

Design and Simulation of a Median Filter for a CubeSat Image
Processing Application Using an FPGA Architecture

Mohammed Alae Chanoui

1,2*, Issam Bouganssa
1
, Mohammed Sbihi

1,2
, Zine Elabidine Alaoui Ismaili

2,3
, and Adil Salbi

1

1LASTIMI Laboratory, EST Salé, Mohammed V University in Rabat, Morocco
2CURTS, EMI, Mohammed V University in Rabat, Morocco
3ICES Team, ENSIAS, Mohammed V University in Rabat, Morocco

Abstract. CubeSats are small satellites that can perform space missions with the advantage of low cost and

short development time. Earth observation is a well-known satellite use case that has found its place in the

CubeSat community. To improve the quality and the number of images that can be received from the
satellite, image processing techniques can be performed. Satellite images can be disturbed, and the median

filter is a pre-processing technique usually used to remove impulse noise. The aim is to develop an

architecture for CubeSat onboard image processing, starting with the design of a median filter. This paper

presents the design and the simulation process of a 3x3 median filter based on the Spartan 6 FPGA
architecture using software components. Simulation results are generated using a test bench algorithm and

a visual comparison of both the input and output images is performed.

Keywords: CubeSat, image processing, median filter, FPGA.

1 Introduction
CubeSats are small satellites that regroup all major

satellite parts while using COTS components. They

have the advantage of being able to perform space

applications in low earth orbit at a low cost and in a short

development time. The CubeSat standard was created by

Professor Jordi Puig-Suari at Cal Poly and Professor

Bob Twiggs at Stanford. The standard specifies that a 1-

unit (1U) CubeSat has a size of 10x10x10 cm³ and a

maximum weight of 1.33 kg [1]. The purpose of the

standard is to provide design specifications for CubeSats

designers, allowing launch vehicle manufacturers to use

a common deployment system for all CubeSats.

A 1U CubeSat could either serve as a standalone

satellite or could be combined with other units to build

a larger spacecraft. For instance, a 3U CubeSat will have

a form factor similar to three combined 1U CubeSats.

The choice of the satellite dimensions depends on the

mission that is conducted and its power budget.

Earth observation is one of the main satellite use

cases. This can be supported by the fact that hundreds of

earth observation satellites have been launched and

provide useful measurements for all the disciplines of

the earth sciences: hydrology, climatology,

meteorology, aeronomy, atmospheric chemistry,

oceanography, geology, biology, and so on [1].

Although CubeSats are developed for educational

purposes or capability demonstrations, earth observation

research can be conducted using a small spacecraft.

The amount of data that can be stored in a CubeSat

is limited by its hardware specifications. Given that the

spacecraft communicates with the ground station only a

few times per day, the amount of data that can be

transmitted to the user has to be optimized. Onboard

image processing is a potential solution to achieve that.

The aim is to perform onboard image processing and

store only the relevant results instead of the original

images, leaving space for more data to be stored.

When a satellite image is captured using a defective

sensor or transmitted through a faulty channel, the result

can be corrupted by salt and pepper noise. Applying

processing algorithms to noisy images would give

nonreliable results. Thus, image pre-processing is an

important step, and the median filter is well-known for

its good performance on random noise, such as salt and

pepper.

2 Related theory and fundamentals

2.1 CubeSat architecture

To conduct a satellite mission, two segments are needed:

the space segment, which is the satellite that will be in

orbit for data acquisition; and the ground segment or the

facilities accompanying the satellite during the mission.

The satellite architecture is a combination of two

main parts: the structure, which contains the

technologies that ensure the satellite’s functions; and the

payload, which regroups the tools needed for the

experimentation.

The satellite structure is a combination of several

subsystems, as shown in Fig.1.

* Corresponding author: chanouialae@gmail.com

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

� OBC (On-Board Computer) is the main part of

the satellite. It provides the hardware and software

platform needed to control and handle the data [2].

� COM (Communication System) is in charge of

the communication with the ground station so that

data can be sent to earth and orders can be

received.

� EPS (Electrical Power Supply) conditions and

distributes the power to all satellite subsystems. It

is designed to generate power from the solar cells

and store it in the batteries in order to deliver

power during the eclipse and demand peaks.

� ADCS (Attitude Determination and Control
System) has a support role through the CubeSat

mission. It has to maintain all other modules in an

operational situation by controlling the satellite

attitude.

Fig. 1. Example of a CubeSat architecture.

The choice of the payload hardware and software

depends on the conducted mission. For instance, in earth

observation and onboard image processing, the payload

hardware can be a single or multiple cameras combined

with a processing unit. The processing unit can either be

the satellite OBC or a payload dedicated controller that

is in charge of image capture and processing.

2.2 Median filter

The median filter is a nonlinear image processing

technique used to remove impulsive noise from images.

As illustrated in Fig.2, this spatial filtering operation

applies a two-dimensional (2D) window mask to an

image region, replacing the center pixel value with the

median value of the pixels contained inside the window.

After that, the window moves to the next image section,

and the procedure continues until the entire image is

processed. As a result, the ideal filtered image would

have no impulsive noise and perfectly sharp edges [3].

2.3 Salt and pepper noise

Salt and pepper noise indicates an image with pixels

resembling salt and pepper. These noisy pixels have

values that are either near the maximum or minimum

values that a pixel can take. The noise can be reduced by

removing the maximum and minimum values and

replacing them with a determined median value using a

sorting approach [4].

Fig. 2. Median filter process [3].

3 Materiel and methods
Based on benchmarks comparing several processing

units in image processing applications, it is usually

reported that FPGA gives good results in terms of

energy and performance [5-7]. Also, given the fact that

many image processing applications are conducted

using FPGAs [8-11], it was the chosen technology for

this system design.

3.1 System architecture

The designed architecture for this system is presented in

Fig.3. It regroups the blocks that have been developed

and those that are yet to be developed.

Fig. 3. System architecture.

The idea of the system is to have the image that

requires processing stored in an external memory. The

FPGA should retrieve the image pixels from the external

memory, organize the pixels to generate the 3x3

window, apply the median filter algorithm, and then

store the result in the external memory. This paper

presents the work done for the FPGA design part.

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

2

To simulate the median filter results, a simulation-

adapted architecture was designed as shown in Fig.4.

Fig. 4. Simulation architecture.

In this alternative architecture, the FPGA's internal

memory is used to store the noisy image that needs

processing. The image stored in the FPGA should be in

a .coe file format, which regroups pixels values

organized as a 1D vector, and in this case, the

conversion was done using MATLAB. The "3x3

Window generation" block aims to read the image pixels

from the internal memory and extract the window

pixels. The "Median filter" block processes the 3x3

window and outputs the median value. The "Store result

in a text file" block stores the median filter result in a

text file, then the text file is converted to a 2D image and

displayed using MATLAB.

3.2 Window generation

As shown in Fig.5, the window generator is made of a

chain of nine flip-flops and two FIFO memories. The

image pixels values are streamed through the chain, the

nine pixels of the 3x3 window are stored in the flip-flop,

and the other pixels of the processed row are stored in

the FIFO memory. This block is designed for 200x200

images, so the FIFO memories are configured to store

197 pixels each.

Fig. 5. Window generator architecture.

A "synchronization" block is used to synchronize the

memory reading and the data streaming orders in the

window generator. The block outputs the addresses of

the pixels to the internal memory and enables read and

write commands for the FIFO memories, as shown in

Fig.6.

Fig. 6. Window generator synchronization

3.3 Median filter design

The designed filter works by comparing every two

adjacent pixels using logic blocks at each processing

step, as shown in Fig.7, so that the minimum value is

buffered to the first position and the maximum value is

buffered to the last position.

Fig. 7. Logic Block structure

Fig.8 presents the previous concept but applied to the

nine pixels of the window. Four comparisons are

performed at each sorting stage. In the first stage, eight

pixels are being processed, and the last one is buffered

to the second stage. In the second stage, the comparison

is shifted so that the last pixel will be processed and the

first pixel will be buffered to the third stage. This

process is repeated until the median value reaches the

middle pixel.

Fig. 8. Median filter design method

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

3

3.4 Hardware

An FPGA consists of a matrix of programmable logic

cells with a grid of interconnecting lines and switches

between them. I/O cells exist around the perimeter,

providing an interface between the interconnect lines

and the chip's external pins. Programming (Configuring)

an FPGA consists of specifying the logic function of

each cell and the switches in the interconnecting lines

[12].

The design and simulation were done in the ISE

Design Suite 14.7 software using a Spartan 6 FPGA

architecture.

3.5 Software

In order to implement the design and do the simulation,

two software were used:

� MATLAB: to convert the image into a

standardized .coe file format so that the image can

be stored in the FPGA board. After the processing,

the software is used again to convert the text file

that contains the median filtered image into a 2D

image file.

� ISE Design Suite 14.7: the IDE that is used in the

system design and simulations for the Xilinx

FPGA.

4 Result and discussion
This part presents the results obtained during the design

and the simulation.

The hardware design was done using the VHDL

programming language, the simulation was done using

a test bench algorithm, and the image output was

displayed using MATLAB.

4.1 Architecture result

Fig.9 presents the synthesized architecture that regroups

all the developed FPGA blocks for the median filter. The

design is based on two main blocks: The first one is

"Window3x3 Generation" as explained in section 3.2

and its RTL is shown in Fig.10, and the second one is

"MedianFilter" as explained in section 3.3 and shown in

Fig.11.

Fig. 9. RTL Schematic for the complete architecture

Fig. 10. RTL Schematic for the window generator

Fig. 11. RTL Schematic for the median filter

4.2 Synthesis report

A report was generated after the design was successfully

synthesized. Table.1 presents a summary of the FPGA

resources used, and Fig.12 gives more details about the

device utilization.

Table 1. Summary report after synthesis

Fig. 12. Results from the design synthesis report

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

4

4.3 Simulation Results

The Xilinx Isim test bench tool was used to simulate the

design.

In the first test, the input pixels and the output median

value were displayed to check if the processing results

were good, as shown in Fig.13. The simulation

algorithm was designed using a 100Mhz clock, like the

one in the Spartan 6 FPGA, and the result showed that

the processing time needed for one 200x200 image is

around 0.4ms.

Fig. 13. Median filter test bench result

Fig. 14. Original images

Fig. 15. Noisy images

Fig. 16. Processed image

To test the efficiency of the algorithm, some CubeSat

images [13] were used. The images were converted to

grayscale (Fig.14), salt and pepper noise was applied to

them (Fig.15), and they were input separately into the

architecture. The test bench algorithm was designed to

store the median filter output value in a text file. Once

the text file was converted into a 2D vector, the

processed images were displayed as shown in Fig.16.

After analyzing the test bench results (Fig.13) and

comparing the input images (Fig.14) with the output

images (Fig.16), it is noticed that the simulations gave

satisfying results, so the system works well and the

hardware implementation can be carried out.

5 Conclusion
This paper gives an overview of CubeSats and the

proposed onboard image processing architecture. The

median filter reliability was tested using images taken

by a CubeSat [13], and the simulation results were

satisfying.

In the future, a hardware implementation of the

designed algorithm will be done using a Spartan 6

FPGA. The internal memory will be replaced by

external ones so that larger images can be processed.

The architecture will be optimized for better energy

consumption results so that the design can be easily

embedded. Once the work is complete, some advanced

image segmentation algorithms will be developed.

This work is supported by Royal Center for Space Studies and
Research (CRERS), National Center for Scientific and

Technical Research (CNRST), Mohammed V University in

Rabat (UM5) and University Center for Research in Space

Technologies (CURTS).

References
1. D. Selva and D. Krejci, Acta Astronaut. 74, 50

(2012)

2. A. Hanafi, M. Karim, I. Latachi, T. Rachidi, S.

Dahbi, and S. Zouggar, FPGA-based secondary on-

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

5

board computer system for low-earth-orbit nano-
satellite, in 2017 International Conference on

Advanced Technologies for Signal and Image

Processing, ATSIP, (2017)

3. L. A. Aranda, P. Reviriego, and J. A. Maestro, IEEE

Trans. Nucl. Sci. 64, 2219 (2017)

4. V. P. Korakoppa, Mohana, and H. V. R. Aradhya,

Implementation of highly efficient sorting algorithm
for median filtering using FPGA Spartan 6, in 2017

International Conference on Innovative

Mechanisms for Industry Applications, ICIMIA,

(2017)

5. C. Brugger, L. Dal’Aqua, J. A. Varela, C. De

Schryver, M. Sadri, N. Wehn, M. Klein, and M.

Siegrist, A quantitative cross-architecture study of
morphological image processing on CPUs, GPUs,
and FPGAs, in 2015 IEEE Symposium on

Computer Applications & Industrial Electronics,

ISCAIE, (2015)

6. P. Cooke, J. Fowers, G. Brown, and G. Stitt, ACM

Trans. Reconfigurable Technol. Syst. 8, (2015)

7. M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J.

Zambreno, and P. H. Jones, Comparing Energy
Efficiency of CPU, GPU and FPGA
Implementations for Vision Kernels, in 2019 IEEE

international conference on embedded software and

systems, ICESS, (2019)

8. S. M. Raje, A. Goel, S. Sharma, K. Aggarwal, D.

Mantri, and T. Kumar, Development of on board
computer for a nanosatellite, in Proceedings of the

International Astronautical Congress, IAC, (2017)

9. M. I. Alali, K. M. Mhaidat, and I. A. Aljarrah,

Implementing image processing algorithms in
FPGA hardware, in 2013 IEEE Jordan Conference

on Applied Electrical Engineering and Computing

Technologies, AEECT, (2013)

10. I. Bouganssa, M. Sbihi, and M. Zaim, Laplacian
edge detection algorithm for road signal images
and FPGA implementation, Int. J. Mach. Learn.

Comput, (2019)

11. I. Bouganssa, M. Sbihi, and M. Zaim,

Implementation of Edge Detection Digital Image
Algorithm on a FPGA, MATEC Web Conf. 75,

(2016)

12. O. Al-khaleel, A. Idries, K. Mhaidat, and I.

Aljarrah, FPGA-based features extraction unit for
arabic characters, in Proceedings of the

International Conference on Information and

Communication Systems, ICICS, (2013)

13. P. Mhangara, W. Mapurisa, and N. Mudau,

Aerospace 7, (2020)

ITM Web of Conferences 46, 0 (2022)
ICEAS'22

4002 https://doi.org/10.1051/itmconf/20224604002

6

