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Abstract— Optical plasmonic nanoantennas have proven useful in
nanoplasmonic applications, paving the way for more efficient
wireless optical communications. In this work, we propose a
parametric study of a plasmonic horn nanoantenna in flat H
sectorial format and beveled horn, both designed to radiate in the
three wavelengths of optical communications: [ 850 nm (352.9 THz),
1310 nm (229 THz) and 1550 nm (193.5 THz)]. The modeling of the
chosen nanoantennas was performed in COMSOL Multiphysics
version 6.0. The simulation results prove that the geometries
presented satisfactory results of reflection coefficient and gain. In
addition, to complement the parametric study, the conductive metal
(in gold, silver and aluminum) was varied for each nanoantenna.
Through the study, it was noticed that the nanostructures
simulated in silver and aluminum are potential for applications in
optical nanolinks and energy harvesting.

Index Terms—H-plane Sectorial Horn Nanoantenna; Parametric Study;
Computational Simulation.

I. INTRODUCTION

With the development of research and nanostructured materials, nanophotonics has become an

enormous technological potential. The successful applications of nanostructured materials is due to

the fact that their optical properties are related to their interaction with electromagnetic radiation

(photons). And so, the study of the phenomena of absorption, emission, reflection and refraction

allows us to know how each material behaves [1]. Therefore, nanophotonics is a field of science that

aims to study the optical properties of materials at the nanoscale [2].

In the last two decades, nanoplasmonics has become a very significant research target in

technological applications [3]. As an emerging technology, nanoplasmonics has profoundly impacted

the performance of several promising research projects, bringing new and exciting challenges in

modern science [4]. Among the several recent applications of nanoplasmonics, the following stand out:

plasmonic biosensors [5]-[10]; plasmonic photocalysis [11]-[13]; plasmonic devices such as

photodetectors [14]-[16]; and lasers [17] and [18].

Although great achievements have been made through the control of light in various scopes,

manipulation of light direction at the sub-wavelength scale with conventional optical devices is still a

challenge [19]. The main difficulty encountered when controlling light at the nanoscale is the

diffraction limit of light, where the smallest resolvable characteristic is at the wavelength scale [20].
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In this sense, the design of plasmonic nanoantennas stands out for being able, through the optical

properties of light manipulation, to overcome the challenges between the microscopic and

macroscopic scales due to the resonant properties [21] and [22].

The first plasmonic nanostructures were used as optical nanostructures, and since then they have

been widely used to redirect light scattering and emission, as they have excellent directional light

scattering properties [20]. Among the numerous applications of nanoantennas in the literature, their

integration in optical chip applications [23] and [24] stands out; wireless optical nanolink [25] and

[26]; biosensors [27] and [28]; nanocircuits [29], [30]; anti-reflective coating [31], solar energy

harvesting [32], at the same time spectral and spatial separation of light [33] and [34]; and hydrogen

detection [35].

Since 2021, several scientific articles have been invading their applications of plasmonic

nanoantennas. For example, in the work of [36], the authors argue that plasmonic nanoantennas can

be designed to generate directional hypersonic surface acoustic waves. This can be valuable for

integrated optical circuits, where the addition of an acoustic element can decrease the wavelength at

the same operating frequency as the incident electromagnetic wave. The authors of [37], on the other

hand, developed a project of an optical energy collector to power wireless IoT sensors.

But among the many innovations, the work of [38] draws attention due to the proposal of an optical

nano-antenna in the shape of a maple leaf inspired by nature, which is presented and fed with a hybrid

plasmonic waveguide. The design proposed by the researchers provides a high gain of 11.8 dB at THz

frequencies and a bandwidth of 400 GHz. In addition, the proposal can be used for optical energy

capture applications with satisfactory performance. The nanoantenna powered by a circular hybrid

plasmonic waveguide of [39] proved to be useful for on-chip wireless optical communications and its

performance was investigated numerically and theoretically. Another interesting recent proposal is the

rectenna designed in [40], the rectenna consists of a conical gold antenna coupled to an insulating

metallic substrate that captures electromagnetic radiation. The rectenna proposed by the authors has

also been shown to operate at 384 THz (780 nm), paving the way for efficient rectennas.

It is noted that recent studies of plasmonic nanoantennas for nanophotonic applications are merely

individual studies, in other words, they do not consist of a defined parametric study, but rather focus

on specific models. Therefore, the research differential consists in filling the gaps of a more complete

and comparative study, analyzing the influence of the geometry and materials chosen for the design of

plasmonic horn nanoantennas.

In this way, the work was organized through a parametric study involving two geometries (H-plane

sectorial horn and beveled horn), in addition, the variation of three conductive metals (gold [Au],

silver [Ag] and aluminum [Al]) was analyzed, in the three distinct frequencies of the optical spectrum

(193.5 THz, 229 THz and 352.9 THz). Although most researchers use gold or silver to manufacture

nanoantennas, the results obtained in this article show that aluminum can have even better results than

other types of materials, mainly due to its reflection coefficient as observed in [41]. Thus, the
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simulation environment chosen was a commercial computational platform and the results were

obtained and compared in terms of reflection coefficient, gain and directivity. Therefore, in Section II

the design of the plasmonic horn nanoantenna is presented. Section III describes the scenario and

parameters used in the simulations. In Section IV, the results are shown and discussed and, finally, in

Section V, the conclusions of this work are presented.

II. NANOANTENNAS DESIGN

Numerical results were obtained using the Finite Element Method (FEM) within the commercial

software COMSOL Multiphysics 6.0. The broadband optical nanoantennas proposed for this work are

based on the hybrid plasmonic structure [42]. Fig. 1 shows the basic geometry of the plasmonic

waveguide and the basic shape of the H plane sector horn and bevel horn nanoantenna used during the

simulations.

Fig. 1. Dimensions of the nanoantennas used in this work, H-plane sectoral horn and beveled horn, considering the views: (a)
and (c) 3D; (b) and (d) superior of the nanoantennas and (e) transversal.

The nanoantennas were chosen based on the literature [43], with the purpose of contemplating the

format, the implementation of a material with a low refractive index (such as SiO2), a metallic layer

that was varied between gold, silver and aluminum and still a layer material with a higher refractive

index (Si). The nanoantenna is powered by a hybrid plasmonic waveguide layered with different

materials. At the top of the structure is located the metallic layer of the antenna whose thickness was

initially delimited from hm = 70 nm, after the conductive layer was introduced a layer of material with

a lower refractive index of silicon dioxide with a thickness of hSiO2 = 30 nm, this layer is sandwiched
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between metal and silicon layer, whose thickness is h1 =100nm and then by h2 =100nm. The substrate

height (hsub) is initially set to 100 nm. For the beveled horn, a 45º opening was made in the

nanoantenna, keeping the values fixed at a=100 nm and b=150 nm. The parameters of LT =424 nm, L1

= 274 nm, L2 =15nm and w =500 nm were maintained for any variation in thickness, metal and

nanoantenna geometry throughout the parametric study. In order to cover all optical communication

windows, we have fixed our frequency range between 150–400 THz.

III. MODELING AND SIMULATION METHOD

During the research, the modeling of the proposed nanoantennas was carried out in the COMSOL

Multiphysics 6.0 simulation environment through the module specially designed for the propagation

of electromagnetic waves, the RF (radio frequency). The software uses the Finite Element Method

(FEM) to model and calculate the study variables.

During the simulations, after the step of structuring the geometry of the nanoantennas, the definition

of the materials that compose the structure was made using the internal library of materials available

on the Comsol's plataform.

After defining the physical constants of the materials, the boundary conditions were implemented

using Frequency Domain physics (i.e., in time-harmonic regime), since with it is possible to calculate

resonance frequencies, S parameters, near/far fields, gain and directivity. In addition, a numerical gate

feature was added at the ends of the nanoantenna layers to calculate the dispersion parameters (S

parameters). In this case, the number gate is intended to analyze the electric field at the gate boundary

(i.e., the longitudinal normal component parallel to the propagation direction) as a TEM mode. In Fig.

2 it is possible to see an illustration of the models of the horn nanoantenna (a) H-plane sectorial and (b)

beveled.

Fig. 2. Feeding the horn nanoantenna: (a) H-plane sectorial and (b) beveled.
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Note the red arrows indicating the power flow from the port, which presumably must be in the -y

direction. The nanoantenna feed was done in addition to the conductive metal layer, this is because

the gates need to be large enough to fully capture the mode of interest, including marginal fields. An

irregular configuration of the power flow of the ports may cause no electromagnetic wave to be

transmitted through the port.

IV. RESULTS AND DISCUSSION

In this section, the results of the simulations of the parametric study are presented, varying the

geometry of the proposed nanoantenna, the conductive metal and the thickness of the layers that

compose the plasmonic waveguide. Fig. 3 illustrates the discretized meshes in the solution domain for

the (a) H-plane sectorial horn and (b) beveled horn antennas.

Fig. 3. Mesh discretization results for the models: (a) H-plane sectorial horn and (b) beveled horn.

The mesh option performed was chosen as refined as possible on the surfaces of greatest interest -

power supply and dielectric - reducing the computational cost for the model solution. Fig. 4 shows the

electric field distribution along the plasmonic waveguide obtained using the Port resource in the

antenna feed. The electric field is concentrated in the SiO2 layer, confirming the excitation of the

hybrid plasmonic TM mode [44]. It can be seen through the color legend on the right that the electric

field norm reached maximum values (in blue and red highlights) in the feed layers of the guide close

to the metal and dielectric. To support the fundamental TM mode and provide a perfect impedance

match between the antenna and the waveguide, the width of the SiO2 coating layer was chosen as

100 nm.
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Fig. 4. Electric field distribution in the H-plane sectorial horn nanoantenna guide.

A. H-plane sectorial horn nanoantenna
The 3D radiation graphs at optical communications frequencies for the H-plane sectorial horn

nanoantenna with conductive metal in gold, silver and aluminum are shown in Fig. 5, 6 and 7,

respectively.

Fig. 5. H-plane sectorial horn radiation diagrams in gold: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).
.
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Fig. 6 H-plane sectorial horn radiation diagrams in gold: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).

From Figs. 5, 6 and 7, it is noted that as the transmission frequency increases, the antenna beam

width decreases and the antenna becomes less directive. Table I shows the results of the parameters:

directivity, reflection coefficient and nanoantenna gain.

Fig. 8 shows the results of the reflection coefficient (S11) as a function of frequency, for the

simulated H-plane sector horn with radiating element in gold (Au), silver (Ag) and aluminum (Al).

The pink dashed line delimits a better reflection coefficient for the nanoantenna, which constitutes

values below -10 dB.
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Fig. 7. H-plane sectorial horn radiation diagrams in aluminum: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).

TABLE I. RESULTS OF S11, DIRECTIVITY AND GAIN OF THE H-PLANE SECTORIAL HORN

Metal Parameters (dB) 193.5 THz 229 THz 352 THz
S11 -11.44 -11.46 -11,22

Au Gain 8.19 -1.54 12.01

S11 -15.00 -15.10 -18.50
Ag Gain 10.90 -1.98 13.29

S11 -25.35 -26.07 -22.00
Al Gain 0.70 -1.21 12.01

Table I shows that the H plane sector horn with a metallic conductive layer in silver and aluminum

presented better reflection coefficient values at the three simulated frequencies in relation to its gold

counterpart. While the aluminum and silver nanoantenna also obtained excellent gain results at the

frequency of 352 THz, with 12 and 13.29 dB, respectively. In this way, the sectorial horns with higher

frequency act with better gain values than the others.
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Fig. 8 Results of reflection coefficients (S11) as a function of frequency for the H-plane sectorial horn in (Au), silver (Ag)
and aluminum (Al).

A better match of the antenna and the power supplied to the H plane sectoral horn of aluminum is

observed in relation to the gold and silver metals. Thus, for the H-plane sectorial horn in aluminum, it

is noted that the impedance matching between the antenna and the guide is considered very good in

relation to geometries with other conductive materials.

B. Beleved Horn Nanoantenna
Similarly, the 3D radiation plots, at optical communications frequencies, for the gold, silver and

aluminum conductive metal beveled horn nanoantenna are shown in Fig. 10, 11 and 12, respectively.

In Fig. 12, it is possible to visualize the results of reflection coefficient (S11) as a function of

frequency, for the beveled horn with radiating element in gold (Au), silver (Ag) and aluminum (Al).

The coefficient values of each horn were highlighted on the graph for better understanding and

association of results. In black, the reflection coefficient graph of the beveled horn with conductive

metal in gold stands out, while in lilac and red, they refer respectively to the coefficients of the same

geometry with conductive metal in silver and aluminum. There is a similarity between the silver and

aluminum curves in relation to the gold curve, whose results remained closer to the value of -10 dB.
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Fig. 9. Radiation diagrams of the beveled horn in gold: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).

Fig. 10. Silver beveled horn radiation diagrams: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).
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Fig. 11. Radiation diagrams of the beveled aluminum horn: in 2D (a), (b) and (c); and in 3D (d), (e) and (f).

Fig. 12. Results of reflection coefficients (S11) as a function of frequency for beveled horn in (Au), silver (Ag) and
aluminum (Al).

Table II shows the results of the parameters: directivity, reflection coefficient and gain of the

beveled horn nanoantenna.
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TABLE II. RESULTS OF S11, DIRECTIVITY AND GAIN OF THE BELEVED HORN

Metal Parameters (dB) 193.5 THz 229 THz 352 THz
S11 -14.25 -11.26 -10.5

Au Gain 2.16 7.74 4.89
S11 -27.20 -33.59 -16.67

Ag Gain 1.90 0.74 10.34
S11 -25.50 -23.01 -14.00

Al Gain 12.01 2.76 7.04

The results obtained in Table II are consistent with those found by the S11 graph and the bevel horn

gain, in dB. Furthermore, there is a correspondence between the reflection coefficient result (S11)

shown in Fig. 12 with Table II.

Therefore, in Figs. 5, 6, 7, 9, 10 and 11, it is observed for the frequency of 352.9 THz, that the

presence of side lobes in the 2D radiation diagrams caused the loss of directivity of the H-plane or

chamfered sectoral horn. Furthermore, for the H plane sector horn and bevel horn, the 3D radiation

diagrams at 193.5 THz and 229 THz have a well-defined central lobe. While at the frequency of

352.9 THz, the main lobe was divided regardless of the conductive material used, only with the

decrease in wavelength, it appears that the nanoantennas are not directive at the frequency of

352.9 THz.

Regarding the gain, the nanoantenna with conductive silver metal showed better results than the

others at the frequency of 352 THz, both for the sector horn and the bevel horn. While aluminum

obtained less uniformity in the gain results in relation to the other materials when changing geometry,

since the gain of the aluminum sector horn showed a decreasing behavior in the beveled nanoantenna

as seen in Table II.

It is also possible to conclude that the reflection coefficient for the beveled horn was more

satisfactory with the radiating element in silver and aluminum than the same in gold. Therefore, a

study of other geometries is essential to verify the performance of aluminum as a conductive material.

V. CONCLUSIONS

In this paper, a plasmonic optical nanoantenna in H-plane sector horn shape is presented and

fed with a hybrid plasmonic waveguide to achieve high gain with wideband operation. In addition, the

variation of the conductive metal of each nanoantenna is explored to obtain savings in the material

used in the construction of the antenna and to capture a satisfactory performance at the frequencies

addressed. By employing the parametric study in this work, we observed the behavior of antenna

geometries when changing the conductive metal into gold, silver and aluminum. The results showed

that a nanoantenna made of aluminum can present satisfactory results of reflection coefficient and

greater savings in manufacturing costs compared to other materials most used in the literature, but for

more concrete results it is necessary to investigate new geometries to obtain the material performance

in relation to gain at high frequencies. The proposed project shows the ability of a nanoantenna to
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operate in a wide range of optical frequencies, as shown by the simulation results, covering all the

main optical communication band bands from 150 to 400 THz and has as a future objective the

construction of the nanoantenna for validation of the discussed results.
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