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Abstract 

Research in IT must address the design tasks faced by practitioners. Real problems must be properly conceptual- 

ized and represented, appropriate techniques for their solution must be constructed, and solutions must be 

implemented and evaluated using appropriate criteria. If significant progress is to be made, IT research must also 

develop an understanding of how and why IT systems work or do not work. Such an understanding must tie together 

natural laws governing IT systems with natural laws governing the environments in which they operate. This paper 

presents a two dimensional framework for research in information technology. The first dimension is based on broad 

types of design and natural science research activities: build, evaluate, theorize, and justify. The second dimension is 

based on broad types of outputs produced by design research: representational constructs, models, methods, and 

instantiations. We argue that both design science and natural science activities are needed to insure that IT research 

is both relevant and effective. 
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1. Introduct ion 

Researchers in Information Technology (IT) 

have defined information as "data that has been 

processed into a form that is meaningful to the 

recipient and is of real or perceived value in 

current or prospective actions or decisions" [[14], 

p. 200]. This definition can be grounded in cogni- 

tivist theories of mental representation [67]. Hu- 

man thinking involves mental representations that 

intendedly correspond to reality. These represen- 

tations are commonly called beliefs or, when 

highly validated, knowledge. They are produced 

" This paper is an extension of ideas originally presented in 

[46] 
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when people pick up sensory inputs or stimuli 

from their environment. As new information is 

acquired, one's beliefs are adjusted to better 

match the perceived reality. 

Human knowledge and beliefs inform actions 

taken in pursuit of goals. Well-informed actions 

(i.e., those based on true beliefs) are more likely 

to achieve desired ends. Information is valuable 

insofar as it helps individuals form true beliefs 

which, in turn, promote effective, goal-achieving 

action. 

Technology has been defined as "practical im- 

plementations of intelligence" [[20], p. 26]. Tech- 

nology is practical or useful, rather than being an 

end in itself. It is embodied, as in implements or 

artifacts, rather than being solely conceptual. It is 

an expression of intelligence, not a product of 
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blind accident. Technology includes the many 

tools, techniques, materials, and sources of power 

that humans have developed to achieve their 

goals. Technologies are often developed in re- 

sponse to specific task requirements using practi- 

cal reasoning and experiential knowledge. 

Information technology is technology used to 

acquire and process information in support of 

human purposes. It is typically instantiated as IT 

systems - complex organizations of hardware, 

software, procedures, data, and people, devel- 

oped to address tasks faced by individuals and 

groups, typically within some organizational set- 

ting. 

IT is pervasive throughout the industrialized 

world. Business and government organizations 

annually spend billions of dollars to develop and 

maintain such systems. IT affects the work we do 

and how that work is done [62]. Innovative uses 

of information technologies have led to signifi- 

cant improvements for some companies (such as 

American Hospital Supply, Federal Express, Mrs 

Fields, Frito Lay, etc.) and have defined the 

competitive marketplace for others (e.g., the air- 

line industry). 

IT practice is concerned with the development, 

implementation, operation, and maintenance of 

IT systems. Development and maintenance are 

largely design activities. Systems analysts, pro- 

grammers, and other professionals construct arti- 

facts that apply information technology to organi- 

zational tasks. Applications can be as mundane as 

keeping track of customer and vendor accounts 

and as sophisticated as decision making systems 

exhibiting human-like intelligence. Implementa- 

tion and operation are processes that utilize de- 

signed methods, techniques, and procedures. Not 

all attempts to exploit information technologies 

have had such positive results [44]. Even mun- 

dane applications of information technology can 

be overly expensive or have adverse affects on the 

organization [26]. 

IT has attracted scientific attention, in part 

because of its potential for dramatically impact- 

ing organizational effectiveness, both positively 

and negatively. Scientists have also been drawn 

by the pervasiveness of IT phenomena in our 

information-based society [18,19]. Scientific inter- 

est in IT reflects assumptions that these phenom- 

ena can be explained by scientific theories and 

that scientific research can improve IT practice. 

Note, however, that there are two kinds of scien- 

tific interest in IT, descriptive and prescriptive. 

Descriptive research aims at understanding the 

nature of IT. It is a knowledge-producing activity 

corresponding to natural science [27]. Prescriptive 

research aims at improving IT performance. It is 

a knowledge-using activity corresponding to de- 

sign science [65]. 
Though not intrinsically harmful, this division 

of interests has created a dichotomy among IT 

researchers and disagreement over what consti- 

tutes legitimate scientific research in the field. 

Such disagreements are common in fields that 

encompass both knowledge-producing and knowl- 

edge-using activities. They are fostered in part by 

the prestige attached to science in modern soci- 

eties and the belief that the term "science" should 

be reserved for research that produces theoretical 

knowledge. The debate in IT research is similar 

to that between engineering and the physical 

sciences. Knowledge-producing, "pure" science 

normally has the upper hand in such debates. In 

IT, however, the situation is different. It could be 

argued that research aimed at developing IT sys- 

tems, at improving IT practice, has been more 

successful and important than traditional scien- 

tific attempts to understand it. With the issue 

undecided, the field is left in an uneasy standoff. 

This article proposes a framework for IT re- 

search that reconciles these conflicting points of 

view. This framework also suggests a research 

agenda for the scientific study of IT. The next 

section contains theoretical background material 

needed to understand the dual nature of IT re- 

search. The framework itself is presented in the 

following section and is applied to IT literature, 

with examples drawn primarily from the domain 

of data management. The final section offers 

prescriptions for future IT research. 

2. Theoretical background 

IT research studies artificial as opposed to 

natural phenomena. It deals with human cre- 
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ations such as organizations and information sys- 

tems. This has significant implications for IT re- 

search which will be discussed later. Of immedi- 

ate interest is that fact that artificial phenomena 

can be both created and studied, and that scien- 

tists can contribute to each of these activities. 

This underlies the dual nature of IT research. 

Rather  than being in conflict, however, both ac- 

tivities can be encompassed under a broad notion 

of science that includes two distinct species, 

termed natural and design science [65]. Natural 

science is concerned with explaining how and why 

things are. Design science is concerned with "de- 

vising artifacts to attain goals" [65, p. 133]. 

Natural science includes traditional research in 

physical, biological, social, and behavioral do- 

mains. Such research is aimed at understanding 

reality. Natural scientists develop sets of con- 

cepts, or specialized language, with which to 

characterize phenomena. These are used in higher 

order constructions - laws, models, and theories 

- that make claims about the nature of reality. 

Theories - deep, principled explanations of phe- 

nomena [1] - are the crowning achievements of 

natural science research. Products of natural sci- 

ence research are evaluated against norms of 

truth, or explanatory power. Claims must be con- 

sistent with observed facts, the ability to predict 

future observations being a mark of explanatory 

success. Progress is achieved as new theories pro- 

vide deeper, more encompassing, and more accu- 

rate explanations. 

Natural science is often viewed as consisting of 

two activities, discovery and justification [35]. Dis- 

covery is the process of generating or proposing 

scientific claims (e.g., theories, laws). Justification 

includes activities by which such claims are tested 

for validity. The discovery process is not well 

understood. Though some have argued that there 

is a "logic" of scientific discovery [7], mainstream 

philosophy of science has historically regarded 

discovery as a creative process that psychologists 

may or may not be able to understand [4]. Promis- 

ing insights into this phenomena have recently 

been offered by AI research [41]. 

Justification, on the other hand, has been 

heavily prescribed for by philosophers of science. 

An initial commitment to inductive logic, justify- 

ing claims by accumulating confirming instances, 

was overthrown by Popper 's  falsificationism [59]. 

Popper argued that scientists should try to dis- 

prove claims since a single negative instance could 

do so, while innumerable confirming instances 

could not prove a theory true. 

Scientific study makes extensive use of the 

hypothetico-deductive method. That  is, theories 

can be tested insofar as observational hypotheses 

can be deduced from them and compared to 

relevant empirical data [4]. Most scientific 

methodologies used by IT researchers are pre- 

scriptions for collecting and assessing data in this 

way [34]. 

Whereas natural science tries to understand 

reality, design science attempts to create things 

that serve human purposes. It is technology-ori- 

ented. Its products are assessed against criteria of 

value or utility - does it work? is it an improve- 

ment? Design is a key activity in fields like archi- 

tecture, engineering, and urban planning [61] that 

may not be thought of as "sciences" per se. At 

the same time, design activities are an important 

part of traditional scientific fields, some scientists 

conducting both natural and design science inves- 

tigations. Then too, fields like operations re- 

search and management science ( O R / M S )  are 

heavily prescriptive in intent, while claiming to be 

sciences. Rather  than producing general theoreti- 

cal knowledge, design scientists produce and ap- 

ply knowledge of tasks or situations in order to 

create effective artifacts. If science is activity that 

produces "credentialed knowledge" [[51], p. 311], 

then, following Simon [65], design science is an 

important part of it. 

Design science products are of four types, con- 

structs, models, methods, and implementations. 

As in natural science, there is a need for a basic 

language of concepts (i.e., constructs) with which 

to characterize phenomena. These can be com- 

bined in higher order constructions, often termed 

models, used to describe tasks, situations, or arti- 

facts. Design scientists also develop methods, ways 

of performing goal-directed activities. Finally, the 

foregoing can be instantiated in specific products, 

physical implementations intended to perform 

certain tasks. Notably absent from this list are 

theories, the ultimate products of natural science 
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research. Rather  than posing theories, design sci- 

entists strive to create models, methods, and im- 

plementations that are innovative and valuable. 

Design science consists of two basic activities, 

build and evaluate. These parallel the discovery- 

justification pair from natural science. Building is 

the process of constructing an artifact for a spe- 

cific purpose; evaluation is the process of deter- 

mining how well the artifact performs. Like the 

discovery process in natural science, the design 

science build process is not well understood. 

Significant difficulties in design science result 

from the fact that artifact performance is related 

to the environment in which it operates. Incom- 

plete understanding of that environment can re- 

sult in inappropriately designed artifacts or arti- 

facts that result in undesirable side-effects. A 

critical challenge in building an artifact is antici- 

pating the potential side-effects of its use, and 

insuring that unwanted side-effects are avoided. 

Evaluation is complicated by the fact that per- 

formance is related to intended use, and the 

intended use of an artifact can cover a range of 

tasks. General  problem solving methods, for ex- 

ample, are applicable to many different problems 

with performance varying considerably over the 

domain of application. Not only must an artifact 

be evaluated, but the evaluation criteria them- 

selves must be determined for the artifact in a 

particular environment. Progress is achieved in 

design science when existing technologies are re- 

placed by more effective ones. 

To further clarify the natural science-design 

science distinction, it can be compared to others 

commonly made. Simon's [65] distinction between 

natural and artificial phenomena, discussed at 

the beginning of this section, should not be con- 

fused with the natural-design science pair. Design 

science produces artifacts and artificial phenom- 

ena. However, natural science can address both 

natural and artificial phenomena. Natural scien- 

tists, for example, try to understand the function- 

ing of organizations, which are artificial phenom- 

ena. Likewise, chemists attempt to determine the 

properties of synthetic compounds, and biologists 

investigate the behaviours of man-made organ- 

isms. These are natural science activities even 

though they take artificial phenomena as their 

objects. Rather than being driven by research 

topic, the natural-design science distinction is 

based on different research objectives. Natural 

science aims at understanding and explaining 

phenomena; design sciences aims at developing 

ways to achieve human goals. 

The distinction between basic and applied sci- 

ence is also relevant. This usually reflects how 

closely scientific research impinges on practice. 

While natural science tends to be basic research 

and design science tends to be applied, the two 

pairs of concepts are not strictly parallel. A natu- 

ral science account of information systems failure 

could be more relevant to practice than the de- 

velopment of a new data modelling formalism. 

Yet the former is natural science research, 

whereas the latter is design science research. 

Again, research intent is critical. 

More relevant is the description-prescription 

distinction frequently employed by decision scien- 

tists [5]. Natural science is descriptive and ex- 

planatory in intent. Design science offers pre- 

scriptions and creates artifacts that embody those 

prescriptions. 

Having differentiated two species of scientific 

activity, it is important to appreciate their inter- 

actions. First, design science creates artifacts, giv- 

ing rise to phenomena that can be the targets of 

natural science research. Group decision support 

systems, for example, foster user behaviours that 

are the subject of natural science investigations 

(see for example, [21]). 

Second, because artifacts "have no dispensa- 

tion to ignore or violate natural laws" [65, p. 6], 

their design can be aided by explicit understand- 

ing of natural phenomena. Thus natural scientists 

create knowledge which design scientists can ex- 

ploit in their attempts to develop technology. 

However, frequently the natural laws governing 

an artifact and its environment are not well un- 

derstood. Hence, the constructed artifact itself 

presents a challenge to explain how and why it 

works. Natural science explanations of how or 

why an artifact works may lag years behind the 

application of the artifact. In medicine, for exam- 

ple, the explanation of why a drug is effective in 

combating a disease may not be known until long 

after the drug is in common use. 



S. T. March, G.F. Smith/Decision Support Systems 15 (1995) 251-266 255 

A final interaction concerns the justification of 

natural science claims. Theories are intended to 

correspond with or present a true account of 

reality. However, reality cannot be directly appre- 

hended; we only have perceptions and other rep- 

resentations of such. How then are we to deter- 

mine if theoretical claims are true? This valida- 

tion problem is overcome in part by the effective- 

ness of theories in practical applications [43]. 

Natural science theories receive confirmatory 

support from the facts that bridges do not col- 

lapse, medical treatments cure diseases, people 

journey to the moon, and nuclear bombs explode. 

Indeed, philosophical pragmatists deny the corre- 

spondence notion of truth, proposing that truth 

essentially is what works in practice [60]. Thus, 

design science provides substantive tests of the 

claims of natural science research. 

3. A research framework in information technol- 

ogy 

Prior research frameworks in IT have charac- 

terized specific research subjects, identifying sets 

of variables to be studied (see, e.g., [32,24,49]). 

Such frameworks facilitate the generation of spe- 

cific research hypotheses by positing interactions 

among identified variables. While this provides 

innumerable research questions it has several 

weaknesses. First, it fails to provide direction for 

choosing important interactions to study [74]; any 

and all interactions among identified variables 

are treated equally. Second, it fails to account for 

the large body of design science research being 

done in the field. Third, it fails to recognize that 

IT research is concerned with artificial phenom- 

ena operating for a purpose within an environ- 

ment; the nature of the task to which the IT is 

applied is critical. Fourth, it fails to recognize the 

adaptive nature of artificial phenomena; the phe- 

nomena itself is subject to change, even over the 

duration of the research study. 

Weber recognized that IT research is the study 

of artifacts as they are adapted to their changing 

environments and to changes in their underlying 

components [74]. We further argue that an appro- 

priate framework for IT research lies in the inter- 

action of design and natural sciences. IT research 

should be concerned both with utility, as a design 

science, and with theory, as a natural science. 

The theories must explain how and why IT sys- 

tems work within their operating environments. 

Our proposed framework is driven by the dis- 

tinction between research outputs and research 

activities (Fig. 1). The first dimension of the 

Research Activities 

Research 
Outputs 

Bu i ld  Evaluate Theorize Justify 

Constructs 

Model 

Method 

Instantiation 

Fig. 1. A research framework. 
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framework is based on design science research 

outputs or artifacts: constructs, models, methods, 

and instantiations. The second dimension is based 

on broad types of design science and natural 

science research activities: build, evaluate, theo- 

rize, and justify. IT research builds and evaluates 

constructs, models, methods, and instantiations. 

It also theorizes about these artifacts and at- 

tempts to justify these theories. Building and 

evaluating IT artifacts have design science intent. 

Theorizing and justifying have natural science 

intent. 

3.1. Research outputs 

Constructs or concepts form the vocabulary of 

a domain. They constitute a conceptualization 

used to describe problems within the domain and 

to specify their solutions. They form the special- 

ized language and shared knowledge of a disci- 

pline or sub-discipline. Such constructs may be 

highly formalized as in semantic data modelling 

formalisms (having constructs such as entities, 

attributes, relationships, identifiers, constraints 

[31]), or informal as in cooperative work (con- 

sensus, participation, satisfaction [39]). Kuhn's 

notion of paradigm is based on the existence of 

an agreed upon set of constructs for a domain 

[40]. 

Conceptualizations are extremely important in 

both natural and design science. They define the 

terms used when describing and thinking about 

tasks. They can be extremely valuable to design- 

ers and researchers. Brooks [6], for example, dis- 

cusses the transformation in thinking about the 

software development process when presented 

with the conceptualization of growing rather then 

building. When software is built, one expects to 

specify the entire plan in advance and then con- 

struct the software according to plan. When soft- 

ware is grown, it is developed incrementally. 

Functionality is added as it is needed. The soft- 

ware developer conceives of the product as being 

dynamic, constantly evolving rather than as a 

static entity that is "completed" at a point in 

time. 

On the other hand, conceptualizations can 

blind researchers and practitioners to critical is- 

sues. In the database area, the relational data 

model [11] provided an extremely influential con- 

ceptualization with which to describe data. It 

conceives of data as flat tables and defines con- 

cepts such as functional dependency and normal 

forms with which to evaluate database structures. 

It removes the consideration of physical file 

structures and permits an analyst to be concerned 

with "well-formed" logical structures. Unfortu- 

nately, this formalism became so ingrained that 

researchers lost sight of its shortcomings for phys- 

ical database design. Research activities focused 

on how to efficiently process flat tables (see, e.g., 

[52]), when it is clear that nested record struc- 

tures and system pointers (disallowed in the rela- 

tional model but available in prior database rep- 

resentations [45]) are necessary to achieve effi- 

cient operations in many applications. 

A model is a set of propositions or statements 

expressing relationships among constructs. In de- 

sign activities, models represent situations as 

problem and solution statements. In semantic 

data modelling, the term model has been inap- 

propriately used to mean data modelling formal- 

ism. The Entity-Relationship Model [9], for ex- 

ample, is a set of constructs, a data modelling 

formalism. The representation of an information 

system's data requirements using the Entity-Rela- 

tionship constructs is more appropriately termed 

a model. Such a model is a solution component to 

an information requirements determination task 

and a problem definition component to an infor- 

mation system design task. 

A model can be viewed simply as a descrip- 

tion, that is, as a representation of how things 

are. Natural scientists often use the term model 

as a synonym for theory, or propose models as 

weak or incipient theories, in that they propose 

that phenomena be understood in terms of cer- 

tain concepts and relationships among them. In 

our framework, however, the concern of models 

is utility, not truth (the concern of theories is 

truth, as discussed below). A semantic data model, 

for example, is valuable insofar as it is useful for 

designing an information system. Certain inaccu- 

racies and abstractions are inconsequential for 

those purposes. In data models, for example, the 

notion of entity is pragmatically defined as an 
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"arbitrary" grouping of instances [37,38]. Al- 

though theoretical criteria have been proposed 

for defining entities [57], the key concern is that 

the entities chosen be useful in representing and 

communicating information system requirements. 

Although silent or inaccurate on the details, a 

model may need to capture the structure of real- 

ity in order to be a useful representation. Simula- 

tion and mathematical models, for example, can 

be of immense practical value, although lacking 

in many details [66]. On the other hand, unless 

the inaccuracies and abstractions inherent in 

models are understood, their use can lead to 

inappropriate actions. 

Modelling database operations as "logical 

block accesses" [70], for example, calculates the 

expected number of data blocks required to sat- 

isfy a database retrieval request, ignoring the 

details of physical storage devices and the com- 

plexities of the computer operating environment. 

It is extremely useful for feasibility assessment 

where the purpose is to obtain "order of magni- 

tude" approximations of system performance. 

However, it is inappropriate for physical database 

design where the purpose is to tune the design 

for efficient overall operations. In this case physi- 

cal storage devices and the computer operating 

environment must be more accurately repre- 

sented or the model will not be able to distin- 

guish the efficiency effects of various design deci- 

sions [10]. 

To further illustrate the utilitarian concern of 

constructs and models, consider the research in 

expert systems where knowledge is modeled as a 

set of production rules or frames [13]. Although 

proposed as a model of human expertise (i.e., a 

cognitive science theory), from a design science 

point of view, it is irrelevant if humans actually 

represent knowledge in this way. The concern is 

if this type of representation is useful for the 

development of artifacts to serve human pur- 

poses. While expert systems research has been 

criticized for abandoning "basic research on in- 

telligence" (Hofstadter, quoted by Weber [74]), 

its design science impacts are irrefutable. 

A method is a set of steps (an algorithm or 

guideline) used to perform a task. Methods are 

based on a set of underlying constructs (language) 

and a representation (model) of the solution space 

[54]. Although they may not be explicitly articu- 

lated, representations of tasks and results are 

intrinsic to methods. Methods can be tied to 

particular models in that the steps take parts of 

the model as input. Further, methods are often 

used to translate from one model or representa- 

tion to another in the course of solving a prob- 

lem. 

Data structures, for example, combine a repre- 

sentation of computer memory with algorithms to 

store and retrieve data. The problem statement 

specifies the existing stored data and the data to 

be stored or retrieved. The method (algorithm) 

transforms this into a new specification of stored 

data (storage) or returns the requested data (re- 

trieval). Many algorithms use tree-structured con- 

structs to model the problem and its solution. 

System development methods facilitate the 

construction of a representation of user needs 

(expressed, for example, as problems, decisions, 

critical success factors, socio-technical and imple- 

mentation factors, etc.). They further facilitate 

the transformation of user needs into system re- 

quirements (expressed in semantic data models, 

behaviour models, process flow models, etc.) and 

then into system specifications (expressed in 

database schemas, software modules, etc.), and 

finally into an implementation (expressed in phys- 

ical data structures, programming language state- 

ments, etc.). These are further transformed into 

machine language instructions and bits stored on 

disks. 

The desire to utilize a certain type of method 

can influence the constructs and models devel- 

oped for a task. For example, desiring to use a 

mathematical programming method, a researcher 

may conceptualize a database design problem 

using constructs such as decision variable, objec- 

tive function, and constraint. Developing a model 

of the problem using these constructs is itself a 

design task requiring powerful methods and tech- 

niques. Depending on the particulars of the 

model, new mathematical programming solution 

methods may need to be designed. The solution 

to the model itself represents a design task for 

implementation. 

Natural science uses but does not produce 
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methods. Design science creates the methodolog- 

ical tools that natural scientists use. Research 

methodologies prescribe appropriate ways to 

gather and analyze evidence to support (or re- 

fute) a posited theory [34,42]. They are human- 

created artifacts that have value insofar as they 

address this task. 

An  instantiation is the realization of an artifact 

in its environment. IT research instantiates both 

specific information systems and tools that ad- 

dress various aspect of designing information sys- 

tems. Instantiations operationalize constructs, 

models, and methods. However, an instantiation 

may actually precede the complete articulation of 

its underlying constructs, models, and methods. 

That  is, an IT system may be instantiated out of 

necessity, using intuition and experience. Only as 

it is studied and used are we able to formalize the 

constructs, models, and methods on which it is 

based. 

Instantiations demonstrate the feasibility and 

effectiveness of the models and methods they 

contain. Newell and Simon [53] emphasize the 

importance of instantiations in computer science, 

describing it as "an empirical discipline." They 

further state, "Each new program that is built is 

an experiment. It poses a question to nature, and 

its behaviour offers clues to the answer." Instan- 

tiations provide working artifacts, the study of 

which can lead to significant advancements in 

both design and natural science. 

Group Decision Support System (GDSS) in- 

stantiations, for example, were developed in or- 

der to study the impacts of automated interven- 

tions on group processes. As early GDSSs were 

studied, constructs (e.g., roles, anonymity, Type I, 

II, and III GDSSs), models (e.g., situation models 

representing different problem types), and meth- 

ods (e.g., idea generation, idea evaluation, auto- 

mated facilitation) [16] leading to improved in- 

stantiations, were developed. 

As a further example of the importance of 

instantiations, consider early research in operat- 

ing systems. An operating system manages the 

resources of a computer system. It instantiates 

constructs such as processes, states, interrupts, 

and abstract machines and uses methods such as 

scheduling algorithms and memory management 

algorithms. The operationalization of such con- 

cepts within the UNIX operating system, "led a 

generation of software designers to new ways of 

thinking about programming" [[2], p. 757]. 

3.2. Research activities 

Research activities in design science are 

twofold: build and evaluate. Build refers to the 

construction of the artifact, demonstrating that 

such an artifact can be constructed. Evaluate 

refers to the development of criteria and the 

assessment of artifact performance against those 

criteria. 

Research activities in natural science are par- 

allel: discover and justify. Discover, or more ap- 

propriately for IT research, theorize, refers to the 

construction of theories that explain how or why 

something happens. In the case of IT research 

this is primarily an explanation of how or why an 

artifact works within its environment. Justify 

refers to theory proving. It requires the gathering 

of scientific evidence that supports or refutes the 

theory. 
We build an artifact to perform a specific task. 

The basic question is, does it work? Building an 

artifact demonstrates feasibility. These artifacts 

then become the object of study. We build con- 

structs, models, methods, and instantiations. Each 

is a technology that, once built, must be evalu- 

ated scientifically. 

We evaluate artifacts to determine if we have 

made any progress. The basic question is, how 

well does it work? Recall that progress is achieved 

when a technology is replaced by a more effective 

one. Evaluation requires the development of met- 

rics and the measurement of artifacts according 

to those metrics. Metrics define what we are 

trying to accomplish. They are used to assess the 

performance of an artifact. Lack of metrics and 

failure to measure artifact performance according 

to established criteria result in an inability to 

effectively judge research efforts. 

Hopcroft [30], for example, describes early re- 

search in algorithm development as being "very 

unsatisfying" due to a lack of coherent metrics by 

which to compare performance. A common ap- 

proach to evaluating an algorithm was to com- 
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pare the execution time of the algorithm with 

that of a competing algorithm for a specific task. 

The difficulty lay in the fact that the two algo- 

rithms were likely written in different languages 

and run on different computers, yielded little 

information from which to judge their relative 

performance. This motivated the development of 

"worst-case asymptotic performance" metrics. 

These provided objective measures of the relative 

performance of algorithms independent of their 

implementations. 

However, as noted by Tarjan [68], metrics 

themselves must be scrutinized by experimental 

analysis. The algorithm with best "worst-case" 

performance may not be the best algorithm for a 

task. The simplex method, an algorithm com- 

monly used to solve linear programming prob- 

lems, for example, has relatively poor worst-case 

performance, growing "exponentially with the 

number of linear inequalities" [[36], p. 108]. The 

ellipsoid method, on the other hand, is polynomi- 

aly bounded, a considerable improvement. In 

practice, however, " the number of iterations is 

seldom greater than three or four times the num- 

ber of linear inequalities" for the simplex algo- 

rithm, whereas the ellipsoid method does not fare 

nearly so well. 

Given an artifact whose performance has been 

evaluated, it is important to determine why and 

how the artifact worked or did not work within its 

environment. Such research applies natural sci- 

ence methods to IT artifacts. We theorize and 

then justify theories about those artifacts. 

Theories explicate the characteristics of the 

artifact and its interaction with the environment 

that result in the observed performance. This 

requires an understanding of the natural laws 

governing the artifact and those governing the 

environment in which it operates. Furthermore,  

the interaction of the artifact with its environ- 

ment may lead to theorizing about the internal 

workings of the artifact itself or about the envi- 

ronment. 

Among others, Chan, et. al. [8] conclude that, 

for inexperienced end-users, semantic data mod- 

els and query languages are more effective for 

database access than the relational data model 

and SQL. While this is an important evaluative 

result, the critical question for designers of 

database interfaces is, why are the semantic data 

models more effective? Norman [56] theorizes 

that human performance in man-machine inter- 

actions depends on the "gulf" between the hu- 

man's conceptualization of the task and the pre- 

sented interface. When the gulf is large, perfor- 

mance is poor. When the gulf is small, perfor- 

mance is good. One could theorize, then, that 

semantic data models better correspond to an 

end-user's conceptualization of a database than 

does the relational model. 

Mathematically-based artifacts may lead a re- 

searcher to posit mathematical theorems in order 

to explain behaviour and improve performance. 

Genetic algorithms, for example, were developed 

nearly twenty years ago and have been effectively 

applied to numerous discrete optimization prob- 

lems [15] including distributed database design 

[47]. They were initially developed based on the 

analogy of natural selection resulting in improved 

living populations [28,29]. Yet only recently has 

theory been developed to explain how various 

control parameters affect performance [25]. 

Theorizing in IT research must explicate those 

characteristics of the IT artifact operating in its 

environment that make it unique to IT and re- 

quire unique explanations. Theorizing that New- 

ton's theory of gravity holds for IT, and testing it 

by dropping a PC from an office window in the 

MIS department is obviously not valuable. While 

this example is extreme, the issue is that re- 

searchers should not simply test theories from 

reference disciplines in an IT context unless there 

is good reason to believe that IT phenomena are 

unique in some way that would affect the applica- 

bility of that theory. On the other hand, where IT 

artifacts significantly affect the task or the envi- 

ronment, adapting theories from referent disci- 

plines can be extremely fruitful (e.g., theories of 

group dynamics in a GDSS environment [58]). 

Given a generalization or theory we must jus- 
tify that explanation. That  is, we must gather 

evidence to test the theory. For artifacts based on 

mathematical formalisms or whose interactions 

with the environment are represented mathemat- 

ically (such as in information economics research 

or automated database design), this can be done 
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mathematically, i.e., by using mathematics and 

logic to prove posited theorems. In such cases, we 

normally prove things about the performance of 

the artifact based on some metric. Database de- 

sign algorithms, for example, have been proven to 

produce "optimal" designs in the sense that they 

optimize some performance measure (e.g., mini- 

mize the operating cost) for the given set of 

database activities. Of course, these results are 

only valid within the underlying formal problem 

representation (model). Furthermore, the per- 

formance metrics themselves must be justified 

(e.g., is response time more significant than oper- 

ating cost?). 

Justification for non-mathematically repre- 

sented IT artifacts follows the natural science 

methodologies governing data collection and 

analysis [34]. 

3.3. Application to IT  research 

Constructs, models, methods, and instantia- 

tions are each artifacts that address some task. 

Research activities related to these artifacts are: 

build, evaluate, theorize, and justify. Build and 

evaluate are design science research activities 

aimed at improving performance. Theorize and 

justify are natural science research activities 
aimed at extracting general knowledge by propos- 

ing and testing theories. 

This four by four framework produces sixteen 

cells describing viable research efforts. Research 

can build, evaluate, theorize about, or justify the- 

ories about constructs, models, methods, or in- 

stantiations. Different cells have different objec- 

tives and different methods are appropriate in 

different cells. Research efforts often cover mul- 

tiple cells. Evaluation of research should be based 

on the cell or cells in which the research lies. 

Research in the build activity should be judged 

based on value or utility to a community of users. 

Building the first of virtually any set of con- 

structs, model, method, or instantiation is deemed 

to be research, provided the artifact has utility for 

an important task. The research contribution lies 

in the novelty of the artifact and in the persua- 

siveness of the claims that it is effective. Actual 

performance evaluation is not required at this 

stage. The significance of research that builds 

subsequent constructs, models, methods, and in- 

stantiations addressing the same task is judged 

based on "significant improvement," e.g., more 

comprehensive, better performance. Research in 

database design has numerous examples of re- 

searchers extending or combining constructs, 

models, methods, and instantiations developed by 

other researchers (see, e.g., [47,48]). 
Recognizing that there is nothing new under 

the sun, "first" is usually interpreted to mean, 

"never done within the discipline." The relational 

data model [11], for example, was the first at- 

tempt to define a formalism in which to describe 

data and retrieval operations. Relations and rela- 

tional operators had never before been used to 

describe data, although they had been used ex- 

tensively in mathematics to describe sets and set 

behaviour. 

While there is little argument that novel con- 

structs, models, and methods are viable research 

results, there is less enthusiasm in the informa- 

tion technology literature for novel instantiations. 

Novel instantiations, it is argued, are simply ex- 

tensions of novel constructs, models, or methods. 

Hence, we should value the constructs, models, 

and methods, but not the instantiations. Reaction 

is quite different in the computer science litera- 

ture where a key determinant of the value of 
constructs, models, and methods is the existence 

of an implementation (instantiation). 

In much of the computer science literature it is 

realized that constructs, models, and methods 

that work "on paper" will not necessarily work in 

real world contexts. Consequently, instantiations 

provide the real proof. This is evident, for exam- 

ple, in AI where achieving "intelligent behaviour" 

is a research objective. Exercising instantiations 

that purport to behave intelligently is the primary 

means of identifying deficiencies in the con- 

structs, models, and methods underlying the in- 

stantiation. 

On the other hand, instantiations that apply 

known constructs, models, and methods to novel 

tasks may be of little significance. Of primary 

concern is the level of uncertainty over the viabil- 

ity ot the constructs, models, and methods for the 

task. For example, there is no reason to believe 
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that expert system technology would not be appli- 

cable to the task of choosing stock investments. 

The task is characterized as having a limited 

number of choices, reasonably well defined selec- 

tion criteria, and there arc a number of experts 

currently performing the task. Instantiating an 

expert system for this task, even the first, would 

be of marginal scientific significance. 

Research in the evaluate activity develops met- 

rics and compares the performance of constructs, 

models, methods, and instantiations for specific 

tasks. Metrics define what a research area is 

trying to accomplish. Since " the second" or sub- 

sequent constructs, models, methods, or instanti- 

ations for a given task must provide significant 

performance improvements, evaluation is the key 

activity for assessing such research. 

Evaluation of constructs tends to involve com- 

pleteness, simplicity, elegance, understandability, 

and ease of use. Data modelling formalisms, for 

example, are constructs with which to represent 

the logical structure of data. Proposing a data 

modelling formalism falls within the build-con- 

structs cell of the framework. The database liter- 

ature was subjected to a plethora of data mod- 

elling formalisms [31]. As researchers found defi- 

ciencies in existing data modelling formalisms, 

they proposed additional or slightly different con- 

structs to meet their specific tasks (e.g., modelling 

statistical and scientific data). Finally, reviewers 

screamed, "not  yet another..." 

Models are evaluated in terms of their fidelity 

with real world phenomena, completeness, level 

of detail, robustness, and internal consistency. 

For example, numerous mathematical models 

have been developed for database design prob- 

lems. Posing a new database design model may 

be a significant contribution; however, to inform 

researchers in the field, the new model must be 

positioned with respect to existing models. Often 

existing models are extended to capture more of 

the relevant aspects of the task. March and Rho 

[47], for example, extended the distributed 

database model posed by Cornell and Yu [12] to 

include not only the allocation of data and opera- 

tions, but data replication and concurrency con- 

trol as well, significant issues in this area. 

Evaluation of methods considers operational- 

ity (the ability to perform the intended task or the 

ability of humans to effectively use the method if 

it is not algorithmic), efficiency, generality, and 

ease of use. Associated with the numerous dis- 

tributed database design models are numerous 

methods to solve problems represented in those 

models. While some use mathematical algorithms 

(e.g., linear or non-linear programming), others 

develop novel methods (e.g., iterative algorithms). 

In the former case, the method is not a significant 

research contribution, although it may be impor- 

tant to evaluate the effectiveness or efficiency of 

the method for this particular type of problem 

(e.g., are there characteristics of the model that 

make one method more or less applicable?). In 

the latter case, the method itself is a significant 

research contribution, to be studied and evalu- 

ated even apart from the application. 

As another example, consider the numerous 

information system development methods. These 

can be evaluated for ccrnpleteness, consistency, 

ease of use, and the qu" Jty of results obtained by 

analysts applying the method [33,56,64]. 

Evaluation of instantiations considers the effi- 

ciency and effectiveness of the artifact and its 

impacts on the environment and its users. A 

difficulty with evaluating instantiations is separat- 

ing the instantiation from the constructs, models, 

and methods embodied in it. CASE tools are an 

example of instantiations. While these embody 

certain constructs, models, and methods, the de- 

veloper of the CASE tool must select from among 

a wide array of available constructs, models, and 

methods, and must decide how much latitude to 

afford users [71]. It is these design choices that 

differentiate CASE tools. Evaluations focus on 

these differences and how they change the task of 

system development. 

Once metrics are developed, empirical work 

may be necessary to perform the evaluation. Con- 

structs, models, methods, and instantiations must 

be exercised within their environments. Often 

this means obtaining a subject group to do the 

exercising. Often multiple constructs, models, 

methods, or instantiations are studied and com- 

pared. Issues that must be addressed include 

comparability, subject selection, training, time, 

and tasks. Methods for this type of evaluation are 
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not unlike those for justifying or testing theories. 

However, the aim is to determine "how well" an 

artifact works, not to prove anything about how 

or why the artifact works. 

The third and fourth columns of the frame- 

work correspond to natural science activities, the- 

orize and justify. The theorize activity involves 

explaining why and how the effects came about, 

i.e., why and how the constructs, models, meth- 

ods, and instantiations work. This activity at- 

tempts to unify the known data (observations of 

effects) into viable theory - explanations of how 

and why things happen. It may involve developing 

constructs with which to theorize about con- 

structs, models, methods, and instantiations. The 

justify activity performs empirical and/or  theoret- 

ical research to test the theories posed. Such 

theories, once justified, can provide direction for 

the development of additional and better tech- 

nologies. 

As discussed earlier, Norman [55] developed 

the construct of gulfs when theorizing about how 

the constructs used in human-computer interac- 

tion affect performance. This construct underlies 

theory posed by Weber and Zhang [75] explaining 

why analysts had difficulty with a particular data 

modelling formalism (activity in the theorize-con- 

structs cell). Its value has been substantiated by 

several studies [3] (activity in the justify-con- 

structs cell). 

Theorizing about models can be as simple as 

positing that a model used for design purposes is 

true (e.g., that an expert's knowledge of a task is 

accurately represented by a set of production 

rules), or as complicated as developing an ex- 

planatory model of an IT phenomena (e.g., repre- 

senting system-task fit as a basis for user percep- 

tions of satisfaction with information technology 

[22,231). 

The theorize-model cell also includes adapting 

theories from base disciplines or developing new, 

general theories to explain how or why IT phe- 

nomena work. Nolan's [54] stage theory, for ex- 

ample, posits that the growth pattern of an EDP 

organization follows a sigmoid shape. Although 

criticized as a simple application of general sys- 

tems theory [74]), it does explain important phe- 

nomena in the organizational appropriation of 

information technologies. The theory has been 

tested by various researchers, albeit with mixed 

results. 
As another example, DeSanctis and Poole [17] 

proposed Adaptive Structuration Theory (AST) 

to explain differences in how GDSS technologies 

were used and in the effectiveness of that use for 

different group and task characteristics. Although 

tested by those researchers in a laboratory study, 

they note that evidence from real groups engaged 

in a diversity of real tasks over a substantial 

period of time must be gathered. 

For algorithmic methods, theorizing can be 

formal and mathematical with logical proofs be- 

ing used for justification (e.g., database design 

algorithms) or it can be behavioral, explaining 

why or how a method works in practice (e.g., why 

and how particular system development methods 

work). As discussed earlier, formal, mathematical 

theories are proven only within their defined 

formalism - they must be tested in practice to 

validate the formalism. 

Theorizing about instantiations may be viewed 

as a first step toward developing more general 

theories (e.g., explaining how electronic mail af- 

fects communication may lead to more general 

theories of the effects of technology or more 

general theories about human communication) or 

as the specialization of an existing general theory 

(e.g., applying innovation-diffusion theory to spe- 

cific information technologies such as spread- 

sheets and electronic mail can facilitate under- 

standing of the IT phenomena). 

4. Discussion and prescriptions for IT research 

Key to understanding IT research is the fact 

that IT deals with artificial phenomena rather 

than natural phenomena. Brooks [6, p. 12] ob- 

serves, "Einstein argued that there must be sim- 

plified explanations of nature because God is not 

capricious or arbitrary," but concludes that, "No 

such faith comforts the software engineer" be- 

cause the objects of study "were designed by 

different people, rather than by God." The phe- 

nomena studied in IT research are artifacts that 
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are designed and built by man to accomplish the 

purposes of man. 

Implications for IT research are threefold. 

First, there may not, in fact, be an underlying 

deep structure to support a theory of IT. Our 

theories may need, instead, to be based on theo- 

ries of the natural phenomena (i.e., people) that 

are impacted by the technology. Second, our arti- 

facts are perishable, hence our research results 

are perishable. As needs change, the artifacts 

produced to meet those needs also change. A 

theory of how programmers use a now-defunct 

language, for example, would be of little interest. 

Third, we are producing IT artifacts at an ever 

increasing rate, resulting in innumerable phe- 

nomena to study. Explicating and evaluating IT 

artifacts (constructs, models, methods, and in- 

stantiations) will facilitate their categorization so 

that research efforts will not be wasted building 

and studying artifacts that have already been 

built and studied "in kind." 

Data modelling is an area in which artifacts 

were not adequately explicated or evaluated. As a 

result, research efforts proposed data modelling 

formalisms that, in essence, had already been 

built - they varied primarily in the names chosen 

for constructs. Metrics were not developed and 

substantive comparative evaluations were not 

done. We still lack an accepted set of metrics and 

comparative analysis of data modelling for- 

malisms. We further lack a theory of constructs 

for data modelling formalisms, although work is 

beginning in each of these areas [3,73]. 

Similarly in database management, significant 

amounts of build research have been done with- 

out adequate theories to explicate and studies to 

evaluate its underlying constructs, models, meth- 

ods, and instantiations. As discussed earlier, the 

relational data model [11] has been the dominant 

formalism in both research and practice over the 

past decade. However, it was not compared with 

competing formalisms until recently [8]. Had the 

relational model been compared to formalisms 

such as DIAM [63], for end-user database inter- 

action, it would have been clear that relational 

languages were not as effective as the graphical 

constructs in DIAM (similar to those in current 

semantic data models), and research in end-user 

languages could have shifted from relational con- 

structs to semantic constructs. 

With the dominance of relational DBMSs in 

practice, the performance shortcomings for cer- 

tain types of applications (e.g., CAD and engi- 

neering databases) have become apparent. Among 

other things, the "next generation" of DBMSs, 

the so-called Object-Oriented DBMSs, have re- 

implemented complex record structures (at the 

physical level) and provide efficient system point- 

ers for interfile connections, representations not 

unlike those described in DIAM and imple- 

mented in pre-relational DBMSs! 

Current research in system development can 

be similarly characterized. Significant attention 

has been given to the build activity. Process, data, 

and behaviour representations (formalisms) have 

been build and are in use (see, e.g., [31,56]). 

Methods to build models using these representa- 

tions have been proposed, although these are 

mostly ad hoc (see, e.g., [69]). CASE tools instan- 

tiate representations and methods. Thus far there 

has been only moderate evaluation activity for 

any of these artifacts. Several researchers com- 

pare and evaluate data modelling formalisms (e.g., 

[3,75]), methods (e.g., [33,64]), and instantiations 

(e.g., [71]). Additional research is needed to de- 

termine what, in fact, actually works in practice. 

Much of this work should be empirical. 

If, indeed, progress is to be made in system 

development, not only must we determine what 

works, we must understand why it works. There  

are virtually no generalizations or theories ex- 

plaining about why and how (or even if) any of 

these artifacts work. Wand and Weber's research 

[72,73] on Ontology may provide a beginning to 

such a theory, however, significant work is needed 

before this can be considered to be a theory of 

system development. Further, any such theory 

must be justified scientifically before its princi- 

ples can be introduced back into the artifacts and 

the cycle repeated. 
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