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ABSTRACT 

Antisense oligomers (ASOs) such as peptide nucleic acids (PNAs), designed to inhibit the 

translation of essential bacterial genes, have emerged as attractive sequence- and species-

specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side 

effects caused by their binding to transcripts other than the intended target. To facilitate the 

design of PNAs with minimal off-target effects, we developed MASON (Make AntiSense 

Oligomers Now), a webserver for the design of PNAs that target bacterial mRNAs. MASON 

generates PNA sequences complementary to the translational start site of a bacterial gene of 

interest and reports critical sequence attributes and potential off-target sites. We based 

MASON’s off-target predictions on experiments in which we treated Salmonella enterica 

serovar Typhimurium with a series of 10mer PNAs derived from a PNA targeting the essential 

gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-

seq) data revealed that PNAs with terminal mismatches are still able to target acpP, 

suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-

seq dataset from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs 

confirmed our findings are not unique to Salmonella. We believe that MASON’s off-target 

assessment will improve the design of specific PNAs and other ASOs.  
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INTRODUCTION 

Antimicrobial resistant (AMR) bacteria have become a major threat to human health, 

underscoring the urgency for the development of new types of antibiotics (Murray et al. 2022). 

Most clinically available antibiotics disrupt conserved cellular processes like transcription, 

translation, DNA replication, or cell wall maintenance (reviewed in (Baquero and Levin 2021)). 

Therefore, antibiotic treatment often affects a wide spectrum of microbes and can disturb the 

natural balance of the human microbiome, potentially leading to dysbiosis (Vangay et al. 

2015). To prevent this effect, ultra-narrow spectrum antibiotics targeting specific pathogenic 

species or strains would be an important advance in antimicrobial research (Vogel 2020).  

 

A promising approach is the use of antisense oligomers (ASOs) that inhibit the translation of 

essential genes by binding to the translation initiation region (TIR), making them highly 

specific. Popular ASOs include peptide nucleic acids (PNAs), which are synthetic nucleic acid 

analogs commonly designed to bind the ribosome binding site (RBS) or start codon of a gene 

of interest (Dryselius et al. 2003; Nielsen 2006; Egholm et al. 1993a; Nielsen et al. 1991). Their 

neutral pseudopeptide backbone protects PNAs from degradation by nucleases and 

proteases while conferring higher binding affinities compared to DNA or RNA. To facilitate 

cellular uptake by bacteria, PNAs are coupled to short (<30 aa), often positively charged cell 

penetrating peptides (CPPs) (Eriksson et al. 2002). PNAs have been successfully applied to 

inhibit growth of a wide variety of microorganisms both in culture and in animal models 

(Hegarty and Stewart 2018; Sully and Geller 2016; Barkowsky et al. 2019; Pifer and 

Greenberg 2020; Tan et al. 2005; Lee et al. 2019; Oh et al. 2014). 

  

Despite nearly two decades of research, design rules for PNA sequences are based on only 

a handful of studies. Early work in E. coli investigating PNAs of varying lengths suggested that 

a length of 9 to 12 bases is optimal to reliably inhibit target gene translation (Good et al. 2001). 

More recently, PNA length was shown to be a major constraint for cell-entry, and 10 bases 

was proposed as an ideal length (Goltermann et al. 2019). Regarding sequence composition, 

PNAs rich in purines show reduced solubility (Nielsen et al. 1996; Good 2002), while a low GC 

content can result in low binding affinities between PNAs and its target (Giesen et al. 1998). 

Further, self-complementarity of PNA sequences needs to be avoided to prevent self-

interaction (Good 2002).  

 

Another important consideration for PNA design is target site uniqueness. Because of the 

short length of PNAs, full or partial complementarity to genomic regions other than target 

region is frequent. In addition, the TIR, spanning the Shine-Dalgarno sequence (SD) and/or 

start codon, is often not completely unique. We refer to these unintended complementary 
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regions as off-target matches. Naturally, off-target matches with one or two base pair (bp) 

mismatches are very common for 10-mer PNAs in bacteria. It is thus important to determine 

whether mismatches interfere with PNA targeting. Cell-free hybridization experiments have 

established that single mismatches in PNA-DNA and PNA-RNA duplexes substantially 

decrease binding affinity (Ratilainen et al. 2000; Jensen et al. 1997). In addition, PNAs with 

single and double mismatches to bacterial target mRNAs have strongly reduced effects on 

target gene expression and growth inhibition compared to fully complementary PNAs 

(Hatamoto et al. 2009; Good et al. 2001; Good and Nielsen 1998). A more recent study, in 

which single mismatches were introduced in PNAs of different lengths targeting the acpP gene 

in E. coli showed a negative correlation between PNA melting temperatures and minimum 

inhibitory concentrations (Goltermann et al. 2019). However, these results were based on a 

small number of tested PNAs, making it difficult to draw general conclusions. Nevertheless, 

PNAs are thought to tolerate very few mismatches, making them highly specific nucleic acid-

binding compounds.  

 

In bacterial PNA design, little attention has therefore been given to off-targets that harbor one 

or two bp mismatches. Yet, broad consideration of all possible off-target effects is essential 

for two reasons: firstly, PNAs that bind to TIRs of other genes can cause unwanted cellular 

responses; secondly, binding to a large number of off-target sites may reduce PNA availability 

by sequestering free PNAs, a phenomenon known from bacterial small RNA sponges (Ziebuhr 

and Vogel 2015). While it has been generally recommended to avoid off-target matches during 

PNA design (Good 2002; Dryselius et al. 2003), the degree of complementarity required to 

mediate off-target effects as well as the overall transcriptomic response caused by off-targets 

have not been investigated in detail yet.  

 

Although there are some guidelines for the design of effective PNA sequences (Dryselius et 

al. 2003), researchers usually rely on manual design to find the best sequence to target a 

selected gene. This is because the existing computational tools either lack a user-friendly 

interface, or are designed for ASOs targeting mammalian cells. PNA Finder, for example, can 

be used to design PNA sequences and screens for sequence-specific attributes and off-target 

effects (Eller et al. 2021). However, because it requires installation of dependencies in a Bash 

shell, it may be difficult to use for those with limited computational experience. Other methods, 

such as PNA tool (https://www.pnabio.com/support/PNA_Tool.htm), are easy to use, but only 

screen for sequence-specific attributes, without considering off-target effects in bacteria. 

 

Here, to facilitate the design of bacterial ASOs we developed MASON (Make AntiSense 

Oligomers Now), a user-friendly webserver which helps researchers in designing PNAs for 
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any annotated bacterial gene while predicting melting temperature and possible off-targets in 

the bacterium of interest. To improve the off-target prediction algorithm of MASON and to 

investigate the effect of mismatches on PNA efficiency, we designed a series of 10mer PNAs 

with serial double mismatches based on a PNA targeting the acpP mRNA of Salmonella 

enterica serovar Typhimurium strain SL1344 (henceforth Salmonella). We found that double 

mismatches at the termini of PNAs do not fully abrogate the growth inhibitory and transcript-

depleting effects of a PNA. Accordingly, PNAs with partial complementarity in proximity to the 

translational start region of off-target mRNAs can substantially reduce transcript levels in both 

Salmonella and uropathogenic Escherichia coli (UPEC). We incorporated these findings into 

MASON to improve its off-target predictions. MASON is freely available as both a webserver 

and command-line tool. 

 

 

RESULTS 

MASON - a webserver for efficient ASO design 

 

To facilitate the design of bacterial ASOs, we developed a user-friendly web application, called 

MASON (https://www.helmholtz-hiri.de/en/datasets/mason , Supplementary Figure S1). 

Users can specify the organism of interest, a target gene, the ASO length and the number of 

allowed mismatches for off-targets (Figure 1A, Supplementary Figure S2). A pre-defined set 

of four annotated bacterial strains, specifically E. coli str. K12 substr. MG1655, Salmonella 

enterica subsp. enterica serovar Typhimurium SL1344, Clostridium difficile 630 and 

Fusobacterium nucleatum ATCC 23726, can be selected from a dropdown menu 

(Supplementary Figure S2). Furthermore, additional bacterial genomes can be added 

manually with a reference fasta file and an annotation file in gff format, which can be 

downloaded for a wide variety of bacteria from NCBI. Once the user submits the input, MASON 

finishes its calculation in between ten seconds and one minute, depending on the size of the 

target genome, choice of ASO length, and allowed number of mismatches for off-targets 

(Figure 1A). For each selected target gene, MASON outputs all candidate ASO sequences 

that overlap the start codon (in a window ranging from -7 to +10 for 10mers, default) 

(Supplementary Figure S3). Because it is often desirable to target the RBS in the 5 UTR of a 

transcript, the user can opt to specify the number of bases upstream of the start codon for 

which additional ASOs are designed.  

 

Recent reports using different E. coli strains showed that PNA-mRNA melting temperature 

(Tm) positively correlates with growth inhibition (Goltermann et al. 2019) and is associated with 

in vitro translation inhibition of the target gene (Popella et al. 2022). We therefore integrated 
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Tm predictions for PNA-RNA duplexes as a feature in MASON (see methods). To predict the 

Tm,  we applied a nearest-neighbor method for RNA-RNA duplexes (Xia et al. 1998), which is 

incorporated in the MELTING 5 platform (Dumousseau et al. 2012). Next, to test whether our 

predictions perform well, we compared them to experimental Tm measurements of PNA-RNA 

duplexes (Goltermann et al. 2019) and to a PNA-DNA prediction algorithm (Giesen et al. 1998) 

used by the PNA tool and the PNA finder toolbox (Eller et al. 2021) (Supplementary Figure 

S4). Our predictions correlate well with the experimentally measured Tm, but the absolute Tm 

was consistently underestimated by around 10 ºC. This is likely due to increased stability of 

PNA-RNA duplexes compared to RNA-RNA interactions (Egholm et al. 1993b). Interestingly, 

our predictions based on an RNA hybridization model were closer to experimental PNA-RNA 

stability measurements than those predicted by the PNA-DNA interaction prediction algorithm 

(Supplementary Figure S4). 

 

Due to the short length of ASOs, the frequency of off-target sites with zero or few mismatches 

can be high.  We therefore established an off-target prediction algorithm in MASON. The 

algorithm screens for all possible off-target matches with a user-adjusted number of 

mismatches in the target organism’s annotated coding sequence (CDS) and 30 bases 

upstream (5) of the respective CDS (see methods for details). We divide off-targets into two 

categories: (i) off-target sites in the whole transcriptome based on annotated CDSs; and (ii) 

off-target site in the TIR of non-target genes with start positions 20 bases upstream of the 

annotated start codon until 5 bases downstream (Figure 1C, Supplementary Figure S3C). The 

results page of MASON additionally provides a table that summarizes sequence properties, 

the number of self-complementary bases and off-target sites (Supplementary Figure S5).  

 

We also created a command-line version of MASON, with added features that facilitate high-

throughput design of ASOs. The command line version allows users to skip the design step 

and use previously designed sequences as direct input, thereby permitting parallel screening 

of a large number of ASO sequences in a short time. It also adds the possibility to screen 

multiple bacterial species for off-targets, which can be useful for applying ASOs to co-cultures 

or microbial communities. As we want to keep the web-interface fast and efficient, these 

functions are only available in the command-line version of MASON, which runs on Linux-

based PCs, servers or high-performance clusters.  

 

 

PNAs targeting acpP retain growth-inhibitory activity despite terminal double mismatches 
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The algorithm of MASON considers off-target matches only if at least 7 consecutive matching 

bases exist. To investigate whether this definition of ‘critical’ off-targets is reasonable, we took 

a scanning approach to design a series of 10mer PNAs based on an acpP-targeting PNA. 

AcpP is an essential protein and its mRNA has been successfully targeted with PNAs and 

phosphorodiamidate morpholino oligomers (PMOs) before (Popella et al. 2021; Moustafa et 

al. 2021; Dryselius et al. 2003; Tilley et al. 2006). We introduced two adjacent mismatch 

positions from the N to the C terminus of the acpP-targeting PNA, while preserving the initial 

GC content of 40% (Figure 2A, Supplementary Table S1). We refer to this series of 

mismatched PNAs by the position of the first mismatch, e.g., mm1 refers to the PNA with 

mismatches at positions one and two. Additionally we used a scrambled PNA to profile 

unspecific effects (Supplementary Table S1). All PNAs were fused to a KFFKFFKFFK peptide 

(KFF), a potent CPP for Salmonella (Popella et al. 2021). 

 

First, we determined the minimum inhibitory concentration (MIC) of each PNA, defined as the 

lowest concentration that fully inhibits visible growth (OD600 nm <0.1) of Salmonella (∼105 

cfu/ml). Consistent with previous results (Popella et al. 2021), the PNA targeting the TIR of 

the acpP transcript with zero mismatches had an MIC of 1.25 µM. Two bp mismatches led to 

>4 fold increases in MIC values compared to the fully matched acpP PNA, most likely due to 

reduced binding affinity (Figure 2B). Interestingly, we observed a mismatch-position 

dependent growth inhibition of Salmonella (Figure 2B, Supplementary Figure S6). PNAs that 

carry mismatches at either end of the sequence (i.e., mm1 and mm9) have MICs of 5 µM, 

whereas more central mismatch positions lead to MICs of 10 µM or higher (Figure 2B). This 

is also seen in Salmonella growth curves (Supplementary Figure S6), where growth defects 

become apparent at lower concentrations for mm1 and mm9 compared to PNAs with 

mismatches at more central positions. PNAs mm3 and mm4, which possess two mismatches 

to the start codon AUG, did not show any growth effect even at high concentrations, whereas 

mm1, mm8 and mm9 were still able to interfere with Salmonella growth (Supplementary Figure 

S6).  

 

 

PNAs with terminal double-mismatches retain ability to trigger target mRNA depletion  

 

Previously, we have shown that RNA-seq can serve as readout for direct effects on transcript 

levels after short-term treatment with a PNA targeting acpP in Salmonella (Popella et al. 2021). 

To analyze to what degree the designed series of PNAs affect on- and off-target mRNA levels 

compared to the “on-target” acpP PNA, we performed RNA-seq on Salmonella after a 15-

minute exposure to 5 µM of the KFF-conjugated PNAs. To identify differentially expressed 
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genes, we contrasted transcript levels in PNA-treated Salmonella with that of untreated control 

samples. First, we examined depletion of the target transcript, acpP, and fabF, a gene co-

transcribed with acpP and shown to be concomitantly depleted by acpP PNA (Popella et al. 

2021) (Figure 2C).  

 

In contrast to the scrambled control, mRNAs of both acpP and fabF were significantly depleted 

by the fully-matching acpP PNA (log2FC < 1 and FDR < 0.001). mRNA depletion caused by 

mismatched PNAs correlated with the MIC values (Figure 2B, C). In particular, PNAs mm1 

and mm9, which both had an MIC of 5 µM, resulted in significant (log2FC <1 and FDR <0.001) 

mRNA depletion of both acpP (log2FC = -1.6 (mm1) and -2.1 (mm9), FDR <0.001) and fabF 

(log2FC = -1.2 (mm1) and -1.9 (mm9), resp., FDR <0.001) (Figure 2C). mm8 also induced 

significant depletion of both transcripts, indicating that only seven consecutively matching 

bases can be sufficient to affect target transcript levels. On the other hand, PNA sequences 

with central mismatches (mm3 through mm7) did not cause a significant depletion of the target 

mRNAs, consistent with their negligible effect on Salmonella growth (Figure 2B, C). Altogether, 

these data show that PNAs with double mismatches in their termini and seven or more 

consecutive nucleobases available for base pairing retain antisense activity based on growth 

inhibition and depletion of acpP transcript levels.  

 

 

PNAs affect mRNA levels of off-target genes in a mismatch-dependent manner in both 

Salmonella and UPEC 

 

Next, we analyzed the effects of our series of PNA variants on the complete Salmonella 

transcriptome. Principal component analysis (PCA) showed a clear separation on the first 

principal component between untreated control samples and the KFF-PNA conjugates 

(Supplementary Figure S7B), suggesting that the dominant effect in our data set was caused 

by KFF-PNA treatment itself, and not specifically due to depletion of acpP (Supplementary 

Figure S8). As shown previously in both Salmonella and UPEC, the most strongly upregulated 

genes after short-term KFF-PNA exposure are part of an envelope stress response (Popella 

et al. 2021, 2022). In line with this observation, gene set analysis revealed that genes of the 

PhoPQ and PmrAB regulons as well as the KEGG-pathways “Two component system” and 

“cationic antimicrobial peptide (CAMP) response” are strongly induced upon PNA exposure 

for all PNA-conjugates (Supplementary Figure S9).   

 

Contrary to the consistent pattern of upregulated genes, genes with significantly reduced 

mRNA levels differ between the PNA samples. This suggests that mRNA depletion might be 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.24.492283doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.24.492283


Jung et al. 2022  9 

PNA-sequence dependent (Figure 3A). To determine whether the downregulation of 

transcripts is caused by off-target effects, we ran MASON to search for off-target sites for all 

PNAs in TIRs of genes and manually checked whether significantly depleted genes have 

complementarity with the respective PNA sequence. Interestingly, many significantly 

downregulated genes have complementarity to the PNA with up to 3 mismatches in their TIR 

(Figure 3A). In total, of 160 significantly depleted genes across all samples, we identified off-

target sites for 72. Based on acpP PNA-dependent depletion of fabF, the gene downstream 

of acpP, we also assigned off-target status to genes lying immediately downstream (<30 base 

gap) of an off-target gene. For these, we observed a similar co-regulation, for example, the 

mm1 PNA has complementarity with the nuoA TIR with one bp mismatch at position 10, and 

depletes the 12 genes downstream of nuoA as well as nuoA itself (Supplementary Figure 

S10).  

 

To test whether these results are specific to Salmonella, we applied the same bioinformatics 

analysis to a published transcriptomic data set in which UPEC were treated with 11 different 

PNAs targeting various essential genes (Popella et al. 2022). The overall transcriptomic 

pattern closely resembles the data in the present study (Figure 3A, B). Specifically, we 

identified a number of consistently upregulated genes, many from outer membrane sensors 

and two component systems. This is likely due to the envelope stress response triggered by 

CPP-coupled PNAs (Figure 3B, Supplementary Figure S9, (Popella et al. 2021, 2022)). Of the 

767 significantly depleted genes, we observed off-target sites in TIRs of 248 genes (Figure 

3B). For example, the PNA targeting ftsZ had full complementarity to the TIR of ybaB, one of 

the significantly depleted genes. These comparisons suggest that, in both organisms, PNA 

complementarity to TIRs of non-target genes often leads to depletion of the respective 

mRNAs.  

 

 

Mismatch position influences the degree of off-target mRNA depletion  

 

So far, we found that PNA complementarity with TIRs of off-target genes with few mismatches 

can induce mRNA depletion. We next wanted to test whether this effect depends on the 

specific position of the mismatches within the PNA sequence, as we saw with the PNA variants 

targeting acpP in Salmonella.  

 

For predicted off-targets with 1-3 bp mismatches in Salmonella and UPEC, we determined the 

most central mismatch position. For instance, if there was an off-target binding site with 

mismatches at positions one and three, we counted the mismatch at position three. We then 
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plotted the most central mismatch position against the percentage of off-targets that are 

significantly depleted in the RNA-seq datasets (Figure 4A, C). In these plots, a value of one 

includes off-target genes with mismatches at positions one and/or 10 whereas a value of five 

includes all off-targets with their most central mismatch at positions four and/or five. Our 

results show that of all off-targets with mismatches at a terminal position 30% and 63% of 

genes are significantly depleted in Salmonella and UPEC, respectively. The fraction of 

significantly depleted genes decreases rapidly as the mismatch position moves closer to the 

center (Figure 4A, C). These results suggest that a longer stretch of matching bases is more 

likely to trigger off-target mRNA-depletion, while central mismatches reduce the likelihood of 

an off-target effect.  

 

To define a general rule for PNA design, we assessed whether the longest stretch of matching 

bases can be used as a predictor of off-target effects. We observed that for Salmonella and 

UPEC, 9.6% and 16.3% of all off-targets with at least seven consecutive matches were 

significantly depleted, respectively (Figure 4B, D). On the other hand, <5% of genes were 

depleted if they had an off-target site of six or less consecutive matches. Using a 

hypergeometric test we confirmed that the observed effects in the samples with at least seven 

consecutive matches cannot be explained by random draws (p <10-7 and p <10-37 for 

Salmonella and UPEC, resp.), whereas the <5% of depleted genes with off-target sites of six 

or less consecutive matches are consistent with a random draw (p >0.5) (Figure 4B, D).     We 

therefore defined off-targets as “critical” only when they have at least seven consecutive 

matching bases and incorporated this finding into MASON (Figure 1C). These data highlight 

that determining the number of consecutively matching bases can improve off-target 

prediction of PNAs in bacteria.  
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DISCUSSION 

Here we present MASON, a web-tool that facilitates the design of PNA sequences targeting 

bacterial genes. We also provide experimental evidence to justify MASON’s off-target 

prediction, which considers the mismatch position within the PNA. Combining growth 

measurements and RNA-seq analyses, we show that 10-mer PNAs targeting the essential 

gene acpP with terminal double mismatches retain their ability to inhibit Salmonella growth 

and to reduce transcript levels. Bioinformatic analysis of transcriptomic datasets reveal the 

effects of PNAs on transcripts with off-target binding sites and show how the position of 

mismatches impact these effects. Specifically, our analyses demonstrate that off-target 

binding sites can trigger mRNA depletion when at least seven consecutive bases match the 

PNA sequence. Our data argue for the importance of allowing terminal mismatches for off-

target assessment of PNAs, especially when long stretches of the PNA can bind the mRNA.  

 

There are various computational tools that aid the design of antisense oligonucleotides, RNAi, 

and CRISPR gRNAs that target eukaryotic genes (Chalk and Sonnhammer 2002; Sciabola et 

al. 2021; Owczarzy et al. 2008; Liu et al. 2020; Li et al. 2021). However, these methods are 

not suitable for designing short bacterial PNAs because these usually apply different design 

rules due to differences in binding affinity, mismatch tolerance, sequence length and mode of 

delivery. Tools for designing bacterial PNAs are rare. First, PNA finder is a toolbox that 

generates PNA sequences for a set of genes while considering issues like self-

complementarity, solubility and off-target sites (Eller et al. 2021). A drawback of this method 

is that it only runs on a Bash shell, making it difficult to install for researchers without 

computational expertise. Second, PNA Tool is a freely accessible webserver which screens 

specified  PNA sequences, predicts PNA-DNA Tm and analyzes other PNA-specific attributes 

like GC content and self-complementarity (https://www.pnabio.com/support/PNA_Tool.htm). 

However, it does not help in the design of sequences for a specific gene nor does it evaluate 

organism-specific target and off-target effects. By contrast, MASON is an easy to run 

webserver that designs bacterial PNA sequences for selected bacterial genes and predicts 

off-target effects as well as melting temperatures and other attributes.  

 

 While we designed MASON for PNA sequences, it is likely similarly useful for the design of 

other ASOs, such as phosphorodiamidate morpholino oligomers (PMOs). PMOs are also 

nucleic acid mimics that only differ in their backbone compared to PNAs (Iversen 2001). Since 

PMOs obey similar rules for target gene inhibition as PNAs (Deere et al. 2005; Geller et al. 

2003), they are likely to show similar off-target effects as well.  
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We showed that 10-mer PNAs with consecutive double mismatches are still able to inhibit the 

expression of acpP, if these mismatches are located at the termini of the PNA. The fact that 

PNAs with as few as seven consecutive matches can retain activity suggests that the design 

of PNAs shorter than 10 nucleobases is feasible. Because PNA length is an important 

bottleneck that limits cellular entry (Goltermann et al. 2019), shorter PNAs might improve 

cellular uptake. While previous studies observed reduced PNA activity at a length of less than 

10 bases (Good et al. 2001; Goltermann et al. 2019), we recently found that 9-mer PNAs 

targeting essential genes in UPEC were as efficient as their 10-mer counterparts in inhibiting 

bacterial growth in some cases (Popella et al. 2022). 

  

We will continue to apply data-driven methods to improve future versions of MASON in our 

effort to provide general design principles for bacterial ASOs, and we hope that MASON will 

become a widely used and evolving resource for the design of antisense drugs targeting 

bacterial pathogens.  
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MATERIALS AND METHODS 

MASON web browser 

 

MASON (Make Antisense Oligomers Now) is a webserver that provides researchers with ASO 

designs targeting bacterial genes of interest (Supplementary Figure S1). There are five 

required user inputs (Supplementary Figure S2). (i) A custom ID for later retrieval of the result; 

(ii) the genome and annotation of a bacterium of interest in fasta and gff format, or alternatively, 

selection of one of four pre-loaded bacteria comprising Escherichia coli str. K12 substr. 

MG1655, Salmonella enterica subsp. enterica serovar Typhimurium SL1344, Clostridium 

difficile 630 and Fusobacterium nucleatum ATCC 23726; (iii) the locus tag of one or more 

target genes, or for pre-loaded organisms, a selection from a dropdown menu of 

experimentally determined essential genes; (iv) the length of the designed ASOs; and (v) the 

allowed number of mismatches for off-target screening. In default settings, only ASOs 

overlapping the start codon are designed. Optionally, additional 5 UTR sequences upstream 

of the start codon can be selected to target the RBS. 

 

MASON then runs for 5-30 seconds per target gene before returning the output. The output 

consists of three main elements (Supplementary Figure S3). First, a heatmap visualizing all 

designed ASO sequences is shown, where the target mRNA and alignment of each ASO is 

visualized along with the respective start codon (Figure 1B, Supplementary Figure S3A). All 

possible ASOs spanning the target region are designed, with the exception of ASOs with more 

than 50% self-complementarity. Self-complementarity was defined as the maximal number of 

consecutive Watson and Crick matches of the ASO with itself, aligned in either direction. 

Secondly for each ASO sequence, melting temperatures between mRNAs and ASOs are 

visualized in a barplot (Supplementary Figure S3B).  Third, the number of predicted off-target 

sites for each ASO are visualized in a barplot, summarizing off-targets in both the whole 

transcriptome, as well as in the TIR of other genes in the selected organism (Figure 1C, Figure 

S3C).  Finally, an additional summary table reports all aforementioned attributes along with 

general features such as position from start site and self-complementarity (Supplementary 

Figure S5). The web interface was written using the python-based web-framework Flask 

(Grinberg 2018). The MASON website can be freely accessed at https://www.helmholtz-

hiri.de/en/datasets/mason. The code can be viewed and accessed freely at 

https://github.com/BarquistLab/mason. 

 

 

MASON algorithm 
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The code was written in Python (v3.7), R (v4.1.1) with various modules from the Biopython 

and Bioconductor environments (Cock et al. 2009; Huber et al. 2015). Briefly, MASON takes 

the target gene and designs all possible ASO sequences which are complementary to the 

region overlapping the start codon of the target gene and the specified upstream region. Next, 

the number of self-complementary consecutive bases are calculated with the 

SequenceMatcher package from the difflib python package. If the length of self-

complementarity accounts for more than 50% of the ASO-length the respective sequence is 

dropped and not used for further analysis. Melting temperatures (Tm) of the ASO-target mRNA 

duplex are calculated using the R package rmelting (v1.8.0) of the MELTING 5 platform 

(Dumousseau et al. 2012). Specifically, the melting function is applied for calculating the Tm 

of RNA-RNA duplexes using a nearest neighbor algorithm (Xia et al. 1998).   

 

For identifying off-target sites in the transcriptome, the supplied genome files are screened for 

motifs similar to the target region of the respective ASO. Specifically, the SeqMap tool was 

used to map the targeted mRNA sequence to mRNA sequences, with the specified option for 

allowed mismatches (Jiang and Wong 2008). The allowed mismatches are chosen in the user 

input in the start form of the webserver and are added to the Seqmap command 

(Supplementary Figure S2). Two to three mismatches were used here and were shown to be 

a good option to capture off-targets for 10-mer PNAs. Only “critical” off-targets with at least 7 

consecutive matching bases are kept for the analysis. For screening total off-targets, the whole 

transcript sequence of each annotated gene is used. Off-target sites in the TIR of transcripts 

are defined as binding regions with the first base in the region between -20 and +5 bases 

relative to the annotated start site of the coding sequence (CDS). Finally, the results are 

visualized as described in the previous section.  

 

 

MASON command line tool 

 

The command line version of MASON can be accessed and downloaded from 

https://github.com/BarquistLab/mason_commandline. It can be run from any Linux 

environment after installing all dependencies. The tool uses the same algorithms/code as the 

web tool with two additions: (i) the user has the option to specify an ASO sequence without 

any input gene. This option prevents MASON from designing new ASO sequences and 

instead uses the input ASO sequences for off-target analysis; (ii) there is an option to specify 

additional non-target organisms which are screened for off-targets.  
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Bacterial strains and peptide nucleic acids (PNAs) 

 

Salmonella enterica serovar Typhimurium strain SL1344 (provided by D. Bumann, MPIIB 

Berlin, Germany hoi (Hoiseth and Stocker 1981); internal strain number JVS-1574) was used 

throughout this study. S. enterica SL1344 was cultured in non-cation adjusted Mueller-Hinton 

Broth (MHB, BD DifcoTM, Thermo Fisher Scientific) with aeration at 37°C and 220 rpm shaking. 

PNAs conjugated to the peptide KFFKFFKFFK (KFF) were obtained from Peps4LS GmbH. 

Quality and purity control of these constructs was performed by mass spectrometry and HPLC 

(purity >98 %). PNAs (Supplementary Table S1) were dissolved in nuclease-free ultrapure 

water and heated at 55 °C for 5 min prior to use. By measuring the absorbance at 260 nm 

using a NanoDrop spectrophotometer (A 260 nm; ThermoFisher) the concentration of PNA 

solutions were calculated based on their extinction coefficient. Low retention pipette tips and 

low binding Eppendorf tubes (Sarstedt) were used for all PNA solutions. PNAs were stored at 

- 20 °C.  

 

 

PNA selection and design 

 

A 10-mer PNA targeting the start-codon (-5 to +5 relative to CDS start) of the acpP gene 

served as a positive control. Nine additional PNAs were designed, containing the same 

sequence but with double mismatches starting in each possible location from one to nine 

(Figure 2A, Supplementary Table S1). The mismatch PNAs were designed so that the GC-

content was the same as the control sequence, at 40 percent. That is, for each mismatch, 

guanines were swapped to cytosines and adenines to thymines, and vice versa (Figure 2A, 

Supplementary Table S1). The number of off-targets were analyzed using the MASON 

command line tool.  

 

 

Minimum inhibitory concentration (MIC) determination 

 

For MIC determination the broth microdilution method was applied according to the Clinical 

and Laboratory Standards Institute guidelines and slightly modified from a recently published 

protocol (Goltermann and Nielsen 2020). In brief, an overnight culture of bacterial cells was 

diluted 1:100 in fresh MHB and grown to OD600 0.5. After diluting the culture to approximately 

105 cfu/ml in MHB (1:2000-1:2500), 190 µl were dispensed into a 96-well plate (Thermo Fisher 

Scientific). Subsequently, 10 µl of a 20x PNA working solution was added to the respective 

well to adjust final concentrations from 10-0.3 µM. As a growth control, 10 µL of sterile 
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nuclease-free water were added to the bacterial suspension. Growth was monitored over 24 

hours by measuring the optical density (OD) at 600 nm every 20 min in a Synergy H1 plate 

reader (Biotek) with continuous double-orbital shaking (237 cpm) at 37°C. The MIC of a PNA 

was determined as the lowest concentration that inhibited visible growth in the wells (OD (600 

nm) <0.1). 

 

 

PNA treatment of S. enterica SL1344 for isolation of total RNA 

 

Overnight cultures of S. enterica SL1344 were diluted 1:100 in fresh MHB and grown to an 

OD600 of 0.5. Afterwards, cultures were diluted to approximately 106 cfu/ml in fresh MHB 

(1:100). Subsequently, 1.9 mL of the bacterial solution were transferred into 5 mL low-binding 

tubes (LABsolute) and 100 µL of a 20x PNA solution was added to reach a final concentration 

of 5 µM for each tested KFF-conjugated PNA. In parallel, an equal volume of sterile nuclease-

free water, which was used as solvent for the test compounds, was added to the bacterial 

suspension and served as negative control. After a 15-min incubation at 37 °C, RNAprotect 

Bacteria (Qiagen) was added to the samples according to the manufacturer’s instructions. 

After 10 min, cells were pelleted at 21,100 g and 4 °C for 20 min. Pellets were either directly 

subjected to RNA isolation or stored at – 20 °C (<1 day) for subsequent processing. 

 

Total RNA was isolated from bacterial cell pellets using the miRNeasy Mini kit (Qiagen) 

according to protocol #3 previously described in Popella et al. (Popella et al. 2021). In brief, 

pellets were resuspended in TE buffer (pH 8.0) supplemented with 0.5 mg/mL lysozyme (Roth) 

and incubated for 5 min with repeated vortexing in between. After adding β-mercaptoethanol-

containing RLT buffer and ethanol according to the manufacturer’s instructions, samples were 

loaded on the columns. Wash-steps were performed according to the manual. RNA 

concentration was measured using a NanoDrop spectrophotometer. 

 

 

RNA-sequencing (RNA-seq) 

 

RNA samples were delivered to Core Unit SysMed (Julius-Maximilian-University Würzburg, 

Germany) for RNA-seq. Briefly, after treating RNA samples with DNase, sufficient RNA quality 

was verified on a bioanalyzer (RNA chip Agilent). Ribosomal RNA was depleted (RiboCop-

META kit, Lexogen) and RNA was then reverse transcribed for cDNA library preparation using 

the Corall kit (Lexogen) according to the manufacturer’s instructions. After pooling cDNA 

library samples at equimolar amounts, quality was verified using a bioanalyzer (DNA chip 
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Agilent). The cDNA pools were sequenced using the NextSeq 500 system (HighOutput flow 

cell, 400 M, 1x 75 cycle single-end; Illumina). 

 

 

RNA-seq read quantification  

 

Read mapping and differential expression analysis were performed as previously described 

(Popella et al. 2021). Briefly, reads obtained from RNA sequencing were trimmed, filtered and 

mapped against the respective reference genome. The reference genome consisted of the 

the Salmonella enterica subsp. enterica serovar Typhimurium SL1344 (FQ312003.1) 

reference genome and three plasmids: pSLT_SL1344 (HE654724.1), pCol1B9_SL1344 

(HE654725.1), and pRSF1010_SL1344 (HE654726.1) (Kröger et al. 2012). Bases with a 

Phred quality score of <10 were trimmed and adapters were removed using BBDuk. Next, the 

trimmed reads were mapped against the reference genome using BBMap (v38.84) and then 

assigned to genomic features, including both CDSs and annotated sRNAs (Kröger et al. 2012; 

Hör et al. 2020) using the featureCounts method of the Subread (2.0.1) package (Liao et al. 

2014). Read mapping and quantification for the UPEC data was performed similarly, as 

described in (Popella et al. 2022). 

 

 

Differential expression analysis 

 

Downstream analysis was performed using R (v4.1.2) and various packages from the 

Bioconductor project. Raw read counts were imported and analyzed with edgeR (v3.34.1) 

(Robinson et al. 2010). Genes with a cutoff value less than 10/L in at least three libraries were 

filtered, where L is the minimum library size in millions of counts, as proposed in (Chen et al. 

2016). Raw read counts were normalized with the trimmed mean of M values (TMM) 

normalization (Robinson and Oshlack 2010). Filtered libraries were then examined for batch 

effects as proposed in (Peixoto et al. 2015). A consistent batch effect was identified between 

the two batches, which was corrected for by including a batch variable in the design matrix 

(Supplementary Figure S7). Differential expression analysis was conducted using edgeR 

(Robinson et al. 2010). Estimation of quasi-likelihood (QL) dispersions was performed with the 

glmQLFit function. Then contrasts between all samples versus the water controls were created 

as input for the glmQLTest function. Genes with an absolute fold change > 2 and an adjusted 

P-value (Benjamini–Hochberg, (Benjamini and Hochberg 1995)) <0.001 were considered 

differentially expressed. The differentially expressed genes were visualized by volcano plots 

and heatmaps created using ggplot2 (v3.3.0) and the ComplexHeatmap (v2.4.2) package, 
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respectively. The differential expression analysis for the UPEC data was performed in a similar 

way (Popella et al. 2022). 

 

 

Mismatch analysis 

 

For the results shown in Figure 3, a modified analysis of off-target genes was performed. Each 

PNA sequence was screened for off-target matches using the MASON command-line tool, 

while accepting all off-targets with 0-3 mismatches. Then, all significantly downregulated 

genes were framed if they had an off-target site in the respective TIR. The frame thickness 

indicates that 0, 1, 2 or 3 mismatches were present in the off-target site.  

 

 

KEGG pathway enrichment analysis 

 

To identify KEGG pathways for each gene, the R package KEGGREST (v1.28.0) was used. 

Additionally, gene sets of regulons curated in (Westermann et al. 2016) were added prior to 

the analysis. Rotation gene set testing (fry version of the roast gene set enrichment test (Wu 

et al. 2010)) was performed to identify enrichment of gene sets. Gene sets containing >10 

genes with FDR-corrected P-values <0.001 are shown in Supplementary Figure S9, together 

with the median log2 FC of genes in the respective pathway. If a sample had >10 significantly 

enriched gene sets, only the 10 gene sets with the lowest FDR adjusted P-values are shown. 

 

 

DATA AVAILABILITY 

The code of both the web- and the command-line version MASON are published under the 

MIT License (v1.0) on Github https://github.com/BarquistLab/mason and 

https://github.com/BarquistLab/mason_commandline, respectively. The RNA-seq datasets 

from this study are available in GEO with the accession numbers GSE199542 and 

GSE191313. The up- and downstream analysis of RNA-seq data is available on Github 

https://github.com/BarquistLab/mason_paper. 
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FIGURE LEGENDS 

Figure 1. The MASON webserver designs ASO sequences and predicts off-targets. (A) Users 

specify an organism of interest, the target gene, ASO length and allowed number of 

mismatches for off-targets. MASON then generates ASO sequences and their attributes in 

between 5 and 30 seconds. (B) The generated ASO sequences are designed to bind the start 

codon (marked in dark blue) of the target mRNA. (C) MASON predicts critical off-target binding 

regions for each ASO. An off-target is termed "critical" if the respective ASO sequence binds 

more than 7 consecutive bases of the off-target mRNA. Off-targets are predicted both for the 

whole transcriptome (steel blue) and for translation initiation regions (TIR, light blue) of other 

genes. TIRs are defined as -30 to +16 bases from the start codon. 

 

Figure 2. PNAs with two terminal mismatches show position-dependent effects on Salmonella 

growth and mRNA levels. (A) Workflow of experiments. acpP PNA (acpP) and nine acpP-

related PNAs with two serial mismatches (mm1-mm9) were designed and tested against S. 

enterica serovar Typhimurium strain SL1344. PNA sequences are shown from their C- to N- 

terminus (from left to right). A 10-mer region of the acpP mRNA (blue) including its "AUG" start 

codon (bold) was targeted by one fully complementary PNA and nine mismatched PNAs, all 

coupled to the CPP KFF (green). Mismatches in the PNA sequences are marked in red. Upper 

right: Minimum inhibitory concentration experiments were performed by challenging 

Salmonella with different CPP-PNA concentrations for 24 hours while measuring cellular 

growth. Lower right: RNA sequencing was performed to profile RNA levels after short term 

CPP-PNA exposure. (B) Summary of growth experiments with Salmonella treated with KFF-

PNAs. (Top) Heatmap of MIC values, determined as the lowest concentration that fully inhibits 

growth after 24 hours (see Supplementary Figure S6). (Bottom) Heatmap of OD600 after 24 h 

treatment with 10 µM of the indicated PNA. (C) Transcript levels of acpP and fabF after short-

term exposure (15 minutes) to 5 μM of the indicated PNA relative to the untreated control 

condition. The barplot shows the negative log2 fold change of acpP (steel blue) and fabF (light 

blue) transcripts from the RNA-seq experiment. Asterisks indicate significant downregulation 

(log2 FC >1 & FDR <0.001). 

 

Figure 3. Changes in Salmonella (A) and UPEC (B) gene expression in response to PNA 

treatment, inferred from RNA-seq data. The heatmap shows genes which rank amongst the 

top 5 significantly enriched and depleted genes of each sample. Columns are ordered by 

decreasing log2FC in the sample treated with the fully matching acpP PNA. Colors indicate 

the log2 fold change of the respective gene after 15 minutes of PNA exposure, with orange 

and blue showing positive and negative differences in gene expression, respectively. Asterisks 

indicate significant changes (log2FC >1, FDR <0.001). Each row represents one PNA 
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condition and each column a specific gene. The top five regulated genes (based on P-value) 

with an absolute fold change >2 and FDR <0.001 (marked with asterisks) are shown for each 

sample. Heatmap rectangles are framed if the PNA-gene pair has a predicted off-target with 

0, 1, 2 or 3 mismatches. The frame thickness denotes the complementarity of the gene-PNA 

pair; the less mismatches the thicker the frame.   

 

Figure 4. Mismatch position within the PNA target region dictates the degree of the off-target 

effect. The TIR of all genes were screened for complementarity to the PNA with a maximum 

of 3 mismatching bases. Genes with less than 5 counts per million were excluded from the 

analysis. For all off-targets with >0 mismatches, the most central mismatch was determined 

and plotted against the percentage of significantly downregulated genes for the Salmonella 

(A) and UPEC (C) data sets. Off-targets with a maximum base-pairing stretch (i.e. consecutive 

matches without mismatch) of >6 were compared to the rest of the off-targets in Salmonella 

(B) and UPEC (D). Hypergeometric p-values on top of the bars test for enrichment of 

differentially depleted genes in the RNA-seq datasets relative to random draws with the same 

sample size.   
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Figure 1. The MASON webserver designs ASO sequences and predicts off-targets. (A) Users 
specify an organism of interest, the target gene, ASO length and allowed number of 
mismatches for off-targets. MASON then generates ASO sequences and their attributes in 
between 5 and 30 seconds. (B) The generated ASO sequences are designed to bind the start 
codon (marked in dark blue) of the target mRNA. (C) MASON predicts critical off-target binding 
regions for each ASO. An off-target is termed "critical" if the respective ASO sequence binds 
more than 7 consecutive bases of the off-target mRNA. Off-targets are predicted both for the 
whole transcriptome (steel blue) and for translation initiation regions (TIR, light blue) of other 
genes. TIRs are defined as -30 to +16 bases from the start codon.
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Figure 2. PNAs with two terminal mismatches show position-dependent effects on Salmonella 
growth and mRNA levels. (A) Workflow of experiments. acpP PNA (acpP) and nine acpP-related 
PNAs with two serial mismatches (mm1-mm9) were designed and tested against S. enterica serovar 
Typhimurium strain SL1344. PNA sequences are shown from their C- to N- terminus (from left to 
right). A 10-mer region of the acpP mRNA (blue) including its "AUG" start codon (bold) was targeted 
by one fully complementary PNA and nine mismatched PNAs, all coupled to the CPP KFF (green). 
Mismatches in the PNA sequences are marked in red. Upper right: Minimum inhibitory concentration 
experiments were performed by challenging Salmonella with different CPP-PNA concentrations for 
24 hours while measuring cellular growth. Lower right: RNA sequencing was performed to profile 
RNA levels after short term CPP-PNA exposure. (B) Summary of growth experiments with 
Salmonella treated with KFF-PNAs. (Top) Heatmap of MIC values, determined as the lowest 
concentration that fully inhibits growth after 24 hours (see Figure S6). (Bottom) Heatmap of OD600 
after 24 h treatment with 10 µM of the indicated PNA. (C) Transcript levels of acpP and fabF after 
short-term exposure (15 minutes) to 5 μM of the indicated PNA relative to the untreated control 
condition. The barplot shows the negative log2 fold change of acpP (steel blue) and fabF (light blue) 
transcripts from the RNA-seq experiment. Asterisks indicate significant downregulation (log2 FC >1 & 
FDR <0.001).
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Figure 3. Changes in Salmonella (A) and UPEC (B) gene expression in response to PNA 
treatment, inferred from RNA-seq data. The heatmap shows genes which rank amongst the top 5 
significantly enriched and depleted genes of each sample. Columns are ordered by decreasing 
log2FC in the sample treated with the fully matching acpP PNA. Colors indicate the log2 fold 
change of the respective gene after 15 minutes of PNA exposure, with orange and blue showing 
positive and negative differences in gene expression, respectively. Asterisks indicate significant 
changes (log2FC >1, FDR <0.001). Each row represents one PNA condition and each column a 
specific gene. The top five regulated genes (based on P-value) with an absolute fold change >2 
and FDR <0.001 (marked with asterisks) are shown for each sample. Heatmap rectangles are 
framed if the PNA-gene pair has a predicted off-target with 0, 1, 2 or 3 mismatches. The frame 
thickness denotes the complementarity of the gene-PNA pair; the less mismatches the thicker the 
frame.  
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Figure 4. Mismatch position within the PNA target region dictates the degree of the off-target 
effect. The TIR of all genes were screened for complementarity to the PNA with a maximum of 3 
mismatching bases. Genes with less than 5 counts per million were excluded from the analysis. 
For all off-targets with >0 mismatches, the most central mismatch was determined and plotted 
against the percentage of significantly downregulated genes for the Salmonella (A) and UPEC (C) 
data sets. Off-targets with a maximum base-pairing stretch (i.e. consecutive matches without 
mismatch) of >6 were compared to the rest of the off-targets in Salmonella (B) and UPEC (D). 
Hypergeometric p-values on top of the bars test for enrichment of differentially depleted genes in 
the RNA-seq datasets relative to random draws with the same sample size.  
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