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Abstract. CubeSats are small satellites that can perform space missions with the advantage of low cost and 

short development time. Earth observation is a well-known satellite use case that has found its place in the 

CubeSat community. To improve the quality and the number of images that can be received from the 
satellite, image processing techniques can be performed. Satellite images can be disturbed, and the median 

filter is a pre-processing technique usually used to remove impulse noise. The aim is to develop an 

architecture for CubeSat onboard image processing, starting with the design of a median filter. This paper 

presents the design and the simulation process of a 3x3 median filter based on the Spartan 6 FPGA 
architecture using software components. Simulation results are generated using a test bench algorithm and 

a visual comparison of both the input and output images is performed. 
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1 Introduction 
CubeSats are small satellites that regroup all major 

satellite parts while using COTS components. They 

have the advantage of being able to perform space 

applications in low earth orbit at a low cost and in a short 

development time. The CubeSat standard was created by 

Professor Jordi Puig-Suari at Cal Poly and Professor 

Bob Twiggs at Stanford. The standard specifies that a 1- 

unit (1U) CubeSat has a size of 10x10x10 cm³ and a 

maximum weight of 1.33 kg [1]. The purpose of the 

standard is to provide design specifications for CubeSats 

designers, allowing launch vehicle manufacturers to use 

a common deployment system for all CubeSats. 

A 1U CubeSat could either serve as a standalone 

satellite or could be combined with other units to build 

a larger spacecraft. For instance, a 3U CubeSat will have 

a form factor similar to three combined 1U CubeSats. 

The choice of the satellite dimensions depends on the 

mission that is conducted and its power budget. 

Earth observation is one of the main satellite use 

cases. This can be supported by the fact that hundreds of 

earth observation satellites have been launched and 

provide useful measurements for all the disciplines of 

the earth sciences: hydrology, climatology, 

meteorology, aeronomy, atmospheric chemistry, 

oceanography, geology, biology, and so on [1]. 

Although CubeSats are developed for educational 

purposes or capability demonstrations, earth observation 

research can be conducted using a small spacecraft. 

The amount of data that can be stored in a CubeSat 

is limited by its hardware specifications. Given that the 

spacecraft communicates with the ground station only a 

few times per day, the amount of data that can be 

transmitted to the user has to be optimized. Onboard 

image processing is a potential solution to achieve that. 

The aim is to perform onboard image processing and 

store only the relevant results instead of the original 

images, leaving space for more data to be stored. 

When a satellite image is captured using a defective 

sensor or transmitted through a faulty channel, the result 

can be corrupted by salt and pepper noise. Applying 

processing algorithms to noisy images would give 

nonreliable results. Thus, image pre-processing is an 

important step, and the median filter is well-known for 

its good performance on random noise, such as salt and 

pepper. 

 
2 Related theory and fundamentals 

 
2.1 CubeSat architecture 

To conduct a satellite mission, two segments are needed: 

the space segment, which is the satellite that will be in 

orbit for data acquisition; and the ground segment or the 

facilities accompanying the satellite during the mission. 

The satellite architecture is a combination of two 

main parts: the structure, which contains the 

technologies that ensure the satellite’s functions; and the 

payload, which regroups the tools needed for the 

experimentation. 

The satellite structure is a combination of several 

subsystems, as shown in Fig.1. 
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�  OBC (On-Board Computer) is the main part of 

the satellite. It provides the hardware and software 

platform needed to control and handle the data [2]. 

� COM (Communication System) is in charge of 

the communication with the ground station so that 

data can be sent to earth and orders can be 

received. 

� EPS (Electrical Power Supply) conditions and 

distributes the power to all satellite subsystems. It 

is designed to generate power from the solar cells 

and store it in the batteries in order to deliver 

power during the eclipse and demand peaks. 

� ADCS (Attitude Determination and Control 
System) has a support role through the CubeSat 

mission. It has to maintain all other modules in an 

operational situation by controlling the satellite 

attitude. 
 

 

Fig. 1. Example of a CubeSat architecture. 

The choice of the payload hardware and software 

depends on the conducted mission. For instance, in earth 

observation and onboard image processing, the payload 

hardware can be a single or multiple cameras combined 

with a processing unit. The processing unit can either be 

the satellite OBC or a payload dedicated controller that 

is in charge of image capture and processing. 

 
2.2 Median filter 

The median filter is a nonlinear image processing 

technique used to remove impulsive noise from images. 

As illustrated in Fig.2, this spatial filtering operation 

applies a two-dimensional (2D) window mask to an 

image region, replacing the center pixel value with the 

median value of the pixels contained inside the window. 

After that, the window moves to the next image section, 

and the procedure continues until the entire image is 

processed. As a result, the ideal filtered image would 

have no impulsive noise and perfectly sharp edges [3]. 

 
2.3 Salt and pepper noise 

Salt and pepper noise indicates an image with pixels 

resembling salt and pepper. These noisy pixels have 

values that are either near the maximum or minimum 

values that a pixel can take. The noise can be reduced by 

removing the maximum and minimum values and 

replacing them with a determined median value using a 

sorting approach [4]. 
 

 

Fig. 2. Median filter process [3]. 

 
3 Materiel and methods 
Based on benchmarks comparing several processing 

units in image processing applications, it is usually 

reported that FPGA gives good results in terms of 

energy and performance [5-7]. Also, given the fact that 

many image processing applications are conducted 

using FPGAs [8-11], it was the chosen technology for 

this system design. 

 
3.1 System architecture 

The designed architecture for this system is presented in 

Fig.3. It regroups the blocks that have been developed 

and those that are yet to be developed. 

 

Fig. 3. System architecture. 

The idea of the system is to have the image that 

requires processing stored in an external memory. The 

FPGA should retrieve the image pixels from the external 

memory, organize the pixels to generate the 3x3 

window, apply the median filter algorithm, and then 

store the result in the external memory. This paper 

presents the work done for the FPGA design part. 
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To simulate the median filter results, a simulation- 

adapted architecture was designed as shown in Fig.4. 
 

 

Fig. 4. Simulation architecture. 

In this alternative architecture, the FPGA's internal 

memory is used to store the noisy image that needs 

processing. The image stored in the FPGA should be in 

a .coe file format, which regroups pixels values 

organized as a 1D vector, and in this case, the 

conversion was done using MATLAB. The "3x3 

Window generation" block aims to read the image pixels 

from the internal memory and extract the window 

pixels. The "Median filter" block processes the 3x3 

window and outputs the median value. The "Store result 

in a text file" block stores the median filter result in a 

text file, then the text file is converted to a 2D image and 

displayed using MATLAB. 

 
3.2 Window generation 

As shown in Fig.5, the window generator is made of a 

chain of nine flip-flops and two FIFO memories. The 

image pixels values are streamed through the chain, the 

nine pixels of the 3x3 window are stored in the flip-flop, 

and the other pixels of the processed row are stored in 

the FIFO memory. This block is designed for 200x200 

images, so the FIFO memories are configured to store 

197 pixels each. 

 

Fig. 5. Window generator architecture. 

A "synchronization" block is used to synchronize the 

memory reading and the data streaming orders in the 

window generator. The block outputs the addresses of 

the pixels to the internal memory and enables read and 

write commands for the FIFO memories, as shown in 

Fig.6. 

 

 

Fig. 6. Window generator synchronization 

 
3.3 Median filter design 

The designed filter works by comparing every two 

adjacent pixels using logic blocks at each processing 

step, as shown in Fig.7, so that the minimum value is 

buffered to the first position and the maximum value is 

buffered to the last position. 
 

 

Fig. 7. Logic Block structure 

Fig.8 presents the previous concept but applied to the 

nine pixels of the window. Four comparisons are 

performed at each sorting stage. In the first stage, eight 

pixels are being processed, and the last one is buffered 

to the second stage. In the second stage, the comparison 

is shifted so that the last pixel will be processed and the 

first pixel will be buffered to the third stage. This 

process is repeated until the median value reaches the 

middle pixel. 
 

Fig. 8. Median filter design method 
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3.4 Hardware 

An FPGA consists of a matrix of programmable logic 

cells with a grid of interconnecting lines and switches 

between them. I/O cells exist around the perimeter, 

providing an interface between the interconnect lines 

and the chip's external pins. Programming (Configuring) 

an FPGA consists of specifying the logic function of 

each cell and the switches in the interconnecting lines 

[12]. 

The design and simulation were done in the ISE 

Design Suite 14.7 software using a Spartan 6 FPGA 

architecture. 

 
3.5 Software 

In order to implement the design and do the simulation, 

two software were used: 

�  MATLAB: to convert the image into a 

standardized .coe file format so that the image can 

be stored in the FPGA board. After the processing, 

the software is used again to convert the text file 

that contains the median filtered image into a 2D 

image file. 

� ISE Design Suite 14.7: the IDE that is used in the 

system design and simulations for the Xilinx 

FPGA. 

 
4 Result and discussion 
This part presents the results obtained during the design 

and the simulation. 

The hardware design was done using the VHDL 

programming language, the simulation was done using 

a test bench algorithm, and the image output was 

displayed using MATLAB. 

 
4.1 Architecture result 

Fig.9 presents the synthesized architecture that regroups 

all the developed FPGA blocks for the median filter. The 

design is based on two main blocks: The first one is 

"Window3x3 Generation" as explained in section 3.2 

and its RTL is shown in Fig.10, and the second one is 

"MedianFilter" as explained in section 3.3 and shown in 

Fig.11. 

 

Fig. 9. RTL Schematic for the complete architecture 

 

 
 

Fig. 10. RTL Schematic for the window generator 

 

Fig. 11. RTL Schematic for the median filter 

 
4.2 Synthesis report 

A report was generated after the design was successfully 

synthesized. Table.1 presents a summary of the FPGA 

resources used, and Fig.12 gives more details about the 

device utilization. 

Table 1. Summary report after synthesis 
 

 

Fig. 12. Results from the design synthesis report 
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4.3 Simulation Results 

The Xilinx Isim test bench tool was used to simulate the 

design. 

In the first test, the input pixels and the output median 

value were displayed to check if the processing results 

were good, as shown in Fig.13. The simulation 

algorithm was designed using a 100Mhz clock, like the 

one in the Spartan 6 FPGA, and the result showed that 

the processing time needed for one 200x200 image is 

around 0.4ms. 
 

 

Fig. 13. Median filter test bench result 
 

Fig. 14. Original images 
 

Fig. 15. Noisy images 

 

 

Fig. 16. Processed image 

To test the efficiency of the algorithm, some CubeSat 

images [13] were used. The images were converted to 

grayscale (Fig.14), salt and pepper noise was applied to 

them (Fig.15), and they were input separately into the 

architecture. The test bench algorithm was designed to 

store the median filter output value in a text file. Once 

the text file was converted into a 2D vector, the 

processed images were displayed as shown in Fig.16. 

After analyzing the test bench results (Fig.13) and 

comparing the input images (Fig.14) with the output 

images (Fig.16), it is noticed that the simulations gave 

satisfying results, so the system works well and the 

hardware implementation can be carried out. 

 
5 Conclusion 
This paper gives an overview of CubeSats and the 

proposed onboard image processing architecture. The 

median filter reliability was tested using images taken 

by a CubeSat [13], and the simulation results were 

satisfying. 

In the future, a hardware implementation of the 

designed algorithm will be done using a Spartan 6 

FPGA. The internal memory will be replaced by 

external ones so that larger images can be processed. 

The architecture will be optimized for better energy 

consumption results so that the design can be easily 

embedded. Once the work is complete, some advanced 

image segmentation algorithms will be developed. 

 
This work is supported by Royal Center for Space Studies and 
Research (CRERS), National Center for Scientific and 

Technical Research (CNRST), Mohammed V University in 

Rabat (UM5) and University Center for Research in Space 

Technologies (CURTS). 
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