
Design and Specification of Embedded Systems
in Java Using Successive, Formal Refinement

James Shin Young, Josh MacDonald, Michael Shilman, Abdallah Tabbara,
Paul Hilfinger, and A. Richard Newton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

University of California at Berkeley

Abstract
Successive, formal refinement is a new approach for specification
of embedded systems using a general-purpose programming lan-
guage. Systems are formally modeled as Abstractable Synchro-
nous Reactive systems, and Java is used as the design input
language. A policy of use is applied to Java, in the form of lan-
guage usage restrictions and class-library extensions, to ensure
consistency with the formal model. A process of incremental,
user-guided program transformation is used to refine a Java pro-
gram until it is consistent with the policy of use. The final product
is a system specification possessing the properties of the formal
model, including deterministic behavior, bounded memory usage,
and bounded execution time. This approach allows systems design
to begin with the flexibility of a general-purpose language, fol-
lowed by gradual refinement into a more restricted form neces-
sary for specification.

1 Introduction

A variety of languages are used in the design and specification of
hardware and software for embedded electronic systems[5]. Gen-
eral purpose languages such as C and C++ are usually used for the
design of software, while hardware description languages, such as
Verilog and VHDL, are used in the design of hardware. Embed-
ded systems design requires integration of hardware and software
components, often a difficult task if they are described using dis-
similar languages. Instead of using different languages for design
of hardware and software, a single language for system specifica-
tion is desired. We propose a methodology that allows a single-
language platform to be used for early design, as well as for
guiding subsequent refinement, partitioning, and synthesis steps to
obtain a final implementation.

In particular, we describe an approach for using Java as a design
and specification language for embedded systems. Java is a prag-

matic choice for several reasons. Since it is a member of the C
“family” of languages, it is familiar to designers. Unlike C and
C++, it provides standard language and library support for
concurrency. Its treatment of arrays permits better static and dy-
namic error checking than is conveniently feasible in C and C++.
Finally, while Java’s expressive power is comparable to C++, it is
a much simpler language, which reduces the difficulty of program
analysis, optimization, and transformation. Using Java also has
many practical benefits– its widespread adoption by the science
and engineering community promises a large base of support, in
the form of compilers, debuggers, development environments, and
class libraries.

Embedded systems function as sub-components of larger systems,
and their design requisites are often quite different from general-
purpose computing systems, the domain for which Java is typi-
cally used. Many embedded systems are reactive1, operating at
speeds dictated by their external environments, and must be reli-
able and predictable. Therefore, embedded systems should behave
deterministically, and operate within bounded resources, including
time and memory. However, Java programs in general guarantee
neither determinacy nor bounded resource usage.

To address this fundamental incompatibility, our approach an-
chors programs on formal models of computation. The Abstrac-
table Synchronous Reactive (ASR) model is one we have
developed which has properties suitable for embedded systems
specification. Restrictions on the usage of Java are applied in
order to ensure the programs are consistent with the ASR model.
This principle of language restriction is one area where our ap-
proach differs most from other proposals to use Java for system
specification, such as that of Helaihel and Olukotun[10].

However, restricting the use of Java limits its flexibility and ex-
pressiveness. Designers may be discouraged if the resulting lan-
guage is overly restrictive. We have addressed this concern by
developing a methodology for specification development called
successive, formal refinement (SFR). SFR supports the transfor-
mation of a program written in a general-purpose programming
language into one that can be embedded within a more restricted
model of computation. It consists of a series of static analyses of
programs, coupled with an iterative process of incremental, semi-
automated program transformation. SFR enables a system to be
designed initially in an unrestricted manner using a general-
purpose programming language, and then be gradually refined
into a restricted form for use as a system specification.

1 This term was first introduced by Pnueli[9].

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

In this paper, we present the SFR methodology and describe how
it is applied to Java programs to obtain a specification suitable for
embedded systems, using the ASR model as a formal basis. We
have developed a set of tools, collectively known as JavaTime, to
aid analysis and transformation of Java source code, and used it to
demonstrate application of SFR to a number of examples.

2 Successive, Formal Refinement

Successive, formal refinement rests on two foundations: a policy
of use on the source language, and a procedure of incremental
transformation. In general, programs expressed in a general-
purpose language cannot be expressed as equivalent systems in a
specific model of computation. In SFR, a policy of use is imposed
on the source language, S, to make it consistent with the target
model, T. A policy of use consists of restrictions and extensions.
The restrictions removes portions of S incompatible with T, while
the extensions introduce semantics present in T that have no
equivalent in S. The result is a new language S’, as shown in
Figure 1, whose programs are expressible in T.

In this methodology, a user’s initial program P is contained within
language S (Figure 2a), and cannot be mapped directly onto T. A
process of incremental program transformation is used to refine it
into a program in language S’, to make it valid with respect to the
policy of use.

The program is analyzed to verify that the rules in the policy of
use are satisfied. If a violation is found, the user is presented with
information regarding the nature of the error, and a list of sug-
gested solutions for fixing the problem, including automated pro-
gram transformations when possible. The user can then modify
the program manually or allow the tools to alter it automatically.

This process of analysis and modification is repeated until the
program complies with all rules in the policy of use. At this point,
the altered version of the program, P’, is contained within S’
(Figure 2b). Because S’ is constructed to be compatible with T, P’
corresponds to a system in T.

The SFR process may be applied with respect to a variety of target
models, each with its own policy of use. This enables one to use a
single general-purpose language for designing systems in an im-
plementation-independent manner, and choose from different
models according to the desired implementation style. In addition
to the ASR model described in this paper, others might include

dataflow, discrete-event, and hierarchical finite state machine
models, or models defined by the user. This provides a design
language and environment that is highly expressive, and yet can
be customized to suit the needs of a particular implementation
medium.

Systems for program construction through transformations exist
for the development of software[1][13], but ours is the first effort
we know of to apply such techniques for the purpose of formal
modeling of mixed hardware/software systems. Transformation
systems for software typically are used to improve program per-
formance while preserving semantics, while in the SFR method-
ology transformations are used to restrict and alter a program’s
semantics.

3 The Abstractable Synchronous
Reactive Model

We use the Abstractable Synchronous Reactive (ASR) model to
specify reactive embedded systems. In the ASR model, time is
divided into hierarchically nested instants. Systems are repre-
sented as collections of functional blocks, channels, and delay
elements. Blocks serve to generate output values based on their
inputs; channels carry set-valued data between blocks; and delay
elements carry data between successive instants in time. ASR
systems are reactive; that is, they interact with their environments
by reacting to the inputs presented to it and producing outputs.
The operation of these systems is driven by their environments; if
no inputs are provided to a system, it would simply sit idle. Figure
3 shows a graphical representation of a system in the ASR model.
The white rectangles are functional blocks, while the shaded rec-
tangle represents a delay element. Channels are drawn as directed
edges.

The ASR model is based on the synchronous approach to reactive
systems, in which systems are said to compute instantaneously
and time is divided into instants[2]. Synchronous languages, such
as Esterel[3], Lustre[7], and Statecharts[8], also use this approach
as the foundation for their formal models of computation. The
ASR model is distinguished from other synchronous models in
that time may be hierarchically abstracted, as well as function.

Functional blocks calculate output values based on the input val-
ues. Inputs and outputs are members of ordered sets, and blocks
are restricted to compute only continuous functions between these
domains. These idealized blocks produce their outputs synchro-
nously with their inputs, meaning that inputs and their resulting
outputs appear in the same instant. Likewise, propagation of val-
ues through channels also occurs within a single instant. Channels

Figure 1. A policy of use applied to language S
yields S’, compatible with model T.

(a) (b)

Figure 2. (a) Original program is in language S.
(b) Program is embedded in S’ through successive,

formal refinement.

connect the outputs and inputs of blocks and delay elements to-
gether.

Blocks and channels cannot hold values across instants. Instead,
values are carried through time by delay elements. At each instant,
a delay element’s output is equal to the value of its input at the
previous instant. From a block’s point of view, inputs originating
from delay elements appear indistinguishable from external in-
puts.

It is possible for the input to a block to depend on its output, by
introducing cycles in the system graph with no delay elements in
the path. To resolve such cyclic dependencies, ASR uses a fixed-
point semantics fashioned after the scheme presented by Ed-
wards[4].

Time is viewed as a partially ordered set of instants. The instants
may be nested, yielding a hierarchical structure of time, as shown
in Figure 4. Thus, although blocks and channels are said to exe-
cute instantaneously, their operation can be composed of a set of
“sub-instants”. Such abstraction of time can be useful in hiding
details of implementation[12]. For example, communication of a
message between two processors may be viewed as a single in-
stant, rather than as a multitude of instants representing the de-
tailed protocol activities. The amount of physical time associated
with an instant is not predetermined. It is associated with the de-
sign later, as the solution to a set of temporal constraints imposed
by components used to implement the design or via constraints
imposed by the system’s environment. In that way, the nested
refinement described above is symbolic and need not involve
“nanoseconds” until later in the design process.

The ASR model has properties that make it useful for specifying
embedded systems. ASR systems are deterministic; that is, any
particular input can produce only one possible output. Also, they
are compositional– an aggregation of blocks is functionally
equivalent to a single block, while a collection of blocks and delay
elements is equivalent to a system containing one block and one
delay element (Figure 5). ASR systems may be represented as a
hierarchical composition of ASR subsystems.

4 Specifying Embedded Systems Using Java

Our approach for design and specification of reactive embedded
systems uses Java as the design input language, and SFR is ap-
plied to refine programs to be consistent with the ASR model. To
begin, we must first clarify the manner in which we interpret Java
programs for specification purposes.

Java’s ability to dynamically load and link objects prevents a
standard Java compiler from globally analyzing and optimizing a
program, as any of the classes the program uses may be individu-
ally modified and replaced at run time. To enable more detailed
analysis of a system’s behavior, we assume all the code used to
describe it is known at compile time. A class used in describing a
particular ASR block cannot be modified without analyzing the
other classes to determine the overall effect on the block’s be-
havior.

The Java language specification[6] divides the execution of a Java
program into loading, linking, initialization, and finalization. In
our approach, the loading, linking, and initialization steps are
considered to describe the structure of the system, not the behav-
ior; the program’s actions following loading, linking, and initiali-
zation are considered to be the specification of the system’s
behavior. Finalization is disallowed, as it may be considered as
representing the termination or destruction of the system.

Java allows concurrency to be specified in the form of user-
managed threads that communicate with one another by modify-
ing and reading shared variables. Thus, in general we consider
Java programs to describe partial orders of events in a system, as
shown in Figure 6.

4.1 Determining the policy of use

In the SFR methodology, a policy of use, consisting of restrictions
and extensions, is imposed on the source language to reconcile it
with the target model. The user interacts with tools to verify a
program’s compliance with the policy, and rectify violations
through an interactive process of incremental program transfor-
mation. In this application, the source is the Java language and the
target is the ASR model of computation.

Figure 3. An ASR system.

Figure 4. Abstraction of instants in time.

Figure 5. Abstraction of ASR systems in space.

Compliance with restrictions is verified through static analyses of
source code. Program transformations may be applied automati-
cally to the abstract syntax tree of the Java program, or manually
if the tools are not able to provide a satisfactory transformation.
Extensions are made through model-specific class libraries, so
that programs undergoing refinement remain valid Java programs
throughout, and may remain usable by standard Java development
tools. Others have utilized class libraries to model systems[11],
but the user-written code is not restricted and verified to ensure
the libraries are used correctly.

We may determine the necessary restrictions and extensions by
comparing the capabilities and limitations of Java and the ASR
model:

• Java programs may be nondeterministic, while ASR systems
must be deterministic.

• Java programs may require infinite amounts of memory to
execute. In comparison, the memory available to ASR sys-
tems is finite.

• The ASR model separates time into hierarchically nested
instants, while Java has no notion of time.

• ASR systems operate by reacting to their environments
through well-specified inputs and outputs. In Java, no clear
distinction between the system and its environment is made.

Therefore, restrictions must be placed on Java programs to guar-
antee they are determinate and use bounded memory; extensions
are needed to distinguish inputs and outputs; and we must define
the boundaries of instants.

4.2 Designing an ASR system

A class called ASR is provided to the user for describing ASR
systems using Java. It must be used as the base class of a specifi-
cation, and serves to model the functionality of an ASR system in
Java. From the environment’s point of view, an object subclassed
from it looks like a “black box,” operated by providing it with
inputs, which causes the system to produce outputs. The ASR
class includes output and input ports, used to convey signals to
and from the environment. To specify the functionality of the
block, the user writes code to fill in the run method Figure 7
shows a conceptual sketch of the resulting Java object.

The lifecycle of an object subclassed from the ASR class is con-
sidered to be divided into two parts: initialization and behavior.

Initialization includes the invocation of its constructor and execu-
tion of static initialization routines. It represents the creation and
initialization of the object; if implemented as a hardware/software
system, this might correspond to the fabrication of the system and
power-on reset behavior.

The object’s operational behavior is defined with respect to its
run method. The object sits idle until its run method is invoked

by the environment, at which time it produces a set of output val-
ues and returns to its idle state. It is the responsibility of the envi-
ronment to provide the appropriate inputs. With respect to time,
an instant is initiated by the invocation of the component’s run
method, and ended when the method completes. The sequence of
actions performed in the run method can be considered as in-
stants nested within an instant, and are not visible to the object's
environment. That is, the execution of the run method appears
atomic to external observers.

4.3 Restricting the initial design

A specification of an ASR block consists of a single class that
extends ASR, and all the classes that this primary class may re-
quire, either directly or indirectly. The code invoked by the run
method of the main class must be analyzed and restricted with
respect to the policy of use of the ASR model. Unlike standard
Java’s dynamic loading model, classes that constitute a specifica-
tion are considered in our analyses to be bound at compile time,
and cannot be restricted and verified independently of one an-
other. This is because verification of a block's behavior requires
that all dependencies between classes and methods be statically
identified.

The amount of memory in an ASR system is fixed, but Java pro-
grams may be written such that they require an unbounded
amount of memory, for example if dynamic data structures are
used. Therefore, one important restriction is that objects may be
instantiated only during initialization. This is accomplished by
scanning the code and identifying possible allocation statements.
One problem that may be encountered is the use of linked struc-
tures, and these types of complex structures should be checked for
and eliminated in favor of statically allocated data structures.

We must also take care that an ASR object’s internal state may
not be externally accessible by requiring the object’s variables to

time

x

Separate
threads

Communication through
shared variables

Figure 6. Java programs specify a partial order.

Figure 7. Encapsulation of Java design in ASR class.

be private. This prevents external modification or observation
of the object’s state, which undermines data encapsulation and
abstraction, and may result in unpredictable behavior.

Addition of the notion of instants motivates an additional restric-
tion: Computation of the output must be bounded in time; other-
wise, the system’s execution would never advance to the next
instant. For arbitrary Java programs, verifying bounded execution
is impossible, as it is equivalent to solving the halting problem. At
the risk of reducing the computational capabilities of the block,
we must therefore restrict the usage of the language. In particular,
calculable upper bounds on loop iterations are required, circular
method invocations are not allowed, and use of methods that may
halt or indefinitely suspend thread execution is forbidden. Thus,
while and do while loops may not be used, and the iteration
variable in for loops cannot be modified within the loop.

Nondeterminism is easily to implement in a Java program, due to
its integrated support for multithreading. For example, in Figure 8,
threads A, B, and C share variable X. A and B write to x, while C
reads the value from x. The order in which the three threads ac-
cess x may differ between different executions of the program,
and may produce different behaviors. We have not found a way to
guarantee deterministic behavior in multithreaded programs with-
out severely limiting the usability of Java’s threads package. In
the current policy of use, direct use of Java threads is prohibited,
and concurrency is obtained through specification of separate
functional blocks.

The restrictions given in the policy of use are conservative– they
are sufficient to ensure that a Java program is consistent with the
ASR model, but may not be necessary. That is, there are programs
that violate our restrictions, but are expressible as ASR systems.

5 Experiments

We have applied our proposed methodology to a number of de-
sign examples, and found that restriction of Java programs is fea-
sible and beneficial to performance. JavaTime, a set of tools to
support the SFR methodology has been developed. JavaTime
takes as input the program source code, and allows analyses, re-
strictions, transformations, and interpretations to be associated
with a design.

A number of publicly available Java programs were taken as ex-
amples of unrefined designs to be implemented in an embedded
system. The examples were incrementally transformed until they
conformed to the restrictions set forth in the ASR model’s policy

of use. Identification of policy violations were aided by the Java-
Time tools, which provide a flexible environment for searching
and manipulating a program’s abstract syntax tree. A mix of man-
ual, semi-automated, and automated techniques was used for pro-
gram transformation. The resulting restricted programs were
compared to the original by execution on standard Java platforms.

In general, the number of transformations required to attain com-
pliance with the policy of use was not unreasonable, and de-
pended greatly on the original designer’s programming style. For
example, one designer might favor a particular control construct
or data structure more than another. Transformations of while
loops, which are prohibited in the policy of use, to restricted for
loops was possible in the majority of cases, and limitation of new
object instantiations to the initialization phase was found to be
feasible for the examples as well.

U
n

re
st

ri
ct

ed

p
ro

g
ra

m

R
es

tr
ic

te
d

ve

rs
io

n

R
es

tr
ic

te
d

/
u

n
re

st
ri

ct
ed

Sun jdk 1.0.2 Initialization time (s) 1.4 3.5 2.50
Reaction time (s) 11.8 8 0.68

Café JIT Initialization (s) 0.5 2.1 4.20
Reaction time (s) 3.6 1.2 0.33
Program size (k) 19.7 21.2 1.08

Table 1. Comparison of unrestricted vs. restricted
versions of JPEG design example.

Table 1 shows results obtained from transforming our largest
design example, a JPEG compression/decompression program.
The JPEG algorithm was encapsulated using the ASR base class,
and images were input as arrays of integers representing its red,
green, and blue components. The initialization time reflects the
amount of time spent in the object’s constructor, while the reac-
tion time is the average time required to process the 130x135 pixel
test image. If multiple images are to be processed, the initializa-
tion time is incurred only once, while the reaction time is incurred
for each image processed. For typical embedded systems, the
reaction time is of primary concern, as initialization occurs rela-
tively infrequently. These results were measured for the programs
running on both a conventional Java Virtual Machine, and a Just-
In-Time compiler. The program size given is the size of the Java
.class files. The machine used is a 150MHz Pentium processor
with 32 MB RAM and Windows 95.

Under both execution environments, the restricted version takes
longer to initialize, but once initialization is complete, processes
images faster than the unrestricted version. The performance dif-
ferential reflects the original program’s extensive use of dynamic
data structures. The ASR policy of use disallows dynamic mem-
ory allocation, thus the restricted version we created uses only
static data structures created during initialization. Hence, the re-
stricted program is much slower to initialize, but performs no
additional memory allocation once activated. While a significant
performance improvement is obtained, the restricted program is
roughly equal in size to the original.

These experiments show that a program can be modified to make
it consistent with the ASR policy of use. Furthermore, execution
of the modified example in standard Java environments resulted in

A

B

C

x

Nondeterministic

Figure 8. Nondeterministic thread interaction.

increased system initialization times but shorter response times.
Such a characteristic is consistent with the needs of reactive em-
bedded systems, which maintain an ongoing dialogue with their
environments. Hence, higher startup overhead is tolerable in ex-
change for faster response times. This suggests that the SFR
methodology might also be used as a directed optimization strat-
egy for programs running on standard Java Virtual Machines.

6 Summary

We have presented successive formal refinement, a new method-
ology for design and specification of embedded systems This
methodology allows systems to be designed initially using a gen-
eral-purpose programming language and refined to a form con-
sistent with a formal model of computation, within a single-
language platform.

Refinement of a design with respect to the ASR model yields a
program that is deterministic, uses bounded memory, executes in
bounded time, and is compositional with other systems in the
model. A program with these properties is suitable for use as a
specification for embedded, reactive systems.

A system, called JavaTime, was created to aid in the program
analyses and transformations required for SFR. The methodology
was applied to a number of design examples, and found to be
applicable and successful in improving performance on standard
Java execution platforms.

Future development will be carried out along several lines. Devel-
opment and implementation of more sophisticated Java program
analysis techniques will enable a wider variety of transformations.
Work on advanced user interface and system visualization tools
will also better the quality of interaction a user has with the sys-
tem in refining a design.

To support a variety of application domains, policies of use will
be developed for additional models of computation, and the inter-
action of components specified with respect to different models
explored. To provide a complete system design solution, the
JavaTime system should be coupled with verification and synthe-
sis tools.

Acknowledgments

This research was supported by DARPA, under contract
DABT63-95-C-0074-NEWTON-06/96, NASA, under contract
NCC 2-999, Synopsys, and Intel. Their support is gratefully ac-
knowledged.

References

[1] F. Bauer, B. Moller, H. Partsch, and P. Pepper, “Formal Pro-
gram Construction by Transformations– Computer-Aided,
Intuition-Guided Programming,” IEEE Trans. Software En-
gineering, vol. 15, no. 2, pp. 165-180, Feb. 1989.

[2] A. Benveniste and G. Berry, “The Synchronous Approach to
Reactive and Real-Time Systems,” Proc. IEEE, 79(9):1270-
1282, September 1991.

[3] G. Berry and G. Gonthier, “The ESTEREL synchronous
programming language: design, semantics, implementation,”
Science of Computer Programming, vol. 19, pp. 87-152,
1992.

[4] Stephen A. Edwards, The Specification and Execution of
Heterogeneous Synchronous Reactive Systems. Ph.D. Thesis,
University of California, Berkeley, 1997. Available as
UCB/ERL M97/31.
http://ptolemy.eecs.berkeley.edu/papers/
 97/sedwardsThesis/

[5] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specifica-
tion and Design of Embedded Systems. Englewood Cliffs,
NJ: Prentice Hall, 1994.

[6] J. Gosling, B. Joy, and G. Steele, The Java Language Speci-
fication. Reading, MA: Addison-Wesley, 1996.

[7] CN. Halbwachs, et. al. The synchronous data flow program-
ming language LUSTRE. Proc. of the IEEE, 79(9):1305-
1320, 1991.

[8] D. Harel, “Statecharts: a visual approach to complex sys-
tems,” Science of Computer Programming, 8:231-274, 1987.

[9] D. Harel and A. Pnueli, “On the Development of Reactive
Systems,” vol. 13 of NATO ASI Series. Series F, Computer
and Systems Sciences, pp. 477-498. Springer-Verlag, 1985.

[10] R. Helaihel and K. Olukotun, “Java as a Specification Lan-
guage for Hardware-Software Systems,” Proc. ICCAD ‘97,
pp. 690-697, 1997.

[11] S. Liao, S. Tjiang, and R. Gupta, “An Efficient Implementa-
tion of Reactivity for Modeling Hardware in the Scenic De-
sign Environment,” Proc. 34th DAC, pp. 70-75, 1997.

[12] J. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based
Design,” Proc. 34th DAC, pp. 178-183, 1997.

[13] D. Smith. “KIDS: A Semiautomatic Program Development
System,” IEEE Trans. Software Engineering, vol. 16, no. 9,
pp. 1024-1043, Sept. 1990.

