
Design and Scaffolded Training of an Efficient DNN Operator for Computer
Vision on the Edge

VINOD GANESAN, Indian Institute of Technology, Madras, India

PRATYUSH KUMAR,Microsoft Research and Indian Institute of Technology, Madras, India

Massively parallel systolic arrays and resource-efficient depthwise separable convolutions are two promising hardware and software

techniques to accelerate DNN inference on the edge. Interestingly, their combination is inefficient: Computational patterns of depthwise

separable convolutions do not exhibit a rhythmic systolic flow and lack sufficient data reuse to saturate systolic arrays. In this paper, we

formally analyse this inefficiency and propose an efficient operator, an optimal hardware dataflow, and a superior training methodology

towards alleviating this. The efficient operator, called Fully-Separable Convolutions (FuSeConv)
1
, is a drop-in replacement for

depthwise-separable convolutions. FuSeConv generalizes factorization of convolution fully along their spatial and depth dimensions.

The resultant computation is systolic and efficiently maps to systolic arrays. The optimal hardware dataflow, called Spatial-Tiled Output

Stationary (ST-OS), maximizes the efficiency of FuSeConv on systolic arrays. It maps independent convolutions to rows of the systolic

array to maximize resource-utilization with negligible VLSI overheads. Neural Operator Scaffolding (NOS) scaffolds the training of

FuSeConv operators by distilling knowledge from the more expensive depthwise separable convolution operation. This bridges the

accuracy gap between FuSeConv networks and networks with depthwise-separable convolutions. Additionally, NOS can be combined

with Neural Architecture Search (NAS) to trade-off latency and accuracy.

The hardware-software co-design of FuSeConv with ST-OS achieves a significant speedup of 4.1 − 9.25× with state-of-the-art

efficient networks for the ImageNet dataset. The parameter efficiency of FuSeConv and its significant out-performance over depthwise-

separable convolutions on systolic arrays illustrates their promise as a strong solution on the edge. Training FuSeConv networks

with NOS achieves accuracy comparable to the depthwise-separable convolution baselines. Further, by combining NOS with NAS, we

design networks that define state-of-the-art models improving on both accuracy and latency for computer vision on systolic arrays.

Additional Key Words and Phrases: Deep Neural Networks, Hardware-Software Co-design, Systems for Deep Learning, Efficient

Networks, Efficient hardware, Computer Vision, Edge Computing

1 INTRODUCTION

Deep Neural Networks (DNNs) continue to advance the field of Machine Learning and are being pervasively deployed.

This widespread use comes at the cost of high computational demands which at times exceeds available hardware

resources. This is particularly a concern on the edge with devices built with strict area, cost, and power constraints.

Several classes of methods have been explored to address this challenge of efficient inference on the edge, as summarised

in this work [59]. These include model compression [17, 18], efficient operator design [13, 22, 24, 48], hardware

extensions such as leveraging sparsity [12, 16, 50], and domain-specific hardware accelerators [8, 28, 29]. Amongst

these, efficient operators and domain-specific hardware accelerators have been particularly successful.

An example of an efficient operator is the depthwise separable convolution for computer vision. In this operator,

standard convolution is factorized into independent convolutions on each input channel (called depthwise convolution)

followed by a 1x1 pointwise convolution. This factorization significantly reduces the number of parameters and

operations as with theMobileNet [21, 22, 48] family of networks: MobileNet-V3 consumes 14.5× fewer MACs but delivers

1.6% higher accuracy than DenseNet-121 [23] on ImageNet. An example of a domain-specific hardware accelerator

1
First introduced in [49]

Authors’ addresses: Vinod Ganesan, vinodg@cse.iitm.ac.in, Indian Institute of Technology, Madras, India; Pratyush Kumar, pratyush@cse.iitm.ac.in,

Microsoft Research and Indian Institute of Technology, Madras, India.

Manuscript submitted to ACM 1

ar
X

iv
:2

10
8.

11
44

1v
1

 [
cs

.A
R

]
 2

5
A

ug
 2

02
1

2 Ganesan, et al,.

is the use of systolic arrays [33]. The inclusion of systolic arrays is now a common-place design pattern to accelerate

kernels such as matrix multiplication and convolution using a grid of multiply-accumulate units (MACs). Its efficiency

is exemplified by TPUs [29]: At the time of release, the TPUv1 provided 25 to 29 times higher performance-per-watt

than comparable GPUs [29].

Surprisingly however, the combination of these two efficient ideas, (i.e.) depthwise convolution running on systolic

arrays, is inefficient. For instance, MobileNet-V2 runs only 1.3x faster than ResNet-50 on a 32 × 32 systolic array despite

having 12× fewer MAC operations. This incommensurate scaling has been identified earlier on EdgeTPU running

EfficientNet [15] and on SqueezeNext [13]. For instance, the authors of [15] report cases where a spatial convolution

with significantly more trainable parameters and MAC operations performs 1.46× better than a depthwise convolution

due to better utilization of the EdgeTPU hardware. In this work, we study this incommensurate scaling and pose three

questions: (1) why are depthwise separable convolutions inefficient on systolic arrays?, (2) is there a HW/SW co-design

approach to address this inefficiency?, and (3) can we adapt model training to better fit this new design?

For the first question, we discuss the formalism of systolic algorithms [51], a subclass of Regular Iterative Algorithms

[44] that efficiently run on systolic architectures. We show that a depthwise separable convolution is not a systolic

algorithm. Consequently, mapping it on a systolic array requires im2col [6] transformation to convert depthwise

convolutions to matrix multiplications. However, this conversion replicates a large number of values, and unlike 2D

convolution does not have sufficient data-reuse to saturate the systolic array.

Having identified the source of inefficiency, we propose aHW/SW co-design to address that consists of two parts: (a) an

efficient operator - Fully-Separable Convolution (FuSeConv), and (b) a modified hardware dataflow - Spatial-Tiled Output

Stationary (ST-OS). FuSeConv is a drop-in replacement for depthwise separable convolutions. Separable convolutions

factorize one of the four dimensions of a convolution filter. In FuSeConv, we fully generalize this factorization to

1D convolutions across both spatial (horizontal and vertical) and channel (width) dimensions. This is efficient as 1D

convolutions are systolic algorithms and do not require im2col transformations. ST-OS is a novel hardware dataflow

that exploits the parallelism offered by FuSeConv by mapping each 1D convolution on to one row of the systolic array.

This is enabled by adding a weight-broadcast link to each row of the systolic array. The hardware cost for supporting

ST-OS is small: a 16 × 16 sized systolic array incurs only 3.2% area and 6.7% power overheads when synthesized on a

22nm node.

To train more accurate models with the proposed FuSeConv operator, we propose Neural Operator Scaffolding (NOS).

The key insight is to distill knowledge from the more expensive depthwise filters to FuSe filters, progressively during

the training phase. We achieve this with a scaffolded network containing adapter matrices between depthwise and

FuSe filters. Once the scaffolded training is complete, we can either retain only the FuSe filters or a combination of

depthwise and FuSe filters. We search for these combinations with evolutionary search [45] and Neural Architecture

Search (NAS) [4] to trade-off model accuracy and latency.

We evaluate FuSeConv and ST-OS on a large set of popular efficient networks and metrics. To obtain accurate latency

measures, we extend the systolic array simulator SCALE-Sim [47] to support the ST-OS dataflow. For existing efficient

networks such as MobileNet (V1, 2 ,3) and MnasNet, replacing all depthwise-separable convolutions with FuSeConv vari-

ants leads to substantial drops of 4.15-9.25 times in inference time on a 16×16 systolic array. FuSeConv networks trained

with NOS on the ImageNet dataset are up to 1.5 − 2% more accurate than conventional training and are as accurate

as their baseline depthwise-separable convolution networks. When NOS is combined with evolutionary search [45]

and NAS [4], we train networks within a superior accuracy and efficiency trade-off space. For instance, NOS coupled

with once-for-all [4], a state-of-the-art NAS approach, discovers a network that has 77.2% accuracy on ImageNet

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 3

Fig. 1. (a). Loop representation of matrix multiplication; (b). Corresponding recurrence relations; (c). Geometric representation of the
recurrence relation; (d). Output-stationary dataflow mapping to a systolic array

and 3.82 ms latency on a 16 × 16 systolic array, improving on both metrics in comparison to both hand-crafted and

automatically designed networks. In summary, we establish that the combination of FuSeConv operator, ST-OS dataflow,

and NOS training method significantly improves the efficiency of computer vision models on systolic arrays.

The key contributions in this paper are as follows:

• We identify the problem of incommensurate scaling with two efficient methods, (i.e.) systolic arrays executing

depthwise separable convolutions. We show that depthwise convolution is not a systolic algorithm and its

mapping requires transformations that cannot utilize two-dimensional systolic arrays.

• We propose Fully-Separable Convolutions (FuSeConv) as a drop-in replacement operator for depthwise-separable

convolutions, and Spatial-Tiled Output Stationary (ST-OS) as a custom dataflow to improve the efficiency of

FuSeConv on systolic arrays.

• We propose Neural Operator Scaffolding (NOS), to progressively train cheap FuSeConv operators by distilling

information from costly depthwise convolution operators.

• We extend the open-source SCALE-Sim simulator [47] to support depthwise-separable convolution, FuSeConv,

and ST-OS.

• We show that the VLSI overheads of adding the ST-OS dataflow are minimal: a 16 × 16 sized systolic array incurs

only 3.2% area and 6.7% power overheads when synthesized on a 22nm node.

• On state-of-the-art efficient models, we show that replacing depthwise-separable convolution with FuSeC-

onv leads to a significant 4.1 − 9.25× improvements in inference time on a 16 × 16 systolic array.

• With NOS, the accuracy of FuSeConv networks is improved by up to 1.5− 2% and this bridges the gap to baseline

networks that use more expensive depthwise-separable convolutions.

• With NOS coupled with evolutionary search and NAS, we find models that improve on both accuracy and latency,

creating the state-of-the-art computer vision models for systolic arrays.

The rest of the paper is organized as follows. In Section 2, we formally analyse the inefficiency of depthwise-separable

convolutions on systolic arrays. In Sections 3 and 4, we discuss our core contribution of the HW/SW co-design solution

and NOS, respectively. In Section 5, we detail our experimental methodology used to evaluate our proposal and present

the results in Section 6. We discuss the related work in Section 7 and conclude in Section 8.

Manuscript submitted to ACM

4 Ganesan, et al,.

2 INEFFICIENCY OF DEPTHWISE SEPARABLE CONVOLUTIONS ON SYSTOLIC ARRAYS

In this section, we answer the first research question and show why depthwise-separable convolution has poor scaling

performance on systolic arrays. We also explain this finding in contrast to the widespread use of systolic arrays for

standard convolution. We first begin with a background on these topics.

2.1 Background - Systolic Arrays and Algorithms

Systolic Arrays A systolic array [34] is a parallel computing hardware, constituted of a large number of homogeneous

Processing Elements (PEs). These PEs are interconnected in a regular arrangement, such as a rectangular grid, facilitating

local communication with neighbours. The word ‘systolic’ implies rhythmic patterns in communication and computation,

which are globally synchronous. This regular arrangement constraints how data flows amongst PEs thereby restricting

the number of applications that can be mapped onto systolic arrays. However, embarrassingly parallel and regular

applications such as matrix multiplication can be efficiently mapped onto systolic arrays. The main benefits of systolic

arrays come from the nearest neighbour communication leading to low main memory dependence, and low control

overhead. Currently, systolic arrays are quite common design patterns in accelerators [1, 29].

Regular Iterative Algorithms Single-Assignment Language (SAL) [14] is a programming style requiring that no

variable is assigned a value more than once (i.e. c = c - b is not allowed). Regular Iterative algorithms (RIA) are a subclass

of SALs that map to architectures with a regular array of processors, each performing the same computation and

exhibiting simple inter-processor communication [44]. Systolic algorithms are a further subclass of RIAs such that they

can be synthesized to a systolic array [57]. We discuss systolic algorithms with the example of matrix multiplication, as

studied in the pioneering work of Kung and Leiserson [33]. In Fig. 1(a) we show the standard for-loop implementation

of a matrix-matrix multiplication. This is transformed into recurrence relations as shown in Fig. 1(b). These relations

are said to define an RIA, since they satisfy three conditions: (a) each variable is defined by a name and a set of indices

(in this case 3), (b) each variable is assigned a value just once (SAL [14]). and (c) for each recurrence relation, the

difference between the indices of the variable in the LHS and each variable in the RHS is a constant. For instance, in the

equation for 𝐶 [𝑖, 𝑗, 𝑘], the differences in indices (called index offsets) to the three variables 𝐴, 𝐵, and 𝐶 in the RHS are

the constant vectors [0, 0, 0], [0, 0, 0], and [0, 0,−1], respectively.
Mapping algorithms into systolic arrays The computation of the recurrence relations can be visualized as shown

in Fig. 1(c). Each point in the 3D space corresponds to a combination of the indices 𝑖, 𝑗, 𝑘 starting at the origin (0, 0, 0).
Inputs 𝐴 and 𝐵 are initialized in respective planes while output 𝐶 is initialized with 0s. All values are propagated

through to other points as per the recurrence relations. The computations for updating the values are mapped on to

three dimensions. The dimensions 𝑖 and 𝑗 , along which 𝐴 and 𝐵 are propagated, are systolic dimensions along which

PEs are arranged. The dimension 𝑘 along which 𝐶 is updated is marked as the ‘time’ dimension, ending with the final

computed value as shown. Assigning such dimensions is equivalent to mapping the algorithm on to a 2D systolic array

as shown in Fig. 1(d). In the mapping, matrices 𝐴 and 𝐵 are input along rows and columns (the two systolic dimensions),

respectively, while output 𝐶 is computed in each processing element (PE) over time (the time dimension). Since the

output remains stationary in the PEs, this dataflow is referred to as output stationary. We can similarly visualise other

popular dataflows such as input and weight stationary.

Spatial and Depthwise Separable Convolutions In spatial convolution, an input of size𝑊 ×𝐻 ×𝐶 is convolved with

a filter of size 𝐾 ×𝐾 ×𝐶 to obtain an output of size 𝑁 ×𝑀 × 1, where 𝑁 =𝑊 −𝐾 + 1 and𝑀 = 𝐻 −𝐾 + 1. The output of

𝐶 ′
convolution filters are stacked to obtain an output of size 𝑁 ×𝑀 ×𝐶 ′

. Depthwise-separable convolution decomposes

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 5

Fig. 2. (a) Loop representation of 2D convolution; (b) Corresponding recurrence relations; (c) Geometric representation after trans-
forming 2D convolution to a systolic algorithm.

the 𝐾 ×𝐾 ×𝐶 spatial convolution into two parts: (a) 𝐾 ×𝐾 ×𝐶 depthwise convolution and (b) 1× 1 pointwise convolution.

In depthwise convolution, an input of size𝑊 ×𝐻 ×𝐶 is convolved with a filter of size 𝐾 ×𝐾 ×𝐶 channel-wise, i.e., every

𝑊 ×𝐻 channel is convolved with the respective 𝐾 ×𝐾 channel in the filter to obtain an output of size 𝑁 ×𝑀 ×𝐶 . This
is followed by a point-wise convolution with 𝐶 ′

filters of size 1 × 1 ×𝐶 to obtain an output of size 𝑁 ×𝑀 ×𝐶 ′
. For both

these illustrated cases, the input and output sizes are the same. However, there is a major difference in the number

of operations: Standard convolution has a total of 𝑁𝑀𝐶 ′𝐾2𝐶 operations, while depthwise separable convolution has

𝑁𝑀𝐶 × (𝐾2 +𝐶 ′) operations. This reduction in number of operations with depthwise separable convolution translates

to reduced inference time at comparable accuracy values [22, 48].

2.2 2D convolutions are not systolic algorithms

As described earlier, depthwise convolution requires independent convolutions between 2D slices of the input with

2D kernels, henceforth referred to as a 2D convolution. 2D convolution can be written in loops as shown in Fig. 2(a):

𝐴 is the input feature map, 𝐵 the weight kernel, and 𝐶 the output. Is this a systolic algorithm? We first attempt to

transform it into a Regular Iterative Algorithm (RIA) which as a set contains all systolic algorithms. Fig. 2(b) shows the

recurrence relations for 2D convolution. Like in the case of matrix multiplication, we have added a third index to satisfy

the single assignment property. Unlike the case of matrix multiplication, however, we observe that the index offsets

between LHS and RHS are not constants. For instance, in the recurrence relation for 𝐶 , the index offset to 𝐴 is given as

[⌊𝑘/𝐾⌋, 𝑘%𝐾, 0]. Since this index offset depends on the index 𝑘 , it violates the important requirement for a RIA.

Can this specification be refactored in some other way to satisfy RIA’s requirement? Note that computing the output

at index (𝑖, 𝑗) requires summing up𝐾2
products. We can map these computations to𝐾2

values of the 𝑘 index. Computing

a sum of these products implies a single offset dependence between 𝐶 [𝑖, 𝑗, 𝑘] and 𝐶 [𝑖, 𝑗, 𝑘 + 1]. For matrices 𝐴 and 𝐵,

the computation of these products requires input across a grid of 𝐾 ×𝐾 values. Independent of the order in which these

values are accessed, their 𝑖, 𝑗 indices will depend on the index 𝑘 . However, all these products are summed to the same

𝑖, 𝑗 index of𝐶 . Thus, in the same recurrence relation, the 𝑖, 𝑗 index of𝐶 remain constant while those of𝐴, 𝐵 depend on 𝑘 ,

violating the criterion for constant index offsets. Thus, 2D convolution cannot be written as an RIA, and consequently

depthwise convolution is not a systolic algorithm.

Though 2D convolution is not a systolic algorithm, standard convolution with multiple channels can be efficiently

mapped on to systolic arrays with one of two tricks. The first approach is to transform the matrices with im2col and the

Manuscript submitted to ACM

6 Ganesan, et al,.

Fig. 3. Two methods that enable execution of standard convolution on systolic arrays: (a) Input reuse across filters, (b) Ordering
operations along channels.

second is to use channel-wise operations. However, neither approach applies to depthwise convolution, as we discuss

in the following two subsections.

2.3 Transformation im2col and Data Reuse

Consider a transformation of𝐴 such that each set of 𝐾 ×𝐾 values required in each step of convolution is stored in a row.

With this transformation, the index offsets between 𝐶 and 𝐴 become constant. This is the approach with im2col [26]

which creates a larger matrix 𝐴′
from 𝐴 with repeating entries and a flattened 𝐵 matrix. The 2D convolution operation

on these modified matrices is a systolic algorithm as shown in Fig. 2(c). Note that this computation does not scale

on systolic dimension 1, i.e., when mapped to a 2D systolic array it would only use a single column. With standard

convolution with multiple channels and filters, this is not a problem as the same input channel has to be convolved with

weight matrices from multiple filters utilizing all columns and benefiting from data reuse. This is shown in Fig. 3(a),

wherein the filters scale along systolic dimension 1 achieving high utilization. However, this trick does not apply to

depthwise convolution, wherein channel-wise decomposition which was designed for parameter efficiency does not

enable data reuse or column utilization. Thus, with depthwise convolution only a single column of a systolic array can

be utilized leading to significantly poor performance.

2.4 Channel-Wise Operations

To avoid the expensive im2col transformation, an alternative approach maps standard convolution into channel-wise

operations on systolic arrays [29]. Specifically, standard convolution is implemented as a dot product of vectors of size

𝐶 along channels from the input and filter matrices. The corresponding mapping on to a systolic array is shown in

Fig. 3(b). The generated output needs to be reduced with an adder tree (usually a part of most systolic array accelerators)

to obtain the final output. For instance, the TPUv1 contains an adder tree in the periphery to reduce the incoming partial

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 7

sums [29]. In this case too, we are able to utilize both systolic dimensions. Again this trick is not applicable to depth-

wise convolution. By definition, the convolution proceeds one channel at a time, precluding any channel-wise operations.

In summary, we discussed the formalism of RIA and how it applies to efficient utilization of systolic arrays. We showed

that the 2D convolution is not a systolic algorithm. However, the standard convolution on multiple channels and filters

can still be mapped to systolic arrays due to the two tricks of im2col transformation or channel-wise operations. We

showed that neither of these tricks is applicable to depthwise convolution due to lack of data-reuse and no channel-wise

operations. Consequently, when mapping depthwise convolution to a systolic array, only a single systolic dimension

can be utilized. This formally explains the poor performance of networks such as MobileNet on EdgeTPUs [15] and

motivates the design of operators which are simultaneously parameter-efficient and fully utilize two-dimensional

systolic arrays.

3 HW/SW CO-DESIGN: FUSECONV AND ST-OS

In this section, we answer our second research question on addressing the inefficiency established in section 2. We

introduce a HW/SW co-design solution comprising of the FuSeConv operator, its different variants, and its mapping to

the systolic array architecture using the ST-OS dataflow.

3.1 The FuSeConv operator

As we discussed in the last section, depthwise-separable convolution have fewer parameters and require fewer MACs by

decomposing spatial convolutions. However, the resultant computation is not systolic and does not benefit from either

filter reuse or channel-wise mapping. We design FuSeConv with the goal of deriving the benefits of decomposition

from depthwise-separable convolutions while fully utilizing the systolic array.

Figure 4 (a) shows the FuSeConv operator in relation to depthwise-separable convolution. A depthwise-separable

convolution decomposes a 𝐾 × 𝐾 × 𝐶 × 𝐶 ′
spatial convolution along the depth axis by first performing 𝐶 𝐾 × 𝐾

independent 2D convolutions (depthwise), followed by𝐶 ′
1×1×𝐶 pointwise convolutions for channel-wise aggregation.

In FuSeConv, we further factorize these independent 2D depthwise convolutions along the 𝐾 ×𝐾 spatial axes into 𝐾 × 1

row filters and 1 × 𝐾 column filters. At this point, we have two possible choices or variants, drawing inspiration from

the work on grouped convolutions [32]. One, we can let row and column filters operate independently on the 𝐶 input

channels creating an output feature map with 2𝐶 channels. Two, we restrict row filters to operate on𝐶/2 input channels,
and column filters to operate on the other 𝐶/2 channels, thereby creating 𝐶 output channels. We call the former the

FuSe-Full variant and the latter the FuSe-Half variant. FuSe-Full clearly has more computation and parameters and

would likely have higher accuracy. FuSe-Half is parameter efficient and retains the output tensor dimension with 𝐶

channels. The resultant output, in either case, is passed through 𝐶 ′
pointwise filters to get the final output feature map.

Given our aim of efficient inference on the edge, we focus our analysis on the parameter-efficient FuSe-Half variant,

but compare it against the more expensive FuSe-Full variant. Thus, when specifying FuSeConv we by default refer to

the FuSe-Half variant.

In summary, we propose FuSeConv to decompose standard convolution fully - into channels and each of the two

spatial dimensions. The operator is a drop-in replacement for depthwise-separable convolution retaining the same

input and output channels, and thus can be used in mobile bottleneck layers [21, 48]. In the following, we argue why

FuSeConv is an efficient operator for systolic arrays.

Manuscript submitted to ACM

8 Ganesan, et al,.

(a) (b)

Fig. 4. (a) The proposed FuSeConv operator (D=1 denotes FuSe-Full and D=2 denotes FuSe-Half) and (b) The proposed systolic-array
architecture supporting ST-OS dataflow

3.2 Efficiency of FuSeConv

3.2.1 Fewer Parameters. The total number of parameters (both depthwise and pointwise) in depthwise-separable

convolution are 𝐶 × (𝐾2 +𝐶 ′). For FuSe-Half this number reduces to 𝐶 × (𝐾 +𝐶 ′). Similarly, the number of operations

reduces from 𝑁𝑀𝐶 × (𝐾2 +𝐶 ′) to 𝑁𝑀𝐶 × (𝐾 +𝐶 ′). Thus, both model size and inference time is expected to reduce with

FuSe-Half. Note that these gains are on top of depthwise convolution that already reduces the number of parameters

and operations in comparison with standard convolution and is used in state-of-the-art networks for mobile devices.

3.2.2 FuSeConv is a systolic-algorithm. FuSeConv comprises of independent 1D convolutions which are clearly systolic

algorithms [42]. Indeed [34] illustrates 7 different ways of mapping a 1D convolution on to a linear systolic array. To

confirm this intuition with the RIA formalism, in Fig. 5 (a), we show the 1D convolution both as a loop and recurrence

relations. The recurrence relations satisfy all three requirements of an RIA. The other operation in a FuSeConv layer,

point-wise convolution, is a vector dot-product and is also a systolic algorithm. Thus, FuSeConv can be efficiently

mapped to systolic arrays without requiring transformations such as im2col.

We recall again the sequence of claims so far. 2D convolution is not a systolic algorithm as it cannot be expressed in

RIA form. However, standard convolution with many channels and filters can be efficiently mapped on to a systolic array

either by im2col transformations and filter reuse or by channel-wise computations. When we factorize convolution

channel-wise (depthwise) neither of these two tricks work. Thus, depthwise convolution found in mobile bottleneck

layers poorly utilizes systolic arrays. However, when we further factorize convolution into the two spatial axes, the

resultant 1D convolutions are again systolic algorithms and can be mapped efficiently on to an independent linear

systolic row. It remains to be seen how such independent row-wise mapping can be implemented on two dimensional

systolic arrays. It also remains to be seen if the parameter-efficient FuSeConv achieves accuracy comparable to the

baseline models with depthwise convolution. We discuss the former in the rest of this section, while the latter will be

discussed in the experimental results.

3.3 Systolic-Array with ST-OS dataflow

The choice of dataflow for a systolic architecture has a significant impact on its performance and energy-efficiency [7, 35].

Since FuSeConv is a systolic algorithm, avoids im2col transformations, and is entirely composed of 1D convolutions, it

is at an advantage in being mapped to systolic arrays. Crucially, FuSeConv requires that different 1D convolutions are

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 9

Fig. 5. (a) Loop representation, recurrence relation and geometric representation of a 1D convolution; (b) Mapping multiple channels
of 1D convolutions to the proposed systolic-array

mapped on to different rows of the systolic arrays. To enable this, we propose a novel dataflow, called Spatial-Tiled

Output Stationary (ST-OS). In ST-OS, 1D convolutions are computed on separate rows with the partial sums stationary in

the processing elements. Hence the term ST-OS, where the feature maps are tiled along their spatial axes and scheduled

with an output stationary dataflow. To support ST-OS, we require an additional weight broadcast link to every row of the

systolic array to feed the weight values to all PEs in that row. These broadcast links can co-exist with standard systolic

dataflow which flows values activation values from the top to the bottom. We compute the area and power overhead

of these additional links and find them to be nominal (see Section 6). Thus, the proposed systolic array architecture,

shown in Figure 4 (b), provides support for a runtime configurable dataflow, (i.e.) ST-OS with weight broadcast links for

FuSeConv and output- or weight-stationary dataflow for other operations. This design choice of allowing configurable

dataflows has been well explored and shown to improve the efficiency of DNNs on systolic-arrays [13].

In summary, we propose additional weight broadcast links on each row of the systolic array tomap the 1D convolutions

from FuSeConv. This hardware-software co-design principle ensures that the systolic array is fully utilized while the

network is parameter-efficient. In the following, we describe the process of mapping a given FuSeConv network to a

systolic array.

3.4 Mapping FuSeConv to systolic-arrays

We now concretely show the mapping of a FuSeConv operation on to a systolic array with ST-OS support. Figure 6

illustrates the mapping for the FuSe-Half variant on to a systolic array of size 𝑆 × 𝑆 . We show the mapping only for the

row filters, which extends similarly to column filters. The input feature maps are first sliced across their spatial axes

(rows, in this case) into𝑊 rows, denoted𝐴1 through𝐴𝑊 . The rows are further sliced across channels into𝐶/2 channels
denoted 𝐴1,1 through 𝐴1,𝐶/2. Thus, there are𝑊 × 𝐶/2 total 1D input slices that can be mapped to the rows of the

systolic-array. Similarly, the independent channel weights are denoted 𝐾1 to 𝐾𝐶/2 that are mapped to the row respective

to their input feature map slice. The computation follows multiple folds wherein at each fold one weight-channel slice

Manuscript submitted to ACM

10 Ganesan, et al,.

Fig. 6. Mapping FuSe layers to the proposed systolic array architecture. ST-OS dataflow with the additional weight broadcast enables
mapping independent 1D convolutions to different rows enabling high-utilization of the hardware architecture.

operates over one input channel slice to provide 𝑆 outputs. Finally, these outputs are concatenated across all the folds

to form the output feature-map.

Notably, there are two dominant design choices to map𝑊 ×𝐶/2 slices to the rows of the systolic-array based on the

available memory bandwidth: (a) Spatial-first mapping and (b) Channels-first mapping. In spatial-first mapping, the slices

from the same channel are given more precedence and are mapped to different rows of the systolic-array. Therefore,

rows that operate on the same channel will operate with the same filter with lesser weight SRAM reads. However,

this requires additional circuitry to broadcast the same weight filter to multiple rows. This mapping is suitable for

bandwidth constrained systems. In channels-first mapping, the slices across channels are given more precedence and

are mapped to the rows of the systolic array. Therefore, the rows work with distinct filters requiring multiple SRAM

reads in the same clock cycle and do not require the additional broadcast circuitry. This mapping is suitable for systems

that provide sufficient memory bandwidth. We can also map using a combination of both choices for small feature map

inputs. For instance, in Channels-first mapping if the channel size is smaller than the 𝑆 dimension, we can map the

input feature maps across the remaining rows of the systolic array. We employ this hybrid mapping to capture the

benefits of both design choices and to balance utilization for FuSeConv operators with low number of channels.

To illustrate the improvements in utilization for mapping FuSeConv to the hardware with ST-OS dataflow, we

visualize a 1D filter of 2 weights convolved with a 4x3 input in Figure 5 (b). Due to the broadcast link, at any time step

the weight value is available along systolic dimension 1 (columns in the array). Also different rows of the input are

mapped along systolic dimension 2 (rows in the array), fully utilizing all processing elements. We have explicitly shown

the values of the input along the systolic dimension 1 due to ST-OS. In contrast to Figure 2(c) that shows depthwise

convolutions only utilize a single column of the systolic array, the computation of FuSeConv spans both systolic array

dimensions, thereby achieving high utilization. The span along dimension 1 increases as columns in the input increase,

while the span along dimension 2 increases as rows in the input increase.

In summary, we proposed FuSeConv and a systolic-array architecture supporting the novel ST-OS dataflow as a

HW/SW codesign solution to tackle the inefficiency of depthwise-separable convolutions on systolic-arrays. FuSeC-

onv networks offer an in-place replacement of depthwise-separable convolutions in existing mobile-efficient networks.

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 11

However, FuSeConv operator has fewer parameters than depthwise-separable convolution and thus we may expect an

accuracy degradation. In the following section, we turn our attention to a methodology to train FuSeConv networks by

benefiting from existing depthwise-separable convolution networks.

4 NEURAL OPERATOR SCAFFOLDING

In this section, we study the third question we posed in the introduction on how to adapt the training procedure so

that it better fits the paradigm of efficient FuSeConv networks running with the ST-OS dataflow. Towards this end, we

propose Neural Operator Scaffolding (NOS) as a general technique to train networks with efficient operators benefiting

from existing networks with more expensive operators. We also combine NOS with search methods such as evolutionary

algorithms and NAS to identify hybrid networks that combine FuSeConv and depthwise separable convolution to

trade-off model efficiency and accuracy.

4.1 Neural Operator Scaffolding (NOS)

It is well understood that training deep models that are larger leads to more accurate models. Indeed, this scaling

has a robust trend for Natural Language Processing (NLP) [30]. Similarly, it is also seen that while techniques like

pruning are applicable in reducing model size, starting with a pruned network does not yield models of high accuracy.

Thus, training models with a large number of parameters often appears to be a necessity to achieve high accuracy.

For parameter-efficient operations like FuSeConv this implies a challenge: As we will see in the experimental results,

models where FuSeConv is used as a drop-in replacement for depthwise separable convolution leads to higher than

expected drops in accuracy (an average 2.1% drop). The question then is can we benefit from the smaller model size and

efficient inference supported by FuSeConv but retain the high accuracy possible with more expensive operators.

Towards this end, we propose Neural Operator Scaffolding (NOS), as a training methodology. As suggested in the

name, we “scaffold” the training of the efficient operators with more expensive operators by distilling information

with adapter matrices. Adapter matrices have been explored in different settings such as parameter efficient transfer

learning for downstream tasks and low-resource languages in NLP [2, 20, 41], Neural Architecture Search [4], and

distilling knowledge from a larger network to a smaller network [27]. Similarly, distillation is a well studied technique

to compress large teacher models into smaller student models. Distillation can happen at different levels - at the model

level [19], layer level [27, 53], or even functionality level [56]. The key difference in NOS is the use of adapter matrices

to distill knowledge between individual operators - in this case a single convolutional kernel. More specifically, we

distill knowledge from a depthwise convolution operator to its replacement FuSeConv operator, such that the behavior

of the depthwise convolution teacher operator is mimicked by the FuSeConv student operator. We see such distillation

using adapter matrices as a general technique to search for efficient operators in building efficient and yet accurate

models for the edge.

We now discuss the working of NOS with some notation. Consider two operators 𝑇 and 𝑆 (for teacher and student),

operating on an input tensor 𝐼 , producing 𝑂𝑇 and 𝑂𝑆 tensors, i.e., 𝑂𝑇 = 𝑇 (𝐼) and 𝑂𝑆 = 𝑆 (𝐼). For instance 𝑇 can denote

depthwise convolution while 𝑆 can be FuSeConv. The key idea of NOS is to relate 𝑇 and 𝑆 operators with an adapter

function 𝐴, i.e., 𝑆 = 𝐴(𝑇). In our specific case, we choose 𝐴 such that the weights that characterise 𝑇 and 𝑆 are related

with linear projections.

In particular, consider 𝑇 as a depthwise convolution with a kernel 𝑇𝑤 of size 2 × 3 × 3 as shown in Figure 7, with

the dimensions denoting channel, rows, and columns, respectively. Now consider a drop-in replacement of this with

a FuSeConv operator denoted 𝑆 , which has one row filter 𝑅𝑤 of size 3 × 1 × 1 for the first channel and one column

Manuscript submitted to ACM

12 Ganesan, et al,.

Fig. 7. Illustration of Neural Operator Scaffolding. Adapter matrices are added to every mobile-bottleneck layer that learns to distill
knowledge from “expensive” depthwise operators to “cheap” FuSeConv operators.

filter 𝐶𝑤 of size 1 × 1 × 3 for the second channel. Our linear adapter in this case, maps the weights of two kernels. In

particular, 𝑅𝑤 = 𝐴𝑟 × 𝑇𝑤 [1, :, 2], and similarly 𝐶𝑤 = 𝐴𝑐 × 𝑇𝑤 [2, 2, :], where 𝐴𝑟 and 𝐴𝑐 are matrices of size 3 × 3. In

this work, we use the same matrix for both 𝐴𝑟 and 𝐴𝑐 , i.e., row and column filters have the same adapter matrices.

Further, we share these adapter matrices across all filters in the same layer. Thus, there are only 𝐾2
additional trainable

parameters in scaffolding a depthwise convolution layer to FuSeConv. In the example from Figure 7, 𝐾 is 3, and thus we

have 9 additional trainable parameters in 𝐴𝑟 along with the 18 trainable parameters in the 𝑇𝑤 for depthwise separable

convolution. Such adapter matrices can be added to each bottleneck layer in a network, to obtain the scaffolded network.

How do we train this scaffolded network? First we require that a teacher network with the more expensive depthwise-

separable convolutions is already trained on the task. In addition, a student scaffolded network with shared adapter

matrices in each layer is created. One option is to train the scaffolded network as is, i.e., training both the depthwise

convolution weights and adapter matrices. However, similar to once-for-all (OFA) [4], we observe empirically that it

is better to train networks with combinations of depthwise and FuSeConv layers. That is, at each training step, all

the scaffolded layers of the student network are randomly chosen to be either depthwise-separable convolution or

FuSeConv. The input batch is then propagated through this sampled network. For layers with only depthwise-separable

convolution, only the filter weights are updated through backpropagation, and for layers with FuSeConv, both the filter

weights and the adapter matrices are updated. In addition to the standard loss, we also have a knowledge distillation

loss based on the output of the teacher network (all depthwise-separable convolution) on the same batch of inputs.

Specifically, the loss is the difference in the logits or soft labels produced by the student and teacher networks as

proposed in the original work on knowledge distillation [19].

After training, we would have the filter kernels of depthwise convolution and the adapter matrices, which can be

collapsed to obtain the filter weights of the corresponding FuSeConv. In other words, we remove the scaffold of the

adapter matrices and run inference only on the efficient FuSeConv layers. Thus, NOS is only a training procedure - we

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 13

could either train FuSeConv layers directly or with scaffolding from the more expensive depthwise convolution. We

compare these approaches in the experimental section to establish the value of scaffolded training.

4.2 Combining NOS with search exploration strategies

NOS as proposed above generates a network with only FuSeConv. However, NOS can be combined with a search

procedure that searches for hybrid networks that combine depthwise-separable convolutions and FuSeConv. For a

network with 𝑁 mobile-bottleneck layers, we have 2
𝑁

possible choices of hybrid networks. These choices would enable

an accuracy-latency trade-off space which can be explored depending on the hardware constraints and application

requirements.

One approach to search for hybrid networks is optimization with Evolutionary Algorithms (EAs) [45]. These

algorithms start with a population of networks and apply genetic operations (mutation, crossover) to iteratively update

the population of networks. The fittest networks are retained where fitness could be based on accuracy and latency

metrics. Accuracy and latency measurements can be slow when considering many networks, and thus approximate

cost models are often used [4, 5, 11].

Beyond searching for hybrid networks, we can also search for architectures by changing other features such as

number of bottleneck layers and the kernel sizes. Clearly these choices also affect the accuracy-latency trade-off and

such search is referred to as Neural Architecture Search (NAS). We explore combining NOS with one such NAS algorithm

namely Once-For-All (OFA) [4]. This requires us to add elastic training schedules for each dimension - width, depth,

and kernel sizes, as done in OFA [4].

In summary, we propose NOS as a training methodology to train more accurate FuSeConv networks by distilling

knowledge from more expensive operators with adapter matrices. This scaffolding can be combined with EA or NAS to

trade-off accuracy and latency by searching a large set of hybrid networks with other architectural choices. We evaluate

NOS individually and in combination with EA and NAS in the experimental section.

5 EXPERIMENTAL METHODOLOGY

In this section, we share the methodology used for experimentally evaluating FuSeConv networks. We begin first with

a presentation of SCALE-Sim-FuSe which extends the SCALE-Sim simulator [47] for systolic arrays. We then discuss

the training setup.

5.1 SCALE-Sim-FuSe

To evaluate the latency of executing FuSeConv networks on systolic arrays, we use SCALE-Sim [47] by adding support

for ST-OS dataflow. SCALE-Sim is a cycle-accurate behavioral simulator to model systolic arrays enabling quick design

space exploration of hardware design points. To enable this exploration, the simulator is highly configurable allowing

users to choose across dataflow, number of Processing Elements (PEs), the size of buffer sizes, etc. In addition, it allows

users to (a) log cycle-by-cycle metrics, (b) model bandwidth demands due to memory constraints, (c) generate SRAM

and DRAM traffic traces and compute Processing Element (PE) utilization and execution times.

However, SCALE-Sim models only 2D spatial convolutions and linear layers, and does not model depthwise-separable

convolutions or FuSeConv. Thus, we enhance SCALE-Sim to support both depthwise-separable convolution and

FuSeConv networks. This support involves allowing channel-wise filters to operate independently for depthwise-

separable convolutions and supporting the ST-OS dataflow for FuSeConv. The enhanced version is open-sourced at

Manuscript submitted to ACM

14 Ganesan, et al,.

https://github.com/iitm-sysdl/SCALE-Sim-FuSe. Table 1 lists the configurations of the systolic-array used for evaluating

the performance of FuSeConv. These configurations are used throughout unless otherwise explicitly mentioned.

Operating frequency 1GHz

Array dimensions 16 × 16

Dataflow Output-Stationary and ST-OS

Input feature map SRAM size 64KB

Weight SRAM size 64KB

Output feature map SRAM size 64KB

Table 1. System Configuration

5.2 Design Overheads of ST-OS dataflow

Before we present results on the analysis of FuSeConv networks, we evaluate the additional hardware cost required

to support FuSeConv - namely the design overhead of supporting the ST-OS dataflow. To this end, we implemented

systolic arrays of different diemnsions on Bluespec System Verilog [39] and synthesized them on a proprietary library

in 22nm using Synopsys Design compiler. Two variants with and without ST-OS were implemented and their areas and

powers, measured through Synopsys Design Compiler, were compared. We report the percentage overheads in both

area and power across 4 different sizes in Table 2. The overheads increase the array sizes, but remain acceptably small

at 5.2% area overhead and 9.2% power overhead for a 64 × 64 systolic array. For the specific case of inference on the

edge, we do not expect the synthesis of arrays larger than this size. Thus, we conclude that the design overheads of

ST-OS acceptably small.

Array Dimension

Area

overhead (in %)

Power

overhead (in %)

8x8 3 6.2

16x16 3.2 6.7

32x32 4.5 6.4

64x64 5.2 9.2

Table 2. Area and Power Overheads of varying Systolic-Array dimensions with ST-OS dataflow support

5.3 Training methodology

We now describe the training methodology for training FuSeConv networks - individually and with NOS. We refer

to the former as in-place replacement (of depthwise-separable convolution). We report results on MobileNet V1, V2,

V3-Small, V3-Large, MNasNet-B1 [21, 22, 48, 54]. These models are particularly designed for edge devices such as

mobile phones, and are amongst the most efficient models used today. While the MobileNet family is obtained by a

combination of operator design (eg. bottleneck layers) and NAS, the MNasNet model is based purely on NAS. In all our

results, we train and evaluate models on the ImageNet dataset [10].

5.3.1 In-place replacement. In this method, we replace all the depthwise-separable convolution layers of MobileNet

(V1, 2, 3) [21, 22, 48] and MnasNet-B1 [54] with FuSeConv layers, train them, and evaluate the networks for accuracy

on ImageNet dataset [10]. We use PyTorch [40] to describe and train the models. We use RMSProp as the optimizer

Manuscript submitted to ACM

https://github.com/iitm-sysdl/SCALE-Sim-FuSe

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 15

with an initial learning rate of 0.016 and momentum of 0.9. The learning rate schedule follows an exponential decay of

0.97 every 2.4 epochs. We maintain an Exponential Moving Average (EMA) of the weights with a decay factor of 0.999.

The weight-decay is 1𝑒 − 5. We use FP16 for training and train the models for 350 epochs on 8V100s or 4P100s with a

batch size of 128 per GPU.

5.3.2 Neural Operator Scaffolding. In NOS, we distill knowledge from pretrained networks which have depthwise-

separable convolution, specifically from MnasNet-B1 and MobileNetV3-Large - two efficient networks which achieve

the highest accuracy in ImageNet dataset. We use a hyperparameter schedule adapted from once-for-all [4]. We use SGD

as the optimizer with an initial learning rate of 0.03 and momentum 0.9. We follow a cosine schedule in the learning

rate. The weight decay was 3𝑒 − 5. We use Dropout with probability 0.1 and label smoothing with a factor of 0.1. We set

batch-normalization momentum and epsilon at 0.1 and 1𝑒 − 5, respectively. We train the model for 350 epochs with the

scaffolding. All models were trained on 8 V100 GPUs with a batch size of 128 per GPU using FP16 precision.

As discussed, NOS can be combined with evolutionary algorithms (EAs) and Neural Architecture Search (NAS). For

EA, we adapt the algorithm presented in [45]. We choose a population size of 100, mutation probability of 0.1, and the

ratio of parent and mutation of 0.25. The search algorithm has a bound of 100 iterations. For NAS, we use once-for-all

[4] and replicate the progressive shrinking algorithm along three elastic dimensions - kernel sizes (3 × 3, 5 × 5, or

7 × 7), depth (2, 3, or 4), and width (3, 4, or 6) and scaffold adapter matrices across kernel sizes to enable FuSeConv. The

networks are trained for 1000 epochs on 8 V100 GPUs using FP16 precision.

6 RESULTS

In this section, we share the findings of experimentally evaluating FuSeConv networks on the systolic array hardware

supporting ST-OS dataflow.We first compare FuSeConv as a drop-in replacement for depthwise-separable convolution in

terms of accuracy and latency for different efficient computer vision networks. We also analyze latency numbers in

detail - layer-wise contribution, effect of scaling systolic arrays, and impact of bandwidth (both DRAM and SRAM). We

then evaluate the performance of NOS - individually, and with evolutionary search and Neural Architecture Search.

6.1 Speedup of FuSeConv

Wenow evaluate the latency benefits of FuSeConvmeasured with SCALE-Sim-FuSe. Recall that we argued that FuSeConv

with ST-OS can fully utilize systolic arrays. In line with this theoretical observation, we report significant speedups in

this section. We also analyze the latency values to understand components which contribute to the latency the most.

All evaluations are done on the mobile-efficient networks described in Table 3. The more efficient FuSe-Half operator is

used throughout this evaluation unless explicitly specified otherwise.

Figure 8(a) reports the latencies of baseline mobile-efficient networks (without FuSeConv) and FuSeConv networks

executed with Output Stationary (OS) and Weight Stationary (WS) [7] dataflows and ST-OS dataflow, respectively,

on 16 × 16 systolic arrays. We report significant speedups of 7.01 − 9.36× on the FuSe-Half variants and 4.15 − 5.05×
on the FuSe-Full variants with ST-OS relative to the Output Stationary baseline. This reinforces our finding that

depthwise-separable convolutions are inefficient to execute on systolic arrays and factorizing them to 1D convolution

leads to significantly improved performance. It is noteworthy that the FuSe-Full variant is able to achieve significant

speedups despite higher MACs and parameters.

6.1.1 Layerwise analysis. Figure 8(b) reports the layerwise speedup for the FuSe-Half variant of MobileNetV2. The

speedup ranges from 4 to 11×, with some middle and later layers exhibiting lower relative speedups. This is primarily

Manuscript submitted to ACM

16 Ganesan, et al,.

1.0X

1.0X

1.0X

1.0X

1.0X

1.5X

1.49X

1.35X

1.36X

1.27X

4.77X

4.52X

5.05X

4.75X

4.15X

9.24X

8.45X

9.36X 8.46X 7.01X

MobileNetV1 MobileNetV2 MnasNet-B1 MobileNet-V3
Large

MobileNet-V3
Small

0

0.5M

1M

1.5M

2M

2.5M

3M

3.5M

4M

2 4 6 8 10 12
MB1

MB3

MB5

MB7

MB9

MB11

MB13

MB15

MB17Baseline-OS
Baseline-WS
FuSe-Full
FuSe-Half

Networks
(a)

Speedup
(b)

La
te

nc
y

(in
 c

yc
le

s)

M
ob

ile
N

et
V

2

Fig. 8. Experimental results evaluating the latency benefits of FuSeConv: (a) Latency estimates on 16 × 16 systolic arrays, and (b)
Layerwise speedups for MobileNetV2. FuSeConv with ST-OS dataflow significantly improves the performance of efficient networks
on systolic arrays.

Fig. 9. Operator-wise and scaling analysis FuSeConv: (a) Latency distribution of operators for baseline and FuSeConv and (b) Ablation
study. FuSeConv optimizes the common-case depthwise operator and exhibits strong performance scaling for increasing systolic
array sizes.

due to the size of the layers - the final and intermediate smaller layers are too small to fully utilize the systolic array.

We discuss this in more detail when analyzing the hardware utilization with each layer.

6.1.2 Operator-wise analysis. We report the latency distribution across operators for all the networks. As shown in

Figure 9(a), we see that the latency of baseline networks is dominated by depthwise convolutions (>90%) making it

the common case for optimization on the edge. With the FuSeConv, the latency distribution shifts towards pointwise

and other convolutions and becomes more balanced where the FuSeConv operation accounts for a smaller fraction

of the overall latency (on average <50%). This establishes that the combination of FuSeConv and the ST-OS dataflow

optimizes the common case. Further improvements in performance can come from speeding up pointwise convolutions

for instance with grouped convolutions [32].

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 17

L0 L2 L4 L6 L8 L10

L12

0
20
40
60
80

100

L0 L2 L4 L6 L8 L10
L12
L14
L16

0
20
40
60
80

100

L0 L2 L4 L6 L8 L10
L12
L14
L16

0
20
40
60
80

100

L0 L2 L4 L6 L8 L10
L12
L14

0
20
40
60
80

100

L0 L2 L4 L6 L8 L10
0

20
40
60
80

100

Baseline OS Utilization FuSe-Half Utilization

MobileNetV1 MobileNetV2 MnasNet-B1 MobileNetV3-Large
MobileNetV3-Small

U
til

iz
at

io
n

(in
 %

)

Fig. 10. Contrasting the utilization of FuSeConv layers with depthwise-separable convolution layers of efficient-networks on a 16x16
systolic-array. FuSeConv exhibits high-utilization due to the massive parallelism enabled by ST-OS dataflow.

6.1.3 Systolic array utilization. To understand the speedup observed with FuSeConv, we report the systolic array

utilization of all the mobile bottleneck layers (depthwise or FuSe-Half convolution sandwiched between two 1 × 1

pointwise convolution) for all the networks in Figure 10.We observe that the utilization of layerswith FuSe-Half operators

are very high (56-100%), while the corresponding baseline networks exhibit a very poor utilization (5-6%). This

again reinforces our finding that depthwise-separable convolution benefits neither from data reuse or channel-wise

computation in utilizing all columns of the systolic array. Within FuSeConv layers, we observe trends that corroborate

our findings in the layerwise breakdown. First, the final bottleneck layers exhibit relatively lower utilization (50-60%)

due to extremely small input feature map sizes (as low as 7 × 7). Second, some of the middle layers also exhibit lower

utilization due to input-feature map padding creating halo regions. Finally, MobileNetV3-Small is a very tiny network

with ultra-low parameters and MACs, and it’s not able to sufficiently saturate a 16 × 16 array despite the tremendous

parallelism offered by ST-OS dataflow.

6.1.4 Bandwidth utilization. In order to understand the bandwidth requirements of FuSeConv and the ST-OS dataflow,

we report the SRAM and DRAM bandwidths (average and maximum) utilized by each layer of MobileNetV3-Large (with

and without FuSe-Half) in Figure 11. We observe that FuSe-Half layers (every 3
𝑟𝑑

layer) utilizes a higher operating

average bandwidth than the depthwise convolution layers. This is because the ST-OS dataflow enables massive

parallelism thus requiring more data requests to both the SRAM and the DRAM. However, when compared to the

non-FuSe layers (pointwise and spatial convolutions), this increase in average bandwidth for FuSe-Half layers is not

substantial. Particularly, the maximum bandwidth requirements for DRAMs are similar for both depthwise convolution

layers. Thus, to support FuSeConv networks, the peak DRAM bandwidth required is similar to other standard operators.

6.1.5 Scaling with systolic array size. We report results (refer Figure 9(b)) of the effect of the systolic array size on

the speedup of FuSeConv networks. We observe that the speedup continues to increase for higher systolic array sizes.

Interestingly, smaller networks such as MobileNetV3-small exhibit an overall weaker scaling where the speedup peaks

at a systolic array size of 32× 32. Such analysis may be useful in designing the systolic array size for accelerators on the

edge.

In summary, we have demonstrated that the FuSeConv operator is significantly more efficient than depthwise-

separable convolution on systolic arrays. This leads to about 8× speedup on average for popularly deployed mobile

efficient networks.

Manuscript submitted to ACM

18 Ganesan, et al,.

0

10

20

30

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L44
L45
L46
L47

0

5

10

15

20

MV3-L Average DRAM BW MV3-L-FuSe-Half Average DRAM BW MV3-L Average SRAM BW MV3-L-FuSe-Half Average SRAM BW
MV3-L Max DRAM BW MV3-L-FuSe-Half Max DRAM BW

Layers

B
yt

es
 /

C
yc

le
B

yt
es

 /
C

yc
le

Fig. 11. Layerwise DRAM and SRAM bandwidths for baseline and FuSeConv variants of MobileNetv3-Large. The bandwidth consumed
by FuSeConv layers are not substantially higher than other operators (such as pointwise) establishing that the existing memory
subsystem can support FuSeConv comfortably.

6.2 Accuracy of FuSeConv with in-place replacement

We begin with analyzing the accuracy of in-place replacement of depthwise-separable convolutions with FuSeConv for

different efficient models - MobileNet v1, v2, v3-Small, v3-Large, and MNasNet-B1. We report all our results on the

ImageNet dataset [10] with the standard train and test splits.

For each of these efficient networks, we study different variants for in-placement replacement. The Full and Half

variants are as described in Section 3. The Full variant has about twice the number of MACs as the Half variant. For

both these variants, we also study two other variants denoted with 50%, where only half the bottleneck layers are

replaced with FuSeConv. Here the layers to be replaced are chosen greedily based on the impact on latency. These 50%

variants will have fewer parameters and MACs than the respective parent variants. For instance, the Full-50% variant

has about one-third fewer MACs than the Full variant.

For each of these variants, we train models on ImageNet and report the accuracy values in Table 3. We make the

following observations on the results:

• For the older models, MobileNet-V1 and V2, some of the FuSeConv variants are more accurate than baseline

models. For instance, for MobileNet-v1, replacing the depthwise operators with FuSe-Half leads to a more

accurate model with fewer MACs and parameters.

• On average across all models, the drop in accuracy for the FuSe-Full model is 0.3%. But the use of the FuSe-Full

model is not feasible for models on the edge given that both MACs and parameters are larger than the baseline

models.

• On average across all models, the drop in accuracy for the FuSe-Half model is 2.3%. This a reasonably large drop

and suggests the use of other methods to make up for this loss.

• When using 50% variants, the average drop in accuracy for FuSe-Full and FuSe-Half variants reduces to <0.2%

and 0.8%, respectively.

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 19

Network

ImageNet

accuracy

MACs

(millions)

Params

(millions)

MobileNet-V1[22] 70.60 589 4.23

MobileNet-V1 FuSe-Full 72.86 1122 7.36

MobileNet-V1 FuSe-Half 72.00 573 4.20

MobileNet-V1 FuSe-Full-50% 72.42 764 4.35

MobileNet-V1 FuSe-Half-50% 71.77 578 4.22

MobileNet-V2[48] 72.00 315 3.50

MobileNet-V2 FuSe-Full 72.49 430 4.46

MobileNet-V2 FuSe-Half 70.80 300 3.46

MobileNet-V2 FuSe-Full-50% 72.11 361 3.61

MobileNet-V2 FuSe-Half-50% 71.98 305 3.49

MnasNet-B1[54] 73.50 325 4.38

MnasNet-B1 FuSe-Full 73.16 440 5.66

MnasNet-B1 FuSe-Half 71.48 305 4.25

MnasNet-B1 FuSe-Full-50% 73.52 361 4.47

MnasNet-B1 FuSe-Half-50% 72.61 312 4.35

MobileNet-V3 Small [21] 67.40 66 2.93

MobileNet-V3 Small FuSe-Full 67.17 84 4.44

MobileNet-V3 Small FuSe-Half 64.55 61 2.89

MobileNet-V3 Small FuSe-Full-50% 67.91 73 3.18

MobileNet-V3 Small FuSe-Half-50% 66.90 63 2.92

MobileNet-V3 Large [21] 75.20 238 5.47

MobileNet-V3 Large FuSe-Full 74.40 322 10.57

MobileNet-V3 Large FuSe-Half 73.02 225 5.40

MobileNet-V3 Large FuSe-Full-50% 74.50 264 5.57

MobileNet-V3 Large FuSe-Half-50% 73.80 230 5.46

Table 3. ImageNet performance, parameters, and MACs of DNNs used to evaluate FuSeConv.

In summary, our results show that the in-place replacement with FuSe-Half operator leads to a drop in accuracy large

enough to require further optimization. Replacing only half the layers improves the accuracy, but further optimizations

are required for training networks with the efficient operator.

6.3 Accuracy of FuSeConv with NOS

We proposed NOS to improve the training of efficient operators by distilling knowledge from more expensive operators.

We apply this procedure for the two most accurate networks, namely MobileNetV3-Large and MnasNet-B1. We observe

that the accuracy of these two networks increases by 0.8% and 1.5% respectively, when training with NOS. These

improvements account for 37% and 74% of the gap between the FuSeConv and depthwise-separable convolution variant.

This demonstrates the effectiveness of operator scaffolding - without any change in the network architecture or the

inference mechanism we obtain improved accuracy results. When comparing the FuSeConv variant of MobileNetV3-

Large trained with NOS with MobileNetV3-Small we observe that, the FuSeConv variant is 5.8% more accurate while

being 2.3× faster. Therefore, instead of downgrading from MobileNetV3-Large to MobileNetV3-Small for constrained

edge scenarios, we can use the FuSe-Half variant of MobileNetV3-Large as a strong state-of-the-art model.

We hypothesize that training with NOS is effective because the FuSeConv operator is able to distill the knowledge

from the respective depthwise-separable convolution operator. To test this hypothesis, we visualize the output of the

third mobile bottleneck layer for a specific input image of MobileNetV3-Large trained with and without NOS. We

show this in Figure 12 in four parts. (a) and (b) are the outputs for baseline depthwise-separable convolution and

FuSe-Half variants with NOS training, while (c) and (d) are the outputs for the same networks with in-place replacement

Manuscript submitted to ACM

20 Ganesan, et al,.

Fig. 12. Feature map visualization of 3𝑟𝑑 mobile bottleneck layer: (a) and (b) MobileNetV3-Large and its FuSe-Half variant trained
with NOS, and (c) and (d) The same networks trained without NOS. The feature map visualizations are identical for NOS while
different for standard training, illustrating the effectiveness of knowledge distillation with NOS.

(without NOS). From the figures, it is clear that (a) and (b) have high similarity indicating effective knowledge distillation

from the depthwise-separable convolution operator to the FuSeConv operator. On the other hand, (c) and (d) are very

different suggesting that the FuSeConv operator is quite distinct from the depthwise-separable convolution operator it

is replacing. This “scaffolding” is responsible for the higher accuracy we observe with NOS.

6.4 Accuracy of FuSeConv with NOS and Evolutionary Search

We now report results of searching hybrid networks (combining FuSeConv and depthwise-separable convolution) using

evolutionary search. In Figure 13, we plot the pareto optimal frontier of these networks, for both MobileNetV3-Large

and MnasNet-B1. We compare these hybrid networks with the ones trained via in-place replacement and with NOS

without hybrid search, as discussed in the preceding sub-sections.

For MobileNetv3-Large, the most accurate FuSeConv network has an accuracy of 74.9%. In comparison, the baseline

model with depthwise-separable convolutions has an accuracy of 75.3% at 1.8× the latency cost. Thus, by adding

NOS and EA search, we reduce the accuracy gap between FuSeConv and depthwise-separable convolution from 1.5% to

0.4%. For MnasNet-B1, the accuracy of the most accurate hybrid network exceeds that of the baseline by 0.8% while still

being 2.4× faster. This is a significant result - Our hybrid model improves on the accuracy of a network optimized by

NAS to be accurate on the ImageNet data at significantly lower latency.

All the hybrid networks found using NOS are superior to manually chosen hybrid networks that have 50% of

their FuSe-Half layers preferentially retained. This validates the effectiveness of the evolutionary search algorithm in

identifying the trade-off between accuracy and latency. To understand this further, we visualize in Figure 14 the hybrid

network discovered using EAs and compare against the manually chosen hybrid network. We observe that the hybrid

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 21

Fig. 13. Accuracy vs. efficiency trade-off: (a) Hybrid MobileNetV3-Large and (b) Hybrid MnasNet-B1 networks trained using NOS and
discovered using Evolutionary Search. The pareto optimal frontier for these hybrid networks are superior relative to FuSeConv networks
trained with in-place replacement and FuSeConv networks trained with NOS without hybrid search.

Fig. 14. Visualizing MobileNetV3-Large hybrid networks: (a) Trained with in-place replacement (FuSe-Hybrid-Manual) and (b) Trained
with NOS and searched with EA (FuSe-Hybrid-EA). Clearly, NOS coupled with EA is able to find networks that are more accurate and
efficient.

network searched with EA has more FuSe-Half layers (yellow) achieving a lower latency but still retaining the higher

accuracy. Thus, carefully choosing which layers to convert to FuSeConv is an important decision that is effectively

optimized by EA.

6.5 Accuracy of FuSeConv with NOS and Neural Architecture Search

We now present the results of searching for hybrid networks with Neural Architecture Search (NAS). Specifically, we

combine the search for hybrid networks into the design space of Once-For-All [4] as discussed in Section 4, which

explores depth, width, and kernel size parameters. We compare two sets of results - Models searched only with Once-

For-All design space (depth, width, kernel parameters) and models searched with the choice of FuSeConv added to

Manuscript submitted to ACM

22 Ganesan, et al,.

3 4 5 6 7

75.8

76

76.2

76.4

76.6

76.8

77

77.2
OFA
FuSe-OFA (ours)

Latency (in ms)

A
cc

ur
ac

y
(in

 %
)

Fig. 15. OFA networks with the FuSe operator consistently outperforms the baseline OFA on a 16x16 systolic-array.

the design space. The results are shown in 15. The pareto surface of the networks searched by including the choice

of FuSeConv operators is significantly superior - it finds networks that simultaneously are more accurate and faster.

For instance, the most accurate network that we discover with FuSeConv has 0.1% higher accuracy while halving the

latency.

Further, we also observe that the combining NOS with the OFA design space helped explore the efficiency-accuracy

trade-off more widely. In particular, we achieve an accuracy of 77.2% with NOS and OFA, which is higher than training

without NOS, training with NOS, training with NOS and evolutionary search. This suggests that NOS combines

effectively with standard architectural choices.

We compare the results obtained with other state-of-the-art mobile-efficient networks designed with NAS in Table 4.

We observe two key results:

• We find the most accurate model (FuSe-OFA-2) with an accuracy of 77.2% matching EfficientNet-EdgeTPU-S [15]

which has more than 5× the MACs. Interestingly, the EfficientNet-EdgeTPU-S model represents an alternative to

increase the utilization on systolic arrays, by using spatial convolutions. Still, this model is 40% slower than our

reported model. Thus our model, FuSe-OFA-2 represents the state-of-the-art in efficient models for ImageNet

dataset.

• If we prioritize latency, then our MobileNet-V3-Large FuSe-Half-Hybrid model achieves an accuracy of 74.9%

with a latency under 1ms. This is a significant improvement on existing networks.

7 RELATEDWORK

There have been many prior works that proposed solutions for efficient DNN operators. The efforts can be broadly

grouped into these categories.

Fast Algorithms for Convolutions. For the better half of the last decade, multiple efforts focused on reducing

the arithmetic complexity of convolution layers. For instance, [38] proposed using Fast Fourier Transforms (FFT) to

perform the convolution as pointwise products in the frequency domain. This offers significant computation reduction

but works only for large filter sizes that are not common in DNNs. [9] used Strassen’s algorithm to reduce the amount

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 23

Network

ImageNet

accuracy

MACs

(millions)

Params

(millions)

Latency on Systolic-Arrays (in ms) (batch size 1)

MnasNet-B1[54] 73.5 325 4.38 4.04

MnasNet-B1 FuSe-Half (ours) 73.4 305 4.25 0.50

MnasNet-B1 FuSe-Half-Hybrid (ours) 73.8 310 4.30 1.74

MobileNet-V3-Large[48] 75.3 238 5.47 3.30

MobileNet-V3-Large FuSe-Half (ours) 73.8 225 5.40 0.40

MobileNet-V3-Large FuSe-Half-Hybrid (ours) 74.9 230 5.43 1.80

ProxylessNAS [5] 74.6 320 4.08 4.87

Single-Path NAS [52] 74.7 332 4.42 4.25

FBNet-C [58] 74.9 382 5.50 4.70

EfficientNet-Lite0 [55] 75.1 407 4.70 4.82

EfficientNet-EdgeTPU-S [15] 77.2 2351 5.43 5.35

Once-For-All (OFA) [4] 77.1 369 6.55 7.40

FuSe-OFA-1 (ours) 76.7 376 6.85 3.02

FuSe-OFA-2 (ours) 77.2 426 7.29 3.82

Table 4. ImageNet performance, MACs, parameters, and latency of NAS networks on a 16x16 systolic-array.

of convolutions and consequently the inference time of AlexNet by 47%. [36] proposed the use of Winograd’s minimal

filtering algorithm to transform convolutions thereby reducing the number of multiplications significantly for an

increase in the number of additions. All these proposals work on the algorithmic nature of how convolutions are

performed. In contrast, FuSeConv operates on the structure of filters and feature maps. Hence, these fast algorithms are

complementary to FuSeConv and any of these methods can be applied in conjunction to potentially reap more benefits.

Factorized Convolutions. Factorization by low-rank approximation of filters has been a popular way of reducing

the computational complexity of convolutions. In the context of Deep Learning, it was first suggested in [46]. Essentially,

it involves decomposing one or more dimensions of the filter to improve the execution time while trying to retain

the accuracy. [25] proposes two schemes to approximate the filters into a linear combination of smaller basis set of

separable rank-1 filters - one along the spatial axis and the other along the channel axis. [37] uses CP-decomposition to

decompose a convolution layer into 4 sub-layers with smaller lower-rank kernels. [31] proposed Tucker decomposition

that uses higher-order SVDs to decompose a convolution tensor into another tensor multiplied by matrices along one or

more modes (each mode is a dimension of a tensor: horizontal, vertical or depth slice). SqueezeNext [13] augmented the

popular squeezeNet architecture and proposed the use of a two-stage squeeze module. One of the stages is composed of

spatially separable convolutions where the 3x3 spatial convolution in squeezeNet is replaced with two sequential blocks

of 1x3 followed by 3x1 spatial convolution filters, while the other stage consists of element-wise addition. In general,

the use of low-rank convolutions reduced the total number of parameters and offered significant computational benefits.

FuSeConv is also a low-rank operation to optimize convolutions. The key differences of FuSeConv are as follows: (1)

Many of the prior works that relied on mathematical techniques to perform low-rank approximations suffered high

accuracy loss (> 1%) while FuSeConv with our proposed training methodology has comparable accuracy with the

baseline, and (2) The prior works do not address the specific problem of mapping inefficiency to systolic-arrays, while

FuSeConv is a systolic algorithm that enables fast inference on systolic-arrays.

Addressing the inefficiency of depthwise separable convolutions on accelerators. [15] is one of the recent
works from Google that addresses the problem of inefficiency between depth-wise separable convolutions and systolic-

array like accelerators. They note that the popular inverted mobile bottleneck blocks, primarily used in MobileNet

Manuscript submitted to ACM

24 Ganesan, et al,.

family of networks [48] and composed of a depthwise convolution layer sandwiched between two pointwise layers, do

not sufficiently utilize the EdgeTPU hardware. In order to alleviate this problem, the authors introduce an operation

called fused inverted bottleneck that replaces the first pointwise layer and a depthwise convolution layer with a full

spatial convolution operation. They add fused inverted bottleneck to the EfficientNet search space and use NAS to find

a network specific for EdgeTPU called EfficientNet-EdgeTPU. It is noteworthy that fused inverted bottleneck consumes

upto 12x more MACs for certain layers just to improve the hardware utilization. In contrast, FuSeConv provides a

significant improvement in utilization and speedup for similar number of MACs relative to mobile inverted bottleneck

blocks.

8 CONCLUSION AND LOOKING AHEAD

Addressing the challenge of efficient inference is vital to enable pervasive deployment of DNNs on the edge. Massively

parallel systolic-arrays and resource-efficient depthwise-separable convolutions are two promising approaches. The

combination of these two methods, however, is inefficient. In this paper, we posed three questions regarding this

inefficiency: (1) Why are depthwise-separable convolutions inefficient on systolic-arrays?, (2) Is there a HW/SW

co-design to address this inefficiency?, and (3) Can we adapt model-training to better fit this new design? For the

first question, we formally show that depthwise-separable convolutions are not native systolic-algorithms and lack

data-reuse or channel-wise refactoring to sufficiently utilize the systolic-array hardware. For the second question, we

proposed a HW/SW solution with a systolic drop-in replacement operator called FuSeConv and a customized hardware

dataflow called ST-OS with low VLSI overheads. For the third question, we proposed NOS, a novel training methodology

to train more accurate FuSeConv networks.

We evaluated the proposed solutions on a large set of efficient networks by replacing depthwise-separable convolu-

tions with FuSeConv and observed significant improvements of 4.1− 9.25× in inference times on a 16× 16 systolic-array.

The FuSeConv networks trained with NOS achieved 1.5 − 2% higher accuracy than conventional training and were as

accurate as their baseline depthwise-separable convolution networks. We also showed that NOS can be combined with

search exploration strategies like evolutionary algorithms and Neural Architecture Search to provide networks that

significantly improve the efficiency and accuracy of computer vision models on systolic-arrays with an accuracy of

77.2% on ImageNet and a latency of 3.82𝑚𝑠 on a 16× 16 systolic-array. These obtained models define the state-of-the-art

models both in terms of accuracy and efficiency on systolic arrays.

We conclude by reflecting on our experiences in designing FuSeConv, ST-OS, and NOS and provide recommendations

for further research.

Resource efficient operators require special ways of training. We saw that naïve in-place replacement and stan-

dard training procedures lead to accuracy degradation for the parameter-efficient FuSeConv networks. We hypothesize

the need for “efficient training strategies” for operators on the edge where NOS could be one potential strategy. Other

similar techniques to train parameter-efficient models may be explored as an alternative to going towards larger and

larger models.

Simple dataflow optimizations help accelerate DNN operators having low-data reuse.Massively parallel hard-

ware architectures assume high-data reuse as a means for optimization. However, for low-resource operators, this

assumption may not be true. Thus, custom yet simple dataflow optimizations such as our proposed ST-OS may be

required to improve the utilization and performance of such operators on the parallel hardware. This also illustrates the

need for hardware-software co-design of efficient operators and custom dataflows.

The need for efficient operator search in addition to NAS. Over the last few years, there has been a lot of work on

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 25

Neural Architecture Search to find optimal network architectures satisfying various design objectives. It is noteworthy,

however, to recognize that all foundational solutions for efficient DNNs on the edge were operator based (depthwise-

separable convolutions, squeeze-and-excite [13], etc.). Thus, we recommend a concerted focus on designing operator

design spaces (similar to network design spaces [43]) and using AutoML ideas to search for efficient operators within

this space.

9 ACKNOWLEDGEMENTS

We thank Google Cloud Platform and Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras

for their help with compute resources for this project. We thank wandb [3] for providing a very useful experiment

tracking tool that helped accelerate our progress. We thank Surya Selvam for his contributions to an earlier version of

this research effort [49].

REFERENCES
[1] Accelerating AI in Datacenters. Xilinx ML Suite, 2019.

[2] Bapna, A., Arivazhagan, N., and Firat, O. Simple, scalable adaptation for neural machine translation. arXiv preprint arXiv:1909.08478 (2019).
[3] Biewald, L. Experiment tracking with weights and biases, 2020. Software available from wandb.com.

[4] Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791 (2019).

[5] Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. arXiv preprint arXiv:1812.00332
(2018).

[6] Chellapilla, K., Puri, S., and Simard, P. High performance convolutional neural networks for document processing. In Tenth international
workshop on frontiers in handwriting recognition (2006), Suvisoft.

[7] Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks.

IEEE journal of solid-state circuits 52, 1 (2016), 127–138.
[8] Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M., et al. Serving

DNNs in Real Time at Datacenter Scale with Project Brainwave. iEEE Micro 38, 2 (2018), 8–20.
[9] Cong, J., and Xiao, B. Minimizing computation in convolutional neural networks. In International conference on artificial neural networks (2014),

Springer, pp. 281–290.

[10] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition (2009), Ieee, pp. 248–255.

[11] Ganesan, V., Selvam, S., Sen, S., Kumar, P., and Raghunathan, A. A case for generalizable dnn cost models for mobile devices. In 2020 IEEE
International Symposium on Workload Characterization (IISWC) (2020), pp. 169–180.

[12] Ganesan, V., Sen, S., Kumar, P., Gala, N., Veezhinathan, K., and Raghunathan, A. Sparsity-aware caches to accelerate deep neural networks.

In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2020), IEEE, pp. 85–90.
[13] Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao, S., and Keutzer, K. Squeezenext: Hardware-aware neural network design. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018), pp. 1638–1647.
[14] Gross, T., and Sussman, A. Mapping a single-assignment language onto the warp systolic array. In Conference on Functional Programming

Languages and Computer Architecture (1987), Springer, pp. 347–363.
[15] Gupta, S., and Akin, B. Accelerator-Aware Neural Network Design using AutoML. arXiv preprint arXiv:2003.02838 (2020).
[16] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., and Dally, W. J. Eie: Efficient inference engine on compressed deep neural network.

ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–254.
[17] Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[18] He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. Amc: Automl for model compression and acceleration on mobile devices. In Proceedings of the

European Conference on Computer Vision (ECCV) (2018), pp. 784–800.
[19] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).
[20] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S. Parameter-efficient

transfer learning for nlp. In International Conference on Machine Learning (2019), PMLR, pp. 2790–2799.

[21] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al. Searching for MobileNetV3.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 1314–1324.

Manuscript submitted to ACM

26 Ganesan, et al,.

[22] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).
[23] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition (2017), pp. 4700–4708.

[24] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016).
[25] Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866

(2014).

[26] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. Caffe: Convolutional Architecture for

Fast Feature Embedding. In Proceedings of the 22nd ACM international conference on Multimedia (2014), pp. 675–678.
[27] Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., and Liu, Q. Tinybert: Distilling bert for natural language understanding. arXiv

preprint arXiv:1909.10351 (2019).
[28] Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C., and Patterson, D. A domain-specific supercomputer for training

deep neural networks. Communications of the ACM 63, 7 (2020), 67–78.
[29] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al. In-datacenter

performance analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium on computer architecture (2017), pp. 1–12.
[30] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. Scaling laws for

neural language models. arXiv preprint arXiv:2001.08361 (2020).
[31] Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. Compression of deep convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530 (2015).
[32] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information

processing systems 25 (2012), 1097–1105.
[33] Kung, H., and Leiserson, C. Systolic arrays for (VLSI), Introduction to VLSI Systems. Mead and L. Conway (1980), 260–292.

[34] Kung, H.-T. Why systolic architectures? IEEE computer (1982).
[35] Kwon, K., Amid, A., Gholami, A., Wu, B., Asanovic, K., and Keutzer, K. Co-design of deep neural nets and neural net accelerators for embedded

vision applications. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC) (2018), IEEE, pp. 1–6.
[36] Lavin, A., and Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (2016), pp. 4013–4021.

[37] Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V. Speeding-up Convolutional Neural Networks using Fine-tuned CP-

Decomposition. arXiv preprint arXiv:1412.6553 (2014).
[38] Mathieu, M., Henaff, M., and LeCun, Y. Fast training of convolutional networks through ffts. arXiv preprint arXiv:1312.5851 (2013).
[39] Nikhil, R. Bluespec System Verilog: efficient, correct RTL from high level specifications. In Proc. MEMOCODE (2004), IEEE.

[40] Paszke, A., et al. Pytorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS (2019), pp. 8026–8037.
[41] Pfeiffer, J., Vulić, I., Gurevych, I., and Ruder, S. Mad-x: An adapter-based framework for multi-task cross-lingual transfer. arXiv preprint

arXiv:2005.00052 (2020).
[42] Quinton, P. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations. In ISCA (1984).

[43] Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollár, P. Designing network design spaces. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2020), pp. 10428–10436.

[44] Rao, S. K., and Kailath, T. Regular iterative algorithms and their implementation on processor arrays. Proceedings of the IEEE 76, 3 (1988), 259–269.
[45] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolution of image classifiers. In

International Conference on Machine Learning (2017), PMLR, pp. 2902–2911.

[46] Rigamonti, R., Sironi, A., Lepetit, V., and Fua, P. Learning separable filters. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2013), pp. 2754–2761.

[47] Samajdar, A., et al. Scale-sim: Systolic cnn accelerator. arXiv 2018.
[48] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recognition (2018), pp. 4510–4520.

[49] Selvam, S., Ganesan, V., and Kumar, P. Fuseconv: Fully separable convolutions for fast inference on systolic arrays. arXiv preprint arXiv:2105.13434
(2021).

[50] Sen, S., Jain, S., Venkataramani, S., and Raghunathan, A. Sparce: Sparsity aware general-purpose core extensions to accelerate deep neural

networks. IEEE Transactions on Computers 68, 6 (2018), 912–925.
[51] Song, S. W. Systolic algorithms: concepts, synthesis, and evolution.

[52] Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., and Marculescu, D. Single-path nas: Designing hardware-efficient

convnets in less than 4 hours. arXiv preprint arXiv:1904.02877 (2019).

[53] Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge distillation for bert model compression. arXiv preprint arXiv:1908.09355 (2019).
[54] Tan, M., Chen, B., et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In CVPR 2019.
[55] Tan, M., and Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In International Conference on Machine Learning

Manuscript submitted to ACM

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge 27

(2019), PMLR, pp. 6105–6114.

[56] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training data-efficient image transformers & distillation through

attention. arXiv preprint arXiv:2012.12877 (2020).

[57] Wan, C. Systolic algorithms and applications. PhD thesis, Loughborough University.

[58] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. FbNet: Hardware-Aware Efficient Convnet

Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019),

pp. 10734–10742.

[59] Xu, X., Ding, Y., Hu, S. X., Niemier, M., Cong, J., Hu, Y., and Shi, Y. Scaling for edge inference of deep neural networks. Nature Electronics 1, 4
(2018), 216–222.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Inefficiency of depthwise separable convolutions on systolic arrays
	2.1 Background - Systolic Arrays and Algorithms
	2.2 2D convolutions are not systolic algorithms
	2.3 Transformation im2col and Data Reuse
	2.4 Channel-Wise Operations

	3 HW/SW co-design: FuSeConv and ST-OS
	3.1 The FuSeConv operator
	3.2 Efficiency of FuSeConv
	3.3 Systolic-Array with ST-OS dataflow
	3.4 Mapping FuSeConv to systolic-arrays

	4 Neural Operator Scaffolding
	4.1 Neural Operator Scaffolding (NOS)
	4.2 Combining NOS with search exploration strategies

	5 Experimental Methodology
	5.1 SCALE-Sim-FuSe
	5.2 Design Overheads of ST-OS dataflow
	5.3 Training methodology

	6 Results
	6.1 Speedup of FuSeConv
	6.2 Accuracy of FuSeConv with in-place replacement
	6.3 Accuracy of FuSeConv with NOS
	6.4 Accuracy of FuSeConv with NOS and Evolutionary Search
	6.5 Accuracy of FuSeConv with NOS and Neural Architecture Search

	7 Related Work
	8 Conclusion and looking ahead
	9 Acknowledgements
	References

