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A novel procedure to find cost-optimal sensor networks is proposed. Cost is mini- 
mized subject to qualibing constraints that are related to certain requirements of data 
reconciliation. One basic qualibing constraint is a desired level of precision of recon- 
ciled values for a selected set of variables. Since precision requirements lead to multiple 
solutions, other qualifying constraints are proposed. These constraints are availability, 
resilience, and error detectability. Definitions for these terms are given and their impact 
on the results is presented. 

Introduction 
For a long time, the selection of sensors in chemical plants 

has been traditionally driven by the needs of basic control 
loop design. After sensors needed for control purposes were 
selected, additional sensors for process monitoring and fault 
detection were added. In recent years emerging data-recon- 
ciliation technologies have set up the scenario for a revision 
of the criteria used for sensor location. Data reconciliation 
provides results with improved precision for process eco- 
nomics (mainly accounting), for on-line modeling and opti- 
mization, and is an aid for instrument maintenance. Observ- 
ability, redundancy, and reliability, as well as the ability to 
detect gross errors are features that are becoming increas- 
ingly important. The question is how to use these objectives 
in the context of a systematic procedure to design cost-opti- 
ma1 sensor networks. 

Vaclavek and Loucka (1976) first explored this problem us- 
ing graph theory to guarantee variable observability. Kretso- 
valis and Mah (1987) proposed a combinatorial search based 
on the effect of the variance of measurements on the preci- 
sion of reconciled values. Madron and Veverka (1992) pro- 
posed classifying measured and unmeasured variables of lin- 
ear systems according to preestablished criteria of “required” 
and “nonrequired.” Unmeasured variables were later or- 
dered from “ hardly measured” to “easily measured.” Madron 
proposed to use two objective functions: cost and overall pre- 
cision of the system. Suboptimal structures are found by 
means of a matrix decomposition and an elaborate column 
permutation procedure. Madron (1992) also presents details 
of this procedure based on graph theory. The concept of 
cost-edged graph is introduced, and minimum spanning trees 
of these graphs are used to obtain minimum cost or optimal 

overall precision sensor networks. The method apparently 
cannot target the desired precision levels on individual vari- 
ables. Ragot et al. (1992) presented a procedure that allows 
the set of sensors for which the system becomes observable to 
be identified. Luong et al. (1994) presented a method that 
provides optimal cost solutions that feature minimal observ- 
ability of those variables required for control and a high de- 
gree of redundancy of variables. They use reliability as a 
means of screening alternatives with equal cost. Maquin et al. 
(1994) proposed to obtain the location of sensors by inverting 
the expression that provides the variance of reconciled vari- 
ables as a function of the variance of measurements. Ali and 
Narasimhan (1993) proposed maximizing reliability, an idea 
that is based on sensor failure probability, observability of 
variables, as well as redundancy. While looking at all the net- 
works containing the minimum number of sensors needed to 
achieve observability, they propose a max-min problem using 
reliability as the objective function. Another graph-oriented 
procedure was proposed by Meyer et al. (1994), who used 
cost as the objective function and provided solutions featur- 
ing networks containing the minimum number of sensors. 
Recently, Ali and Narasimhan (1995) extended their previous 
work to redundant networks. Their algorithm uses graph the- 
ory to build networks with a specified number of sensors and 
maximum reliability. 

While all these methods provide fundamental insights, they 
fail to take into account the fact that sensor networks should 
be able to handle gross errors effectively, that is, detect them 
when they are too large and avoid extensive corruption of 
data when they are not detected. The answer to this problem 
was first introduced in a commercial software (DATACON, 
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1993). This software proposes using the concept of error- 
masking factors to measure the effectiveness of a sensor net- 
work in relation to error detectability. A sensor value func- 
tion is proposed to measure the gross error-detection capabil- 
ities of a network. In turn, the concept of error masking re- 
lies on a test for gross error detection developed by Madron 
(1985). 

This work picks up on the preceding important milestones 
in sensor network design and proposes a design strategy that 
incorporates some of these concepts as well as new ones. An 
MINLP problem is proposed to obtain cost-optimal struc- 
tures subject to the desired level of precision in each vari- 
able. Additional constraints are proposed to guarantee net- 
work robustness of the sensor network. Robustness is defined 
as the ability of a sensor network to detect gross errors (error 
detectability), provide results at a certain level of precision in 
the presence of gross errors (availability), and minimize cor- 
ruption of data by undetected gross errors (resilience). 

The model for linear systems is presented first, and the 
solution procedure is discussed. Availability, error detectabil- 
ity, and resilience constraints are defined next, and their ef- 
fect on the solutions is discussed. This article focuses on pre- 
senting these new basic concepts. Extensions of these con- 
cepts to nonlinear systems (component and energy sensor 
networks), as well as other important features to be ad- 
dressed in future work, are briefly discussed throughout the 
text. Finally, the application of the methodology to an exam- 
ple from the literature is presented. 

Model Formulation 

a vector of binary variables defined by 
Assume that z is the vector of all mass flows, and let q be 

1 if zi is measured 
(1) 

Therefore if x denotes the measured flows and y denotes 
the unmeasured flows, we write the model of the plant as 
follows: 

DZ = AX + By = b ,  ( 2 )  

where A is composed of the columns of D that correspond 
to variables and B is composed of the columns of D that 
correspond to unmeasured variables, that is, A = A(q)  and 
B = B(q) .  This model corresponds to the usual case of mate- 
rial balance reconciliation. It is assumed that D is already in 
its canonical form (Madron, 1992), that is, all unobservable 
variables have been removed from the system of equations, 
and A is of full row rank and B is of full column rank. This 
procedure is equivalent to the matrix projection method de- 
veloped by Crowe (1983) and is presented by Madron (1992): 
it consists of simple linear combination and rearrangement of 
rows as well as column reordering, which guarantees that A 
is of full row rank and B is of full column rank. The reconcil- 
iation problem is written as follows: 

1 
2 

Min-(x - x,)~S,~(X - x, )  

S.t .  

. 4 x + B y = b ,  
(3) 

where x, and S,,, are the measured flow rates and their 
variance, respectively. The solution to this problem is 

x = X ,  - S x , , A T ( Z  - G-'BH-'B')G-'( - b + AX,) (4) 

y = H-'B'G-'(- b + AX,), 

where G = AS,,, AT and H = BTG-'B.  Since matrix B has 
been assumed to have a rank equal to the number of unmea- 
sured quantities, H is nonsingular. If not, there are unob- 
servable variables in y and a model reduction has to be per- 
formed to obtain a canonical form (Madron, 1992). The vari- 
ance of the reconciled results is 

Sy = H-'  (6) 

and the precision of each variable is 

Thus, when the variance of each instrument is known, the 
variance of the reconciled values depends on what the set of 
sensors selected is, that is, a, = uj(q). 

The literature on data reconciliation often uses the term 
accuracy when referring to the variance S,,,. However, the 
literature on sensors (Liptak, 1995; Whitaker, 1980) refers to 
the accuracy of an instrument as the degree of conformity 
with a standard or true value, that is, the variance obtained 
through calibration. Moreover, the distinction between accu- 
racy (as per this definition) and precision is made specifically 
(Liptak, 1995). Following these guidelines, in this article the 
term precision is used for S, and S,. Accuracy and precision 
are only equivalent in the absence of systematic errors or bi- 
ases. In data reconciliation, one should also add model inac- 
curacy as another source, since leaks can affect the accuracy 
of reconciled data. 

Sensor location goals 
Now that a few background concepts on data reconcilia- 

tion for linear systems have been introduced we are in a posi- 
tion to state the objective of a sensor location design/retrofit 
problem. 

The objective of a sensor location design/retrofit problem 
is to determine which variables should be measured such that 
the cost of the instrumentation is minimum, providing a cer- 
tain level of precision of the reconciled values in a robust, 
resilient, and reliable manner while satisfying the needs of 
control strategies. 

This definition calls for 
An optimization procedure based on minimizing, overall 

A sensor network satisfying control goals 
A certain level of precision upon reconciliation 
Robustness 
Reliability. 

Robustness includes three properties: availability, error de- 

instrumentation cost 

tectability, and resilience: 
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Availability is a property that makes values of desired 
variables available within a certain precision level, after gross 
errors are detected and the corresponding measurements are 
eliminated. 

Error detectability is the ability of the network to detect 
gross errors of a certain size or larger. 

Resilience is a property that limits the impact of unde- 
tected gross errors. Since undetected gross errors can corrupt 
the reconciliation results, the change of accuracy in key vari- 
ables in the presence of undetected gross errors is limited. 

Network reliability is a property that was introduced by Ali 
and Narasimhan (1993, 1995). These authors used reliability 
to design minimum sensor networks (Ali and Narasimhan, 
1993) and later to design redundant networks (Ali and 
Narasimhan, 1995). As outlined earlier, in the context of min- 
imum cost networks, reliability should be a constraint. This 
article concentrates in robustness, leaving the inclusion of re- 
liability for future work. 

Optimization model 

ing device with associated cost ci, the total cost is given by 
If for each variable zi there is only one potential measur- 

Let I ,  represent the set of variables for which a certain 
desired precision is required and let uk, * ,  be the correspond- 
ing maximum value of standard deviation for each variable in 
I,. Then, the design of the sensor network is an optimization 
problem that can be written as 

If more than one device is being considered as a potential 
candidate to be used in each variable measurement the ob- 
jective function requires the use of additional binary vari- 
ables and additional constraints. Indeed, let n? be the num- 
ber of different alternative candidates of measurement de- 
vices and let the cost of each of these candidates be given by 
C i , k  ( k  = 1, . . . , n?). Finally for each variable z i ,  introduce bi- 
nary variables pi,k ( k  = 1, . . . , n?) to determine which candi- 
date will be used, that is, 

(11) 1 if device k is used to measure variable i 

The total cost is now a function of p and is given by 

Therefore, the optimization problem is written as 

V i  k = l  

s.t. 

nm 

k = l  

where the constraint 

nm 

(13) 

(14) 
k = l  

guarantees that at the most, mi devices are assigned to each 
variable. 

When mi = 1, constraint (Eq. 14) restricts the model by not 
allowing more than one measurement per variable, that is, 
only systems with spatial redundancy and no hardware re- 
dundancy are considered. The standard deviation uk(p) can 
be easily obtained for mi > 1 through slight modifications of 
the derivation leading to Eqs. 6 and 7. One way of doing this 
is to add a ghost unit with one input and one output in the 
place of each duplicate measurement. This results in a new 
equation in D representing just the equality of both vari- 
ables. 

Solution Procedure 
This is an MINLP problem with special characteristics. 

Matrices A and B as well as S,, have dimensions that are a 
function of q (or p). For this reason, a relaxation of the inte- 
ger constraints is not possible, and consequently, as lower 
bounds cannot be generated, branch-and-bound procedures 
cannot be implemented. Although implicit tree-type enumer- 
ation is impractical for fairly large systems, in the case of this 
problem its special characteristics allow a fairly efficient 
search. Consider the tree depicted in Figure 1. This tree has 
some important properties: 

LEVEL 0 

L E E L  I 

LEVEL 2 

Figure 1. Tree of solutions. 
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1. The node 4 = 0 is trivially infeasible. 
2. As measurements are added to form a branch, the nodes 

are infeasible. This is because key variables are unobservable 
or not enough precision has been achieved (low redundancy). 
Eventually, as measured variables are added, a node will be- 
come feasible. The node level at which feasibility is attained 
varies from branch to branch. 

3. Cost increases from one level to the next if only one type 
of instrument is used (n? = 1). In that case, the first feasible 
node in each branch is the one with the lowest cost in the 
tree it spans. 

4. If more than one type of instrument is used (n? g l), 
then the cost of each node has a lower bound of C(q) 
= EZiqi, where Ti = M i n { ~ ~ , ~ ] .  This property is used below 

in the branching stopping criterion. 
5. Finally, retrofit can be handled easily by freezing corre- 

sponding values of q. 

Consider now the following tree enumeration scheme: 
Start with a root node with no variables being measured 

Use the branch first rule, that is, construct the tree by 
developing each branch (making one element of q active) un- 
til a stopping criterion is met. Then back up one level and 
develop the next branch. At each node, solve the optimiza- 
tion problem (Eq. 13). 

V k  V i  

(q  = 0). 

Stopping criteria 
Consider the case where only one type of instrument is 

used (nl= 1). It is obvious that in such a case one should 
stop at the first feasible node and not develop the tree below 
that node, as any node below will be more expensive. 

In the case where more than one type of instrument is used 
(ny 2 l), it is possible that some nodes belonging to the tree 
spanned by a feasible node can be cheaper. If the solution of 
the corresponding feasible node costs more than its lower 
bound, a cheaper solution can only exist in a few levels below 
this node. This number of levels is given by the nearest lower 
integer of [C, - &)I/?, where E is the cost of the cheapest 
instrument and C, is the current best solution. Thus after a 
feasible node is obtained the maximum number of additional 
levels to explore is determined. The stopping criterion there- 
fore becomes to stop after the maximum level of each feasi- 
ble branch is reached and the node is evaluated. 

Eflciency of the procedure 
In the case where ny > 1, the enumeration of the tree can 

also be based on developing a tree for p, rather than for q. 
In that case the simple criterion of stopping the tree at the 
first feasible node should be used. However, the tree will 
contain more nodes at each level and therefore it will be 
larger. 

It is obvious that this stopping criterion scheme prevents 
the enumeration procedure from being exhaustive and im- 
practical. However, it is still not an efficient procedure for 
large systems. Since the focus of this article is the conceptual 
development of the problem, investigations of numerically ef- 
ficient schemes to Solve this problem will be addressed in the 
future. In particular, a scheme where the changing dimen- 

1 

Figure 2. Example 1. 

sions of matrices A and B should allow a more efficient 
branch-and-bound procedure, or even facilitate the solution 
of the problem through some other methods. 

Example 1 
Consider the process flow diagram of Figure 2. Flow rates 

are given by z = (150.1,52.3, 97.8,97.8). Assume that for each 
rate, flowmeters of precision 3%, 2%, and 1% are available 
at costs 800, 1,500, and 2,500, respectively, regardless of size. 
Precision is only required for variables z1 and z4 (1, = (1,4}), 
with = 1.5% and u4 I = 2.0%. Two solutions are obtained 
featuring a cost of C = 3,000. The corresponding meters are 
shown in Table 1. Even though these solutions are low in 
cost, they feature nonredundant sensor networks. Though 
precision is achieved, gross errors are impossible to detect. 
Therefore the feasible region should contain redundant net- 
works. If at least one degree of redundancy is requested, then 
there are two solutions with a cost of C = 3,100 (Table 2). 

Availability 
To avoid solutions consisting of nonredundant networks, 

one may ask each key variable to be redundant and/or the 
network to have a certain degree of redundancy. This can be 
achieved easily by requesting that the variance of estimates 
be lower than the variance of the measurement. In addition, 
redundancy is required to be able to perform data reconcilia- 
tion after gross errors are deleted. But, how much redun- 
dancy is really required? This question is better answered by 
introducing the concept of availability. 

Once a redundant measurement is found to have a gross 
error and is eliminated, the overall redundancy is lowered 
and the precision of all variables decreases. It is desirable 

Table 1. Solutions of the Precision Constrained Problem 

Z, z, Z, Z" 

- - 2% 2% 
2% 2% - - 
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Table 2. Solutions of the Precision Constrained Problem 
(Redundancy Required) 

Error Detectability 
Another property that makes a sensor network robust is its 

21 2 2  2 3  24 capacity for detecting gross errors. In the presence of a gross 
3% 3% 2% - error of size d, in variable x i ,  the objective function Q = ( x  
3% 3% 2% - x , ) ~ S ~ A  ( x  - x,) has a noncentral x:-a distribution with 

a noncentrality parameter S,, that is, the mean of Q is 6, + v, 
- 

that the precision of certain key variables remain above the 
specified threshold upon any deletion of gross errors. 

Availability of a sensor network is defined as the ability of 
the network to guarantee a certain level of precision in key 
selected variables when gross errors are detected and the 
measurements are eliminated. 

Since many gross errors can be found, the availability or- 
der is defined next. Availability of order one is achieved when 
precision is guaranteed upon deletion of one measurement, 
regardless of position. Availability of order two guarantees 
the desired level of precision upon the deletion of two mea- 
surements regardless of position, and so on. 

Let A and B be the matrices describing the system for a 
particular choice of q, and let and Ba,s be the corre- 
sponding matrices once x ,  is eliminated. Also, let u,,~,~ be 
the variance of zi once x ,  has been eliminated, and a,, , i  

the threshold value. Therefore, availability of variable i is 
guaranteed if the following inequality is satisfied for all mea- 
surements: 

If ffk * = a, * , k ,  the constraint on precision can be dropped, 
as the former contains the latter. To require availability auto- 
matically means to require redundancy. In this sense avail- 
ability is a more general concept than redundancy. Indeed, to 
achieve redundancy of a particular measurement it is suffi- 
cient to require a sufficiently low threshold value a, * ,  ,. 

Example 1 (continued) 
Consider requiring that a, * ,  = 1.5%, and aa * , 4  = 3%. 

Then there is one solution: z = (2%, 3%, 3%, 3%) with cost 
C = 3,900. Now assume that availability is requested to the 
same level as precision. Then two alternative solutions with 
cost C=5,500 are obtained (Table 3). Not only is the cost 
higher, but there is also one more degree of redundancy. For 
larger problems, the number of alternatives increases, requir- 
ing new criteria to further screen alternatives. Two more 
qualifying constraints are introduced next. They are related 
to the capacity of the synthesized network to handle gross 
errors, that is, to be able to detect them and limit their data- 
corrupting impact. 

Table 3. Solutions of the Availability-constrained Probiem 
(ua*,k = uk * 

where v is the degree of freedom. This noncentrality param- 
eter is related to d j  as follows (Madron, 1985): 

(16) 

Assume that the power of the gross error detection test is 
y. Then, a gross error of size di larger than the threshold 
value 

(17) 

will be detected with probability y. Values of 6j ,y  are func- 
tions of the degrees of freedom v and the significance level 
a used to detect the errors. These values have been tabu- 
lated and are available (Madron, 1985). 

Thus, although the global test in itself cannot pinpoint the 
location of the gross error, one can quantify the effect of a 
gross error in the noncentrality of the global best, as dis- 
cussed earlier. Having discussed this effect, we are in a posi- 
tion to work out this concept backwards. One can choose a 
threshold size of gross error for each variable d, ,  and re- 
quest that those errors larger than this threshold be detected 
by the network. If we define die as a multiple of the stan- 
dard deviation of the measured flow (d , ,  = nfq,,), the error 
detectability criterion becomes 

(18) 

Resilience 
A sensor network is robust if it is capable of preventing 

undetected gross errors from corrupting the reconciled val- 
ues. In the event that a gross error of a certain magnitude in 
any variable occurs and is not detected, a certain corruption 
of data will take place after the reconciliation is performed. 
Let A q S  be the change in the reconciled value of variable z ,  
when a gross error of size h is present in variable z,. Thus, 
by using x,  + ejh instead of x,  in Eqs. 4 and 5, one obtains 

Az,,, = 

[ -  Sx , ,AT(I -  G-'BH-lBT)G-'Ae,]h 
[ H-'BTG-'Ae,]h otherwise. 

if zi is measured 

(19) 

=I 2 2  2 3  24 Then, a desired level of resiliency is fixed for variable zs, 
1% 2% 2% requesting that A Z ~ , ~  be lower than a certain threshold, Azjr .  

For each variable z ,  the test is performed to find the gross 1% 2% 
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Table 4. Effect of Error Detectability Constraints ( n r  = 3.9) 

i l  2 2  2 3  2 4  

2% 1% 3% 
1 %  3% 2% 

- 
- 

errors in every other measurement. Sometimes this threshold 
can be quantified in terms of cost (e.g., loss of product). Let 
the threshold be expressed in terms of the measured stan- 
dard deviation through Azi ,  = nl%i, and assume that h,  is 
chosen the same way, using the error detectability threshold, 
that is, h, = n f ' q m ,  the resilience criterion becomes: 

(20) 

where 

if variable zi is measured, and 

(22) 

otherwise. Usually nf should exceed n?. 

Example 1 (Continued) 
Error detectability has a large impact on feasibility, in- 

creasing the precision of the sensor network. Consider adding 
an error detectability of nf  = 3.9 (with y = 50%) to the avail- 
ability-constrained problem (ua* = 1.5%, ma.,,4 = 3%). TWO 
solutions from a set of only four feasible solutions are found 
with cost C = 4,800 (Table 4). If an error detectability of n? 
= 3.4 for all measurements is requested, the problem has only 
one solution, namely z = (l%, 3%, 1%, l%), with cost C = 
8,300. Now consider the addition of resilience: if error de- 
tectability is requested at a level of n? = 3.9 for all measure- 
ments, and resilience is requested at a level of nf = 3 for all 
flow rates, then the solution is again z =(l%, 3%, 1%, 1%), 
with cost C = 8,300. Relaxing (increasing) the resilience lev- 
els maintaining the error detectability at the same level may 
actually lead to solutions of higher cost, even to infeasibility. 
The identification of sub-optimal networks and the addition 
of other constraints related to control and fault analysis is 
left for future work. 

Figure 3. Example 2. 

Table 5. Example 2. Cost of Flowmeters 
Stream 1 2 3 4 5 6 7 8 9 
cost 19 17 13 12 25 10 7 6 5 

From Meyer et al. (1994). 

Example 2 
The following example is of larger size. Consider a network 

proposed by Madron and Veverka (1992) (Figure 3). It con- 
tains several measured variables, and the problem consists of 
selecting what measurements should be added to make 
streams 1 and 5 observable. Madron and Veverka report the 
solution S = {2,4,8), with a cost C = 35. Meyer et al. (1994) 
report the same solution using their own cost data (Table 5). 
Neither Madron and Veverka (1992) nor Meyer et al. (1994) 
reported flow rates for the measured variables. Thus the val- 
ues shown in Table 6 were chosen to illustrate the method 
presented in this article. 

If the requirement of precision is sufficiently relaxed, the 
same solution is found, that is, S = (2,4,8). When flowmeters 
of 2.5% precision are used, this network'has a precision of 
27.8% in stream 5. Since this value is too high, resulting in 
poor monitoring performance, a 2.5 precision on stream 1 
and 5 was requested. The solution found was S = {2,4,5,8}, 
with a cost C = 60. However, the network is nonredundant so 
error detectability cannot be requested. If error detectability 
is required at a level of n? = 3.9 (with y = 50%) for flows 1 
and 3, which are the larger flows, the solution obtained is 
S = {1,2,4,5,6,7), with a cost of C = 90. 

Conclusions 
A novel method for designing and retrofitting cost-optimal 

sensor networks has been introduced. In addition to preci- 
sion requirements, three new constraints were introduced. 
Networks that can guarantee the detection of gross errors 
(error detectability), prevent their data-corrupting effect (re- 
silience), and maintain precision when they are detected 
(availability), can be identified by using these new con- 
straints. Future work will include improved solving proce- 
dures, nonlinear networks (component and energy data rec- 
onciliation based), as well as network reliability issues. Be- 
cause component, and especially energy data reconciliation, 
are used nowadays to add redundancy, and thus enhance data 
reconciliation, addressing this issue will allow the design and 
retrofit of more realistic networks. Sensor network reliability 

Table 6. Flow Rates for Example 2 

Stream 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 

Flow 
140 
20 

130 
40 
10 
45 
15 
10 
10 

100 
80 
40 

Stream Flow 
13 10 
14 10 
15 90 
16 100 
17 5 
18 135 
19 45 
20 30 
21 80 
22 10 
23 5 
24 45 
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has been addressed by other authors and should be added as 
another constraints, so that this feature is taken into account 
in the design. The interaction of the concepts of reliability 
and availability are also another issue of future development, 
since it might be possible to effectively combine those issues 
in a single measure. Finally, the procedure needs to be nur- 
tured with practical criteria as to what levels of error de- 
tectability and resilience are appropriate for a given problem. 

Notation 
D =linear model matrix for all variables 
e =unit vector 

G =auxiliary matrix 
H =auxiliary matrix 
m =hardware redundancy maximum 
u =square rooted diagonal element of S 
/3 =auxiliary variable in resilience 

Subscripts and superscripts 
a =availability 

D =error detectability 
R =resilience 
* =desired threshold 
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