
Design and Selection of Materialized Views
in a Data Warehousing Environment: A Case Study

Goretti K.Y. Chan
Rix Pumps Limited

Computer & Information Systems,
Tai Po Industrial Estate, N.T.,

Hong Kong, China
g.chan@rix.com.hk

Qing Li
Dept of Computer Science

City University of Hong Kong
Tat Chee Ave, Kowloon,

Hong Kong, China
csqli@cityu.edu.hk

Ling Feng
Dept of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon,

Hong Kong, China

cslfeng@comp.polyu.edu.hk

ABSTRACT

In this paper, we describe the design of a data warehousing
system for an engineering company ‘R’. This system aims to
assist users in retrieving data for business analysis in an efficient
manner. The structural design of this data warehousing system
employs the dimensional modeling concepts of star and
snowflake schemes. Furthermore, frequently accessed dimension
keys and attributes are stored in various summary views
(materialized views) in order to minimize the query processing
cost. A cost model was developed to enable the evaluation of the
total cost and benefit involved in selecting each materialized
view. Using the cost analysis methodology for evaluation, an
adapted greedy algorithm has been implemented for the selection
of materialized views. This algorithm takes into account all of
the cost variables associated with the materialized views
selection method, including query access frequencies, base-data
update frequencies, query access costs, view maintenance costs
and the availability of the system’s storage. The algorithm and
cost model have been applied to a set of real-life database items
extracted from company ‘R’. By selecting the most cost effective
set of materialized summary views, the total cost of the
maintenance, storage and query processing of the system is
optimized, thereby resulting in an efficient data warehousing
system

1. INTRODUCTION AND MOTIVATION

A data warehouse is an information base that stores a large
volume of extracted and summarized data for On-Line Analytical
Processing and Decision Support Systems [1]. The basic
architecture of a data warehousing system given in [2] is shown
in Figure 1. To reduce the cost of executing aggregate queries in
a data warehousing environment, frequently used aggregates are
often pre-computed and materialized into summary views so that
future queries can utilize them directly. Undoubtedly,
materializing these summary views can minimize query response
time. However, if the source data changes frequently, keeping
these materialized views updated will inevitably incur a high
maintenance cost. Furthermore, for a system with limited

storage space and/or with thousands of summary views, we may
be able to materialize only a small fraction of the views.
Therefore, a number of parameters, including users’ query
frequencies, base relation update frequencies, query costs, view
maintenance costs and the availability of the system’s storage,
should be considered in order to select an optimal set of
summary views to be materialized.

Figure 1: The basic architecture of a data warehousing system

To motivate the discussion of data warehouse design and
materialized view selection, consider a data warehouse
which contains the following fact and dimension tables:

INV (Co_no, Inv_no, Inv_date, P_no, Qty, Amt)

CO (Co_no, Co_name, R_no)

PD (P_no, P_name, Mfr_no, Type_no, Cat_no)

Source 1
Database

Source 2
Database

Source n
Database

.......

 Source Data

E
xt

ra
ct

,
Fi

lte
r,

In
te

gr
at

e,
up

da
te

Query,
Data Analysis,
 Data Mining

Users

Metadata

Data Warehouse

Invoice

Company

Product

Date

Salesman

Data warehouse base-data

 Virtual and Materialized Summary Views

Assume the sizes of the fact and dimension tables ‘INV’,
‘CO’ and ‘PD’ are 114B, 12B and 6B, respectively, where
B denotes the data block size which is 2K in the database
system (e.g., Oracle). Given a subset of typical user’s
queries [3] and the query frequency between each update
time interval. Then we can calculate the total cost Ctotal and
each cost component (i.e. query processing, maintenance
and storage costs) for the following three view
materialization strategies:

• the all-virtual-views method

• the all-materialized-views method

• the selected-materialized-views method

Table 1 presents the calculation results, from which we
make the following observations: (i) The all-virtual-views
method requires the highest query processing cost but no
view maintenance and storage costs are necessary. (ii) The
all-materialized-views method can provide the best query
performance since this method requires the minimum query
processing cost. However, its total maintenance and storage
expenses are the highest. (iii) The selected-materialized-
views method requires a slightly higher query processing
cost than the all-materialized-views method, but its total
cost Ctotal is the least.

 Total

query
processing

cost

Total(Cqr)

Total
maintenance
cost

Total(CmT)

Total storage

Cost
Total(CstoreT)

Ctotal=
Total(Cqr) +
Total(CmT) +
Total(CstoreT)

All-virtual-
views

10920

0

0

10920

All-
materialized
-views

949

2829

709

4487

Selected-
materialized
- views

1200

2184

240

3624

Table 1: The query, maintenance and storage costs for
three view materialization strategies.

Based on the above cost analysis, apparently, the selected-
materialized-views method is the most effective in terms of
both query performance and maintenance cost of data
warehousing systems.

Recently, materialized view selection problem has sparked
ardent discussion in the database research community.
Harinarayan, Rajaraman and Ullman [4] presented a greedy
algorithm for the selection of materialized views so that
query evaluation costs can be optimized in the special case
of “data cubes”. However, the costs for view maintenance
and storage were not addressed in this piece of work. Yang,
Karlapalem and Li [5] proposed a heuristic algorithm which
utilizes a Multiple View Processing Plan (MVPP) to obtain
an optimal materialized view selection, such that the best

combination of good performance and low maintenance cost
can be achieved. However, this algorithm did not consider
the system storage constraints. Gupta [6] further developed
a greedy algorithm to incorporate the maintenance cost and
storage constraint in the selection of data warehouse
materialized views. “And-Or” view graphs were introduced
to represent all the possible ways to generate warehouse
views such that the best query path can be utilized to
optimize query response time.

In this paper, we discuss our experiences in designing and
selecting appropriate materialized views for data
warehousing systems. In our case study, the structural
design of this data warehousing system employs the
dimensional modeling concepts of star and snowflake
schemes as presented in [3]. The greedy algorithm
presented by Gupta [6] has been adopted and modified for
the selection of materialized views. A cost model was
developed to enable the evaluation of the total costs and
benefits involved in selecting each materialized view. We
applied the algorithm and cost model to a set of real-life
database items extracted from this company. Based on the
cost analysis, a set of materialized views are selected to
optimize the total cost (i.e. the query, maintenance and
storage costs), so that the best combination of good
performance and low maintenance cost can be achieved.
Various view materialization strategies are analyzed and
their performances are tested [7].

The remainder of the paper is organized as follows. The
cost model and adapted greedy algorithm for the selection
of materialized views are presented in section 2.
Guidelines for the design and selection of materialized
views for data warehousing systems are discussed in section
3. Section 4 concludes the paper with a brief discussion of
future work.

2. Materialized Views Selection

We now move on to address the related issue of data warehouse
design for our case study, namely, the selection of summary
views to be stored/materialized in the data warehouse. Benefits
of materializing summary views selectively have been articulated
in the literature [6, 8]. For our case study, a cost model is
established to enable the evaluation of query cost, maintenance
cost, storage cost and benefits (i.e. savings in overall query costs)
associated with materializing each summary view in the data
warehouse. An adapted greedy algorithm using the cost analysis
methodology for evaluation is then presented for selecting an
optimal set of materialized views.

2.1 Cost model

The estimated query, maintenance and storage costs in the
following descriptions will be calculated in terms of data block

size B. For simplicity, other factors such as the computational
cost and communication cost are ignored in our estimation. The
detailed explanation of the cost calculation is presented [3].

2.1.1 Query processing cost for selection,
aggregation and joining

The analysis assumes that there is no index or hash key in any of
the summary views, therefore linear search and nested loop
approach are used for the selection and join operations,
respectively.

The total query cost Total(Cqr) for processing r user’s queries
between each update time interval is:

2.1.2 Data warehouse maintenance cost

Assume that re-computation of each summary view Vi requires
selection, aggregation and joining of its ancestor view Vai with n
dimension tables. If there are j summary views in the warehouse
which are materialized, the total maintenance cost ‘Total(Cm)’
for these materialized views is then:

(fui = 1 in our case study, since we assume that all sales summary
views are updated once within a fixed time interval.)

2.1.3 Storage cost

Storage cost of summary view Vi in terms of data block B is:

 Cstore (Vi)= S(Vi)

2.1.4 The net benefit and cost effectiveness

In order to determine the set of optimal materialized summary
views, the net benefit ‘Net(Bi)’ and the storage effectiveness ‘ηi’
(i.e. the net benefit per unit of storage space occupied by a
materialized view) associated with each summary view have to
be calculated, as follows:

Storage effectiveness of each summary view Vi is calculated as
follows:

 ηi = Net(Bi) / S(Vi)

The storage effectiveness ηi, net benefit Net(Bi), storage cost
Cstore(Vi), maintenance cost Cm(Vi), query frequencies fqi and the
total cost Ctotal of summary views Vi are calculated and listed in
[3].

2.2 Adapted greedy algorithm for
materialized summary view selection

Let T be the set of all sales summary views grouped by various
dimension key attributes. Based on the greedy algorithm of [6],
we develop an adapted greedy algorithm for determining the
optimal set of materialized summary views L, a subset of T, such
that the total cost Ctotal is minimized. The algorithm is based on
the cost model presented in section 2.1.

Materialized views selection algorithm:

1. Determine the optimum query and maintenance paths for
computing all summary views in the data warehouse;

2. Calculate the Net(Bi) and ηi of each summary view in the
query paths. Let T be the number of summary views possibly
chosen as materialized views.

for i =1 to T do Calculate the Net(Bi) of each summary view

Vi:

 Storage effectiveness of summary views:

ηi = Net(Bi) / S(Vi);

3. List summary views in descending order according to the value
of their storage effectiveness such that those views with the best
storage effectiveness will be chosen first;

4. Calculate the Ctotal for each view :

 i = 1;

 Ctotal = Total(Cqall) - Net(Bi);

 for i = 2 to T do Ctotal = Ctotal - Net(Bi);

find the Min(Ctotal) as the optimal cost for materialized
view selection;

5. Select the best materialized view set L

i = 1;

 Ctotal = Total(Cqall) - Net(Bi);

 while Ctotal > Min(Ctotal)

∑
=

=
r

i
iqqiqr qCfCTotal

1
)(*)(

∑
=

=
j

i

imuim VCfCTotal
1

)(*)(

∑
=

−−←−←=
m

n

istoreiminitainitniqi VCVCVVCVVCVfBNet
1

)()()]}()([*)({)(

∑
=

−−←−←=
m

n

istoreiminitainitniqi VCVCVVCVVCVfBNet
1

)()()]}()([*)({)(

 i = i + 1;

 while S(L) < S

Select Vi from the summary view set T-
L with the highest storage
effectiveness;

 S(L) = S(L) + S(Vi);

 endwhile

 Ctotal = Ctotal - Net(Bi);

 endwhile

 return L.

The set of optimal materialized view L thus chosen is shown in
[3].

2.3 Cost analysis

The summary views to be materialized are sorted in descending
order according to the corresponding storage effectiveness ‘ηi’
listed in [3]. The top thirty-four summary views listed in this
table are the set of optimal materialized views L. The total cost
Ctotal, and its cost components versus storage size of the
materialized views are plotted in Figure 2.

Figure 2: Total costs Ctotal, total query processing cost and the
sum of maintenance and storage costs vs. storage size of the
materialized views.

We observe that the Ctotal is dominated by the Total(Cqr) before
reaching the optimum point. This optimal point occurs at a cost
of 13105.46B and is designated as the minimum total cost
Min(Ctotal). The Total(Cqr) drops drastically after materializing
the first summary view ‘CO-P-DAY’, reducing by more than
75% while utilizing only 15% of the total storage space required
by the set of optimal materialized views L. Therefore,
materializing summary view ‘CO-P-DAY’ is very cost effective
for improving the query performance of the data warehouse.

After this first view has been chosen, there is little reduction in
the Total(Cqr) when more summary views are materialized.

The sum of total maintenance and storage costs, Cm
(Vi)+Cstore(Vi), increases linearly as the number of materialized
summary views increases. However, its magnitude is relatively
small compared with the Total(Cqr) before reaching the optimum
point Min(Ctotal). After reaching this optimal point, Ctotal is
dominated by the sum Cm (Vi)+Cstore(Vi). This is because
materializing additional summary views (i.e. summary views
with negative net benefit Net(Bi)) beyond the optimal point
Min(Ctotal) cannot reduce query cost, but increases the storage
and maintenance costs. Therefore, it is not cost effective to
materialize additional views after reaching Min(Ctotal).

If all the summary views of the data warehouse are materialized,
query performance can be optimized. However, this method
requires the highest maintenance and storage cost. For a data
warehouse with limited hard disk storage space and small
maintenance window, materializing a few summary views which
have the greatest storage effectiveness ηi (i.e. ‘CO-P-DAY’ for
this case study) can effectively reduce query response time since
they yield the greatest benefit yet require the least amount of
storage space and maintenance costs. In the situation of a data
warehouse which can be taken off-line for view maintenance and
can have very large disk space available for the storage of
materialized views, storing the set of optimal materialized views
L can minimize query and maintenance cost while achieving
good query performance.

3. Guidelines for warehouse schema design
and materialized views selection

Our experiences gained from this case study can be

summarized into the following guidelines for both data

warehouse design and materialized view selection.

On Data Warehouse Design

i. Use the smallest size of integer or numerical values for

the key attributes in dimension tables to minimize

storage space and query processing time.

ii. Normalize dimension tables with large amount of

records and hierarchy levels to achieve smaller

dimension tables. Thus, the storage size and

 joining cost can be reduced substantially

iii. Denormalize dimension tables with relatively few

records and attributes to minimize the number of joins

required.

13105.46

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

Storage size in B (B=2K block size)

 Query cost 'Cq'

Maintenance and storage cost 'Cm+Cstore'

Total cost

iv. Horizontally partition the fact table, which has a lot of

records, into smaller summary views according to its

dimension key attributes so as to improve query

performance, and further enable users to select various

summary views for materialization based on the query

access frequency.

v. Store foreign keys of dimension tables in the summary

views, especially those dimension tables that are

frequently accessed to help improve the query

performance. Furthermore, data in these summary

views can also be easily used by other queries.

vi. Store frequently accessed dimension attributes (e.g.

Co_name and P_name in our case study) in the

summary views, especially for the dimension tables

which have very many records, so as to minimize the

number of joins and query processing costs.

On Materialized Views Selection

i. Materialize summary views that are frequently

accessed by users .

ii. Materialize those commonly shared views which are

used for generating other summary views.

iii. Materialize those views whose sizes have been

substantially reduced from their ancestor’s views.

When the storage factor is very small (i.e. a large amount of

disk storage is available), materializing a set of optimal

materialized views ‘L’ by the selection method as illustrated

in Section 2.3 can achieve the best combination of good

query performance and low maintenance cost.

4. Conclusions

In this case study, methods for designing an efficient data

warehousing system based on the application requirements

of an engineering company ‘R’ have been investigated. A

hybrid schema was designed for this data warehouse by

applying dimensional modeling concepts. A cost model was

developed to calculate the costs and benefits associated with

materializing each data warehouse view. The total cost

under five test conditions, composed of different query

patterns and frequencies, were evaluated for three different

view materialization strategies: 1) all-virtual-views method,

2) all-materialized-views method, and 3) selected-

materialized-views method. The total cost evaluated from

using the selected-materialized-views method was proved to

be the smallest among the three strategies in all cases.

Further, an experiment was conducted to record different

execution times of the three strategies in the computation of

a fixed number of queries and maintenance processes.

Again, the selected-materialized-views method requires the

shortest total processing time.

An adapted greedy algorithm using the cost analysis

methodology for evaluation was developed for materialized

views selection. This view selection methodology was

tested both analytically and experimentally and proved to be

very cost effective for the optimization of the data

warehouse. General guidelines for data warehouse design

and materialized views selection based on this work are

presented and a prototype of the data warehouse system was

implemented using a commercially available data

warehousing software “Oracle-Discoverer” [9, 10].

The cost evaluation methodology and views selection

algorithm developed in this case study will be applied in the

implementation of other data warehousing applications,

such as inventory, production and purchasing analyses, etc.

In addition, warehouse view self-maintenance methods [11,

12] other than the view re-calculation method adopted by

this work will also be investigated, so as to further reduce

system maintenance cost and achieve data warehouse

optimization.

5. References

[1] S. Chaudhuri and U. Dayal. “An Overview of Data

Warehousing and OLAP Technology”. SIGMOD Record,

26(1):65-74, 1997.

[2] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y.

Zhuge. "TheStanford Data Warehousing Project". IEEE

Data Engineering Bulletin, June 1995.

[3] G.Chan, Qing Li, Ling Feng. Design and selection of

materialized views in a data warehousing environment: A

case study. 1999. Http://www.cs.cityu.edu.hk/~csqli/

papers /DOLAP99.ps.gz.

[4] V. Harinarayan, A. Rajaraman, and J. Ullman.

“Implementing data cubes efficiently”. Proceedings of

ACM SIGMOD 1996 International Conference on

Management of Data, Montreal, Canada, June 1996,

pages 205--216.

[5] J.Yang, K. Karlapalem, and Q. Li. “A framework for

designing materialized views in data warehousing

environment”. Technical Report HKUST-cs96-35, 1996.

IEEE Int’l conference on Distributed Computing Systems

(ICDCS ‘97), Maryland, U.S.A., May 1997.

[6] H. Gupta. “Selection of Views to Materialize in a Data

Warehouse”. Proceedings of 23rd VLDB Conference,

Athens, Greece 1997.

[7] G.Chan. A case study for the design and selection of

materialized views in a data warehousing environment.

MSc Dissertation, The Hong Kong Polytechnic

University, Hong Kong, 1998.

[8] J.Yang, K. Karlapalem, and Q. Li. “Algorithms for

Materialized View Design in Data Warehousing

Environment”. Proceedings of 23rd VLDB Conference,

(Athens), Greece 1997, P.136-145.

[9] Oracle Discoverer 3.0 User’s Guide, Oracle.

[10] Oracle Discoverer 3.0 Administration Guide, Oracle.

[11] N. Huyn. “Efficient View Self-Maintenance”.

Proceeding of ACM Workshop, Montreal, Canada. 1996.

[12] D. Quass, A. Gupta, I.S. Mumick, J. Widom. “Making

Views Self Maintainable for Data Warehouse”. In PDIS,

1996.

