
 Open access Journal Article DOI:10.1109/JSSC.2002.808300

Design and performance testing of a 2.29-GB/s Rijndael processor — Source link

Ingrid Verbauwhede, Patrick Schaumont, H. Kuo

Institutions: University of California, Los Angeles

Published on: 10 Mar 2003 - IEEE Journal of Solid-state Circuits (IEEE)

Topics: AES implementations, Advanced Encryption Standard, Encryption, Cryptography and Very-large-scale integration

Related papers:

 A Compact Rijndael Hardware Architecture with S-Box Optimization

 An ASIC Implementation of the AES SBoxes

 A highly regular and scalable AES hardware architecture

 Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s AES processors

 High-speed VLSI architectures for the AES algorithm

Share this paper:

View more about this paper here: https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-
4i37g82lw3

https://typeset.io/
https://www.doi.org/10.1109/JSSC.2002.808300
https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3
https://typeset.io/authors/ingrid-verbauwhede-1wg8fugmik
https://typeset.io/authors/patrick-schaumont-zbtlr35p9q
https://typeset.io/authors/h-kuo-55ml0t5i28
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/journals/ieee-journal-of-solid-state-circuits-3jq6vfrn
https://typeset.io/topics/aes-implementations-9h7ckdn8
https://typeset.io/topics/advanced-encryption-standard-1h76rls8
https://typeset.io/topics/encryption-3by21bfi
https://typeset.io/topics/cryptography-i1w0hc3v
https://typeset.io/topics/very-large-scale-integration-3foocig0
https://typeset.io/papers/a-compact-rijndael-hardware-architecture-with-s-box-9gulysniid
https://typeset.io/papers/an-asic-implementation-of-the-aes-sboxes-505aemruk9
https://typeset.io/papers/a-highly-regular-and-scalable-aes-hardware-architecture-1ziwdwy9u8
https://typeset.io/papers/area-throughput-trade-offs-for-fully-pipelined-30-to-70-2hduzliza2
https://typeset.io/papers/high-speed-vlsi-architectures-for-the-aes-algorithm-4slr3bjvln
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3
https://twitter.com/intent/tweet?text=Design%20and%20performance%20testing%20of%20a%202.29-GB/s%20Rijndael%20processor&url=https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3
https://typeset.io/papers/design-and-performance-testing-of-a-2-29-gb-s-rijndael-4i37g82lw3

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 3, MARCH 2003 569

Design and Performance Testing of a 2.29-GB/s Rijndael Processor

Ingrid Verbauwhede, Senior Member, IEEE, Patrick Schaumont, Student Member, IEEE, and Henry Kuo

Abstract—This contribution describes the design and per-
formance testing of an Advanced Encryption Standard (AES)
compliant encryption chip that delivers 2.29 GB/s of encryption
throughput at 56 mW of power consumption in a 0.18- m CMOS
standard cell technology. This integrated circuit implements
the Rijndael encryption algorithm, at any combination of block
lengths (128, 192, or 25 bits) and key lengths (128, 192, or 256
bits). We present the chip architecture and discuss the design
optimizations. We also present measurement results that were
obtained from a set of 14 test samples of this chip.

Index Terms—Advanced Encryption Standard (AES), applica-
tion-specific integrated circuit (ASIC), processor, Rijndael, secret
key cryptography, very-large-scale integration (VLSI).

I. INTRODUCTION

W
E developed a high-throughput Rijndael encryption [1]

processor with customized target architecture. It imple-

ments a superset of the Advanced Encryption Standard (AES)

encryption standard [2]. At peak performance, our processor

achieves 2.29 Gb/s of encryption throughput at 56 mW of power

consumption. The processor is programmable and supports

Rijndael in any combination of key lengths (128, 192, or 256 bits)

and block lengths (128, 192, or 256 bits). It is integrated into the

host platform through a 16-bit data bus and operates with a small

instruction set. The implementation uses 173K gates in a 1.8-V

0.18- m CMOS standard cell technology, and has been verified

operational at up to 154-MHz clock frequency in a prototype

setup.

In Sections II and III, we will review the Rijndael algorithm

and present the processor architecture. This includes a discussion

at system level and at block level, as well as a review of the design

optimizations that have been applied. The chip has been imple-

mented and verified in a test setup. The schmoo plots and power

consumption figures in this paper present, to our knowledge, the

first verified application-specific integrated-circuit (ASIC) im-

plementation of the Rijndael encryption algorithm.

II. RIJNDAEL CIPHER

The Rijndael encryption algorithm [1] is a block cipher that

converts cleartext data blocks of 128, 192, or 256 bits into ci-

phertext blocks of the same length. It uses a key of selectable

length (128, 192, or 256 bits). The encryption algorithm is or-

ganized as a set of iterations called round transformations, as

Manuscript received April 17, 2002; revised October 24, 2002. This work
was supported by the National Science Foundation and by the University of
California Microelectronics Innovation and Computer Research Opportunities
(UC Micro).

I. Verbauwhede and P. Schaumont are with the Department of Electrical En-
gineering, University of California, Los Angeles, CA 90095 USA (e-mail: in-
grid@ee.ucla.edu).

H. Kuo is with Atmel Corporation, San Jose, CA 95131 USA.
Digital Object Identifier 10.1109/JSSC.2002.808300

Fig. 1. Rijndael encryption.

illustrated in Fig. 1. In each round, a data block is transformed

by a series of operations. The total number of rounds is depen-

dent on the largest of data block length or key length , and

equals 10, 12, and 14 for lengths of 128, 192, and 256 bits, re-

spectively. All round transformations are identical, apart from

the final one.

The operations performed during a round transformation in-

clude the following.

• performs modulo-2 addition of a roundkey

with a data block.

• replaces each byte of the data block with the

S-box lookup table value of that byte. The contents of an

S-box is the multiplicative inverse in Galois Field (GF)

2 , combined with a permutation affine over GF(2).

• organizes the data block in a four-row row-

major ordered matrix and circularly shifts each row over a

parameter and row-index dependent shift.

• uses the same four-row matrix organization

but transforms each column of the matrix by multiplying

it with a constant GF polynomial.

III. CHIP DESIGN AND IMPLEMENTATION

The system architecture of our implementation is shown in

Fig. 2. The central block of the architecture, , imple-

ments one round of a Rijndael encryption in a fully parallel non-

pipelined fashion. This Rijndael encryption can be completed at

one clock cycle per round.

The processor has three controllers, two for input/output

(I/O) interfacing and one for instruction sequencing. They

communicate through request/acknowledge protocols with the

host system. This asynchronous interfacing method allows the

chip to be clocked much faster than the bus it is connected to.

0018-9200/03$17.00 © 2003 IEEE

570 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 3, MARCH 2003

Fig. 2. System architecture.

It also brings considerable simplification of the performance

testing process. Separation of I/O controllers from the instruc-

tion sequencing controller makes this block easily portable as

an IP block to a different context, where a different databus or

I/O interface protocol would be used.

A. Encryption Datapath

During encryption, the data is organized conceptually in a
4 8 matrix of bytes, totaling 32 bytes. This organization is
used for data block sizes of 256 bits. For smaller data block
sizes (128 or 192 bit), the leftmost columns of the matrix
are unused. The encryption datapath processes a full 32-byte
block in parallel. A complete round transformation executes
in a single clock cycle. Each transformation (,

, ,) was optimized appro-
priately for maximal performance.

The transformation relies on S-box lookup tables.
Since all bytes are processed in parallel, we need 32 lookup
tables (of 256 8-bit entries). Their optimization will be discussed
further later.

The block transformation can be expressed as
a rearrangement of the matrix using an address expression for
each element. The address expressions calculate row-dependent
circular shifts of the rows of a 4-, 6-, or 8-column matrix, de-
pending on a block length of 128, 192, or 256 bits, respectively.
These expressions then can be optimized using code hoisting
and constant propagation techniques [1], [10].

The GF multiplication in uses a constant as one
operand. This constant multiplication is converted to an XOR

operation [1], [10].
While a complete round transformation is completed within

one clock cycle, careful design and optimization allows ob-
taining a critical path of 6 ns (typical) in 0.18- m technology.
The overall critical path of the design is 10 ns (typical) and
resides in the key-schedule block.

B. Key Scheduling

The architecture can support a chosen combination of key
length and data-block length . Therefore, the number of

Fig. 3. Key-scheduling architecture.

key-schedule iterations and the number of round transfor-
mations can be different. We also want to have a constant
encryption rate of one round transformation per clock cycle.
Consequently, the speed of the key-scheduling process must be
adapted as and change. Depending on the parameter values,
we have to complete 0, 1, or 2 of the key-scheduling itera-
tions per clock cycle in order to keep up with the pace of one
round transformation per cycle. For example, when 256-bit data
blocks and 128-bit subkeys are needed (,),
then two key-schedule iterations are needed for each data block.
Double-rate key scheduling is only a worst case situation, but
nonintegral rates can also occur. The combination of 192-bit
data blocks with 128-bit keys (,), for ex-
ample, requires 1.5 key-schedule iterations per data block. The
implementation of these nonintegral rates requires special archi-
tecture support. Fig. 3 shows the key-scheduling architecture in
more detail.

The key scheduling has to provide one -bit roundkey per
clock cycle to the block. The roundkey has to be con-
structed out of -bit subkeys. When is larger than , multiple
subkeys are required within one clock cycle. Two key-sched-
uling blocks and allow evaluation of
two iterations of the key scheduling. The -bit roundkey is
assembled out of -bit subkeys (Previous, Current,
and Next key-schedule iteration, respectively). This assembly is
under control of a key-schedule controller. This controller also
steers the pace of the key-schedule iterations by selecting which
subkey is used as iterated key. With the key , the key schedule
does not advance. With the key , a single iteration per clock
cycle is taken, and with the subkey , two iterations are taken
per clock cycle.

C. S-Box Design

Because of the high amount of parallelism in our architec-

ture, most tables are instantiated multiple times. The S-box table

requires 32 instances in the encryption unit and 16 instances

in the key-scheduling part. This makes area optimization of

a single S-box instance an important factor in control of the

overall chip area. The factors controlling the size of an S-box

are a combination of the design and the logic-synthesis effort.

The design is specified as the contents of an S-box, which is

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 3, MARCH 2003 571

Fig. 4. Area–speed tradeoff for S-box.

Fig. 5. Chip micrograph.

mathematically well defined as the combination of a GF 2

multiplicative inverse combined with a permutation, affine over

GF 2 [2]. These mathematical properties have been used by

Wolkerstorfer [5] and others to formulate smaller S-box im-

plementations by expressing the elements of the single-field

GF 2 as a polynomial of elements of the smaller field GF

2 . In our case, however, it is equally important to have also

the fastest S-box implementation. Fig. 4 illustrates the area–la-

tency tradeoff curves as obtained out of logic synthesis with

0.18- m standard cells for 1) a direct implementation and 2) the

area-optimized implementation presented by Wolkerstorfer [5].

The fastest implementation is the direct one, and is three times

better than the fastest Wolkerstorfer table. Since our primary

concern was latency performance, we opted for the fastest di-

rect implementation. Using the same constraint considerations,

a similar conclusion can also be reached using figures from other

authors [6].

D. Related Work

Both academia [3], [8], [9] and industry seem to have focused

on the design of Rijndael cores in reconfigurable hardware.

These implementations show that contemporary reconfigurable

Fig. 6. Schmoo plot: voltage versus critical path (CP).

Fig. 7. Power consumption versus critical path (CP).

platforms with their rich distributed memory architecture are

well suited for Rijndael prototype implementations. Most of

them use precomputed subkeys. For pipelined ciphers, very

high performances have been obtained. For nonpipelined

implementation however, the throughput is considerably lower,

in the order of 1 Gb/s. Unfortunately, no power consumption

figures have been published up to now. Our own estimations

show that our implementation is at least ten times more energy

efficient than a commercial field-programmable gate-array

(FPGA) implementation, and three orders of magnitude more

energy efficient than a commercial performance-optimized

software implementation [7]. Several ASIC designs have been

presented as well [10], [11], but none of them was a verified

and tested chip design.

E. Implementation and Test

The chip was implemented with a standard Hardware De-

scription Language (HDL) design flow. The chip was processed

by National Semiconductor Corporation. Of the 16 test sam-

ples that were received from the foundry, 14 were operational.

Measured key performance metrics are shown in Table I. Fig. 5

shows the die micrograph. A test setup was made using stan-

dard off-the-shelf equipment. Using the 14 operational samples,

we created schmoo plots as well as power consumption plots,

shown in Figs. 6 and 7, respectively.

572 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 3, MARCH 2003

TABLE I
KEY PERFORMANCE METRICS

IV. CONCLUSION

In this contribution, we presented a 173K-gate Rijndael en-

cryption core that was verified at 2.29-GB/s encryption speed.

The architecture was designed for best performance over sev-

eral different cryptographic modes and several different host

systems. The AES standard [2] has fixed the datablock length

to 128 bits only. This can be used to optimize our architecture

further: the key scheduling can be simplified and the encryption

datapath can be cut in half. Consequently, we can reduce the

gate count as well as the critical path to half the current amount.

We are currently extending the architecture to include various

modes of operation on-chip and to integrate it in a number of

applications.

ACKNOWLEDGMENT

The authors would like to acknowledge National Semicon-

ductor Corporation for chip processing.

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced

Encryption Standard. New York: Springer-Verlag, 2002.

[2] NIST Federal Information Processing Standards (FIPS) PUB 197
Advanced Encryption Standard (2001, Nov.). [Online]. Available:
http://www.nist.gov/aes/

[3] M. McLoone and J. McCanny, “Single-chip FPGA implementation of
the advanced encryption standard algorithm,” in Proc. 11th Int. Conf.

Field-Programmable Logic and Applications (FPL 2001), LNCS 2147,

2001, pp. 152–161.
[4] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82

Gb/s VLSI implementation of the AES Rijndael algorithm,” in Proc.

3rd Int. Workshop Cryptographic Hardware and Embedded Systems

(CHES 2001), LNCS 2162, Paris, France, May 2001, pp. 51–64.
[5] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementa-

tion of the AES S-boxes,” in Proc. RSA Conf. 2002, San Jose, CA, Feb.
2002, pp. 67–78.

[6] U. Mayer, C. Oelsner, and T. Keihler, “Evaluation of different Rijndael
implementations for high-end servers,” in Proc. IEEE Int. Symp. Circuits

and Systems, vol. 2, 2002, pp. 348–351.
[7] H. Lipmaa. AES candidates: A survey of implementations.

Lab. Theoretical Comput. Sci., Dept. Comput. Sci. Eng.,
Helsinki Univ. Technol., Helsinki, Finland. [Online]. Available:
http://www.tcs.hut.fi/~helger/aes/rijndael.html

[8] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-based perfor-
mance evaluation of the AES block cipher candidate algorithm finalists,”
IEEE Trans. VLSI Syst., vol. 9, pp. 545–557, Aug. 2001.

[9] P. Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing
of the Gigabit IPSec-compliant implementations of Rijndael and triple
DES using SLAAC-1V FPGA accelerator board,” in Proc. Information

Security Conf., LNCS 2200, Malaga, Spain, 2001, p. 220.
[10] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael

hardware architecture with S-box optimization,” in Proc. ASIACRYPT

2001, LNCS 2248, 2001, pp. 239–254.

[11] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware evaluation of the
AES finalists,” in Proc. 3rd AES Candidate Conf., New York, Apr. 2000,
pp. 279–285.

