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In the 1990’s, computer manufacturers are increasingly turn-

ing to the development of parallel processor machines to meet

the high performance needs of their customers. Simultane-

ously, atmospheric scientists studying weather and climate

phenomena ranging from hurricanes to El Niño to global

warming require increasingly fine resolution models. Here,

implementation of a parallel atmospheric general circulation

model (GCM) which exploits the power of massively parallel

machines is described. Using the horizontal data domain de-

composition methodology, this FORTRAN 90 model is able

to integrate a 0.6
◦ longitude by 0.5

◦ latitude problem at a

rate of 19 Gigaflops on 512 processors of a Cray T3E 600;

corresponding to 280 seconds of wall-clock time per simu-

lated model day. At this resolution, the model has 64 times

as many degrees of freedom and performs 400 times as many

floating point operations per simulated day as the model it

replaces.

1. Introduction

The general circulation modeling community con-

stantly demands more computing power to meet its

needs. Short to medium range weather forecasters have

used increasingly faster machines to run higher reso-

lution models. The improved solutions obtained from

higher resolution in numerical weather prediction is

well known; Simmons et al. [21], among others, doc-

ument this. Higher resolution is also important to sea-

sonal and interannual variability studies (e.g. [7,11]).
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For studies of longer time scale phenomena, complet-

ing model runs at any reasonable resolution becomes
the challenge. Coupled atmospheric/ocean simulations

of El Niño require enormous computational power. Re-
cently, some modelers have turned to ensembles of runs

to produce better predictions; a strategy that magnifies
resource demands. For the time scales of global climate

change, coupled model runs can last hundreds of sim-
ulated years (e.g. [15]); for studies of the thermohaline

circulation, those numbers stretch into the thousands.

To meet these needs, supercomputer manufacturers
have offered a variety of solutions. Since the 1980’s,

parallel vector processors have been the most widely
used by the GCM community. However, in the 1990’s

cache-based massively parallel processor (MPP) ma-
chines have become increasingly prominent. These

machines challenge model designers to write code that
runs efficiently within a single processor yet scales well

for hundreds of processors. In addition, these mod-

els must be easily adaptable to rapidly changing ma-
chine architectures and communication software so as

to avoid time-consuming code rewrites.
A snapshot of the progress of (mostly atmospheric)

GCM designers toward meeting these challenges was
presented in a special issue of Parallel Computing in

1995. Drake et al. [8] wrote a message passing imple-
mentation of the National Center for Atmospheric Re-

search (NCAR) Community Climate Model (CCM2)

for the IBM SP2 and Intel Paragon machines. Most
notable was the poor single processor performance they

attributed to inefficient cache use (a result noted repeat-
edly in the literature). Jones et al. [9] implemented a

parallel version of the Geophysical Fluid Dynamical
Laboratory (GFDL) Atmospheric General Circulation

Model (AGCM) running on the CM-5 and SGI/Cray
C90. Single processing element (PE) performance and

scaling were quite good on the C90 but hampered on

the CM5 by over-use of memory they attributed to poor
algorithmic design. Lou and Farrara [13] optimized a

parallel version of the UCLA AGCM for the Paragon
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and SGI/Cray T3D/E. The model scales fairly well but

their preliminary attempts at cache-based optimizations

have yielded modest improvements.

More recent GCM implementations on cache-based

MPP’s have yielded little improvement in single pro-

cessor performance. The Canadian Mesoscale Com-

pressible Community (MC2) model [24] and the Nor-

wegian high resolution limited area model [22] both re-

port speeds on the order of 10% of the T3E theoretical

peak. Levesque [12] offers some hope as he was able to

more than double performance of the Los Alamos Par-

allel Ocean Program (POP) on the SGI Origin 2000 by

meticulously mapping cache misses and then re-writing

the code to minimize them. However, this kind of re-

structuring is time consuming and the resulting code

may not perform well on other architectures (particu-

larly vector processors). Other modelers have instead

chosen to re-direct efforts away from machine specific

optimizations and toward enhancing code adaptability.

The MC2 code [24] includes an intermediate communi-

cations layer between the model functional routines and

communication packages such as MPI. The isolation of

machine and communications package dependent code

made the model quite portable. Michalakes [16] went

even further by developing a special compiler to nearly

automatically parallelize the serial version of the Penn

State/NCAR Mesoscale Model (MM5). The results on

the SGI Origin were as good as a hand parallelized ver-

sion. Development of this compiler was facilitated by

the fact that MM5 has only local data dependencies.

Here we describe the parallel design and perfor-

mance of an AGCM designed for climate studies on

MPPs. The primary objectives are efficient single PE

performance, scalability, and portability. Section 2 de-

scribes the scientific basis of the model. Section 3 ex-

plains the high-level model design, the parallelization

methodology, and gives highlights of the detailed de-

sign. Section 4 analyzes the model performance. Sec-

tion 5 discusses how the model is currently being used

and describes on-going optimization efforts.

2. Model description

The dynamical portion of the GCM is based on a

finite-differenced, primitive equations dynamical core

(Dycore) [23] that allows arbitrary horizontal and ver-

tical resolution. It is the dynamical core used by God-

dard’s Data Assimilation Office in the Goddard Earth

Observing System (GEOS) GCM and by NASA’s Sea-

sonal to Interannual Prediction Project (NSIPP). Its

prognostic variables are the two horizontal wind com-

ponents, the potential temperature, the surface pressure,

the water vapor mixing ratio, and an arbitrary number

of passive tracers. In the vertical, the discretization

scheme closely follows that proposed by Arakawa and

Suarez [1], but applied to a generalized vertical coordi-

nate (σ− p). In the horizontal, the equations are finite-

differenced on a staggered latitude-longitude grid (the

C-grid). To avoid linear computational instability due

to convergence of meridians near the poles, a Fourier

filter is applied to all tendencies pole-ward of 45 de-

grees latitude. The model also uses a scale-selective

filter [20] to damp grid-scale variance that can lead to

non-linear computational instability. The model is in-

tegrated in time using a leapfrog scheme modified as

proposed by Brown and Campana [3] and by applying

a weak time filter [2].

The solar parameterization [5] models absorption

due to O3, CO2, water vapor, O2, clouds, and aerosols,

as well as gaseous, cloud, and aerosol scattering. The

infrared parameterization [6] includes absorption by

water vapor, CO2, O3, methane, N2O, CFC-11, CFC-

12 and CFC-22 within eight spectral bands. Other

parameterizations include the Louis et al. [14] turbu-

lence and Zhou et al. [25] gravity wave drag schemes.

Penetrative convection originating in the boundary

layer is modeled using the Relaxed Arakawa-Schubert

(RAS) scheme [17]. The Mosaic land surface model

(LSM) [10] computes area-averaged energy and water

fluxes from the land surface in response to meteorolog-

ical forcing. A grid square is sub-divided into relatively

homogeneous sub-regions (“tiles” of the mosaic), each

containing a single vegetation or bare soil type.

3. Computational design

We begin by describing the high level structure of

the GCM so as to provide context for the results in

Section 4. The model is divided into self-contained

components, each operating on its own space (grid) and

time scales. Presently, the major components for this

atmospheric GCM are:

1. Dynamics – Dycore, the Shapiro filter and the

model stepping functionality.

2. Slow Physics – The longwave and shortwave ra-

diation calculations.

3. Fast Physics – The remainder of the atmospheric

GCM; convection, turbulence, land processes,

etc.
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“Coupling” software ties together the model compo-

nents. The couplers serve two main purposes. One is

to do the necessary time averaging of model compo-

nent outputs. For example, the Dynamics runs more

frequently (every few minutes) than the Slow Physics

(typically every 3 hours). The coupler sums the Dy-

namics outputs during each 3 hour interval and then

sends the time average to Slow Physics just before it

runs. The second purpose of the coupling software is

to convert data from one model grid to another in paral-

lel. In general, this is accomplished by computing the

area of intersection of overlapping grid boxes and then

doing the appropriate weighted averages. When flux

quantities are exchanged between model components,

the global means are conserved. It is important to note

that the results in Section 4 are for a version of the at-

mospheric model in which all components operate on

the same grid. As a result, the couplers simply do time

averages and data copies.

The couplers and model components operate syn-

chronously within a single executable program. For ex-

ample, the GCM driver might call the Dynamics, then

the Dynamics to Slow Physics coupler, then the Slow

Physics, etc. This model structure is sufficiently gen-

eral to allow easy application to other models. For ex-

ample, the atmospheric model has a component called

“Ocean” which just reads SST from a file. A coupled

atmosphere-ocean model was coded simply by replac-

ing the “dummy” ocean component with a true ocean

model and adding the appropriate atmosphere to ocean

couplers (see Section 5).

The coupling software is similar to the NCAR Cli-

mate System Model (CSM) flux coupler [4] in that it

does the appropriate space and time averaging in paral-

lel. However, in the CSM, the flux coupler and model

components operate asynchronously as separate exe-

cutable programs. This will, of course, yield different

time truncations from the approach here. It should be

noted that the CSM approach has the advantage that

model components can be run on separate computers.

The atmosphere model components are parallelized

using a horizontal data domain decomposition. Put

simply, each processor operates on a slab of data ex-

tending from the surface to the top of the atmosphere

(Fig. 1). The primary advantage of this decomposi-

tion is that the number of horizontal grid points avail-

able to divide among the processors is large, allowing

utilization of hundreds of PE’s. In addition, physics

calculations such as longwave, shortwave, etc. require

no communication. Finally, at a practical level, using

this scheme means that the original plug compatible

physics subroutines can be retained, unmodified, in the

parallel implementation.

The processors are laid out in a rectangular array so

that each PE has exactly one neighbor on each of four

sides. The number of PE’s in the X and Y direction (NX

and NY) as well as the number of grid points within

each PE (IM and JM) are selectable at run-time. In par-

ticular, IM can be different for each of the NX columns

of PEs and JM different for each of the NY rows. Ghost

(shadow) regions are defined to facilitate local address-

ing and nearest neighbor communication. When code

such as horizontal advection needs to access an array

element outside the local processor, a communications

call is made to fill in the ghost region. Once the data

are in place, the code runs as if it were written for a

serial computer. The communication is bundled over

all levels to reduce the impact of latency.

Since the primary objective is implementation on a

distributed memory MPP, a message-passing scheme

is used for the communication. Generic synchronous

point to point send/receive routines provide the back-

bone for this scheme. Several rules have been estab-

lished to simplify the programming model:

1. Communication is “one to one”. At every point

where communication occurs, every processor

sends data to exactly one other processor (al-

though a processor can also send to itself).

2. Communication is one-sided. Every processor

“puts” data to another processor. It knows to

which other processor it is sending data but does

not know from which other processor it is receiv-

ing.

3. Synchronization is automatically handled by the

communication routines.

Currently the communications routines are imple-

mented using calls to either native Cray shared memory

software (SHMEM), message passing interface (MPI)

routines, or to a single processor package which “com-

municates” via simple data copies. This backbone

is packaged into a single “communication primitives”

module. Since this is the only code that varies between

implementations, porting the model is quite simple.

The code currently runs on the DEC Alpha worksta-

tion, the SGI Origin 2000, the Cray T3E, and the Cray

J90/C90.

While most of the communication in the model is

nearest neighbor, the polar filter is a significant excep-

tion. It is implemented by first transposing the data

from an (X,Y) to a (Y,Z) decomposition, then executing

local FFTs, then transposing back. This implies that the
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Fig. 1. Representation of a horizontal data domain decomposition. The thin lines demarcate model grid boxes. The thick lines indicate processor

boundaries. In this case, the model data are divided among 4 processors.

greater the decomposition in X, the poorer the perfor-

mance of the polar filter. Conversely, nearest neighbor

communication scales as 1√
PEs

only if the processor

layout is close to symmetrical. These conflicting per-

formance considerations guide optimal processor lay-
out choice and represent the most obvious disadvantage

of this decomposition strategy.

Currently, no load balancing is implemented. The
sources of imbalance are:

1. The shortwave code; radiative transfer calcula-

tions need only be performed for sunlit sound-
ings.

2. The land surface code; no computations are

needed for ocean points and the uneven distribu-
tion of tiles further un-balances the problem.

3. Cumulus convection; fewer computations are

needed where convection does not occur.
4. The polar filter; it only operates pole-ward of 45

degrees latitude. The utility of implementing load

balancing schemes will be discussed in Section 5.

The Dynamics, all upper-level Physics routines

and control and communication routines are writ-

ten in FORTRAN 90. Most of the low-level, plug-

compatible, computational routines in the Physics have

been left in FORTRAN 77. Array syntax, user-defined

types, subroutine overloading, modules, and dynamic

memory allocation are used extensively. Use of these

features has helped to create reasonably well-structured

code and greatly facilitated debugging. Since all

memory is dynamically allocated, the model runs at

any resolution using any processor layout without re-

compilation. The use of FORTRAN 90 already has

yielded negative impacts. On the Cray J90/C90 ma-

chines, code which uses FORTRAN 90 pointers does

not vectorize. Consequently, the code had to be struc-

tured so as to convert pointer references to array refer-

ences. This was accomplished by, for example, pass-

ing pointer variables to subroutines which have array

dummy arguments. Also, arithmetic using assumed

shape arrays was less efficient than that for automatic
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or allocated arrays. Finally, dynamic memory use may

hamper future cache-based optimizations. On the pos-

itive side, the use of array syntax does not appear to

degrade performance on the Cray T3E as compared to

F77 style loop structures. Figure 2 shows samples of

F90 array syntax and F77 loop versions of the fourth

order horizontal advection scheme inside Dycore. The

two codes were repeatedly executed as part of a one

day run of a 2.5◦ by 2◦ by 22 layer resolution atmo-

spheric GCM on 64 processors. The codes executed in

the same amount of time. In this case, communication

(calls to GHOST) represented 20% of the run-time of

the routine.

4. Results and performance

The model is currently being run on the DEC Alpha

workstation, Cray T3E, and Cray J90. To validate the

code, results were compared to those from the serial,

FORTRAN 77, production version for the same initial

and boundary conditions at a resolution of 72×45×22.

At this resolution, Dynamics and Fast Physics are run

at 9 minute intervals and Slow Physics every 3 hours.

After 3 hours, checksums of state variables, budgets

and other diagnostic quantities for the old and new

code differ at the round-off level; for one or multiple

processors.

To assess performance, the floating point operations

(FLOPs) are counted for a one processor run on a CRAY

J90 using the PERF utility. These numbers are gener-

ally more conservative (up to 25%) than the operation

counts produced by T3E-native counters. Initialization

and finalization times are not counted. No model out-

put is done during the “run” phase for purposes of these

benchmarks. Performance is then computed by divid-

ing the FLOP count by the run-time measured by wall-

clock timers. The 72×45×22 resolution problem was

run on the Cray T3E-600 using 32 bit words for up to

64 PEs. The peak performance is 1.35 Gflop/s, corre-

sponding to 20 seconds run-time per simulated model

day. A 64 bit version runs longer (28 seconds per day)

largely due to the fact that the code is memory-access

bound. In comparison, the original production version

running multi-tasked on the Cray J90 (64 bit) simulates

one model day in 50 seconds.

With the successful implementation of the model on

the T3E, it is now possible to change the resolution

used in long-term simulations from 4◦ by 5◦ to 2.5◦ by

2◦. A time step of 225 seconds is sufficient to satisfy

the Courant-Friedrich-Levy (CFL) condition for linear

numerical stability at this resolution. The Dynamics

and Fast Physics run at this interval; the Slow Physics at

3 hour intervals. For the typical case of 128 processors

using 32 bit words, the model simulates one day in 80

seconds. Of this, 32 seconds is spent in Dynamics, 34

seconds in Fast Physics and 9 seconds in Slow Physics.

Only 3 seconds is spent doing I/O.

To truly exploit the power of the T3E machine, we

turn to a high resolution problem; 576 × 360 × 22

(0.625◦ by 0.5◦ by 22 levels). Preliminary tests show

a Dynamics time step of one minute is required to

satisfy the (CFL) condition at this resolution. The Fast

Physics is run every 10 minutes and Slow Physics at

3 hour intervals. For a 3 hour run, the floating point

operations total 686 billion. The 32 bit version requires

approximately 1 billion words of memory; translating

to a minimum of 64 Cray T3E-600 PEs. The GCM

was tested for processor configurations totaling up to

512 PEs. Experimentation showed that for 512 PEs, a

processor layout of 16 PEs in longitude, 32 in latitude is

optimal. For that case, the performance is 19.6 Gflop/s.

This corresponds to 280 seconds of wall-clock time per

simulated model day.

The details of the T3E performance are shown in the

speedup plots in Fig. 3. The solid lines in the figure are

curve fits of the data to Amdahl’s speedup law:

S =
1

Fs +
Fp

Np

where S is the speedup, Fs is the serial fraction, Fp

is the parallel fraction and Np is the number of pro-

cessors. For a perfectly load balanced code, the effec-

tive single processor performance is an estimate of how

fast it would run on 1 PE if that were possible. Notice

that, in Dynamics, this number is higher than the per-

processor performance because it does not include the

degradation due to communication as the problem is

scaled to 512 PEs. The floating point operation counts

show that Dynamics is responsible for the great major-

ity of the work. This is largely due to its relatively short

time steps. Although the Slow Physics does virtually no

communication, Fig. 3 shows that it does not scale per-

fectly. We speculate that performance for large num-

bers of processors is hampered by excessive loop over-

head in the longwave and shortwave routines. As the

number of processors increases, the loop extents shrink

and the effects of loop overhead become significant.

Table 1 shows a breakdown of performance of the

major GCM components. The dynamical core con-

sumes the most run-time and will need the greatest at-

tention during future optimizations. The poor scaling
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F77 Loop Version

      do L=1,LM

        do J = J1,JN

          do I = I1,IN

            TND(I,J,L) = TND(I,J,L) + (1./24.) &

              * ( (VT1(I, J, L) - VT1(I-1, J, L))  &

                + (VT2(I, J+1, L) - VT2(I, J, L)) )

          end do

        end do

      end do

F90 Array Syntax Version

      do L=1,LM

        TND(I1:IN, J1:JN, L) = TND(I1:IN, J1:JN, L) + (1./24.) &

          * ( (VT1(I1:IN, J1:JN, L) - VT1(I1-1:IN-1, J1:JN, L)) &

            + (VT2(I1:IN, J1+1:JN+1, L) - VT2(I1:IN, J1:JN, L)) )

      end do

Fig. 2. Code samples of F77 loop and F90 array versions of the fourth order horizontal advection code inside Dycore. At the resolution of 2.5◦

by 2
◦ with 8 processors in the X and Y direction, the local loop sizes are 18 in X and either 12 or 11 in Y. The arrays shown in the code were

allocated using F90 automatic array syntax.

of the Shapiro filter is expected; it does relatively few

floating point operations per communication. That the

Step function does not scale perfectly is merely an arti-

fact of the code design. It fills the ghost regions of the

state variables; work that could just have easily been

done in Dycore.

The LSM and RAS codes are “super-scaling”. This

commonly observed result occurs because as the num-

ber of processors increases, the amount of memory

needed per pe decreases and, consequently, the data fit

better in cache.

The rated performance of the Cray T3E 600 is 600

Mflop/s. While, in practice, few codes reach 200

Mflop/s per PE, it is clear from table 1 that our per-PE

performance is much lower. One reason is poor cache

re-use. As a first cut, this code was written to mimic

the original serial code which was designed to run effi-

ciently on vector machines. As of yet, no serious cache-

based optimizations have been attempted. A second

reason is communication costs. Measurements indi-

cate that 22% of the Dycore run-time is communica-

tion. Latency is significant. Even with bundled Ghost

calls, preliminary measurements indicate that 35% of

the nearest neighbor communication time is latency.

When the Ghost calls are unbundled, Dycore perfor-

mance degrades by 20%. A third cause of the poor

single-pe performance is load-imbalance as described

earlier. Strategies to address these inefficiencies are

discussed in the next section.

Table 1

Floating point operations (in billions), run-time, total

performance, and per pe performance for a 3 hour

run of the 576×360×22 resolution problem at 512

PEs.

Code GFLOP Time (s) Gf Mf/PE

Dycore 427.3 17.77 24.1 47.0

Shapiro 74.6 5.56 13.4 26.2

Step 33.6 1.57 21.4 41.8

Longwave 34.3 0.97 35.4 69.1

Shortwave 48.0 2.77 17.3 33.8

Lsm 6.8 0.96 7.1 13.8

Ras 4.6 1.21 3.8 7.4

A Cray J90 SHMEM version of the code for the same
resolution performed at 90 Mflop/s on one processor.
Since the rated performance of the J90 is 200 Mflop/s,
the model is clearly vectorizing quite well. Although a
multiple processor J90 version has not been run for this
resolution, past experience suggests that it should per-
form at about 1 Gflop/s for 16 PEs. An MPI implemen-
tation on the J90 was found to significantly degrade the
code’s performance; presumably due to the high level
of overhead in the MPI software. A T3E MPI version
has not been tested. A SHMEM version on the SGI
Origin 2000 runs on multiple processors but the results
have not yet been analyzed.

5. Discussion

As currently written, the code performs well enough
to enable production runs at high resolution (0.6 ◦ lon-
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Fig. 3. Speedup plots for 3 hour runs of the full GCM and its three major components. The floating point operations in billions are given at

the top of each graph. The asterisks represent the speed in Gflop/s for 128, 256 and 512 PEs. The dot-dashed line represents a perfectly linear

speedup. The solid curve was obtained by fitting the run-times to Amdahl’s speedup law (see text). Fp and S are as given in Amdahl’s law. The

effective single PE performance is the curve value for Np = 1.

gitude by 0.5◦ latitude by 22 levels) using 512 pro-

cessors. In fact, a one year run at this resolution has

already been completed. The model can also run ef-

ficiently at lower resolutions. For example, a 1.25◦

longitude by 1◦ latitude problem running on 128 pro-

cessors would actually out-perform the high resolution

case. The Dynamics, Fast Physics and Slow Physics

would run with the same efficiency as in the high res-

olution case since the amount of work and number of

processors have both decreased by a factor of 4. How-

ever, for the lower resolution, a Dynamics time step of

2 minutes could be taken, significantly improving the

model throughput. For lower resolutions, an ensemble

of runs most effectively utilizes the 512 PE machine.

Such ensemble runs have already been completed at a

resolution of 1.25◦ by 1◦. The 2.5◦ by 2◦ atmospheric

model has also been coupled to a parallel version of the

Poseidon ocean model [19]. A 100 year run using 128

processors is currently underway.

Five major avenues of optimization are under in-

vestigation; faster time differencing schemes, sin-

gle PE optimization, reduction of software latency in
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the communication code, load balancing, and paral-
lel/asynchronous I/O. As the results indicate, for the
high resolution case, Dynamics is the bottleneck due
to the small time step. One way to increase the time
step is to handle terms in the differential equations re-
sponsible for gravity waves with an implicit integration
step. This is known as a semi-implicit scheme. An-
other approach is to integrate the gravity wave terms
at a smaller time step than the other terms (the split-
explicit approach). Stability problems posed by ad-
vection could be relaxed with a semi-lagrangian time-
integration scheme. It is expected that some combina-
tion of these and other schemes will double Dynamics
throughput.

Single PE optimization will largely be achieved by
better cache re-use. Preliminary analysis shows that the
local storage for one sounding in the longwave code for
the high resolution case could fit entirely in cache. Ob-
taining such a fit should enhance performance. A sim-
ilar strategy could be applied to the shortwave and Fast
Physics codes. Further single PE optimization may re-
quire more severe measures such as re-organizing data
structures and writing key components in assembly lan-
guage. Of course, such modifications would degrade
vector performance on parallel vector machines as well
as the clarity of the code itself.

As mentioned, communications latency is signifi-
cant. Much of this latency appears to be due to un-
necessary overhead in the “communication primitives”
software. Efforts are underway to eliminate this over-
head by eliminating communication buffers and super-
fluous memory access. Elimination of this excess la-
tency should, for example, enable the aforementioned
coupled run to scale well beyond 32 processors.

Off-line experimentation suggests that load balanc-
ing will improve the performance of the shortwave and
LSM calculations. The re-distribution of data is deter-
mined ahead of time so the only cost is the actual com-
munication. Some benefit could also be gained from a
load-balanced polar filter since at 512 PEs, 60% of the
polar filter time is spent doing the actual FFT. For RAS,
it is possible no improvement at all will be achieved
since a great deal of the run-time would have to spent
determining how the data should be re-distributed.

For the long runs currently in progress, relatively
little diagnostic output is needed so the cost of I/O is
insignificant. It is estimated that even a planned 5-
fold increase in model output will not present any great
difficulty. Should this turn out not to be the case or
if even more extensive output is needed then paral-
lel/asynchronous I/O may be required. Development of
parallel I/O software is discussed in Sawyer et al. [18].

In conclusion, a parallel atmospheric general circu-

lation model that successfully exploits the power of

MPP’s such as the Cray T3E has been developed. The

model is being used for high resolution runs as well as

ensembles of low resolution cases. On-going efforts to

improve single processor performance, reduce commu-

nication overhead, and mitigate load imbalances will

enable even more effective use of these powerful ma-

chines.
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