches. Newer workloads are

typically processor centric, have relatively smaller cache

footprints, and benefit greatly by raw processing or

execution speed. Using the Large Systems Performance

Reference (LSPR) workloads as a traditional workload
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reference [3], the performance target of the z10 platform

was set at about a 50% improvement over the z9*

platform. At the same time, a separate goal of two times

improvement was planned for processor-centric

workloads.

After studying the impacts of various microarchitecture

options and their effects on workload performance, area,

power, chip size, system hierarchy, and time to market,

an in-order high-frequency pipeline stood out to be the

best microprocessor option that would satisfy the z10

goals. Since the introduction of the IBM s/390* G4

CMOS processor [4], the mainframe microprocessor

pipeline had always been in order. Many insights leading

to dramatic improvements could be gained by innovating

upon the proven z9 microprocessor. The z10 core cycle-

time target was eventually set to 15 FO4,1 as explained in

the next section.

Other microarchitecture options were also studied. For

example, an out-of-order execution pipeline would give a

good performance gain, but not enough to make a two

times performance improvement. Besides, such a design

would require a significant microarchitecture overhaul

and an increase in logic content to support the inherently

rich and complex IBM z/Architecture* [5]. Also

investigated was the possibility of three on-chip

simultaneous multithreaded cores with each supporting

two threads. The circuit area and performance

throughput per chip would roughly equal that of a single-

threaded quad-core design. However, single-threaded

performance would be jeopardized. Although these

options were not as effective for the z10 design, they

remain possible enhancements for future mainframes.

In addition to an ultrahigh-frequency pipeline, many

CPI (cycles per instruction) enhancements were also

incorporated into the z10 microprocessor. For example, a

state-of-the-art branch-prediction structure, a hardware

data-prefetch engine, a selective overlapping execution

design, and a large low-latency second-level private cache

(L1.5) are some of the more prominent features. A total

of more than 50 new instructions are provided to improve

compiled code efficiency. These new instructions include

storage immediate operations, operations on storage

relative to the instruction address (IA), combined rotate

and logical bit operations, cache management

instructions, and new compare functionalities.

The z10 core ultimately runs at 4.4 GHz, compared

with the 1.7-GHz operating frequency of the z9

microprocessor. The z10 core, together with a novel cache

and multiprocessor subsystem, provides an average of

about 50% improvement in performance over the z9

system for the same n-way comparison. For processor-

intensive workloads, the z10 core performs up to

100% better than the z9 core. Further performance

improvements are also expected with new releases of

software and compilers that utilize the new architectural

features and are optimized for the new pipeline.

The remainder of this paper describes the main pipeline

and features of the z10 core and its support units. The

motivations and the analyses that led to the design

choices are discussed, and comparisons are made with the

z9 and IBM POWER6* [6] processors.

Decision for cycle-time target
The success of an in-order pipeline depends on its ability

to minimize the performance penalties across instruction

processing dependencies. These dependencies, which

often show up as pipeline stalls, include fixed-point result

to fixed-point usage (F–F), fixed-point result to storage

access address generation for data cache (D-cache) load

(F–L), D-cache load to fixed-point usage (L–F), and

D-cache load to storage access address generation (L–L).

The stalls resulting from address generation (AGen)

dependencies are often referred to as address generation

interlocks (AGIs).

In order to keep the execution dependencies (F–F and

F–L) to a minimum, designs that allow the bypass of

fixed-point results and go immediately back to
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Figure 1

The z10 CP chip. (DFU: decimal floating-point unit; FPU: floating-

point unit; FXU: fixed-point unit; IDU: instruction decode unit;

IFU: instruction fetch unit; L1.5: the low-latency second-level

private cache; LSU: load/store unit; RU: recovery unit; XU:

address translation unit.) (A version of this figure appeared in [1],

�2008 IEEE, reprinted with permission.)

1FO4, or fanout of 4, is the delay of an inverter driving four equivalent loads. It is used
as a measure of logic implemented in a cycle independent of technology.
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subsequent dependent fixed-point operations and AGens

were analyzed. The best possible solution was found to be

a 14-FO4 to 15-FO4 design, which was adopted for the

z10 microprocessor. These physical cross-sections were

validated against the POWER6 core, which was also

designed with similar frequency and pipeline goals. The

implementation of extra mainframe functionalities in the

z10 microprocessor, which required extra circuits and

thus more circuit loads and wire distances between

various components, added roughly 1–2 FO4 of extra

delay compared with the similar result bypass on the

POWER6 microprocessor.

Since register–storage and storage–storage

instructions2 occur frequently in System z mainframe

programs, a pipeline flow similar to the z9 microprocessor

(which was the same as the z990 microprocessor [7]) was

used such that the D-cache load fed directly into any

dependent fixed-point operation, reducing the load-to-

execute latency to zero.

Options were analyzed by varying the D-cache sizes

and pipeline cycles required to resolve L–L latency (often

encountered during pointer-chasing code). Eventually, a

128-KB D-cache design that led to a latency of four cycles

was selected. This design fitted perfectly into a cycle time

of 15 FO4. This latency was the same in the POWER6

microprocessor, but the extra FO4s in the z10

microprocessor allowed a double-sized L1 D-cache.

The z9 microprocessor design was also a good base for

some high-level validations. For example, the decoding

circuits for the vast number (;1,000) of instructions

defined in both z/Architecture and millicode [8] hardware

assists took about 28 FO4 in the z9 microprocessor.

Although some of the decoding functions can be deferred,

steering information required in instruction grouping and

issue must still be extracted (with the minimum number of

stages). A cycle time of 15 FO4 allowed decoding to be

done in two cycles.

On the other hand, some z9 core units would not

provide a proportional performance impact if they were

redesigned into 15 FO4. The address translation unit

(XU), which also includes a level 2 translation lookaside

buffer (TLB), and the COP are such units. Their main

design criteria are latencies (for TLB misses) and

functionalities (cryptography and data compression),

respectively. These two units were therefore slated to run

at one half of the core frequency using mostly high Vt

devices,3 requiring each to be a 26-FO4 design. Because

of the small FO4 difference between the z9 and z10 design

requirements, these units were able to reuse much of the

z9 design.

The 15-FO4 target was maintained throughout the

design of the z10 microprocessor, which was 4.4 GHz at

the time of the initial shipment. The frequency difference

compared with the POWER6 4.7-GHz microprocessor is

not proportional to the 2-FO4 difference, primarily

because of differences in their operating conditions and

circuit limited yield requirements.

Figure 2 shows a comparison between the z9 and z10

microprocessor pipelines with respect to their operating

frequencies. The real-time latencies for critical

dependencies, which were drastically reduced in time, are

shown as arrows.

Design for power efficiency
The z10 core is designed to give the highest performance

achievable within the power and heat dissipation

constraints defined by the power and thermal system. The

System z10 server includes a high-performance cooling

system [9] that allows the processor core to run at about

558C. Leakage current is therefore reduced in comparison

with air-cooled systems that tend to run at higher

temperatures. Such a leakage power advantage allows the

z10 core more circuitries to achieve higher performance.

To manage the overall power consumption and to keep a

bound on the maximum sustainable power, power

budgets across various design components were initially

estimated and then validated throughout implementation.

Clock-gating efficiency targets were established for

each unit inside the z10 core. This is the first time fine-

grained clock gating (which turns off clocks to unused

functional blocks to reduce dynamic power) was

implemented throughout a System z microprocessor. The

in-order design of the z10 core provided abundant

opportunities and allowed straightforward implementation
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Figure 2

The z9 and z10 microprocessor pipelines compared with respect to

cycle time. (AGen: address generation; FXU: fixed-point unit.)

2A register–storage instruction generally specifies a register as an operand source as
well as the result destination, while a storage location is specified as the other operand
source. A storage–storage instruction specifies storage as both operand source and
result destination.
3High Vt devices have a higher threshold voltage such that the leakage current is
reduced, but at the same time, performance is about 20% lower than nominal
threshold devices.
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to maximize clock-gating efficiency. Verification-based

tools helped tabulate the amount of clock gating achieved

using pseudo-idle simulation runs. For example, about

50% of all latches are not clocked when a processor is

waiting for a long cache miss.

By measuring the power consumed by either enabling

or disabling clock gating in all cores and coprocessors in a

quad-core chip, an average of about 20% difference in

active power was observed across various workloads.

The use of devices of various threshold voltages (Vt)

was also budgeted. Devices with lower Vt consume more

leakage current but perform faster. While the core (except

for the XU) was designed mainly with nominal Vt devices

(with a small amount of low Vt devices used in some

frequency-critical paths), the rest of the chip was

populated by high Vt devices to reduce leakage power.

Toward the end of the design phase, noncritical circuits

inside the core were selectively replaced with high Vt

devices to further reduce core leakage power.

In addition, latches were designed to operate in pulsed

mode, which involves holding the master clock on while

the slave clock is pulsed. The switching power of the

master clock signals is reduced, while operating frequency

can be improved. Such an improvement results from the

fact that signals that are too slow in certain pipeline

stages can now steal time from the immediate next

pipeline stages. However, pulsed-mode design can

sometimes become quite challenging because a relatively

large early mode padding is required because of the

approximately 40-ps pulse width. The decrease in power

consumed in pulsed mode is about 25%, as measured in

actual chips.

Microprocessor pipeline

The main processor pipeline is shown in Figure 3. The

pipeline is largely separated into instruction fetching,

instruction decoding and issuing, storage access through

data cache, execution including fixed-point and floating-

point operations, and results checkpointing. (The

alphanumeric labels referring to the pipeline stages are

referenced throughout this paper.)

Instruction fetching and branch prediction

The instruction fetch unit (IFU) is designed to deliver

instructions far ahead of processor execution along either

the sequential or the predicted branch path. The IFU also
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The z10 microprocessor pipeline. (AGen: address generation; BFU: binary floating-point unit; ECC: error-correcting code; EX: execution;

Fmt: format; RF: general-purpose register [GPR] file/floating-point register [FPR] file access.)
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redirects the instruction fetch addresses during pipeline

flushes, millicode execution entries and exits, and

interrupts.

The IFU incorporates a 4-way 64-KB instruction cache

(I-cache) and a 2-way 128-entry TLB. During instruction

fetch, an instruction fetch request is first made from the

instruction fetching engine (I0). The following two cycles

(I1 and I2) are used for the I-cache pipelined access. The

set select for each access to the I-cache is obtained

through a 4K-entry set prediction array indexed with a

portion of the logical IA. Although a set prediction miss

would cause an extra delay of four cycles, it is highly

accurate and more beneficial than having to wait for the

TLB and directory lookup results. Although the I-cache

size is reduced from 256 KB in the z9 system, the CPI

delta is small and, to a large extent, mitigated by the z10

enhanced branch-prediction structure and by the low-

latency L1.5.

Cache data fetched is then processed through the

instruction buffer to extract the instruction texts (I3 and

I4). The instruction buffer is made up of three super basic

block buffers (SBBB). Each SBBB retains up to four

quadwords (QWs) of instruction text from possibly two

different cache lines. A predicted taken branch will be

marked within an SBBB while another SBBB is set up to

handle the branch target stream. The z10 I-cache contains

no predecode or grouping information, unlike some

other popular processor designs. To support variable

instruction lengths, and to efficiently support the strong

storage consistency (one that allows self-modifying code)

in the z/Architecture, the mechanisms to maintain extra

information in the I-cache could become extremely

complicated. Instead, the SBBB incorporates dataflow

parsing of instruction boundaries based on the instruction

lengths, so that a steady stream of two instructions can be

delivered to the instruction decode (and issue) unit (IDU).

Upon any surprise branches, the z9 IFU would wait for

the branch address calculated from the downstream

AGen adders before it could redirect its fetching patterns.

In the z10 system, the IFU can react to a new target

stream once any surprise relative branches are decoded by

either the SBBBs or the IDU and thus speeds up the

branch target redirection.

As the core pipeline becomes longer, any branch

redirect becomes more costly in terms of processor cycles.

Therefore, a highly aggressive z10 branch-prediction

design is used to improve both branch-prediction

accuracy and timeliness.

A 10K-entry 5-way set-associative branch target buffer

(BTB) is the nucleus of such a design. Each BTB entry

contains the branch address, target, type, and an eight-

state branch history used to predict the branch direction

(either taken or not taken). A novel design allows three

1-MB target offsets and two 1-GB target offsets

intermixed among the five sets in a BTB row.

Predictions can be made once every four cycles. One

cycle is required to index the two-cycle pipelined BTB.

The fourth cycle determines which set of the array, if any,

contains the desired prediction. By presuming the

common case that the branch of interest is in the most

recently used column, the hit-detection logic can increase

the throughput to a prediction every third cycle for such

cases.

To further increase prediction throughput, a branch

target queue (TQ) is used to store four recently taken

branches. This small TQ requires a single cycle to locate a

possibly matching branch. The TQ can, therefore,

increase branch-prediction throughput to a prediction

every other cycle, providing a throughput capability

similar to that of the z9 microprocessor.

To improve direction prediction accuracy, a 512-entry

filtered pattern history table (PHT) has been added for

branches that exhibit poor accuracies from predictions

made only from the branch history table (BHT). Upon

multiple mispredictions, as shown in Figure 4, the BHT

state enters a PHT override state. The PHT, thus,

contains predictions that are filtered down from the BHT

on the basis of the BHT states tracked.

To improve target prediction accuracy mainly involving

branches with multiple targets, a multiple target branch

target buffer (MTBTB) is also added. It is a 2K-entry
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array that is indexed in parallel to the BTB using a hashed

function of taken branch history. Such indexing allows

for multiple branch targets to be tracked for a single

branch. Only upon the initial detection of a wrong target

on a BTB branch can the MTBTB be used.

The branch-prediction logic runs fairly asynchronously

to instruction fetching. Branch searching and isolation

occurs at a rate of 32 sequential bytes per cycle, regardless

of the instruction fetch bandwidth. A predicted branch

target is sent both to the I-cache for data and back to the

BTB for the next branch search. The various branch

search latencies are shown in Figure 3 as the (B0–B4)

stages. Through this searching method, the target of

branches can be fetched without actual fetching or

decoding of those branches. With the BTB having a larger

branch footprint than that of the I-cache, the BTB

performs instruction prefetching using the predicted

branch targets.

Instruction decode/issue

Once valid instructions pass from the IFU to the IDU,

they enter into the two-wide superscalar pipeline.

As shown in Figure 2, z9 decode and issue take only

two pipeline stages, while the z10 decode and issue take

considerably more stages. Since no predecode

information is stored inside the I-cache, two pipeline

cycles (D1 and D2) are required to decode the full

instruction set needed for instruction grouping and

steering. This and other control information, such as

storage access controls and branch handling, are then fed

into an eight-deep instruction queue (IQ) and address

queue (AQ).

From the IQ/AQ, two instructions are brought into the

grouping logic (D3). Three grouping stages (G1, G2, and

G3) are needed to schedule up to two instructions into an

execution group and to create a pipeline hazard-handling

scheme that scales well with high frequency. This scheme

assumes instruction execution to be done within a fixed

number of cycles after issue and then involves rejecting

and reissuing instructions upon the detection of any

pipeline hazard (or reject) conditions. All stall conditions

are, by design, evaluated in the first two stages (G1 and

G2) to determine whether the group can be issued. These

stall conditions primarily include address generation

interlocks (AGIs), floating-point register dependencies,

multicycle execution waits, or post-pipeline reject waits. If

no stall condition is detected, instructions in a group will

be issued (G3); otherwise, they will be held.

In comparison, the z9 pipeline is an execution-stalling

design. To handle any possible pipeline hazards, these

conditions have to be known early enough to block the

execution of the affected instruction until these conditions

are resolved. As any execution is blocked, subsequent

instructions are also stalled from being issued. This design

requires global stalling controls that are very difficult to

fit into a short cycle time. By moving the z10 stalling

controls to preissue stages and reacting to any hazards by

reissuing instructions, frequency criticalities of post-issue

flow controls are reduced, allowing a design that scales

well with high frequency.

A minimal penalty of nine cycles is incurred for any

rejected instruction. With the most common pipeline

rejecting conditions being TLB and cache misses, an

instruction being rejected will often be ready for reissue

by the time these conditions are resolved. Copies of

instructions are kept by the IDU in a reject queue such

that rejected instructions (and any subsequently issued

younger instructions) can be routed back to the G1 stage

for reissue.

In the z9 microprocessor, only one branch instruction

can be decoded per cycle, and branches have to be

executed as the first instruction in a group. These

restrictions are removed in the z10 microprocessor. A

branch instruction can be decoded in either pipe, or two

at the same time. Although only one branch can be

executed per group, as in the z9 microprocessor, simple

branches can be executed in any pipe. The more

symmetric and less restrictive z10 design enables more

efficient instruction grouping and increases pipeline

utilization and thus performance.

Storage accesses

Any issued instruction that requires storage access is

processed through one of the two superscalar pipes where

the D-cache is first accessed and is then followed

immediately by fixed-point execution. Although the z10

microprocessor is only 2-way superscalar, every pass

through the pipeline can include both load and execute

functions, allowing full advantage of the z/Architecture.

For instructions that do not require any storage access,

executions start in the same pipeline stage as if there are

storage accesses. This consistent pipeline simplifies overall

control and allows more precise bypass operations.

The load/store unit (LSU) includes an 8-way 128-KB

D-cache and a 2-way 512-entry TLB, supporting two

concurrent read accesses. Any storage access is handled

first by calculating the access address through a 3-way

(baseþ indexþ displacement) adder (A0). This address is

then used to start the pipelined two-cycle D-cache access

(A1) and the one-cycle directory and TLB accesses on the

next cycle (A2).

The D-cache directory is virtually indexed, but absolute

address tagged. If the cache access had to wait for the

serial lookup hit results through the TLB and directory,

the pipeline cycles added would be detrimental to

performance. A set prediction array is, therefore, used to

obtain an early predicted cache set by doing partial

logical tag compares. This set predict scheme (similar to
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that in the POWER6 microprocessor) is highly accurate

and allows data to be returned without waiting for the full

TLB and directory searches. If a misprediction is found

afterward, a pipeline reject will be generated to allow the

necessary correction and then a re-access.

Cache data is formatted and returned (A3) directly to

the fixed-point unit (FXU) as source operands or to the

AGen adders as potential bypassable inputs, keeping all

of these latencies to a minimum.

In addition to a cache lookup pipeline that is as short

as possible (while providing a cache as large as possible),

ways to reduce cache-miss penalties are needed. In

contrast to the z9 solution, in which the LSU can return

data out of order to hide miss latencies, the z10 LSU

always returns data in program order. However, the z10

reject pipeline allows the LSU to honor cache-miss

requests from younger instructions that are already issued

after a demand cache miss. By providing more cache-miss

handling capabilities, cache misses can be overlapped to

hide their penalties. The extra miss-handling capabilities

include support for software and hardware prefetching.

Software cache management—Prefetch data

instructions are introduced so software can improve on

performance by either directly prefetching a particular

storage address with corresponding usage (read/store)

into L1 or preemptively relinquishing its cache-line

ownership when usage is over. The prefetching helps to

hide cache-miss latencies by initiating a cache miss as

early as possible. The relinquishment allows another

processor to gain fast access to a line that was previously

owned, reducing delays needed for multiprocessor

coherency management, thus improving performance in

an SMP environment. These instructions are

implemented as nonblocking to avoid unnecessary

pipeline rejects and delays. For more software

optimization insights, see Reference [10].

Hardware prefetch engine—The LSU included an IA-

based stride prefetching engine to prefetch data for

repetitive storage-accessing patterns. The engine

(Figure 5) is made up of a 32-entry stride history buffer.

The buffer maintains a history of storage access addresses

and types. The access addresses are the absolute addresses

corresponding to any logical storage access addresses

after dynamic address translation. These histories are

used to detect strides (distances between memory access

locations) among a history of previous accesses or strides.

When a valid entry is read from the history buffer using

part of the IA, its saved address is compared to the

current storage access address to form an 11-bit stride.

Stride detection using byte addresses is used because it

enables more precise prefetches than line-address-based

calculations.

If a stride is detected, the new address and stride will be

written into the history buffer; otherwise, the new address

and a stride of 0 will be recorded. When a new stride

matches the previous stride, a single prefetch to the next

strided absolute address (calculated by incrementing the

current memory access address by the stride amount) will

be attempted. If the strides are small, the engine will

preemptively prefetch the next cache line.

This design is inherently less aggressive than other

existing streaming prefetch designs that are more suited

for technical computing workloads. The z10 design is

tuned to benefit commercial workloads. A capability

allowing millicode to initiate a 4-KB page prefetch is also

provided to speed execution of very long instructions,

such as move character long (MVCL).

Instruction execution

Fixed-point unit execution

After performing instruction decodes, various dataflow

preparation controls, register accesses, and potential

result bypasses, the FXU starts execution immediately

after the pipeline cycle of cache data return (EX). Most

instructions can be performed in either of the two FXU
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IA-based stride prefetch engine. (IA: instruction address; AA:

absolute address; PAA: previous absolute address.)
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execution pipes in a single cycle; some less-frequently

used instructions, such as control instructions, can be

done only in the first pipe. For multicycle instructions, the

FXU may spin in its execution state by wrapping partial

results back into its input registers.

Results obtained are staged through two put-away

cycles (P1 and P2) before they are written into the

general-purpose register (GPR) file or the LSU store

buffer. The put-away delays are added to allow time to

suppress any premature GPR update from the second

pipe in the case of a branch misprediction in the first pipe.

If there are no reject conditions, interruptions, or branch

misprediction, the instruction is considered to be

complete once all the results are available (P3).

The FXU can execute dependent instructions back-to-

back with full bypass capabilities. Techniques used to

implement these superfast execution dataflows are

described by Curran et al. [11]. Some additional System z

functions, such as pack- or unpack-type instruction

supports, are implemented outside the main dataflows.

Although millicode is used to implement complicated

instructions, many simple multioperand and multiresult

instructions remain implemented by hardware in the z10

microprocessor to optimize performance. To support the

reject and reissue design, in which a long instruction can

be rejected while its execution is only partially completed,

state machines are incorporated into the IDU, LSU, and

FXU that can synchronously restart from the same point

within that instruction processing. For some cases, results

are stored in either unused millicode GPRs or in special

registers within control logic for a correct restart.

The z10 FXU can perform branch resolution at two

different points within the pipeline. Normally, the branch

resolution occurs two cycles after execution, but a branch

mispredict indication can be sent to the IFU one pipeline

cycle earlier if that branch has no immediate dependencies.

These earlier cases include incorrect branch target

prediction and incorrect branch direction predictions for

branch-on-count instructions or branch-on-condition

instructions in which the condition code is not updated in

the immediately prior instruction within the same group.

A set of compare-and-branch instructions are added to

facilitate common instruction sequences in which a

branch may be taken depending on the result of testing a

register. This two-instruction sequence can now be

accomplished with one instruction and without affecting

the condition code.

A set of compare-and-trap instructions are also

provided to accelerate the checking of software error

conditions, such as invalid pointers or out-of-bound

array indices. These new instructions eliminate the prior

use of branch instructions. In turn, the corresponding

branch-prediction entries are now freed up in order to

provide more prediction capacity.

Floating-point unit execution

Most instructions executed in the binary floating-point

unit (BFU) can be operated in pipeline mode, while

instructions executed in the decimal floating-point unit

(DFU) are nonpipelined.

During BFU and DFU operations, instruction

information and operand data (from either the GPR or

cache) is staged through the FXU. The resulting

condition code or arithmetic exceptions are also sent back

to the FXU for consolidation (F9/P1 and F10/P2) before

instruction completion (F11/P3).

BFU

The BFU performs binary (i.e., IEEE 754-compliant) and

hexadecimal floating-point arithmetic and fixed-point

integer multiplication and division.

All the main z10 dataflows are developed on a design

common with the POWER6 microprocessor.

Because the dataflow is based on a common internal

format, a cycle (F0) is needed to map from the various

z/Architecture floating-point formats to this internal

execution format. Similarly, a cycle (F8) is needed to

reformat a result back into the architectural formats

before the floating-point register (FPR) is updated.

Although two extra cycles are added compared to the

POWER6 microprocessor design, there is only a one-cycle

impact for dependent instructions because results of the

internal format can be bypassed without the first

reformatting cycle. This is shown in Figure 6.

Extra dataflow and control sequences are also added to

support IBM mainframe processor execution of extended

precision arithmetic.

DFU

Decimal floating-point arithmetic (IEEE P754-compliant)

was introduced in IBM z9 machines but was performed

mainly with millicode emulation using special hardware

assists. In the z10 core, all decimal floating-point

instructions are implemented by the DFU hardware,

providing better performance. Fixed-point decimal

instructions are also implemented using the same

dataflow. Schwarz et al. [12], in this issue, present

additional detail.

Overlapped execution

In the mostly in-order z9 design, there are no execution

overlaps between any floating-point and fixed-point

instructions. Any fixed-point instruction will be held from

issue until a prior floating-point instruction reaches its

last BFU execution stage, and then any subsequent

floating-point instruction will issue only after the fixed-

point instruction is issued. Such a design is not efficient

for floating-point programs that are characterized largely

by having floating-point instructions bounded by fixed-
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point branch loops. To alleviate this in the z10 design, up

to one group of FXU instructions can be executed in a

pipelined fashion among a sequence of floating-point

instructions, allowing them all to be fully pipelined. This

allowed a simplified form of out-of-order or overlapped

execution. The fixed-point instructions that can be

overlapped are restricted to a small and performance-

sensitive set (such as branch on index, branch on count,

load address, or simple register loads).

Store data forwarding

Upon processing a store instruction, a store queue in

the LSU is allocated by a storage access request similar

to a load. Then, during store execution, the store data is

sent to the LSU to be stored in its store buffer and to a

special dataflow reserved for store data forwarding. This

innovative design improves performance by forwarding

buffered store data to subsequent loads at the same

addresses to avoid the load-hit-store penalties that are

common performance problems when store data needed

by the load has not yet been written into the D-cache.

Instruction checkpointing and recovery

The z10 core continues to employ the same reliability

features that are characteristic of a mainframe processor.

Its design is vigorously checked throughout, and proven

error-handling techniques that are largely software-

transparent are still supported. To implement these error-

handling techniques, an ECC (error-correcting code)-

protected processor state, called checkpointed state, is

backed up inside the recovery unit (RU).

The RU includes a checkpointing pipeline (R0 to R3)

that starts right after any instruction completion (P3).

ECC is generated on results data (R0) and is then written

into a write queue (R1). Upon the absence of any error

conditions (R2), that instruction and its results are

checkpointed. Results in the write queue are then drained

into the ECC-protected checkpoint array (R3).

Checkpointed architecture states are now ready (R4) for

any recovery refresh or any state read usage.

For transient errors, the processor is reset and

refreshed from the checkpointed state, and then execution

resumes from the next noncheckpointed instruction. For

cases in which the processor cannot make forward

progress from an error, such as a stuck fault, the

checkpointed state is loaded into another processor, and

instruction processing resumes from there.

Unlike the z9 core, in which the CP chip (which

includes two cores) is a sparing unit, each z10 core can

undergo retry or transparent central processing unit

sparing individually without impacting other cores,

further improving availability.

Support units

In addition to mainline units and the pipeline already

described, extra supporting units are required to

implement a robust mainframe processor.

Address translation unit

The XU contains the second-level TLB (TLB2) and a

programmable translation engine that supports dynamic

address translation (DAT) and access register translation

(ART). The design is similar to the z9 design, efficiently

supporting large working sets and the virtualization

architecture.

Referring to Figure 7, the TLB2 is composed of three

hierarchically structured subunits:

� A small-attribute content-addressable memory that

serves for purge operations of entries stored in the

lower-level subunits with equal logical partition

(LPAR) identifications and other attributes (such as

‘‘guest level’’).

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

format

z10 changes

FPR rd

aln1exp SA

FPR rd

aln2

mult1 roundnorm2norm1addmult3mult2 write

format write

Figure 6

Differences between the POWER6 processor pipelines and the z10 BFU pipelines, with the POWER6 pipelines in red and the z10 differences in

blue. (Aln: align; exp SA: exponent shift amount calculation; norm: normalize.)
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� A 4-way set-associative common region segment table

entry (CRSTE) TLB2 that covers the higher-level

address translation levels.
� Four 3-way set-associative page table entry (PTE)

TLB2s, each connected to a CRSTE compartment,

covering the lowest translation levels.

Support for a new enhanced-DAT architecture that

provides a 1-MB large page frame is added to the unit.

Although the TLB1s are still maintained using entries of

4-KB pages to reduce design complexity, all 4-KB pages

within the same large page are managed consistently

through TLB2 and millicode. Performance gains are

readily expected through reductions in both the TLB2

miss rate and software time spent managing pages [13].

L1.5 unit

The L1.5 unit is a private ECC-protected 3-MB 12-way

set-associative second-level cache. It is designed as two

parallel and independently running cache interleaves,

one for even lines and one for odd lines, based on address

bit 55. For L1.5 hits, 16 QWs (quadwords, 1 QW ¼ 16

bytes) of a line are returned 1 QW per cycle back-to-back

to the L1s, with an average cache-hit latency of 14.5

cycles.

The L1.5 directory includes indications tracking L1

cache-line ownerships to ensure valid entries in L1s are

proper subsets of entries in L1.5. In particular, self-

modifying code is supported such that updated code

storage can be passed from the D-cache through the L1.5

to the I-cache. It guarantees that while the D-cache is

storing, the same line cannot be used in the I-cache, and

vice versa.

Since both the I-cache and the D-cache are virtually

indexed (and absolute-address tagged) and the

z/Architecture allows multiple virtual addresses to be

translated to the same absolute address, storage of the

same absolute address could possibly coexist in different

entries in the L1 caches. To avoid such multiple existences

of a line, the L1.5 maintains a single value of a virtual

address that is part of the synonym values (bits 50, 51

used for L1 cache indexing) and allows only one such

value to exist for each absolute address in its cache. By

actively invalidating L1 copies with different synonym

values, it ensures a single image of each absolute address.

Cross interrogates (XIs) from L2 are first processed in

the L1.5. Acting as an ownership filter, the L1.5 forwards

only XIs to the L1s if required, thus reducing XI

processing time in the core for lines that are already

replaced in the L1.5 (and the L1s).

Coprocessor

The z10 coprocessor (COP) for data compression and

cryptography4 is based on the previous z9 design. The

COP is still driven mainly by millicode. Each COP

consists of two compression (and expansion) units, one

cryptographic cipher engine, and one cryptographic hash

engine. Each compression unit includes a 32-entry TLB

and a 4-way 16-KB local cache for compression table

fetching and is dedicated to a core. Each cryptographic

engine, however, is shared between two cores. Such

sharing of the COP is fully transparent to software. A

possible increase of instruction execution latency is

noticed only if both sharing cores are trying to use the

same cryptographic engine.

This method of transparent sharing of the COP is a

highly efficient way to provide new and complex

functionality. With this construct, new COP features can

easily be provided in the future that do not proportionally

increase area per core, but still allow software use.

The z9 Data Encryption Standard and Triple Data

Encryption Standard functions remain in the z10 design,

and in addition, enhancements are added to the execution

of the Advanced Encryption Standard and the secure

hash algorithm (SHA-2) to support up to 192-/256-bit

and 384-/512-bit keys, respectively. The COP is capable

of performing up to an 8.8-GB/s expansion, a 240-MB/s
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128 � 4-way

(512 entries)

PTEPTEPTEPTE

CRSTE PTO

or SFAA
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CRSTE PTO

or SFAA

SDID/

HO–tag-bits

CRSTE PTO

or SFAA

SDID/

HO–tag-bits

CRSTE PTO

or SFAA

SDID/

HO–tag-bits

Search argument

for CAM purge Attribute CAM

guest2_ind

guest2_ind

valid-bit

Virtual

machine

(SDID)
0

32

Host (HO) /////// ///////

tag-bits

tag-bits

valid-bit LPAR
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Figure 7

Attribute CAM with CRSTE and PTE TLB2. (CAM: content-

addressable memory; LPAR: logical partition; PTO: page table

origin; SDID: state description identification; SFAA: segment

frame absolute address.)

4Cryptographic functions implemented are called the CP assist for cryptographic
function (CPACF).
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compression, and a 290-MB/s to 960-MB/s bulk

encryption rate.

Conclusion
In addition to the high-frequency pipeline that runs at

4.4 GHz, other distinctive innovations within the z10 core

have also been described. These innovations address

various aspects of a microprocessor design. The enhanced

branch prediction reduces misprediction penalties and

initiates I-cache prefetching. The L1.5 cache and the

support for both software cache management and

hardware data prefetching reduce the overall cache-miss

penalties. The second-level TLB and the large page

provision reduce overall TLB-miss latencies and software

overhead. New instructions have been added to support

software optimization. In addition, decimal floating-point

operations are done in hardware, and COP functionalities

are enhanced. Finally, many power-saving techniques are

incorporated for an energy-efficient design suitable for a

mainframe system.

The z10 core, together with a robust cache hierarchy

and an SMP system design, provides a significant

performance increase over its predecessor z9 core for

enterprise database and transaction processing workloads

as well as for new processor-centric workloads. As

software is optimized for the z10 pipeline and to make use

of the new architectural features, further performance

gains are expected.
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