
ELSEVIER Decision Support Systems 15 (1995)251-266

Invited Paper

Design and natural science research on information technology

Salvatore T. March *, Gerald F. Smith

Information and Decision Sciences Department, Carlson School of Management Unit~ersity of Minnesota, 271 19th Auenue South,

Minneapolis, MN 55455, USA

Abstract

Research in IT must address the design tasks faced by practitioners. Real problems must be properly conceptual-

ized and represented, appropriate techniques for their solution must be constructed, and solutions must be

implemented and evaluated using appropriate criteria. If significant progress is to be made, IT research must also

develop an understanding of how and why IT systems work or do not work. Such an understanding must tie together

natural laws governing IT systems with natural laws governing the environments in which they operate. This paper

presents a two dimensional framework for research in information technology. The first dimension is based on broad

types of design and natural science research activities: build, evaluate, theorize, and justify. The second dimension is

based on broad types of outputs produced by design research: representational constructs, models, methods, and

instantiations. We argue that both design science and natural science activities are needed to insure that IT research

is both relevant and effective.

Keywords." Information system research; Design science; Natural science; Information technology

1. Introduct ion

Researchers in Information Technology (IT)

have defined information as "data that has been

processed into a form that is meaningful to the

recipient and is of real or perceived value in

current or prospective actions or decisions" [[14],

p. 200]. This definition can be grounded in cogni-

tivist theories of mental representation [67]. Hu-

man thinking involves mental representations that

intendedly correspond to reality. These represen-

tations are commonly called beliefs or, when

highly validated, knowledge. They are produced

" This paper is an extension of ideas originally presented in

[46]

* Corresponding author

when people pick up sensory inputs or stimuli

from their environment. As new information is

acquired, one's beliefs are adjusted to better

match the perceived reality.

Human knowledge and beliefs inform actions

taken in pursuit of goals. Well-informed actions

(i.e., those based on true beliefs) are more likely

to achieve desired ends. Information is valuable

insofar as it helps individuals form true beliefs

which, in turn, promote effective, goal-achieving

action.

Technology has been defined as "practical im-

plementations of intelligence" [[20], p. 26]. Tech-

nology is practical or useful, rather than being an

end in itself. It is embodied, as in implements or

artifacts, rather than being solely conceptual. It is

an expression of intelligence, not a product of

0167-9236/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI 0 1 6 7 - 9 2 3 6 (9 4) 0 0 0 4 l - 7

252 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

blind accident. Technology includes the many

tools, techniques, materials, and sources of power

that humans have developed to achieve their

goals. Technologies are often developed in re-

sponse to specific task requirements using practi-

cal reasoning and experiential knowledge.

Information technology is technology used to

acquire and process information in support of

human purposes. It is typically instantiated as IT

systems - complex organizations of hardware,

software, procedures, data, and people, devel-

oped to address tasks faced by individuals and

groups, typically within some organizational set-

ting.

IT is pervasive throughout the industrialized

world. Business and government organizations

annually spend billions of dollars to develop and

maintain such systems. IT affects the work we do

and how that work is done [62]. Innovative uses

of information technologies have led to signifi-

cant improvements for some companies (such as

American Hospital Supply, Federal Express, Mrs

Fields, Frito Lay, etc.) and have defined the

competitive marketplace for others (e.g., the air-

line industry).

IT practice is concerned with the development,

implementation, operation, and maintenance of

IT systems. Development and maintenance are

largely design activities. Systems analysts, pro-

grammers, and other professionals construct arti-

facts that apply information technology to organi-

zational tasks. Applications can be as mundane as

keeping track of customer and vendor accounts

and as sophisticated as decision making systems

exhibiting human-like intelligence. Implementa-

tion and operation are processes that utilize de-

signed methods, techniques, and procedures. Not

all attempts to exploit information technologies

have had such positive results [44]. Even mun-

dane applications of information technology can

be overly expensive or have adverse affects on the

organization [26].

IT has attracted scientific attention, in part

because of its potential for dramatically impact-

ing organizational effectiveness, both positively

and negatively. Scientists have also been drawn

by the pervasiveness of IT phenomena in our

information-based society [18,19]. Scientific inter-

est in IT reflects assumptions that these phenom-

ena can be explained by scientific theories and

that scientific research can improve IT practice.

Note, however, that there are two kinds of scien-

tific interest in IT, descriptive and prescriptive.

Descriptive research aims at understanding the

nature of IT. It is a knowledge-producing activity

corresponding to natural science [27]. Prescriptive

research aims at improving IT performance. It is

a knowledge-using activity corresponding to de-

sign science [65].
Though not intrinsically harmful, this division

of interests has created a dichotomy among IT

researchers and disagreement over what consti-

tutes legitimate scientific research in the field.

Such disagreements are common in fields that

encompass both knowledge-producing and knowl-

edge-using activities. They are fostered in part by

the prestige attached to science in modern soci-

eties and the belief that the term "science" should

be reserved for research that produces theoretical

knowledge. The debate in IT research is similar

to that between engineering and the physical

sciences. Knowledge-producing, "pure" science

normally has the upper hand in such debates. In

IT, however, the situation is different. It could be

argued that research aimed at developing IT sys-

tems, at improving IT practice, has been more

successful and important than traditional scien-

tific attempts to understand it. With the issue

undecided, the field is left in an uneasy standoff.

This article proposes a framework for IT re-

search that reconciles these conflicting points of

view. This framework also suggests a research

agenda for the scientific study of IT. The next

section contains theoretical background material

needed to understand the dual nature of IT re-

search. The framework itself is presented in the

following section and is applied to IT literature,

with examples drawn primarily from the domain

of data management. The final section offers

prescriptions for future IT research.

2. Theoretical background

IT research studies artificial as opposed to

natural phenomena. It deals with human cre-

S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 253

ations such as organizations and information sys-

tems. This has significant implications for IT re-

search which will be discussed later. Of immedi-

ate interest is that fact that artificial phenomena

can be both created and studied, and that scien-

tists can contribute to each of these activities.

This underlies the dual nature of IT research.

Rather than being in conflict, however, both ac-

tivities can be encompassed under a broad notion

of science that includes two distinct species,

termed natural and design science [65]. Natural

science is concerned with explaining how and why

things are. Design science is concerned with "de-

vising artifacts to attain goals" [65, p. 133].

Natural science includes traditional research in

physical, biological, social, and behavioral do-

mains. Such research is aimed at understanding

reality. Natural scientists develop sets of con-

cepts, or specialized language, with which to

characterize phenomena. These are used in higher

order constructions - laws, models, and theories

- that make claims about the nature of reality.

Theories - deep, principled explanations of phe-

nomena [1] - are the crowning achievements of

natural science research. Products of natural sci-

ence research are evaluated against norms of

truth, or explanatory power. Claims must be con-

sistent with observed facts, the ability to predict

future observations being a mark of explanatory

success. Progress is achieved as new theories pro-

vide deeper, more encompassing, and more accu-

rate explanations.

Natural science is often viewed as consisting of

two activities, discovery and justification [35]. Dis-

covery is the process of generating or proposing

scientific claims (e.g., theories, laws). Justification

includes activities by which such claims are tested

for validity. The discovery process is not well

understood. Though some have argued that there

is a "logic" of scientific discovery [7], mainstream

philosophy of science has historically regarded

discovery as a creative process that psychologists

may or may not be able to understand [4]. Promis-

ing insights into this phenomena have recently

been offered by AI research [41].

Justification, on the other hand, has been

heavily prescribed for by philosophers of science.

An initial commitment to inductive logic, justify-

ing claims by accumulating confirming instances,

was overthrown by Popper 's falsificationism [59].

Popper argued that scientists should try to dis-

prove claims since a single negative instance could

do so, while innumerable confirming instances

could not prove a theory true.

Scientific study makes extensive use of the

hypothetico-deductive method. That is, theories

can be tested insofar as observational hypotheses

can be deduced from them and compared to

relevant empirical data [4]. Most scientific

methodologies used by IT researchers are pre-

scriptions for collecting and assessing data in this

way [34].

Whereas natural science tries to understand

reality, design science attempts to create things

that serve human purposes. It is technology-ori-

ented. Its products are assessed against criteria of

value or utility - does it work? is it an improve-

ment? Design is a key activity in fields like archi-

tecture, engineering, and urban planning [61] that

may not be thought of as "sciences" per se. At

the same time, design activities are an important

part of traditional scientific fields, some scientists

conducting both natural and design science inves-

tigations. Then too, fields like operations re-

search and management science (O R / M S) are

heavily prescriptive in intent, while claiming to be

sciences. Rather than producing general theoreti-

cal knowledge, design scientists produce and ap-

ply knowledge of tasks or situations in order to

create effective artifacts. If science is activity that

produces "credentialed knowledge" [[51], p. 311],

then, following Simon [65], design science is an

important part of it.

Design science products are of four types, con-

structs, models, methods, and implementations.

As in natural science, there is a need for a basic

language of concepts (i.e., constructs) with which

to characterize phenomena. These can be com-

bined in higher order constructions, often termed

models, used to describe tasks, situations, or arti-

facts. Design scientists also develop methods, ways

of performing goal-directed activities. Finally, the

foregoing can be instantiated in specific products,

physical implementations intended to perform

certain tasks. Notably absent from this list are

theories, the ultimate products of natural science

254 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

research. Rather than posing theories, design sci-

entists strive to create models, methods, and im-

plementations that are innovative and valuable.

Design science consists of two basic activities,

build and evaluate. These parallel the discovery-

justification pair from natural science. Building is

the process of constructing an artifact for a spe-

cific purpose; evaluation is the process of deter-

mining how well the artifact performs. Like the

discovery process in natural science, the design

science build process is not well understood.

Significant difficulties in design science result

from the fact that artifact performance is related

to the environment in which it operates. Incom-

plete understanding of that environment can re-

sult in inappropriately designed artifacts or arti-

facts that result in undesirable side-effects. A

critical challenge in building an artifact is antici-

pating the potential side-effects of its use, and

insuring that unwanted side-effects are avoided.

Evaluation is complicated by the fact that per-

formance is related to intended use, and the

intended use of an artifact can cover a range of

tasks. General problem solving methods, for ex-

ample, are applicable to many different problems

with performance varying considerably over the

domain of application. Not only must an artifact

be evaluated, but the evaluation criteria them-

selves must be determined for the artifact in a

particular environment. Progress is achieved in

design science when existing technologies are re-

placed by more effective ones.

To further clarify the natural science-design

science distinction, it can be compared to others

commonly made. Simon's [65] distinction between

natural and artificial phenomena, discussed at

the beginning of this section, should not be con-

fused with the natural-design science pair. Design

science produces artifacts and artificial phenom-

ena. However, natural science can address both

natural and artificial phenomena. Natural scien-

tists, for example, try to understand the function-

ing of organizations, which are artificial phenom-

ena. Likewise, chemists attempt to determine the

properties of synthetic compounds, and biologists

investigate the behaviours of man-made organ-

isms. These are natural science activities even

though they take artificial phenomena as their

objects. Rather than being driven by research

topic, the natural-design science distinction is

based on different research objectives. Natural

science aims at understanding and explaining

phenomena; design sciences aims at developing

ways to achieve human goals.

The distinction between basic and applied sci-

ence is also relevant. This usually reflects how

closely scientific research impinges on practice.

While natural science tends to be basic research

and design science tends to be applied, the two

pairs of concepts are not strictly parallel. A natu-

ral science account of information systems failure

could be more relevant to practice than the de-

velopment of a new data modelling formalism.

Yet the former is natural science research,

whereas the latter is design science research.

Again, research intent is critical.

More relevant is the description-prescription

distinction frequently employed by decision scien-

tists [5]. Natural science is descriptive and ex-

planatory in intent. Design science offers pre-

scriptions and creates artifacts that embody those

prescriptions.

Having differentiated two species of scientific

activity, it is important to appreciate their inter-

actions. First, design science creates artifacts, giv-

ing rise to phenomena that can be the targets of

natural science research. Group decision support

systems, for example, foster user behaviours that

are the subject of natural science investigations

(see for example, [21]).

Second, because artifacts "have no dispensa-

tion to ignore or violate natural laws" [65, p. 6],

their design can be aided by explicit understand-

ing of natural phenomena. Thus natural scientists

create knowledge which design scientists can ex-

ploit in their attempts to develop technology.

However, frequently the natural laws governing

an artifact and its environment are not well un-

derstood. Hence, the constructed artifact itself

presents a challenge to explain how and why it

works. Natural science explanations of how or

why an artifact works may lag years behind the

application of the artifact. In medicine, for exam-

ple, the explanation of why a drug is effective in

combating a disease may not be known until long

after the drug is in common use.

S. T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 255

A final interaction concerns the justification of

natural science claims. Theories are intended to

correspond with or present a true account of

reality. However, reality cannot be directly appre-

hended; we only have perceptions and other rep-

resentations of such. How then are we to deter-

mine if theoretical claims are true? This valida-

tion problem is overcome in part by the effective-

ness of theories in practical applications [43].

Natural science theories receive confirmatory

support from the facts that bridges do not col-

lapse, medical treatments cure diseases, people

journey to the moon, and nuclear bombs explode.

Indeed, philosophical pragmatists deny the corre-

spondence notion of truth, proposing that truth

essentially is what works in practice [60]. Thus,

design science provides substantive tests of the

claims of natural science research.

3. A research framework in information technol-

ogy

Prior research frameworks in IT have charac-

terized specific research subjects, identifying sets

of variables to be studied (see, e.g., [32,24,49]).

Such frameworks facilitate the generation of spe-

cific research hypotheses by positing interactions

among identified variables. While this provides

innumerable research questions it has several

weaknesses. First, it fails to provide direction for

choosing important interactions to study [74]; any

and all interactions among identified variables

are treated equally. Second, it fails to account for

the large body of design science research being

done in the field. Third, it fails to recognize that

IT research is concerned with artificial phenom-

ena operating for a purpose within an environ-

ment; the nature of the task to which the IT is

applied is critical. Fourth, it fails to recognize the

adaptive nature of artificial phenomena; the phe-

nomena itself is subject to change, even over the

duration of the research study.

Weber recognized that IT research is the study

of artifacts as they are adapted to their changing

environments and to changes in their underlying

components [74]. We further argue that an appro-

priate framework for IT research lies in the inter-

action of design and natural sciences. IT research

should be concerned both with utility, as a design

science, and with theory, as a natural science.

The theories must explain how and why IT sys-

tems work within their operating environments.

Our proposed framework is driven by the dis-

tinction between research outputs and research

activities (Fig. 1). The first dimension of the

Research Activities

Research
Outputs

Bu i ld Evaluate Theorize Justify

Constructs

Model

Method

Instantiation

Fig. 1. A research framework.

256 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

framework is based on design science research

outputs or artifacts: constructs, models, methods,

and instantiations. The second dimension is based

on broad types of design science and natural

science research activities: build, evaluate, theo-

rize, and justify. IT research builds and evaluates

constructs, models, methods, and instantiations.

It also theorizes about these artifacts and at-

tempts to justify these theories. Building and

evaluating IT artifacts have design science intent.

Theorizing and justifying have natural science

intent.

3.1. Research outputs

Constructs or concepts form the vocabulary of

a domain. They constitute a conceptualization

used to describe problems within the domain and

to specify their solutions. They form the special-

ized language and shared knowledge of a disci-

pline or sub-discipline. Such constructs may be

highly formalized as in semantic data modelling

formalisms (having constructs such as entities,

attributes, relationships, identifiers, constraints

[31]), or informal as in cooperative work (con-

sensus, participation, satisfaction [39]). Kuhn's

notion of paradigm is based on the existence of

an agreed upon set of constructs for a domain

[40].

Conceptualizations are extremely important in

both natural and design science. They define the

terms used when describing and thinking about

tasks. They can be extremely valuable to design-

ers and researchers. Brooks [6], for example, dis-

cusses the transformation in thinking about the

software development process when presented

with the conceptualization of growing rather then

building. When software is built, one expects to

specify the entire plan in advance and then con-

struct the software according to plan. When soft-

ware is grown, it is developed incrementally.

Functionality is added as it is needed. The soft-

ware developer conceives of the product as being

dynamic, constantly evolving rather than as a

static entity that is "completed" at a point in

time.

On the other hand, conceptualizations can

blind researchers and practitioners to critical is-

sues. In the database area, the relational data

model [11] provided an extremely influential con-

ceptualization with which to describe data. It

conceives of data as flat tables and defines con-

cepts such as functional dependency and normal

forms with which to evaluate database structures.

It removes the consideration of physical file

structures and permits an analyst to be concerned

with "well-formed" logical structures. Unfortu-

nately, this formalism became so ingrained that

researchers lost sight of its shortcomings for phys-

ical database design. Research activities focused

on how to efficiently process flat tables (see, e.g.,

[52]), when it is clear that nested record struc-

tures and system pointers (disallowed in the rela-

tional model but available in prior database rep-

resentations [45]) are necessary to achieve effi-

cient operations in many applications.

A model is a set of propositions or statements

expressing relationships among constructs. In de-

sign activities, models represent situations as

problem and solution statements. In semantic

data modelling, the term model has been inap-

propriately used to mean data modelling formal-

ism. The Entity-Relationship Model [9], for ex-

ample, is a set of constructs, a data modelling

formalism. The representation of an information

system's data requirements using the Entity-Rela-

tionship constructs is more appropriately termed

a model. Such a model is a solution component to

an information requirements determination task

and a problem definition component to an infor-

mation system design task.

A model can be viewed simply as a descrip-

tion, that is, as a representation of how things

are. Natural scientists often use the term model

as a synonym for theory, or propose models as

weak or incipient theories, in that they propose

that phenomena be understood in terms of cer-

tain concepts and relationships among them. In

our framework, however, the concern of models

is utility, not truth (the concern of theories is

truth, as discussed below). A semantic data model,

for example, is valuable insofar as it is useful for

designing an information system. Certain inaccu-

racies and abstractions are inconsequential for

those purposes. In data models, for example, the

notion of entity is pragmatically defined as an

S. 12 March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 257

"arbitrary" grouping of instances [37,38]. Al-

though theoretical criteria have been proposed

for defining entities [57], the key concern is that

the entities chosen be useful in representing and

communicating information system requirements.

Although silent or inaccurate on the details, a

model may need to capture the structure of real-

ity in order to be a useful representation. Simula-

tion and mathematical models, for example, can

be of immense practical value, although lacking

in many details [66]. On the other hand, unless

the inaccuracies and abstractions inherent in

models are understood, their use can lead to

inappropriate actions.

Modelling database operations as "logical

block accesses" [70], for example, calculates the

expected number of data blocks required to sat-

isfy a database retrieval request, ignoring the

details of physical storage devices and the com-

plexities of the computer operating environment.

It is extremely useful for feasibility assessment

where the purpose is to obtain "order of magni-

tude" approximations of system performance.

However, it is inappropriate for physical database

design where the purpose is to tune the design

for efficient overall operations. In this case physi-

cal storage devices and the computer operating

environment must be more accurately repre-

sented or the model will not be able to distin-

guish the efficiency effects of various design deci-

sions [10].

To further illustrate the utilitarian concern of

constructs and models, consider the research in

expert systems where knowledge is modeled as a

set of production rules or frames [13]. Although

proposed as a model of human expertise (i.e., a

cognitive science theory), from a design science

point of view, it is irrelevant if humans actually

represent knowledge in this way. The concern is

if this type of representation is useful for the

development of artifacts to serve human pur-

poses. While expert systems research has been

criticized for abandoning "basic research on in-

telligence" (Hofstadter, quoted by Weber [74]),

its design science impacts are irrefutable.

A method is a set of steps (an algorithm or

guideline) used to perform a task. Methods are

based on a set of underlying constructs (language)

and a representation (model) of the solution space

[54]. Although they may not be explicitly articu-

lated, representations of tasks and results are

intrinsic to methods. Methods can be tied to

particular models in that the steps take parts of

the model as input. Further, methods are often

used to translate from one model or representa-

tion to another in the course of solving a prob-

lem.

Data structures, for example, combine a repre-

sentation of computer memory with algorithms to

store and retrieve data. The problem statement

specifies the existing stored data and the data to

be stored or retrieved. The method (algorithm)

transforms this into a new specification of stored

data (storage) or returns the requested data (re-

trieval). Many algorithms use tree-structured con-

structs to model the problem and its solution.

System development methods facilitate the

construction of a representation of user needs

(expressed, for example, as problems, decisions,

critical success factors, socio-technical and imple-

mentation factors, etc.). They further facilitate

the transformation of user needs into system re-

quirements (expressed in semantic data models,

behaviour models, process flow models, etc.) and

then into system specifications (expressed in

database schemas, software modules, etc.), and

finally into an implementation (expressed in phys-

ical data structures, programming language state-

ments, etc.). These are further transformed into

machine language instructions and bits stored on

disks.

The desire to utilize a certain type of method

can influence the constructs and models devel-

oped for a task. For example, desiring to use a

mathematical programming method, a researcher

may conceptualize a database design problem

using constructs such as decision variable, objec-

tive function, and constraint. Developing a model

of the problem using these constructs is itself a

design task requiring powerful methods and tech-

niques. Depending on the particulars of the

model, new mathematical programming solution

methods may need to be designed. The solution

to the model itself represents a design task for

implementation.

Natural science uses but does not produce

258 S.T March, G.F. Smith~Decision Support Systems 15 (1995) 251-266

methods. Design science creates the methodolog-

ical tools that natural scientists use. Research

methodologies prescribe appropriate ways to

gather and analyze evidence to support (or re-

fute) a posited theory [34,42]. They are human-

created artifacts that have value insofar as they

address this task.

An instantiation is the realization of an artifact

in its environment. IT research instantiates both

specific information systems and tools that ad-

dress various aspect of designing information sys-

tems. Instantiations operationalize constructs,

models, and methods. However, an instantiation

may actually precede the complete articulation of

its underlying constructs, models, and methods.

That is, an IT system may be instantiated out of

necessity, using intuition and experience. Only as

it is studied and used are we able to formalize the

constructs, models, and methods on which it is

based.

Instantiations demonstrate the feasibility and

effectiveness of the models and methods they

contain. Newell and Simon [53] emphasize the

importance of instantiations in computer science,

describing it as "an empirical discipline." They

further state, "Each new program that is built is

an experiment. It poses a question to nature, and

its behaviour offers clues to the answer." Instan-

tiations provide working artifacts, the study of

which can lead to significant advancements in

both design and natural science.

Group Decision Support System (GDSS) in-

stantiations, for example, were developed in or-

der to study the impacts of automated interven-

tions on group processes. As early GDSSs were

studied, constructs (e.g., roles, anonymity, Type I,

II, and III GDSSs), models (e.g., situation models

representing different problem types), and meth-

ods (e.g., idea generation, idea evaluation, auto-

mated facilitation) [16] leading to improved in-

stantiations, were developed.

As a further example of the importance of

instantiations, consider early research in operat-

ing systems. An operating system manages the

resources of a computer system. It instantiates

constructs such as processes, states, interrupts,

and abstract machines and uses methods such as

scheduling algorithms and memory management

algorithms. The operationalization of such con-

cepts within the UNIX operating system, "led a

generation of software designers to new ways of

thinking about programming" [[2], p. 757].

3.2. Research activities

Research activities in design science are

twofold: build and evaluate. Build refers to the

construction of the artifact, demonstrating that

such an artifact can be constructed. Evaluate

refers to the development of criteria and the

assessment of artifact performance against those

criteria.

Research activities in natural science are par-

allel: discover and justify. Discover, or more ap-

propriately for IT research, theorize, refers to the

construction of theories that explain how or why

something happens. In the case of IT research

this is primarily an explanation of how or why an

artifact works within its environment. Justify

refers to theory proving. It requires the gathering

of scientific evidence that supports or refutes the

theory.
We build an artifact to perform a specific task.

The basic question is, does it work? Building an

artifact demonstrates feasibility. These artifacts

then become the object of study. We build con-

structs, models, methods, and instantiations. Each

is a technology that, once built, must be evalu-

ated scientifically.

We evaluate artifacts to determine if we have

made any progress. The basic question is, how

well does it work? Recall that progress is achieved

when a technology is replaced by a more effective

one. Evaluation requires the development of met-

rics and the measurement of artifacts according

to those metrics. Metrics define what we are

trying to accomplish. They are used to assess the

performance of an artifact. Lack of metrics and

failure to measure artifact performance according

to established criteria result in an inability to

effectively judge research efforts.

Hopcroft [30], for example, describes early re-

search in algorithm development as being "very

unsatisfying" due to a lack of coherent metrics by

which to compare performance. A common ap-

proach to evaluating an algorithm was to com-

S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 259

pare the execution time of the algorithm with

that of a competing algorithm for a specific task.

The difficulty lay in the fact that the two algo-

rithms were likely written in different languages

and run on different computers, yielded little

information from which to judge their relative

performance. This motivated the development of

"worst-case asymptotic performance" metrics.

These provided objective measures of the relative

performance of algorithms independent of their

implementations.

However, as noted by Tarjan [68], metrics

themselves must be scrutinized by experimental

analysis. The algorithm with best "worst-case"

performance may not be the best algorithm for a

task. The simplex method, an algorithm com-

monly used to solve linear programming prob-

lems, for example, has relatively poor worst-case

performance, growing "exponentially with the

number of linear inequalities" [[36], p. 108]. The

ellipsoid method, on the other hand, is polynomi-

aly bounded, a considerable improvement. In

practice, however, " the number of iterations is

seldom greater than three or four times the num-

ber of linear inequalities" for the simplex algo-

rithm, whereas the ellipsoid method does not fare

nearly so well.

Given an artifact whose performance has been

evaluated, it is important to determine why and

how the artifact worked or did not work within its

environment. Such research applies natural sci-

ence methods to IT artifacts. We theorize and

then justify theories about those artifacts.

Theories explicate the characteristics of the

artifact and its interaction with the environment

that result in the observed performance. This

requires an understanding of the natural laws

governing the artifact and those governing the

environment in which it operates. Furthermore,

the interaction of the artifact with its environ-

ment may lead to theorizing about the internal

workings of the artifact itself or about the envi-

ronment.

Among others, Chan, et. al. [8] conclude that,

for inexperienced end-users, semantic data mod-

els and query languages are more effective for

database access than the relational data model

and SQL. While this is an important evaluative

result, the critical question for designers of

database interfaces is, why are the semantic data

models more effective? Norman [56] theorizes

that human performance in man-machine inter-

actions depends on the "gulf" between the hu-

man's conceptualization of the task and the pre-

sented interface. When the gulf is large, perfor-

mance is poor. When the gulf is small, perfor-

mance is good. One could theorize, then, that

semantic data models better correspond to an

end-user's conceptualization of a database than

does the relational model.

Mathematically-based artifacts may lead a re-

searcher to posit mathematical theorems in order

to explain behaviour and improve performance.

Genetic algorithms, for example, were developed

nearly twenty years ago and have been effectively

applied to numerous discrete optimization prob-

lems [15] including distributed database design

[47]. They were initially developed based on the

analogy of natural selection resulting in improved

living populations [28,29]. Yet only recently has

theory been developed to explain how various

control parameters affect performance [25].

Theorizing in IT research must explicate those

characteristics of the IT artifact operating in its

environment that make it unique to IT and re-

quire unique explanations. Theorizing that New-

ton's theory of gravity holds for IT, and testing it

by dropping a PC from an office window in the

MIS department is obviously not valuable. While

this example is extreme, the issue is that re-

searchers should not simply test theories from

reference disciplines in an IT context unless there

is good reason to believe that IT phenomena are

unique in some way that would affect the applica-

bility of that theory. On the other hand, where IT

artifacts significantly affect the task or the envi-

ronment, adapting theories from referent disci-

plines can be extremely fruitful (e.g., theories of

group dynamics in a GDSS environment [58]).

Given a generalization or theory we must jus-
tify that explanation. That is, we must gather

evidence to test the theory. For artifacts based on

mathematical formalisms or whose interactions

with the environment are represented mathemat-

ically (such as in information economics research

or automated database design), this can be done

260 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

mathematically, i.e., by using mathematics and

logic to prove posited theorems. In such cases, we

normally prove things about the performance of

the artifact based on some metric. Database de-

sign algorithms, for example, have been proven to

produce "optimal" designs in the sense that they

optimize some performance measure (e.g., mini-

mize the operating cost) for the given set of

database activities. Of course, these results are

only valid within the underlying formal problem

representation (model). Furthermore, the per-

formance metrics themselves must be justified

(e.g., is response time more significant than oper-

ating cost?).

Justification for non-mathematically repre-

sented IT artifacts follows the natural science

methodologies governing data collection and

analysis [34].

3.3. Application to IT research

Constructs, models, methods, and instantia-

tions are each artifacts that address some task.

Research activities related to these artifacts are:

build, evaluate, theorize, and justify. Build and

evaluate are design science research activities

aimed at improving performance. Theorize and

justify are natural science research activities
aimed at extracting general knowledge by propos-

ing and testing theories.

This four by four framework produces sixteen

cells describing viable research efforts. Research

can build, evaluate, theorize about, or justify the-

ories about constructs, models, methods, or in-

stantiations. Different cells have different objec-

tives and different methods are appropriate in

different cells. Research efforts often cover mul-

tiple cells. Evaluation of research should be based

on the cell or cells in which the research lies.

Research in the build activity should be judged

based on value or utility to a community of users.

Building the first of virtually any set of con-

structs, model, method, or instantiation is deemed

to be research, provided the artifact has utility for

an important task. The research contribution lies

in the novelty of the artifact and in the persua-

siveness of the claims that it is effective. Actual

performance evaluation is not required at this

stage. The significance of research that builds

subsequent constructs, models, methods, and in-

stantiations addressing the same task is judged

based on "significant improvement," e.g., more

comprehensive, better performance. Research in

database design has numerous examples of re-

searchers extending or combining constructs,

models, methods, and instantiations developed by

other researchers (see, e.g., [47,48]).
Recognizing that there is nothing new under

the sun, "first" is usually interpreted to mean,

"never done within the discipline." The relational

data model [11], for example, was the first at-

tempt to define a formalism in which to describe

data and retrieval operations. Relations and rela-

tional operators had never before been used to

describe data, although they had been used ex-

tensively in mathematics to describe sets and set

behaviour.

While there is little argument that novel con-

structs, models, and methods are viable research

results, there is less enthusiasm in the informa-

tion technology literature for novel instantiations.

Novel instantiations, it is argued, are simply ex-

tensions of novel constructs, models, or methods.

Hence, we should value the constructs, models,

and methods, but not the instantiations. Reaction

is quite different in the computer science litera-

ture where a key determinant of the value of
constructs, models, and methods is the existence

of an implementation (instantiation).

In much of the computer science literature it is

realized that constructs, models, and methods

that work "on paper" will not necessarily work in

real world contexts. Consequently, instantiations

provide the real proof. This is evident, for exam-

ple, in AI where achieving "intelligent behaviour"

is a research objective. Exercising instantiations

that purport to behave intelligently is the primary

means of identifying deficiencies in the con-

structs, models, and methods underlying the in-

stantiation.

On the other hand, instantiations that apply

known constructs, models, and methods to novel

tasks may be of little significance. Of primary

concern is the level of uncertainty over the viabil-

ity ot the constructs, models, and methods for the

task. For example, there is no reason to believe

S. 12 March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 261

that expert system technology would not be appli-

cable to the task of choosing stock investments.

The task is characterized as having a limited

number of choices, reasonably well defined selec-

tion criteria, and there arc a number of experts

currently performing the task. Instantiating an

expert system for this task, even the first, would

be of marginal scientific significance.

Research in the evaluate activity develops met-

rics and compares the performance of constructs,

models, methods, and instantiations for specific

tasks. Metrics define what a research area is

trying to accomplish. Since " the second" or sub-

sequent constructs, models, methods, or instanti-

ations for a given task must provide significant

performance improvements, evaluation is the key

activity for assessing such research.

Evaluation of constructs tends to involve com-

pleteness, simplicity, elegance, understandability,

and ease of use. Data modelling formalisms, for

example, are constructs with which to represent

the logical structure of data. Proposing a data

modelling formalism falls within the build-con-

structs cell of the framework. The database liter-

ature was subjected to a plethora of data mod-

elling formalisms [31]. As researchers found defi-

ciencies in existing data modelling formalisms,

they proposed additional or slightly different con-

structs to meet their specific tasks (e.g., modelling

statistical and scientific data). Finally, reviewers

screamed, "not yet another..."

Models are evaluated in terms of their fidelity

with real world phenomena, completeness, level

of detail, robustness, and internal consistency.

For example, numerous mathematical models

have been developed for database design prob-

lems. Posing a new database design model may

be a significant contribution; however, to inform

researchers in the field, the new model must be

positioned with respect to existing models. Often

existing models are extended to capture more of

the relevant aspects of the task. March and Rho

[47], for example, extended the distributed

database model posed by Cornell and Yu [12] to

include not only the allocation of data and opera-

tions, but data replication and concurrency con-

trol as well, significant issues in this area.

Evaluation of methods considers operational-

ity (the ability to perform the intended task or the

ability of humans to effectively use the method if

it is not algorithmic), efficiency, generality, and

ease of use. Associated with the numerous dis-

tributed database design models are numerous

methods to solve problems represented in those

models. While some use mathematical algorithms

(e.g., linear or non-linear programming), others

develop novel methods (e.g., iterative algorithms).

In the former case, the method is not a significant

research contribution, although it may be impor-

tant to evaluate the effectiveness or efficiency of

the method for this particular type of problem

(e.g., are there characteristics of the model that

make one method more or less applicable?). In

the latter case, the method itself is a significant

research contribution, to be studied and evalu-

ated even apart from the application.

As another example, consider the numerous

information system development methods. These

can be evaluated for ccrnpleteness, consistency,

ease of use, and the qu" Jty of results obtained by

analysts applying the method [33,56,64].

Evaluation of instantiations considers the effi-

ciency and effectiveness of the artifact and its

impacts on the environment and its users. A

difficulty with evaluating instantiations is separat-

ing the instantiation from the constructs, models,

and methods embodied in it. CASE tools are an

example of instantiations. While these embody

certain constructs, models, and methods, the de-

veloper of the CASE tool must select from among

a wide array of available constructs, models, and

methods, and must decide how much latitude to

afford users [71]. It is these design choices that

differentiate CASE tools. Evaluations focus on

these differences and how they change the task of

system development.

Once metrics are developed, empirical work

may be necessary to perform the evaluation. Con-

structs, models, methods, and instantiations must

be exercised within their environments. Often

this means obtaining a subject group to do the

exercising. Often multiple constructs, models,

methods, or instantiations are studied and com-

pared. Issues that must be addressed include

comparability, subject selection, training, time,

and tasks. Methods for this type of evaluation are

262 S. 1-. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

not unlike those for justifying or testing theories.

However, the aim is to determine "how well" an

artifact works, not to prove anything about how

or why the artifact works.

The third and fourth columns of the frame-

work correspond to natural science activities, the-

orize and justify. The theorize activity involves

explaining why and how the effects came about,

i.e., why and how the constructs, models, meth-

ods, and instantiations work. This activity at-

tempts to unify the known data (observations of

effects) into viable theory - explanations of how

and why things happen. It may involve developing

constructs with which to theorize about con-

structs, models, methods, and instantiations. The

justify activity performs empirical and/or theoret-

ical research to test the theories posed. Such

theories, once justified, can provide direction for

the development of additional and better tech-

nologies.

As discussed earlier, Norman [55] developed

the construct of gulfs when theorizing about how

the constructs used in human-computer interac-

tion affect performance. This construct underlies

theory posed by Weber and Zhang [75] explaining

why analysts had difficulty with a particular data

modelling formalism (activity in the theorize-con-

structs cell). Its value has been substantiated by

several studies [3] (activity in the justify-con-

structs cell).

Theorizing about models can be as simple as

positing that a model used for design purposes is

true (e.g., that an expert's knowledge of a task is

accurately represented by a set of production

rules), or as complicated as developing an ex-

planatory model of an IT phenomena (e.g., repre-

senting system-task fit as a basis for user percep-

tions of satisfaction with information technology

[22,231).

The theorize-model cell also includes adapting

theories from base disciplines or developing new,

general theories to explain how or why IT phe-

nomena work. Nolan's [54] stage theory, for ex-

ample, posits that the growth pattern of an EDP

organization follows a sigmoid shape. Although

criticized as a simple application of general sys-

tems theory [74]), it does explain important phe-

nomena in the organizational appropriation of

information technologies. The theory has been

tested by various researchers, albeit with mixed

results.
As another example, DeSanctis and Poole [17]

proposed Adaptive Structuration Theory (AST)

to explain differences in how GDSS technologies

were used and in the effectiveness of that use for

different group and task characteristics. Although

tested by those researchers in a laboratory study,

they note that evidence from real groups engaged

in a diversity of real tasks over a substantial

period of time must be gathered.

For algorithmic methods, theorizing can be

formal and mathematical with logical proofs be-

ing used for justification (e.g., database design

algorithms) or it can be behavioral, explaining

why or how a method works in practice (e.g., why

and how particular system development methods

work). As discussed earlier, formal, mathematical

theories are proven only within their defined

formalism - they must be tested in practice to

validate the formalism.

Theorizing about instantiations may be viewed

as a first step toward developing more general

theories (e.g., explaining how electronic mail af-

fects communication may lead to more general

theories of the effects of technology or more

general theories about human communication) or

as the specialization of an existing general theory

(e.g., applying innovation-diffusion theory to spe-

cific information technologies such as spread-

sheets and electronic mail can facilitate under-

standing of the IT phenomena).

4. Discussion and prescriptions for IT research

Key to understanding IT research is the fact

that IT deals with artificial phenomena rather

than natural phenomena. Brooks [6, p. 12] ob-

serves, "Einstein argued that there must be sim-

plified explanations of nature because God is not

capricious or arbitrary," but concludes that, "No

such faith comforts the software engineer" be-

cause the objects of study "were designed by

different people, rather than by God." The phe-

nomena studied in IT research are artifacts that

S. l~ March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 263

are designed and built by man to accomplish the

purposes of man.

Implications for IT research are threefold.

First, there may not, in fact, be an underlying

deep structure to support a theory of IT. Our

theories may need, instead, to be based on theo-

ries of the natural phenomena (i.e., people) that

are impacted by the technology. Second, our arti-

facts are perishable, hence our research results

are perishable. As needs change, the artifacts

produced to meet those needs also change. A

theory of how programmers use a now-defunct

language, for example, would be of little interest.

Third, we are producing IT artifacts at an ever

increasing rate, resulting in innumerable phe-

nomena to study. Explicating and evaluating IT

artifacts (constructs, models, methods, and in-

stantiations) will facilitate their categorization so

that research efforts will not be wasted building

and studying artifacts that have already been

built and studied "in kind."

Data modelling is an area in which artifacts

were not adequately explicated or evaluated. As a

result, research efforts proposed data modelling

formalisms that, in essence, had already been

built - they varied primarily in the names chosen

for constructs. Metrics were not developed and

substantive comparative evaluations were not

done. We still lack an accepted set of metrics and

comparative analysis of data modelling for-

malisms. We further lack a theory of constructs

for data modelling formalisms, although work is

beginning in each of these areas [3,73].

Similarly in database management, significant

amounts of build research have been done with-

out adequate theories to explicate and studies to

evaluate its underlying constructs, models, meth-

ods, and instantiations. As discussed earlier, the

relational data model [11] has been the dominant

formalism in both research and practice over the

past decade. However, it was not compared with

competing formalisms until recently [8]. Had the

relational model been compared to formalisms

such as DIAM [63], for end-user database inter-

action, it would have been clear that relational

languages were not as effective as the graphical

constructs in DIAM (similar to those in current

semantic data models), and research in end-user

languages could have shifted from relational con-

structs to semantic constructs.

With the dominance of relational DBMSs in

practice, the performance shortcomings for cer-

tain types of applications (e.g., CAD and engi-

neering databases) have become apparent. Among

other things, the "next generation" of DBMSs,

the so-called Object-Oriented DBMSs, have re-

implemented complex record structures (at the

physical level) and provide efficient system point-

ers for interfile connections, representations not

unlike those described in DIAM and imple-

mented in pre-relational DBMSs!

Current research in system development can

be similarly characterized. Significant attention

has been given to the build activity. Process, data,

and behaviour representations (formalisms) have

been build and are in use (see, e.g., [31,56]).

Methods to build models using these representa-

tions have been proposed, although these are

mostly ad hoc (see, e.g., [69]). CASE tools instan-

tiate representations and methods. Thus far there

has been only moderate evaluation activity for

any of these artifacts. Several researchers com-

pare and evaluate data modelling formalisms (e.g.,

[3,75]), methods (e.g., [33,64]), and instantiations

(e.g., [71]). Additional research is needed to de-

termine what, in fact, actually works in practice.

Much of this work should be empirical.

If, indeed, progress is to be made in system

development, not only must we determine what

works, we must understand why it works. There

are virtually no generalizations or theories ex-

plaining about why and how (or even if) any of

these artifacts work. Wand and Weber's research

[72,73] on Ontology may provide a beginning to

such a theory, however, significant work is needed

before this can be considered to be a theory of

system development. Further, any such theory

must be justified scientifically before its princi-

ples can be introduced back into the artifacts and

the cycle repeated.

References

[1] P. Achinstein, Concepts of Science, Johns Hopkins Press,
Baltimore, 1968.

264 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

[2] ACM Turing Award, Dennis Richie and Ken L. Thomp-

son, 1983 ACM Turing Award Recipients, Communica-

tions of the ACM, Vol 27, No 8, August, 1984, p. 757.

[3] D. Batra, J.A. Hoffer and R.P. Bostrom, A Comparison

of User Performance Between the Relational and the

Extended Entity Relationship Models in the Discovery

Phase of Database Design, Communications of the ACM,
(33, 2), February, 1990, pp 126-139.

[4] W. Bechtel, Philosophy of Science: An Overview for

Cognitive Science, Hillsdale, NJ: Lawrence Erlbaum,
1988.

[5] D.E. Bell, H. Raiffa and A. Tversky (eds.), Decision

Making: Descriptive, Normative and Prescriptive Interac-

tions, Cambridge, UK: Cambridge University Press, 1988.

[6] F.P. Brooks, Jr., No Silver Bullet: Essence and Accidents

of Software Engineering, IEEE Computer, April, 1987,

pp 10-19.

[7] P. Caws, The Structure of Discovery, Science, Vol 166,
December 12, 1969, pp 1375-1380.

[8] H.C. Chan, K.K. Wei and K.L. Siau, Conceptual Level

Versus Logical Level User-Database Interaction, Pro-

ceedings of the 12th International Conference on Infor-

mation Systems, New York, Dec. 1991, pp. 29-40.

[9] P.P. Chen, The Entity-Relationship Model - Toward a

Unified View of Data, ACM Transactions on Database

Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

[10] S. Christodoulakis, Implications of Certain Assumptions

in Database Performance Evaluation, ACM Transactions

on Database Systems, Vol 9, No 2, June 1984, pp 163-186.

[11] E.F. Codd, A Relational Model of Data for large Shared

Data Banks, Communications of the ACM, vol 13, no 6,
June 1970.

[12] D.W. Cornell and P.S. Yu, On Optimal Site Assignment

for Relations in the Distributed Database Environment,

IEEE Transactions on Software Engineering, Vol 15, No
8, August 1989, pp 1004-1009.

[13] R. Davis and D.B. Lenat, Knowledge-Based Systems in

Artificial Intelligence, New York: McGraw-Hill, 1982.

[14] G. Davis and M. Olson, Management Information Sys-

tems: Conceptual Foundations, Structure and Develop-

ment, 2nd Ed., McGraw-Hill, 1985.

[15] K.A. De Jong and W.M. Spears, Using Genetic Algo-

rithms to Solve NP-Complete Problems, Proc 3rd Inter-

national Conference on Genetic Algorithms, June 4-7,

1989, Morgan Kaufmann, Publishers.

[16] G. DeSanctis and R.B. Gallupe, A Foundation for the

Study of Group Decision Support Systems, Management

Science, Vol 33, No 5, 1987, pp. 589-609.

[17] G. DeSanctis and M.S. Poole, Capturing the Complexity

in Advanced Technology Use: Adaptive Structuration

Theory, Organizational Science, 1993, (to appear).

[18] P.F. Drucker, The Coming of the New Organization,

Harvard Business Review, Vol 66, No 1, Jan-Feb, 1988,
pp 45-53.

[19] P.F. Drucker, The New Productivity Challenge, Harvard
Business Review, Vol 69, No 6. Nov-Dec, 1991, pp 45-53.

[20] F. Ferre, Philosophy of Technology, Englewood Cliffs,

NJ: Prentice Hall, 1988.

[21] J.F. George, G.K. Easton, J.F. Nunamaker, Jr. and G.B.

Northcraft, A Study of Collaborative Group Work With

and Without Computer-Based Support, Information Sys-

tems Research, Vol 1, No. 4, June 1988, pp. 394-415.

[22] D.L. Goodhue, I /S Attitudes: Toward Theoretical and

Definitional Clarity, Database, Fall /Winter 1988.

[23] D.L. Goodhue, User Evaluations of MIS Success: What

Are We Really Measuring? Proceedings of the Hawaii

International Conference on Systems Sciences, 1992.

[24] G.A. Gorry and M.A. Scott-Morton, A Framework for

Management Information Systems, Sloan Management

Review, October 1971, pp 55-70.

[25] J.J. Grefenstette, Optimization of Control Parameters for

Genetic Algorithms, IEEE Transactions on Systems, Man

and Cybernetics, Vol SMC-16, No 1, January/February,

1986, pp 122-128.

[26] J. Hartmanis and H. Lin, (Editors), Computing the Fu-

ture: A Broader Agenda for Computer Science and Engi-

neering, National Academy Press, Washington, D.C.,

1992.

[27] C.G. Hempel, Philosophy of Natural Science, Englewood

Cliffs, NJ: Prentice Hall, 1966.

[28] J.H. Holland, Adaptation in Natural and Artificial Sys-

tems, University of Michigan Press, Ann Arbor, MI,

1975. pp 66-72.

[29] J.H. Holland, Genetic Algorithms, Scientific American,

July 1992, pp 66-72.

[30] J.E. Hopcroft, Computer Science: The Emergence of a

Discipline, Communications of the ACM, Vol 30, No 3,

March 1987, pp 198-202.

[31] R. Hull and R. King, Semantic Database Modelling:

Survey, Applications and Research Issues, ACM Com-

puting Surveys, Vol. 19, No. 3, Sept. 1987, pp. 201-260.

[32] B. Ives, S. Hamilton and G.B. Davis, A Framework for

Research in Computer-Based Management Information

Systems, Management Science, Vol 26, No 9, September

1980, pp 910-934.

[33] S. Jarvenpaa and J. Machesky, End User Learning Be-

haviour in Data Analysis and Data Modelling Tools,

Proceedings of the 7th International Conference on In-

formation Systems, San Diego, 1986, pp. 152-167.

[34] M.A. Jenkins, Research Methodologies and MIS Re-

search, in E. Mumford, et. al. (eds) Research Methodolo-

gies in Information Systems, Elsevier Science Publishers

B.V. (North Holland), 1985, pp. 103-117.

[35] A. Kaplan, The Conduct of Inquiry, New York: Crowell,
1964.

[36] R.M. Karp, Combinatorics, Complexity and Randomness

Communications of the ACM, Vol 29, No 2, February

1986, pp. 98-111.

[37] W. Kent, Data and Reality, North Holland, 1978.

[38] W. Kent, Limitations of Record-based Information Mod-

els, ACM Transactions on Database Systems, Vol. 4, No.

1, March 1979, pp. 107-131.

S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 265

[39] K.L. Kraemer and J.L. King, Computer-Based Systems

for Cooperative Work and Group Decision Making, ACM

Computing Surveys, vol 20, no 2, June 1988, pp 115-146.

[40] T.S. Kuhn, The Structure of Scientific Revolutions, Uni-

versity of Chicago Press, 1970.

[41] P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow,

Scientific Discovery: Computational Explorations of the

Creative Processes, Cambridge, MA: MIT Press, 1987.

[42] A.S. Lee, A Scientific Methodology for MIS Case Stud-

ies, MIS Quarterly, Vol 13, No 1, March 1989, pp 33-50.

[43] J. Leplin (ed.), Scientific Realism, Berkeley, CA: Univer-

sity of California Press, 1984.

[44] S.E. Madnick, The Challenge: To Be Part of the Solution

Instead of Being Part of the Problem, Proceedings of the

Second Annual Workshop on Information Technology.

Dallas Texas, December 12-13, 1992.

[45] S.T. March, Techniques for Structuring Database

Records, ACM Computing Surveys, Vol 15, No 1, March.

1983, pp 45-79.

[46] S.T. March, Research Issues in Information Technology,

Keynote Address, Proceedings of the Second Annual

Workshop on Information Technology Systems, Dallas,

TX, Dec. 12-13, 1992, pp. 10-16.

[47] S.T. March and S. Rho, Allocating Data and Operations

to Nodes in Distributed Database Design, IEEE Trans-

actions on Knowledge and Data Engineering (to appear).

[48] S.T. March and G.D. Scudder, On the Selection of

Efficient Record Segmentations and Backup Strategies

for Large Shared Databases, ACM Transactions on

Database Systems, Vol. 9, No. 3, September 1984. pp.
409-438.

[49] R.O. Mason and I.I. Mitroff, A Program for Research on

Management Information Systems, Management Science.

January 1973, pp 475-485. [50] P.E. Meehl, What Social

Scientists Don't Understand, in D.W. Fiske and R.A.

Shweder (eds.), Metatheory in Social Science, Chicago:

University of Chicago Press, 1986, pp. 315-338.

[51] P. Mishra and M.H. Eich, Join Processing in Relational

Databases, ACM Computing Surveys, Vol 24, No 1+

March, 1992, pp 63-113.

[52] A. Newell and H.A. Simon, Computer Science as Empiri-

cal Inquiry: Symbols and Search, Communications of the

ACM, vol 19, no 3, March 1976, pp 113-126.

[53] A. Newell and H.A. Simon, Human Problem Solving,

Prentice-Hall, 1972

[54] R.L. Nolan, Managing the Computer Resources: A Stage

Hypothesis, Communications of the ACM, vol 16, no 7,

July 1973, pp 399-405.

[55] D.A. Norman, Cognitive Engineering, in D.A. Norman

and S.W. Draper (eds), User Centred System Design,

Lawrence Erlbaum Associates, Hillsdale, NJ. 1986, pp
31-61.

[56] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland,

H.G. Sol, F.J.M. Van Assche and A.A. Verrijn-Stuart,

Information Systems Methodologies: A Framework for

Understanding, Addison-Wesley Publishing Company,

Wokingham, England, 1988.

[57] J. Parsons and Y. Wand, Guidelines for Evaluating

Classes in Data Modelling, Proceedings of the Thirteenth

International Conference on Information Systems, De-

cember 13-16, 1992, Dallas, TX, pp 1-8.

[58] M.S. Poole and G. DeSanctis, Microlevel Structuration in

Computer-Supported Group Decision-Making, Human

Communication Research, vol 19, No 1, 1992, pp. 5-49.

[59] K.R. Popper, Conjectures and Refutations: The Growth

of Scientific Knowledge, New York: Harper and Row,

1963.

[60] R. Rorty, Consequences of Pragmatism, Minneapolis,

MN: University of Minnesota Press, 1982.

[6l] D.A. Schon, The Reflective Practitioner: How Profes-

sionals Think in Action, Basic Books, New York, 1993.

[62] M.A. Scott-Morton, (Editor), The Corporation of the

1990s: Information Technology and Organizational

Transformation, Oxford University Press, 1990.

[63] M.E. Senko, E.B. Altman, M.M. Astrahan and P.L. Fe-

hder+ Data Structures and accessing in Data-Base Sys-

tems, IBM Systems Journal, Vol 12, No 1, 1973, pp

30-93.

[64] P. Shoval and M. Even-Chaime, Database Schema De-

sign: An Experimental Comparison Between Normaliza-

tion and Information Analysis, Database, Vol. 18, No. 3,

Spring 1987-a, pp. 30-39.

[65] H.A. Simon, The Sciences of the Artificial (2nd ed.),

Cambridge, MA: MIT Press, 1981.

[66] A.M. Starfield and A.L. Bleloch, Building Models for

Conservation and Wildlife Management, New York:

Macmillan, 1986.

[67] N.A. Stillings, M.H. Feinstein, J. L Garfield, E.L. Riss-

land, D.A. Rosenbaum, S.E. Weisler and L. Baker-Ward,

Cognitive Science, Cambridge, MA: MIT Press, 1987.

[68] R.E. Tarjan, Algorithm Design, Communications of the

ACM, Vol 30, No 3, March 1987, pp 205-212.

[69] T.J. Teorey, Database Modelling and Design, Morgan

Kaufmann Publishers, Inc., San Mateo, CA., 1990

[70] T.J. Teorey and J.P. Fry, Design of Database Structures,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[71] I. Vessey, S. Jarvenpaa and N. Tractinsky, Evaluation of

Vendor Products: CASE Tools as Methodology Compan-

ions, Communications of the ACM, Vol 35, No 4, April

1992, pp 90-105.

[72] Y. Wand and R. Weber, An Ontological Analysis of

Some Fundamental Information Systems Concepts, Pro-

ceedings of the Ninth International Conference on Infor-

mation Systems, Minneapolis, MN, Nov 30-Dec 3, 1988.

[73] Y. Wand and R. Weber, Toward a Theory of the Deep

Structure of Information Systems, Proceedings of the

Eleventh International Conference on Information Sys-

tems, Copenhagen, Denmark, December 16-19, 1990.

[74] R. Weber, Toward a Theory of Artifacts: A Paradigmatic

Base for Information Systems Research, Journal of Infor-

mation Systems, Vol 1, Spring, 1987, p 3-19.

[75] R. Weber and Y. Zhang, An Ontological Evaluation of

NIAM's Grammar for Conceptual Schema Design, Pro-

ceedings of the Twelfth International Conference on

Information Systems, New York, Dec. 1991, pp. 75-82.

266 S.T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266

Salvatore T. March is a Professor in

the Information and Decision Sci-

ences Department, Carlson School of

Management, University of Min-

nesota. He received his BS, MS, and

PhD degrees in Operations research

from Cornell University. His primary

research interests are Information

System Development, Logical and

Physical Database Design, and Infor-

mation Resource Management. His

research has appeared in Information

and Management, ACM Computing Surceys, ACM Transac-

tions on Database Systems, Communications of the ACM, IEEE

Transactions on Knowledge and Data Engineering, The journal

of MIS, Information Systems Research, Information Science,

Decision Sciences, and Management Sciem ~. He has served as

the Editor-in-chief of ACM Computing Surveys and is cur-

rently an Assiciate Editor for MIS Quarterly.

~,~ Gerald F. Smith is an Assistant Pro-

fessor in the Department of Manage-

ment, College of Business Adminis-

tration, University of Northern Iowa,

Cedar Falls, IA 50614-0125, USA. His

primary area of research is manage-

rial problem solving, with special in-

terests in problem identification and

definition, problem structures, and

quality problem solving. Past research

has appeared in Decision Support Sys-

tems, Management Science, Organiza-

tional Behavior and Human Decision Processes, Omega, and

the IEEE Transactions on Systems, Man, and Cybernetics.

