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Viruses are among the simplest biological systems and are
highly effective vehicles for the delivery of genetic material
into susceptible host cells1. Artificial viruses can be used as
model systems for providing insights into natural viruses and
can be considered a testing ground for developing artificial
life. Moreover, they are used in biomedical and biotechnological
applications, such as targeted delivery of nucleic acids for gene
therapy1,2 and as scaffolds in material science3–5. In a natural
setting, survival of viruses requires that a significant fraction
of the replicated genomes be completely protected by coat
proteins. Complete protection of the genome is ensured by a
highly cooperative supramolecular process between the coat
proteins and the nucleic acids, which is based on reversible,
weak and allosteric interactions only6–9. However, incorporating
this type of supramolecular cooperativity into artificial viruses
remains challenging10–15. Here, we report a rational design for
a self-assembling minimal viral coat protein based on simple
polypeptide domains. Our coat protein features precise control
over the cooperativity of its self-assembly with single DNA
molecules to finally form rod-shaped virus-like particles. We
confirm the validity of our design principles by showing that
the kinetics of self-assembly of our virus-like particles follows
a previous model developed for tobacco mosaic virus9. We
show that our virus-like particles protect DNA against enzymatic
degradation and transfect cells with considerable efficiency,
making them promising delivery vehicles.

Natural viruses, such as the tobacco mosaic virus (TMV), exhibit
a high degree of cooperativity when self-assembling on their nucleic
acid templates, with an initial binding event of coat proteins to the
template rendering subsequent interactions much more favour-
able16. For the case of TMV, the cooperativity arises through allo-
steric conformational switching of the coat proteins upon binding
to nucleic acids. The assembly process starts at a specific region
on the RNA template called the origin of assembly6. Taking into
account allosteric interactions and a specific origin-of-assembly
region, we recently put forward a model that accurately describes

the assembly kinetics of TMV in vitro9. Based on these mechanistic
insights and inspired by the structure of the TMV coat protein6–8,17,
we design a minimalistic artificial viral coat protein in which each of
three essential physicochemical functionalities of viral coat proteins
are encoded into simple polypeptide blocks.

For nucleic acid binding we use an oligolysine block B = K12 that
binds non-sequence-specifically through electrostatic interactions18.
Precisely tuned cooperativity is provided by a silk-like sequence
Sn = (GAGAGAGQ)n that folds and stacks in solution into stiff fila-
mentous structures19,20. The number of silk strands n dictates the
level of cooperativity of the binding of the protein and is therefore
our key variable. To prevent aggregation of the assembled artificial
virus-like particles (VLPs) we include a ∼400-amino-acid-long
hydrophilic random-coil sequence C with a high fraction of prolines
and hydrophilic (mostly uncharged) amino acids. The C block was
initially developed as a highly hydrophilic, non-gelling recombinant
gelatin21. It does not contain motifs that interact with the environ-
ment, such as any cell-binding motifs, but could, if desired, be
modified to establish interactions with the environment other
than just the steric repulsion that we rely on here.

Proteins C–Sn–B (shown schematically in Fig. 1) with n = 0, 2, 4,
10 and 14 were produced biosynthetically by expression in the
yeast Pichia pastoris. For details on production, purification
and characterization see Supplementary Tables 1 and 2 and
Supplementary Fig. 1.

We will now show that beyond a certain number of repeats n of
the central block Sn , our rationally designed artificial coat proteins
behave in many ways as do the coat proteins of natural viruses.
Indeed, binding to nucleic acids leads to the cooperative formation
of compact, rod-shaped VLPs. Each of the VLPs encapsulates a
single nucleic acid molecule. The assembly kinetics of the VLPs
follows the theoretical model for TMV assembly kinetics that
inspired the original design. Inside the VLPs, nucleic acids are pro-
tected against degradation by nucleases and HeLa cells are trans-
fected by VLPs with an efficiency that is similar to that of current
non-viral gene delivery agents. Our design goes far beyond existing
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approaches for artificial viruses that do not feature precise control
over cooperativity2,11–15,22,23.

A small number of repeats n of the central block Sn is insufficient
to induce the cooperative formation of compact VLPs. Complexes of
linear double-stranded DNA (dsDNA) with proteins C–Sn–B (n = 2, 4)
have contour lengths that are exactly equal to that of the dsDNA
template, and retain much of its original flexibility (Fig. 2b,c).
These complexes have the same ‘bottle brush’ structure that we
have previously found18 for the protein C–S0–B without the
central block (Fig. 2a): a single DNA chain surrounded by a dense
array of pendant side chains (hydrodynamic thickness in solution,
∼15 nm; Supplementary Fig. 2). Other groups have also demon-
strated non-cooperative coating of single nucleic acid molecules
by polymers featuring DNA-binding blocks in combination with
large hydrophilic shielding blocks12,22–24.

We do, however, achieve full cooperativity with C–Sn–B proteins
for n = 10 and 14. In this case, rod-shaped VLPs are formed with
contour lengths much smaller than that of the DNA template, as
shown in Fig. 2d–g (Supplementary Figs 3 and 4). Over a wide
range of template lengths, DNA in VLPs is compacted to about
one-third of its original length (Supplementary Figs 5 and 6).
This compaction factor is controlled by charge stoichiometry:
from the solution molar mass of VLPs formed with C–S10–B, as
determined using static light scattering, we estimate that 95% of
the DNA phosphate charges are neutralized by compensating

charges on binding blocks B (Supplementary Fig. 7). To further
test the idea that charge stoichiometry determines the compaction
factor we also prepared VLPs using single-stranded DNA
(ssDNA) templates. These have a linear charge density that is
smaller than that of dsDNA, by a factor of approximately 2. As
expected, the ssDNA templates form VLPs with a compaction
factor of around one-sixth (Supplementary Fig. 8).

Similar to natural viral capsid proteins, the VLP-forming proteins
also tend to form rod-like self-assemblies in the absence of a template
(Supplementary Fig. 9), but only above a well-defined critical aggre-
gation concentration (CAC). Below the CAC, protein monomers
coexist with much smaller protein micelles. For C–S10–B the CAC
as detected by static light scattering is ∼80 µM (or 3.6 mg ml−1),
whereas for C–S14–B it is ∼12 µM (or 0.56 mg ml−1). For all exper-
iments with VLPs, except cryogenic transmission electron
microscopy (cryo-TEM) experiments, protein concentrations were
much lower than the CAC.

The stiff rod-like appearance of the VLPs strongly suggests that
the silk-like mid-blocks fold and stack to form a stiff fibre.
Previously, we have shown that a signature of the folding and stack-
ing of similar silk-blocks in other proteins is a decrease in the deep
random coil minimum in the circular dichroism (CD) spectra of the
proteins at 200 nm (ref. 20). Indeed, during the formation of VLPs
with C–S10–B we find a similar decrease of the CD spectra at 200 nm,
whereas no changes in the CD spectra are observed for the C–S0–B
protein that does not contain the silk-like midblock (Supplementary
Figs 10 and 11).

Like natural viruses, the VLPs protect their nucleic acid cargo
against enzymatic attack and are capable of delivering their cargo
into cells. To assess the protection, we incubated VLPs with high
concentrations of DNAse I and analysed the degradation using
agarose-gel electrophoresis. Conditions were chosen such that no
intact bare DNA was present after 1 min of incubation. We find
that the complexes offer a protection that increases with the length
n of the central block Sn. In particular, VLPs formed by C–Sn–B pro-
teins with n = 10 and 14 resist attack for periods longer than 60 min
(Supplementary Fig. 12). This suggests a link between compaction
and protection of the nucleic acids and the cooperativity of the
VLP assembly, which we investigate in more detail below.

Transfection of cells by complexes of plasmid DNAwith C–Sn–B
proteins was tested for n = 0, 2, 4 and 10. All complexes transfect
HeLa cells and give rise to the expression of a fluorescent reporter
protein, with a similar efficiency as the established non-viral delivery
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Figure 1 | Design of the minimal viral coat protein C–Sn–B. Shown is the

case for n = 10, where B = K12 is the N-terminal dodecalysine DNA-binding

block (red), S10 is a tenfold repetition of an octapeptide S = (GAGAGAGQ)

that constitutes the self-assembly block (pink), and C is a C-terminal

407-amino-acid hydrophilic random coil block (green).

a b c d e 2.5 nm

−1.6 nm

f g

n = 0 n = 2 n = 4 n = 10 n = 14

Figure 2 | Self-assembly of VLPs: AFM and cryo-TEM images of complexes of linear dsDNA with C–Sn–B show morphologies that depend on the size n

of the self-assembly block. a–c, Coating of DNA templates. Contour lengths of complexes are close to that of the template DNA (850 nm): 831 nm (n =0)

(a), 842 nm (n = 2) (b), 817 nm (n = 4) (c). d,e, Formation of VLPs. Contour lengths of VLPs are 315 nm (n = 10) (d) and 304 nm (n = 14) (e). f,g, Cryo-

TEM images of VLPs for n = 10. DNA was incubated with C–S
n
–B protein for 24 h at a charge ratio N/P = 7. Scale bars, 300 nm.
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standards poly-ethyleneimine and Lipofectamine 2000
(Supplementary Fig. 13). Interestingly, we find that proteins
without the central block C–S0–B have the highest transfection effi-
ciency and that it is somewhat lower for VLPs based on C–S10–B.
We speculate that the reduced transfection efficiency is related to
the more difficult disassembly that is concomitant with the
increased protection due to cooperativity and the associated com-
paction of VLPs. This ties in with what is known about natural
viruses, which have to strike a balance between the degree of
protection and ease of disassembly25.

A defining test for cooperativity is ‘all-or-nothing’-type behav-
iour16,26. For the in vitro co-assembly of viral capsid proteins with
nucleic acids6,9, as well as for other proteins that cooperatively

co-assemble with nucleic acids27, this translates into the coexistence
of fully encapsulated and bare nucleic acids. Atomic force
microscopy (AFM) images of the early stages of the encapsulation
of DNA by C–S10–B show DNA that is either mostly empty or
fully encapsulated (Fig. 3a). Similarly, gel electrophoretic mobility
shift assays (Fig. 3b) and determinations of the distribution of the
bulk electrophoretic mobility (Fig. 3c) demonstrate the coexistence
of high- and low-mobility complexes. Further evidence for the coex-
istence of VLPs and non-encapsulated DNA also comes from
analytical ultracentrifugation (Supplementary Fig. 14).

Nucleation of VLPs mostly occurs at one end of the DNA, so the
ends of the DNA act as an effective origin of assembly. The TMV
model that motivated our design should therefore be quantitatively
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Figure 3 | Cooperativity of the self-assembly of VLPs. a, AFM image of incompletely assembled VLPs of C–S10–B with linear dsDNA (incubation time 1 h,

charge ratio N/P = 15). Smaller objects are protein-only assemblies. Scale bar, 500 nm. b, Electrophoretic mobility shift assay for C–S0–B (top) and C–S10–B

(bottom) interacting with linear dsDNA. Charge ratios N/P for different lanes are indicated at the top. For C–S0–B only a single type of complex is visible, but

for C–S10–B two types of complexes coexist. For both samples, incubation time is 1.5 h. c, Distributions of solution-based electrophoretic mobility (zeta

potential) for C–S10–B interacting with linear dsDNA at different N/Ps (incubation times, 30–60 min). The distributions show the coexistence of two types

of complexes at intermediate N/Ps.
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applicable to the kinetics of our VLP assembly. We quantified the
time evolution of the distribution of lengths of condensed sections
of VLPs from AFM images (Fig. 4a–c). Characteristic timescales
for VLP formation deduced from AFM match those found from
bulk biophysical approaches (circular dichroism, Supplementary
Fig. 11; static light scattering, Supplementary Fig. 15). The time
evolution of the length distributions from AFM was compared
with predictions of the aforementioned kinetic model9. The model
assumes that a first subunit, which binds to an origin of assembly
on a linear array of binding sites, pays a free energy penalty h due
to conformational switching, while binding of subsequent subunits
involves a favourable binding free energy, g. In addition, bound
protein subunits gain a free energy ɛ per bond due to favourable
protein–protein interactions. A comparison with our experimental
data leads to estimated parameter values of h − ɛ≈ 5.3kBT for the
effective penalty for nucleation and g + ε ≈ −18kBT for the effective
binding free energy in units of thermal energy kBT (Supplementary
Fig. 16). These values are very similar in magnitude to those found
for TMV9, again emphasizing the striking similarity between the
assembly of our artificial VLPs and natural viruses such as TMV.

In summary, based on a current understanding of the self-assem-
bly of natural viruses, we have rationally designed artificial viral coat
proteins by combining multiple bio-inspired functional blocks of
low sequence complexity. These protein-based block-copolymers28

cooperatively form rod-shaped VLPs, which protect the encapsu-
lated DNA and show significant transfection activity. The capsids
that our proteins make are scaffold materials that may act as
monodisperse templates in material science5,24,29,30 and could be
optimized for the delivery of nucleic acids2. In analogy with
natural viruses, the cooperative self-assembly mechanism of our
VLPs in principle allows for sequence-directed control of nuclea-
tion. For example, some degree of sequence specificity could be
incorporated into binding block B, which would allow for a
rudimentary form of phenotype–genotype linkage.

Methods
Production of proteins. Genes coding for the proteins and recombinant strains of
Pichia pastoris were prepared using standard methods. Proteins were secreted into the
medium during fermentation and purified from the filtered cell-free medium by

fractional precipitation. Dialysed and freeze-dried proteins were stored in sealed tubes.
Purity and integrity were corroborated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry.

DNA–protein complex formation. Complexes were prepared by mixing stock
solutions of linear dsDNA 2,500 bp (NoLimits Thermo Scientific) and a stock
solution of protein in buffer (10 mM phosphate, pH 7.4, containing dithiothreitol
(DTT), 5 to 0.1 mM) at the desired protein-to-DNA charge ratio N/P (molar ratio
between positively charged NH2 groups (N) from binding block ‘B’ to negatively
charged PO3 groups of the DNA template (P)). Samples were mixed by vortexing for
a few seconds or pipetting a few times, and incubated at room temperature.
Sonication was never used. Fresh protein stocks were prepared immediately
before every experiment by dissolving a weighed portion of freeze-dried
protein in Milli-Q water followed by vortexing for 1–3 min.

AFM. Typically, 3–5 µl of sample ([DNA] = 1 µg ml−1 in 10 mM phosphate buffer,
pH 7.4 with 0.1 mM DTT, except for C–Sn–B with n = 0, for which DTT was
omitted, protein/DNA charge ratios N/P as indicated) were deposited onto a clean
silicon surface. After 2–3 min the surface was rinsed with 1 ml of Milli-Q water to
remove salts and non-absorbed particles, followed by soaking up of excess water
using a tissue and slow drying under a N2 stream. Samples were analysed using a
Digital Instruments NanoScope V equipped with a silicon nitride probe (Bruker)
with a spring constant of 0.4–0.35 N m−1 in the ScanAsyst imaging mode. Images
were recorded between 0.488 and 0.977 Hz and at 384–1,024 samples/line. Image
processing and height and diameter measurements were performed with NanoScope
Analysis 1.20 software. A first-order flattening was used for all images. Contour
length measurements were performed using ImageJ software.

Cryo-TEM. Samples ([DNA] = 30 µg ml−1) were prepared using a vitrification robot
(FEI Vitrobot Mark III) using grids R2/2 (Quantifoil Micro Tools), previously
surface-plasma-treated (Cressington 208 carbon coater). Cryo-TEM
characterizations were performed on a CryoTitan (FEI) equipped with a field-
emission gun operating at 300 kV and a post-column Gatan energy filter. Images
were recorded using a 2,000 × 2,000 Gatan charge-coupled device (CCD) camera.
Final images were prepared using ImageJ software.

Electrophoretic mobility shift assay. DNA–protein samples ([DNA] = 15 ng µl−1)
incubated for 1.5 h were electrophoresed in a 1% agarose gel (95 min/60 V) using
1 × TAE buffer (pH 8). Bands were visualized with ethidium bromide.

Solution-based electrophoretic mobility. Zeta potential measurements of DNA +
C–S10–B protein samples ([DNA] = 5 ng µl−1, 10 mM phosphate, pH 7.4, 5 mM
DTT) were performed using a Zetasizer NanoZS (Malvern Instruments) with a
4 mW He–Ne ion laser at a wavelength of 633 nm. The angle of detection was 17°.
Samples were incubated for 30, 30, 35 and 59 min for N/P = 0.1, 1, 2.5 and 7,
respectively, and measured over 17 min (ten runs each measurement) using
disposable folded capillary cells with stoppers.

Further details of all methods are provided in the Supplementary Information.
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Figure 4 | Formation process of VLPs. Top: representative AFM images of VLPs of linear dsDNA with C–S10–B protein for different incubation times

(indicated in the figure; charge ratio N/P = 3). Scale bars, 200 nm. Bottom: size distributions of condensed sections as determined from AFM images (bars)

and fit to kinetic model of TMV self-assembly9 (symbols connected by lines).
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