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In this study, the design of a novel model based on nonlinear third-order Emden–Fowler delay differential (EF-DD) equations is
presented along with two types using the sense of delay differential and standard form of the second-order EF equation. )e
singularity at ξ � 0 at single or multiple points of each type of the designed EF-DDmodel are discussed.)e detail of shape factors
and delayed points is provided for both types of the designed third-order EF-DDmodel. For the verification and validation of the
model, two numerical examples are presented of each case and numerical results have been performed using the artificial neural
network along with the hybrid of global and local capabilities. )e comparison of the obtained numerical results with the exact
solutions shows the perfection and correctness of the designed third-order EF-DD model.

1. Introduction

)e delay differential (DD) equation is known as one of the
historical and important equations. Recently, DD equation
has attained much attention of the researcher’s community
due to its vast applications inmany biological models, as well
as scientific phenomena such as communication system
model, dynamical population model, economical systems,
engineering system, and transport and propagation model
[1–5]. It is always interested to find the solution of DD
equations and many researchers have applied different
numerical/analytical techniques. Brunner et al. [6] solved
DD equation by applying a discontinuous Galerkin nu-
merical scheme. Hsiao and Wu [7] applied Haar wavelet to
solve DD equations, while Wang [8] presented the solution
of DD equations using Legendre wavelet. Adomian and
Rach [9] solved DD equation using the Adomian decom-
position scheme. Shakeri and Dehghan [10] found the so-
lutions of DD initial value problems using the homotopy

perturbation scheme. Erdogan et al. [11] implemented finite
difference approach on layer-adapted mesh using the sin-
gularly perturbed DD equations.)e general form of the DD
model is written as [12, 13]

d3u

dξ3
� h ξ, u(ξ − τ),

du(ξ − τ)

dξ
,
d2u(ξ − τ)

dξ2
( ),

u(0) � A,
du(0)

dξ
� B,

d2u(0)

dξ2
� C,


(1)

where h shows the linear/nonlinear function and τ is the
delayed term, whereas A, B, and C are the constants.

)e singular study has become very significant in the
modern era due to the variety of applications in technology,
engineering, and biological and physical sciences. )e sin-
gular nature models are always difficult, grim, and chal-
lengeable to solve for the research community. One of the
important, famous, historical, and singular models is
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Emden–Fowler (EF) model that shows the singularity at the
origin. Since its invention, this model has been solved by
various analytical and numerical schemes, and it has a
number of applications in the study of relativistic mechanics,
fluid dynamics, population growth model, pattern creation,
and the study of chemical reactor models. )e literature
form of the EF model is written as [14–16]

d2u

dξ2
+
κ

ξ

du

dξ
+ g(ξ)h(u) � 0,

u(0) � A1,
du(0)

dξ
� A2,


(2)

where κ≥ 1 is the shape vector. )e EF model (1) becomes
the Lane–Emden model by taking h(u) � 1 and is written as
follows:

d2u

dξ2
+
κ

ξ

du

dξ
+ h(u) � 0,

u(0) � A1,
du(0)

dξ
� A2.


(3)

)e above singular models have been achieved from the
work of Homer Lane and Robert Emden. )ese models
designate inner construction of polytropic stars, gas cloud
model, cluster galaxies, and radiative cooling. Due to the
worth of these models, no one can deny the value and
importance of such models, which has vast applications in
the physical science field [17], isotropic continuous media
[18], density of gaseous star [19], morphogenesis [20], dusty
fluid models [21], stellar structure models [22], reactions
based on catalytic diffusion [23], oscillating magnetic sys-
tems [24], isothermal gas sphere models [25], mathematical
physics [26], catalytic diffusion reactions [23], classical/
quantum mechanics [27], and electromagnetic theory [28].

Due to the fame of these models, the researcher’s
community is interested to solve these models and only a few
methods are available in the literature that has been in-
vestigated. One of the well-known methods used to solve
these models is the Adomian decomposition method, which
is proposed by Shawagfeh and Wazwaz [29, 30]. Parand and
Razzaghi [31] implemented a famous numerical scheme to
solve singular equations. Liao [32] applied an analytic
technique to avoid the difficulty of singular points. Bender
et al. [33] proposed a perturbative scheme to solve the
singular models. Nouh [34] presented two techniques’
power series and Pade approximation to solve the singular
models.

)e aim of this study is to design a novel third-order
Emden–Fowler delay differential (EF-DD) model along with
two types. Two examples of the designed third-order EF-DD
model have been presented for both of the types. For the
correctness of the model, the numerical investigations have
been performed by using an artificial neural network along
with its global/local competences. )e singular ordinary
differential equations are much important and have many
applications in engineering as well as scientific applications,

e.g., optimization and control theory, reactant application in
the area of chemical reactor, theory of boundary layer, and
biological sciences.

)e structure of remaining paper is summarized as
follows. Section 2 defines the construction of the third-order
EF-DD model along with two types. Methodology and the
detail of the results for solving the third-order EF-DD
equations are provided in the Section 3. )e conclusions
along with future research directions are drawn in the
Section 4.

2. Construction of Third-Order EF-DD Model

In this section, two different types are presented based on the
third-order EF-DD model. )e construction of the third-
order EF-DD model along with the singular points, delayed
points, and shape factors for both of the types is discussed.
)e initial conditions of the designed third-order EF-DD
model are achieved using the standard form of the Lane-
–Emden. To derive the third-order EF-DD model system of
Emden–Fowler equations, the mathematical form is used as
follows:

ξ− k
dp

dξp
ξk

dq

dξq
( )u(ξ − τ) + g(ξ)h(u) � 0, (4)

where k is real positive number. To determine the third-
order DD-EF model, the values of p and q should be des-
ignated as follows:

p + q � 3, p, q≥ 1. (5)

)e following two possibilities satisfy equation (5) as
follows:

p � 2,

q � 1,
(6)

p � 1,

q � 2.
(7)

2.1. Type 1. Using equations (6), the updated form of
equation (4) is

ξ− k
d2

dξ2
ξk

d

dξ
( )y(ξ − τ) + g(ξ)h(u) � 0. (8)

)e derivative part of the above equation is obtained as
follows:

d2

dξ2
ξk

d

dξ
( )u(ξ − τ) � ξk

d3

dξ3
u(ξ − τ) + 2kξk−1

d2

dξ2
u(ξ − τ) + k(k − 1)u(ξ − τ)ξk−2

d

dξ
u(ξ − τ).

(9)

Using the above expression in equation (8), the third-
order EF-DD equation becomes
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d3

dξ3
u(ξ − τ) +

2k

ξ

d2

dξ2
u(ξ − τ) +

k(k − 1)

ξ2
d

dξ
u(ξ − τ) + g(ξ)h(u) � 0,

u(0) � α,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0,


(10)

where the singular point at ξ � 0 appears two times as
ξ � 0 and ξ2 � 0. )e shape factors expressed in equation
(10) are 2k and k(k − 1), respectively. )e multiple delays
have been noticed in the first, second, and third term of
equation (10). Moreover, the third expression vanishes for
k� 1 and the shape factor reduces to 2.

2.2. Type 2. Equation (4) by putting p � 1 and q � 2 takes
the form as follows:

ξ− k
d

dξ
ξk

d2

dξ2
( )u(ξ − τ) + g(ξ)h(u) � 0. (11)

)e derivative part of the above equation is obtained as
follows:

d

dξ
ξk

d2

dξ2
( )u(ξ − τ) � ξk

d3

dξ3
u(ξ − τ) + kξk−1

d2

dξ2
u(ξ − τ).

(12)
Using the above value in equation (11), the third-order

EF-DD model becomes as follows:

d3

dξ3
u(ξ − τ) +

k

ξ

d2

dξ2
u(ξ − τ) + g(ξ)h(u) � 0,

u(0) � α,
du(0)

dξ
� β,

d2u(0)

dξ2
� 0.


(13)

)e single singularity at ξ � 0 has been noticed in the
above equation (13). )e shape factor is k and delayed ex-
pression appears twice in the above equation.

Some prime features of the designedmodel are presented
as follows:

)e design of third-order Emden–Fowler delay dif-
ferential model is presented by using the sense of
standard Emden–Fowler equation and delay-differen-
tial equation

Two types of the designed model are presented and two
numerical nonlinear examples of each type are
designed based on the designed model

)e shape factors, delay expressions, and singularities
are discussed in both of the types

)e artificial neural network is used to check the
perfection and correctness of the designed third-order
Emden–Fowler model

3. Methodology and Numerical Examples

Two numerical examples based on the EF-DD novel model
are presented in this section.)e numerical investigations of
the examples are performed using the artificial neural
network.)e error function is provided by using the sense of
the differential equations and initial conditions. )e opti-
mization of the error function is performed using the hybrid
of global and local search captaincies, which are genetic
algorithm (GA) and active-set method (ASM). )e artificial
neural network is famous and widely applied in many well-
known recent applications, see [35–41]. To approximate the
results, feedforward ANN system along with its respective
derivatives is used as follows:

û �∑m
i�1

liP αiξ + bi( ), (14)

û(n) �∑m
i�1

liP
(n) αiξ + bi( ), (15)

where li, mi, and ni are the ith components of l, α, and b
vectors, while n is the order of derivative. An activation log-
sigmoid function, i.e., P(ξ) � (1 + &ExponentialE;− ξ)−1

along with its third derivative is used as follows:

û �∑m
i�1

li 1 + e− αiξ+bi( )( )−1, (16)

û(n) �∑n
i�1

li
dn

dξn
1 + e− αiξ+bi( )( )−1( ). (17)

)e third-order derivative is provided as follows:

û‴(ξ) �∑m
i�1

liξ
3
i

6e− 3 αiξ+bi( )

1 + e− αiξ+bi( )( )4 −
6e− 2 αiξ+bi( )

1 + e− αiξ+bi( )( )3


+
e− αiξ+bi( )

1 + e− αiξ+bi( )( )2
.

(18)
)e fitness function is given as follows:

E � E1 + E2, (19)

where E1 and E2 are the respective error functions related to
differential equation and initial conditions.
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3.1. EF-DD Equation of Type 1. In this type, two different
third-order EF-DD-based equations will be discussed. )e
updated form of equation (10) using k� 2 is given as follows.

Example 1. Consider the nonlinear third-order EF-DD
equation having multiple singularities is shown as follows:

d3

dξ3
u(ξ − 1) +

4

ξ

d2

dξ2
u(ξ − 1) +

2

ξ2
d

dξ
u(ξ − 1) + ξu2 � ξ7 + 2ξ4 + ξ + 30 −

36

ξ
+

6

ξ2
,

u(0) � 1,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0.


(20)
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Figure 1: Optimization variables, learning curves, and comparison of results of the GA-AS scheme for nonlinear EF-DD equations (1) and
(2) of type 1. (a) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (1). (b) Set of
best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (2). (c) Comparison of the
numerical and exact solutions of third-order nonlinear EF-DD equation (1). (d) Comparison of the numerical and exact solutions of third-
order nonlinear EF-DD equation (2).
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)e exact solution of equation (20) is 1 + ξ3.

Example 2. Consider the nonlinear third-order EF-DD
equation having multiple singularities and trigonometric
functions is written as follows:

d3

dξ3
u(ξ − 1) +

4

ξ

d2

dξ2
u(ξ − 1) +

2

ξ2
d

dξ
u(ξ − 1) + ξu2 �

ξ5

4
−

2

ξ2
+
6

ξ
+

ξ2 − 2

ξ2
sin(ξ − 1) −

4

ξ
cos(ξ − 1) + ξ3 cos ξ + ξcos2ξ,

u(0) � 1,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0.


(21)

)e exact solution of equation (21) is cos ξ + (1/2)ξ2.

3.2. EF-DD Equation of Type 2. In this type, two different
third-order EF-DD-based equations will be discussed. )e
updated form of equation (13) using k� 1 is given in the
form of two examples.

Example 3. Consider the nonlinear third-order EF-DD
equation having exponential function is given as follows:

d3

dξ3
u(ξ − 1) +

1

ξ

d2

dξ2
u(ξ − 1) + ξeu � 12 −

6

ξ
+ ξe1+ξ+ξ

3

,

u(0) � 1,
du(0)

dξ
� 1,

d2u(0)

dξ2
� 0.


(22)
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Figure 2: Optimization variables, learning curves, and comparison of results of the GA-AS scheme for nonlinear EF-DD equations (1) and
(2) of type 2. (a) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (1) of type 2.
(b) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (2) of type 2.
(c) Comparison of the numerical and exact solutions of third-order nonlinear EF-DD equation (1) of type 2. (d) Comparison of the
numerical and exact solutions of third-order nonlinear EF-DD equation (2) of type 2.
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)e exact solution of equation (22) is 1 + ξ + ξ3. Example 4. Consider the nonlinear third-order EF-DD
equation having multi trigonometric function is given as
follows:

d3

dξ3
u(ξ − 1) +

1

ξ

d2

dξ2
u(ξ − 1) + ξu2 � ξsin2ξ + 2ξ sin ξ + ξ − cos(ξ − 1) −

1

ξ
sin(ξ − 1),

u(0) � 1,
du(0)

dξ
� 1,

d2u(0)

dξ2
� 0.


(23)

)e exact solution of equation (23) is 1 + sin ξ.
Figures 1 and 2 represent the current point and function

values using 10 neurons based on the hybrid combination of
GA-AS scheme for both of the examples of types 1 and 2.)e
current function values (CFVs) are 10−09 and 10−08 for both
of the examples of type 1 and 10−07 and 10−09 for both of the
examples of 2 using 10 numbers of neurons.)e comparison
of results is presented in the rest of the figures for both
examples of types 1 and 2. )e overlapping of the exact and
obtained results shows the correctness and the perfection of
the novel third-order nonlinear EF-DD model.

)e plots of the absolute error (AE) for both types of
examples 1 and 2 based on the third-order nonlinear EF-DD
model are provided in Figure 3. It is clear that most of the
values lie around 10−04 to 10−05 for both types of examples 1
and 2, which indicates the exactness of the designed model.
)ese witnesses prove the correctness of the designed third-
order nonlinear EF-DD model. Comparison of the obtained
results from GA-ASM for solving the nonlinear EF-DD
model based on both problems of both types is tabulated in

Tables 1 and 2. )e exact solution, proposed results from
GA-ASM, and the AE are provided in these tables. One can
conclude on the behalf of AE the exactness and accurateness
of the proposed model, as well as designed scheme.

4. Conclusion

In the present study, a novel design of third-order
Emden–Fowler delay differential model is presented. )e
designed model is obtained by using the sense of funda-
mental Emden–Fowler model. )e details of singular points,
delay expressions, and the shape factors are also provided of
the modeled equations of each type. )e singularity at ξ � 0
appears twice in the first type, while single singularity is
noticed in the second type. Similarly, the shape factor is
unique in the standard form of the Emden–Fowler model,
while the occurrence of shape factor is noticed twice in the
type 1; however, single shape factor is noticed in type 2. For
the perfection of the designed model, two nonlinear ex-
amples are presented of each type and numerical
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Figure 3: Absolute error based on the nonlinear EF-DD equations (1) and (2) of types 1 and 2. (a) AE for examples 1 and 2 of type 1. (b) AE
for examples 1 and 2 of type 2.
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investigations have been performed using the powerful
artificial neural networks. )e comparison of the results is
also plotted and overlapping of the proposed and exact
solution enhanced more satisfaction of the model. )e
graphs of absolute error show that most of the values are
found in good ranges for all examples of both types, which
shows the exactness, worth, and the precision of the

designed third-order Emden–Fowler delay differential
model.

In the future, the proposed scheme ANN-GA-ASM can
be applied as an accurate and efficient stochastic numerical
solver for nonlinear singular models [42–44], computational
models of fluid dynamics [45–48], fractional models
[49–52], and biological models [53–57].

Table 2: Comparison of the obtained results from GA-ASM for solving the nonlinear EF-DD model based on both problems of type 2.

ξ
Problem I Problem 2

Exact GA-ASM AE Exact GA-ASM AE

0 1.00000000 1.00022916 2.291613E− 04 1.00000000 0.99963919 3.60806E− 04
0.05 1.05012500 1.05035972 2.347211E− 04 1.04997917 1.04960463 3.74535E− 04
0.1 1.10100000 1.10123006 2.300602E− 04 1.09983342 1.09944214 3.91281E− 04
0.15 1.15337500 1.15357541 2.004064E− 04 1.14943813 1.14902494 4.13190E− 04
0.2 1.20800000 1.20812735 1.273485E− 4 1.19866933 1.19822683 4.42503E− 04
0.25 1.26562500 1.26561619 8.813729E− 06 1.24740396 1.24692273 4.81224E− 04
0.3 1.32700000 1.32677477 2.252260E− 04 1.29552021 1.29498952 5.30689E− 04
0.35 1.39287500 1.39234339 5.316061E− 04 1.34289781 1.34230679 5.91015E− 04
0.4 1.46400000 1.46307475 9.252507E− 04 1.38941834 1.38875787 6.60468E− 04
0.45 1.54112500 1.53973795 1.387048E− 03 1.43496553 1.43423077 7.34760E− 04
0.5 1.62500000 1.62312048 1.879521E− 03 1.47942554 1.47861923 8.06304E− 04
0.55 1.71637500 1.71402744 2.347561E− 03 1.52268723 1.52182376 8.63464E− 04
0.6 1.81600000 1.81327792 2.722078E− 03 1.56464247 1.56375263 8.89845E− 04
0.65 1.92462500 1.92169852 2.926483E− 03 1.60518641 1.60432276 8.63645E− 04
0.7 2.04300000 2.04011427 2.885735E− 03 1.64421769 1.64346056 7.57124E− 04
0.75 2.17187500 2.16933723 2.537774E− 03 1.68163876 1.68110255 5.36205E− 04
0.8 2.31200000 2.31015280 1.847204E− 03 1.71735609 1.71719584 1.60246E− 04
0.85 2.46412500 2.46330377 8.212322E− 04 1.75128041 1.75169842 4.18013E− 04
0.9 2.62900000 2.62947213 4.721265E− 04 1.78332691 1.78457923 1.25232E− 03
0.95 2.80737500 2.80925864 1.883638E− 03 1.81341550 1.81581807 2.40257E− 03
1 3.00000000 3.00316042 3.160417E− 03 1.84147098 1.84540533 3.93434E− 03

Table 1: Comparison of the obtained results from GA-ASM for solving the nonlinear EF-DD model based on both problems of type 1.

ξ
Problem I Problem 2

Exact GA-ASM AE Exact GA-ASM AE

0 1.00000000 0.99998788 1.212101E− 05 1.00000000 0.99999570 4.2979068E− 06
0.05 1.00012500 1.00010387 2.112830E− 05 1.00000026 0.99999586 4.4025337E− 06
0.1 1.00100000 1.00097307 2.693406E− 05 1.00000417 0.99999959 4.5773499E− 06
0.15 1.00337500 1.00335045 2.454778E− 05 1.00002108 1.00001622 4.8547562E− 06
0.2 1.00800000 1.00799333 6.670848E− 06 1.00006658 1.00006131 5.2678390E− 06
0.25 1.01562500 1.01566134 3.633505E− 05 1.00016242 1.00015658 5.8417298E− 06
0.3 1.02700000 1.02711600 1.160012E− 04 1.00033649 1.00032991 6.5812201E− 06
0.35 1.04287500 1.04311966 2.446627E− 04 1.00062271 1.00061526 7.4548770E− 06
0.4 1.06400000 1.06443360 4.336027E− 04 1.00106099 1.00105262 8.3764421E− 06
0.45 1.09112500 1.09181538 6.903829E− 04 1.00169710 1.00168792 9.1849453E− 06
0.5 1.12500000 1.12601542 1.015419E− 03 1.00258256 1.00257294 9.6257224E− 06
0.55 1.16637500 1.16777299 1.397990E− 03 1.00377452 1.00376519 9.3353752E− 06
0.6 1.21600000 1.21781202 1.812016E− 03 1.00533561 1.00532778 7.8346627E− 06
0.65 1.27462500 1.27683704 2.212044E− 03 1.00733380 1.00732926 4.5343334E− 06
0.7 1.34300000 1.34552994 2.529940E− 03 1.00984219 1.00984343 1.2400050E− 06
0.75 1.42187500 1.42454775 2.672747E− 03 1.01293887 1.01294907 1.0196762E− 05
0.8 1.51200000 1.51452198 2.521980E− 03 1.01670671 1.01672970 2.2992646E− 05
0.85 1.61412500 1.61605929 1.934293E− 03 1.02123315 1.02127325 4.0102911E− 05
0.9 1.72900000 1.72974297 7.429666E− 04 1.02660997 1.02667161 6.1637149E− 05
0.95 1.85737500 1.85613407 1.240925E− 03 1.03293309 1.03302018 8.7089331E− 05
1 2.00000000 1.99577063 4.229373E− 03 1.04030231 1.04041732 1.1501021E− 04
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