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Abstract—We present a systematic method to design ubiquitous

continuous fast-acting distributed load control for primary fre-

quency regulation in power networks, by formulating an optimal

load control (OLC) problem where the objective is to minimize the

aggregate cost of tracking an operating point subject to power bal-

ance over the network. We prove that the swing dynamics and the

branch power flows, coupled with frequency-based load control,

serve as a distributed primal-dual algorithm to solve OLC. We es-

tablish the global asymptotic stability of a multimachine network

under such type of load-side primary frequency control. These re-

sults imply that the local frequency deviations on each bus convey

exactly the right information about the global power imbalance for

the loads to make individual decisions that turn out to be globally

optimal. Simulations confirm that the proposed algorithm can re-

balance power and resynchronize bus frequencies after a distur-

bance with significantly improved transient performance.

Index Terms—Decentralized control, optimization, power

system control, power system dynamics.

I. INTRODUCTION

A. Motivation

F REQUENCY control maintains the frequency of a power

system tightly around its nominal value when demand or

supply fluctuates. It is traditionally implemented on the gener-

ation side and consists of three mechanisms that work at dif-

ferent timescales in concert [1]–[4]. The primary frequency con-

trol operates at a timescale up to low tens of seconds and uses

a governor to adjust, around a setpoint, the mechanical power

input to a generator based on the local frequency deviation. It

is called the droop control and is completely decentralized. The
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primary control can rebalance power and stabilize the frequency

but does not in itself restore the nominal frequency. The sec-

ondary frequency control (called automatic generation control)

operates at a timescale up to a minute or so and adjusts the set-

points of governors in a control area in a centralized fashion to

drive the frequency back to its nominal value and the inter-area

power flows to their scheduled values. Economic dispatch op-

erates at a timescale of several minutes or up and schedules the

output levels of generators that are online and the inter-area

power flows. See [5] for a recent hierarchical model of these

three mechanisms and its stability analysis. This paper focuses

on load participation in the primary frequency control.

The needs and technologies for ubiquitous continuous fast-

acting distributed load participation in frequency control at dif-

ferent timescales have started to mature in the last decade or

so. The idea however dates back to the late 1970s. Schweppe

et al. advocated in a 1980 paper [6] its deployment to “assist or

even replace turbine-governed systems and spinning reserve”.

They also proposed to use spot prices to incentivize the users

to adapt their consumption to the true cost of generation at the

time of consumption. Remarkably it was emphasized back then

that such frequency adaptive loads would “allow the system to

accept more readily a stochastically fluctuating energy source,

such as wind or solar generation” [6]. This point is echoed re-

cently in, e.g., [7]–[13], that argue for “grid-friendly” appli-

ances, such as refrigerators, water or space heaters, ventilation

systems, and air conditioners, as well as plug-in electric vehicles

to help manage energy imbalance. For further references, see

[12]. Simulations in all these studies have consistently shown

significant improvement in performance and reduction in the

need for spinning reserves. The benefit of this approach can thus

be substantial as the total capacity of grid-friendly appliances

in the U.S. is estimated in [8] to be about 18% of the peak de-

mand, comparable to the required operating reserve, currently

at 13% of the peak demand. The feasibility of this approach is

confirmed by experiments reported in [10] that measured the

correlation between the frequency at a 230 kV transmission sub-

station and the frequencies at the 120 V wall outlets at various

places in a city in Montana. They show that local frequency

measurements are adequate for loads to participate in primary

frequency control as well as in the damping of electromechan-

ical oscillations due to inter-area modes of large interconnected

systems.

Indeed a small scale demonstration project has been con-

ducted by the Pacific Northwest National Lab during early 2006

to March 2007 where 200 residential appliances participated

in primary frequency control by automatically reducing their
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consumption (e.g, the heating element of a clothes dryer was

turned off while the tumble continued) when the frequency

of the household dropped below a threshold (59.95 Hz) [14].

Field trials are also carried out in other countries around the

globe, e.g., the U.K. Market Transformation Program [15].

Even though loads do not yet provide second-by-second or

minute-by-minute continuous regulation service in any major

electricity markets, the survey in [16] finds that they already

provide 50% of the 2,400 MW contingency reserve in ERCOT

(Electric Reliability Council of Texas) and 30% of dispatched

reserve energy (in between continuous reserve and economic

dispatch) in the U.K. market. Long Island Power Authority

(LIPA) developed LIPA Edge that provides 24.9 MW of de-

mand reduction and 75 MW of spinning reserve by 23,400

loads for peak power management [17].

While there are many simulation studies and field trials of

frequency-based load control as discussed above, there is not

much analytic study that relates the behavior of the loads and

the equilibrium and dynamic behavior of a multimachine power

network. Indeed this has been recognized, e.g., in [7], [14], [15],

as a major unanswered question that must be resolved before

ubiquitous continuous fast-acting distributed load participation

in frequency regulation will become widespread. Even though

classical models for power system dynamics [2]–[4] that focus

on the generator control can be adapted to include load adapta-

tion, they do not consider the cost, or disutility, to the load in

participating in frequency control, an important aspect of such

an approach [6], [12]–[14].

In this paper we present a systematic method to design ubiq-

uitous continuous fast-acting distributed load control and estab-

lish the global asymptotic stability of a multimachine network

under this type of primary frequency control. Our approach al-

lows the loads to choose their consumption pattern based on

their need and the global power imbalance on the network, at-

taining with the generation what [6] calls a homeostatic equi-

librium “to the benefit of both the utilities and their customers.”

To the best of our knowledge, this is the first network model and

analysis of load-side primary frequency control.

B. Summary

Specifically we consider a simple network model described

by linearized swing dynamics on generator buses, power flow

dynamics on the branches, and a measure of disutility to users

when they participate in primary frequency control. At steady

state, the frequencies on different buses are synchronized to a

common nominal value and the mechanic power is balanced

with the electric power on each bus. Suppose a small change

in power injection occurs on an arbitrary subset of the buses,

causing the bus frequencies to deviate from their nominal value.

We assume the change is small and the DC power flow model

is reasonably accurate. Instead of adjusting the generators as in

the traditional approach, how should we adjust the controllable

loads in the network to rebalance power in a way that minimizes

the aggregate disutility of these loads? We formulate this ques-

tion as an optimal load control (OLC) problem, which infor-

mally takes the form

where is the demand vector and measures the disutility

to loads in participating in control. Even though neither fre-

quency nor branch power flows appear in OLC, we will show

that frequency deviations emerge as a measure of the cost of

power imbalance and branch flow deviations as a measure of

frequency asynchronism. More strikingly the swing dynamics

together with local frequency-based load control serve as a dis-

tributed primal-dual algorithm to solve the dual of OLC. This

primal-dual algorithm is globally asymptotically stable, steering

the network to the unique global optimal of OLC.

These results have four important implications. First the

local frequency deviation on each bus conveys exactly the right

information about the global power imbalance for the loads

themselves to make local decisions that turn out to be glob-

ally optimal. This allows a completely decentralized solution

without explicit communication to or among the loads. Second

the global asymptotic stability of the primal-dual algorithm of

OLC suggests that ubiquitous continuous decentralized load

participation in primary frequency control is stable, addressing

a question raised in several prior studies, e.g. [6], [7], [14],

[15]. Third we present a “forward engineering” perspective

where we start with the basic goal of load control and derive

the frequency-based controller and the swing dynamics as a

distributed primal-dual algorithm to solve the dual of OLC.

In this perspective the controller design mainly boils down to

specifying an appropriate optimization problem (OLC). Fourth

the opposite perspective of “reverse engineering” is useful as

well where, given an appropriate frequency-based controller

design, the network dynamics will converge to a unique equi-

librium that inevitably solves OLC with an objective function

that depends on the controller design. In this sense any memo-

ryless frequency adaptation implies a certain disutility function

of the load that the control implicitly minimizes. For instance

the linear controller in [7], [10] implies a quadratic disutility

function and hence a quadratic objective in OLC.

Our results confirm that frequency adaptive loads can re-

balance power and resynchronize frequency, just as the droop

control of the generators currently does. They fit well with the

emerging layered control architecture advocated in [18].

C. Our Prior Work and Structure of Paper

In our previous papers [19]–[21] we consider a power net-

work that is tightly coupled electrically and can be modeled as

a single generator connected to a group of loads. A disturbance

in generation causes the (single) frequency to deviate from its

nominal value. The goal is to adapt loads, using local frequency

measurements in the presence of additive noise, to rebalance

power at minimum disutility. The model for generator dynamics

in [21] is more detailed than the model in this paper. Here we

study a network of generator and load buses with branch flows

between them and their local frequencies during transient. We

use a simpler model for individual generators and focus on the

effect of the network structure on frequency-based load control.

The paper is organized as follows. Section II describes a dy-

namic model of power networks. Section III formulates OLC as

a systematic method to design load-side primary frequency con-

trol and explains how the frequency-based load control and the

system dynamics serve as a distributed primal-dual algorithm to
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solve OLC. Section IV proves that the network equilibrium is

globally asymptotically stable. Section V reports simulations of

the IEEE 68-bus test system that uses a much more detailed and

realistic model than our analytic model. The simulation results

not only confirm the convergence of the primal-dual algorithm,

but also demonstrate significantly better transient performance.

Section VI concludes the paper.

II. NETWORK MODEL

Let denote the set of real numbers and denote the

set of non-zero natural numbers. For a set , let

denote its cardinality. A variable without a subscript usu-

ally denotes a vector with appropriate components, e.g.,

. For , , the expression

denotes . For a matrix , let denote

its transpose. For a signal of time, let denote its time

derivative .

The power transmission network is described by a graph

where is the set of buses and

is the set of transmission lines connecting the

buses. We make the following assumptions:1

� The lines are lossless and characterized by their

reactances .

� The voltage magnitudes of buses are constants.

� Reactive power injections on the buses and reactive power

flows on the lines are ignored.

We assume that is directed, with an arbitrary orientation,

so that if then . We use and

interchangeably to denote a link in , and use “ ” and

“ ” respectively to denote the set of buses that are

predecessors of bus and the set of buses that are successors

of bus . We also assume without loss of generality that

is connected.

The network has two types of buses: generator buses and load

buses. A generator bus not only has loads, but also an AC gener-

ator that converts mechanic power into electric power through

a rotating prime mover. A load bus has only loads but no gener-

ator. We assume that the system is three-phase balanced. For a

bus , its phase voltage at time is

where is the nominal frequency, is the nominal

phase angle, and is the time-varying phase angle devi-

ation. The frequency on bus is defined as ,

and we call the frequency deviation on bus . We

assume that the frequency deviations are small for all the

buses and the differences between phase

angle deviations are small across all the links . We

adopt a standard dynamic model, e.g., in [3, Sec. 11.4].

Generator Buses: We assume coherency between the internal

and terminal (bus) voltage phase angles of the generator; see

our technical report [22, Sec. VII-C] for detailed justification.

Then the dynamics on a generator bus is modeled by the swing

equation

1These assumptions are similar to the standard DC approximation except that

we do not assume the nominal phase angle difference is small across each link.

where is the inertia constant of the generator,

with represents the (first-order approximation of) devia-

tion in generator power loss due to friction [3] from its nominal

value . Here is the mechanic power

injection to the generator, and is the electric power export of

the generator, which equals the sum of loads on bus and the

net branch power flow from bus to other buses.

In general, load power may depend on both the bus voltage

magnitude (which is assumed fixed) and frequency. We dis-

tinguish between three types of loads, frequency-sensitive,

frequency-insensitive but controllable, and uncontrollable

loads. We assume the power consumptions of frequency-sen-

sitive (e.g., motor-type) loads increase linearly with frequency

deviation and model the aggregate power consumption of these

loads by with , where is its nominal

value. We assume frequency-insensitive loads can be actively

controlled and our goal is to design and analyze these control

laws. Let denote the aggregate power of the controllable (but

frequency-insensitive) loads on bus . Finally let denote

the aggregate power consumption of uncontrollable (constant

power) loads on bus that are neither of the above two types of

loads; we assume may change over time but is pre-specified.

Then the electric power is the sum of frequency-sensitive

loads, controllable loads, uncontrollable loads, and the net

branch power flow from bus to other buses

where is the branch power flow from bus to bus .

Hence the dynamics on a generator bus is

where , , and

and are respectively

the total branch power flows out and into bus . Note that is

integrated with into a single term , so that any change

in power injection, whether on the generation side or the load

side, is considered a change in . Let denote

the nominal (operating) point at which

. Let , ,

. Then the deviations satisfy

(1)

Fig. 1 is a schematic of the generator bus model (1).

Load Buses: A load bus that has no generator is modeled by

the following algebraic equation that represents power balance

at the bus:2

(2)

where represents the change in the aggregate uncon-

trollable load.

2There may be load buses with large inertia that can be modeled by swing

dynamics (1) as proposed in [23]. We will treat them as generator buses math-

ematically.
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Fig. 1. Schematic of a generator bus , where is the frequency deviation;

is the change in mechanic power minus aggregate uncontrollable load;

characterizes the effect of generator friction and frequency-sensitive

loads; is the change in aggregate controllable load; is the deviation

in branch power injected from another bus to bus ; is the deviation in

branch power delivered from bus to another bus .

Branch Flows: The deviations from the nominal

branch flows follow the (linearized) dynamics:

(3)

where

(4)

is a constant determined by the nominal bus voltages and the line

reactance. The same model is studied in the literature [2], [3]

based on quasi-steady-state assumptions. In [22, Sec. VII-A] we

derive this model by solving the differential equation that char-

acterizes the dynamics of three-phase instantaneous power flow

on reactive lines, without explicitly using quasi-steady-state as-

sumptions. Note that (3) omits the specification of the initial de-

viations in branch flows. In practice cannot be

an arbitrary vector, but must satisfy

(5)

for some vector . In Remark 5 we discuss the implication

of this omission on the convergence analysis.

Dynamic Network Model: We denote the set of generator

buses by , the set of load buses by , and use and to de-

note the number of generator buses and load buses respectively.

Without loss of generality, label the generator buses so that

and the load buses so that .

In summary the dynamic model of the transmission network is

specified by (1)–(3). To simplify notation we drop the from

the variables denoting deviations and write (1)–(3) as

(6)

(7)

(8)

where are given by (4). Hence for the rest of this paper all

variables represent deviations from their nominal values. We

will refer to the term as the deviation in the (aggregate)

frequency-sensitive load even though it also includes the devia-

tion in generator power loss due to friction. We will refer to

as a disturbance whether it is in generation or load.

An equilibrium point of the dynamic system (6)–(8) is a state

where for and for , i.e.,

where all frequency deviations and branch power deviations are

constant over time.

Remark 1: The model (6)–(8) captures the power system be-

havior at the timescale of seconds. In this paper we only consider

a step change in generation or load (constant ), which im-

plies that the model does not include the action of turbine-gov-

ernor that changes the mechanic power injection in response

to frequency deviation to rebalance power. Nor does it include

any secondary frequency control mechanism such as automatic

generation control that operates at a slower timescale to restore

the nominal frequency. This model therefore explores the fea-

sibility of fast timescale load control as a supplement to the tur-

bine-governor mechanism to resynchronize frequency and re-

balance power.

We use a much more realistic simulation model developed in

[24], [25] to validate our simple analytic model. The detailed

simulations can be found in [22, Sec. VII]. We summarize the

key conclusions from those simulations as follows.

1) In a power network with long transmission lines, the in-

ternal and terminal voltage phase angles of a generator

swing coherently, i.e., the rotating speed of the generator

is almost the same as the frequency on the generator bus

even during transient.

2) Different buses, particularly those that are in different co-

herent groups [24] and far apart in electrical distance [26],

may have different local frequencies for a duration sim-

ilar to the time for them to converge to a new equilibrium,

as opposed to resynchronizing almost instantaneously to

a common system frequency which then converges to the

equilibrium. This particular simulation result justifies a

key feature of our analytic model and is included in Ap-

pendix A of this paper.

3) The simulation model and our analytic model exhibit sim-

ilar transient behaviors and steady state values for bus fre-

quencies and branch power flows.

III. DESIGN AND STABILITY OF PRIMARY

FREQUENCY CONTROL

Suppose a constant disturbance is in-

jected to the set of buses. How should we adjust the con-

trollable loads in (6)–(8) to rebalance power in a way that

minimizes the aggregate disutility of these loads? In general

we can design state feedback controllers of the form

, prove the feedback system is globally asymptot-

ically stable, and evaluate the aggregate disutility to the loads at

the equilibrium point. Here we take an alternative approach by

directly formulating our goal as an optimal load control (OLC)

problem and derive the feedback controller as a distributed al-

gorithm to solve OLC.

We now formulate OLC and present our main results. These

results are proved in Section IV.

A. Optimal Load Control

The objective function of OLC consists of two costs. First

suppose the (aggregate) controllable load on bus incurs a cost

(disutility) when it is changed by . Second the fre-

quency deviation causes the (aggregate) frequency-sensitive

load on bus to change by . For reasons that will
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become clear later, we assume that this results in a cost to the

frequency-sensitive load that is proportional to the squared fre-

quency deviation weighted by its relative damping constant

where is a constant. Hence the total cost is

To simplify notation, we scale the total cost by

without loss of generality and define

. Then OLC minimizes the

total cost over and while rebalancing generation and load

across the network:

OLC:

(9)

(10)

where .

Remark 2: Note that (10) does not require the balance of gen-

eration and load on each individual bus, but only balance across

the entire network. This constraint is less restrictive and offers

more opportunity to minimize costs. Additional constraints can

be imposed if it is desirable that certain buses, e.g., in the same

control area, rebalance their own supply and demand, e.g., for

economic or regulatory reasons.

We assume the following condition throughout the paper:

Condition 1: OLC is feasible. The cost functions are

strictly convex and twice continuously differentiable on

.

The choice of cost functions is based on physical characteris-

tics of loads and user comfort levels. Examples of cost functions

can be found for air conditioners in [29] and plug-in electric ve-

hicles in [30]. See, e.g., [5], [27], [28] for other cost functions

that satisfy Condition 1.

B. Main Results

The objective function of the dual problem of OLC is

where the minimization can be solved explicitly as

(11)

with

(12)

This objective function has a scalar variable and is not sepa-

rable across buses . Its direct solution hence requires co-

ordination across buses. We propose the following distributed

version of the dual problem over the vector ,

where each bus optimizes over its own variable which are

constrained to be equal at optimality:

DOLC:

The following two results are proved in Appendix B. Instead

of solving OLC directly, they suggest solving DOLC and recov-

ering the unique optimal point of OLC from the unique

dual optimal .

Lemma 1: The objective function of DOLC is strictly con-

cave over .

Lemma 2:

1) DOLC has a unique optimal point with

for all .3

2) OLC has a unique optimal point where

and for all .

To derive a distributed solution for DOLC consider its La-

grangian

(13)

where is the (vector) variable for DOLC and

is the associated dual variable for the dual of DOLC. Hence

, for all , measure the cost of not synchronizing

the variables and across buses and . Using (11)–(13), a

partial primal-dual algorithm for DOLC takes the form

(14)

(15)

(16)

where , are stepsizes and ,

. We interpret (14)–(16) as an algorithm iter-

ating on the primal variables and dual variables over time

. Set the stepsizes to be:

Then (14)–(16) become identical to (6)–(8) if we identify with

and with , and use defined by (12) for in (6),

(7). This means that the frequency deviations and the branch

3For simplicity, we abuse the notation and use to denote both the vector

and the common value of its components. Its meaning should be

clear from the context.
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flows are respectively the primal and dual variables of DOLC,

and the network dynamics together with frequency-based load

control execute a primal-dual algorithm for DOLC.

Remark 3: Note the consistency of units between the fol-

lowing pairs of quantities: 1) and , 2) and , 3)

and , 4) and . Indeed, since the unit of is

from (6), the cost (9) is in . From (11) and (13),

and are respectively in (or equivalently ) and

[watt]. From (14), is in which is the same as

the unit of from (6). From (16), is in [watt] which is

the same as the unit of from (8).

For convenience, we collect here the system dynamics and

load control equations

(17)

(18)

(19)

(20)

(21)

The dynamics (17)–(20) are automatically carried out by the

system while the active control (21) needs to be implemented

at each controllable load. Let denote a

trajectory of (deviations of) controllable loads, frequency-sen-

sitive loads, frequencies and branch flows, generated by the dy-

namics (17)–(21) of the load-controlled system.

Theorem 1: Starting from any , the

trajectory generated by (17)–(21) con-

verges to a limit as such that

1) is the unique vector of optimal load control for

OLC;

2) is the unique vector of optimal frequency deviations for

DOLC;

3) is a vector of optimal branch flows for the dual of

DOLC.

We will prove Theorem 1 and its related results in Section IV

below.

C. Implications

Our main results have several important implications:

1) Ubiquitous continuous load-side primary frequency con-

trol. Like the generator droop, frequency-adaptive loads

can rebalance power and resynchronize frequencies after

a disturbance. Theorem 1 implies that a multimachine net-

work under such control is globally asymptotically stable.

The load-side control is often faster because of the larger

time constants associated with valves and prime movers on

the generator side. Furthermore OLC explicitly optimizes

the aggregate disutility using the cost functions of hetero-

geneous loads.

2) Complete decentralization. The local frequency deviations

on each bus convey exactly the right information

about global power imbalance for the loads to make local

decisions that turn out to be globally optimal. This allows

a completely decentralized solution without explicit com-

munication among the buses.

3) Equilibrium frequency. The frequency deviations

on all the buses are synchronized to at optimality even

though they can be different during transient. However

at optimality is in general nonzero, implying that the new

common frequency may be different from the common

frequency before the disturbance. Mechanisms such as

isochronous generators [2] or automatic generation con-

trol are needed to drive the new system frequency to its

nominal value, usually through integral action on the

frequency deviations.

4) Frequency and branch flows. In the context of optimal

load control, the frequency deviations emerge as

the Lagrange multipliers of OLC that measure the cost

of power imbalance, whereas the branch flow deviations

emerge as the Lagrange multipliers of DOLC that

measure the cost of frequency asynchronism.

5) Uniqueness of solution. Lemma 2 implies that the optimal

frequency deviation is unique and hence the optimal

load control is unique. As shown below, the vector

of optimal branch flows is unique if and only if the net-

work is a tree. Nonetheless Theorem 1 says that, even for a

mesh network, any trajectory of branch flows indeed con-

verges to a limit point. See Remark 5 for further discussion.

IV. CONVERGENCE ANALYSIS

This section is devoted to the proof of Theorem 1 and other

properties as given by Theorems 2 and 3 below. Before going

into the details we first sketch out the key steps in establishing

Theorem 1, the convergence of the trajectories generated by

(17)–(21).

1) Theorem 2: The set of optimal points of DOLC

and its dual and the set of equilibrium points of (17)–(21)

are nonempty and the same. Denote both of them by .

2) Theorem 3: If is a tree network, is a singleton

with a unique equilibrium point , otherwise (if

is a mesh network), has an uncountably infi-

nite number (a subspace) of equilibria with the same

but different .

3) Theorem 1: We use a Lyapunov argument to prove that

every trajectory generated by (17)–(21) ap-

proaches a nonempty, compact subset of as .

Hence, if is a tree network, Theorem 3 implies that

any trajectory converges to the unique op-

timal point . If is a mesh network, we show

with a more careful argument that still con-

verges to a point in , as opposed to oscillating around

. Theorem 1 then follows from Lemma 2.

We now elaborate on these ideas.

Given the optimal loads are uniquely determined by

(20), (21). Hence we focus on the variables . Decompose

into frequency deviations on generator buses and

load buses. Let be the incidence matrix with

if for some bus , if

for some bus , and otherwise. We

decompose into a submatrix corresponding to
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generator buses and an submatrix corresponding

to load buses, i.e., . Let

Identifying with and with , we rewrite the Lagrangian

for DOLC defined in (13), in terms of and , as

(22)

Then (17)–(21) (equivalently, (14)–(16)) can be rewritten in the

vector form as

(23)

(24)

(25)

where and

. The differential algebraic equations (23)–(25) describe the

dynamics of the power network.

A pair is called a saddle point of if

(26)

By [31, Sec. 5.4.2], is primal-dual optimal for DOLC

and its dual if and only if it is a saddle point of . The fol-

lowing theorem establishes the equivalence between the primal-

dual optimal points and the equilibrium points of (23)–(25).

Theorem 2: A point is primal-dual optimal for

DOLC and its dual if and only if it is an equilibrium point of

(23)–(25). Moreover, at least one primal-dual optimal point

exists and is unique among all possible points

that are primal-dual optimal.

Proof: Recall that we identified with and with . In

DOLC, the objective function is (strictly) concave over

(by Lemma 1), its constraints are linear, and a finite optimal

is attained (by Lemma 2). These facts imply that there is no

duality gap between DOLC and its dual, and there exists a dual

optimal point [31, Sec. 5.2.3].Moreover, is optimal

for DOLC and its dual if and only if the followingKarush-Kuhn-

Tucker (KKT) conditions [31, Sec. 5.5.3] are satisfied:

(27)

(28)

On the other hand is an equilibrium

point of (23)–(25) if and only if (27), (28) are satisfied. Hence

is primal-dual optimal if and only if it is an equilibrium

point of (23)–(25). The uniqueness of is given by Lemma 2.

From Lemma 2, we denote the unique optimal point of DOLC

by , where , and

have all their elements equal to 1. From (27) and (28),

define the nonempty set of equilibrium points of (23)–(25) (or

equivalently, primal-dual optimal points of DOLC and its dual)

as

(29)

Let be any equilibrium

point of (23)–(25). We consider a candidate Lyapunov function

(30)

Obviously for all with equality if and

only if and . We will show below that

for all , where denotes the derivative of

over time along the trajectory .

Even though depends explicitly only on and , de-

pends on as well through (25). However, it will prove con-

venient to express as a function of only and . To this

end, write (24) as . Then

is nonsingular for all from the proof

of Lemma 1 in Appendix B. By the inverse function theorem

[32], can be written as a continuously differentiable func-

tion of , denoted by , with

(31)

Then we rewrite as a function of as

(32)

We have the following lemma, proved in Appendix B, regarding

the properties of .

Lemma 3: is strictly concave in and convex in .

Rewrite (23)–(25) as

(33)

(34)

Then the derivative of along any trajectory gen-

erated by (23)–(25) is

(35)

(36)

(37)
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Fig. 2. is the set on which , is the set of equilibrium points of

(23)–(25), and is a compact subset of to which all solutions

approach as . Indeed every solution converges to a point

that is dependent on the initial state.

(38)

(39)

where (35) results from (33) and (34), the inequality in

(36) results from Lemma 3, the equality in (37) holds since

by (27), the inequality in (38) holds since

from the

saddle point condition (26), and the inequality in (39) holds

since is the maximizer of by the concavity of

in .

The next lemma, proved in Appendix B, characterizes the set

in which the value of does not change over time.

Lemma 4: if and only if either (40) or (41)

holds

(40)

(41)

Lemma 4 motivates the definition of the set

(42)

in which along any trajectory . The defini-

tion of in (29) implies that , as shown in Fig. 2. As

shown in the figure may contain points that are not in .

Nonetheless every accumulation point (limit point of any con-

vergent sequence sampled from the trajectory) of a trajectory

of (23)–(25) lies in , as the next lemma shows.

Lemma 5: Every solution of (23)–(25) ap-

proaches a nonempty, compact subset (denoted ) of as

.

The proof of Lemma 5 is given in Appendix B-5). The sets

are illustrated in Fig. 2. Lemma 5 only guar-

antees that approaches as , while we

now show that indeed converges to a point in .

The convergence is immediate in the special case when is a

singleton, but needs a more careful argument when has mul-

tiple points. The next theorem reveals the relation between the

number of points in and the network topology.

Theorem 3:

1) If is a tree then is a singleton.

2) If is a mesh (i.e., contains a cycle if regarded as an

undirected graph) then has uncountably many points

with the same but different .

Proof: From (29), the projection of on the space of

is always a singleton , and hence we only consider the

projection of on the space of , which is

where . By Theorem 2, is

nonempty, i.e., there is such that and

hence . Therefore we have

(43)

where is the reduced incidencematrix obtained

from by removing any one of its rows, and is obtained from

by removing the corresponding row. Note that has a full

row rank of [33]. If is a tree, then ,

so is square and invertible and is a singleton. If is

a (connected) mesh, then , so has a nontrivial

null space and there are uncountably many points in .

We can now finish the proof of Theorem 1.

Proof of Theorem 1: For the case in which is a

tree, Lemma 5 and Theorem 3(1) guarantees that every trajec-

tory converges to the unique primal-dual optimal

point of DOLC and its dual, which, by Lemma 2,

immediately implies Theorem 1.

For the case in which is amesh, since along any

trajectory , then

and hence stays in a compact set for . There-

fore there exists a convergent subsequence

, where and as ,

such that and

for some . Lemma 5 implies that ,

and hence by (29). Recall that the Lyapunov

function in (30) can be defined in terms of any equilibrium

point . In particular, select

, i.e.

Since and along any trajectory ,

must converge as . Indeed it converges to

0 due to the continuity of in both and

which implies that converges to , and

hence converges to , a primal-dual

optimal point for DOLC and its dual. Theorem 1 then follows

from Lemma 2.
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Fig. 3. Single line diagram of the IEEE 68-bus test system.

Remark 4: The standard technique of using a Lyapunov func-

tion that is quadratic in both the primal and the dual variables

was first proposed by Arrow et al. [34], and has been revisited

recently, e.g., in [35], [36]. We apply a variation of this tech-

nique to our problem with the following features. First, because

of the algebraic equation (24) in the system, our Lyapunov func-

tion is not a function of all the primal variables, but only the part

corresponding to generator buses. Second, in the case of a

mesh network when there is a subspace of equilibrium points,

we show that the system trajectory still converges to one of the

equilibrium points instead of oscillating around the equilibrium

set.

Remark 5: Theorems 1–3 are based on our analytic model

(17)–(21) which omits an important specification on the initial

conditions of the branch flows. As mentioned earlier, in

practice, the initial branch flows must satisfy (5) for some

(with dropped). With this requirement the branch flow model

(3)–(5) implies for all , where Col denotes

the column space, is the diagonal matrix with entries ,

and is the incidence matrix. Indeed since

and with one column from removed has

a full column rank. A simple derivation from (43) shows that

is a singleton, where

is invertible [33]. Moreover by (43) and Lemma 5 we

have as . In other words,

though for a mesh network the dynamics (17)–(21) have a sub-

space of equilibrium points, all the practical trajectories, whose

initial points satisfy (5) for some arbitrary ,

converge to a unique equilibrium point.

V. CASE STUDIES

In this section we illustrate the performance of OLC through

the simulation of the IEEE 68-bus New England/New York in-

terconnection test system [24]. The single line diagram of the

68-bus system is given in Fig. 3.We run the simulation on Power

System Toolbox [25]. Unlike our analytic model, the simulation

model is much more detailed and realistic, including two-axis

subtransient reactance generator model, IEEE type DC1 exciter

model, classical power system stabilizer model, AC (nonlinear)

power flows, and non-zero line resistances. The detail of the

simulation model including parameter values can be found in

the data files of the toolbox. It is shown in [22] that our analytic

model is a good approximation of the simulation model.

In the test system there are 35 load buses serving different

types of loads, including constant active current loads, constant

impedance loads, and induction motor loads, with a total real

power of 18.23 GW. In addition, we add three loads to buses

1, 7, and 27, each making a step increase of real power by 1

pu (based on 100 MVA), as the in previous analysis. We

also select 30 load buses to perform OLC. In the simulation we

use the same bounds with for each of the 30

controllable loads, and call the value of the total size

of controllable loads. We present simulation results below with

different sizes of controllable loads. The disutility function of

controllable load is , with identical

for all the loads. The loads are controlled every 250 ms,

which is a relatively conservative estimate of the rate of load

control in an existing testbed [37].

We look at the impact of OLC on both the steady state and

the transient response of the system, in terms of both frequency

and voltage. We present the results with a widely used gener-

ation-side stabilizing mechanism known as power system sta-

bilizer (PSS) either enabled or disabled. Figs. 4(a) and 4(b) re-

spectively show the frequency and voltage on bus 66, under four

cases: (i) no PSS, no OLC; (ii) with PSS, no OLC; (iii) no PSS,

with OLC; and (iv) with PSS and OLC. In both cases (iii) and

(iv), the total size of controllable loads is 1.5 pu. We observe in

Fig. 4(a) that whether PSS is used or not, adding OLC always

improves the transient response of frequency, in the sense that

both the overshoot and the settling time (the time after which the

difference between the actual frequency and its new steady-state

value never goes beyond 5% of the difference between its old

and new steady-state values) are decreased. Using OLC also re-

sults in a smaller steady-state frequency error. Cases (ii) and (iii)

suggest that using OLC solely without PSS produces a much

better performance than using PSS solely without OLC. The im-

pact of OLC on voltage, with and without PSS, is qualitatively

demonstrated in Fig. 4(b). Similar to its impact on frequency,

OLC improves significantly both the transient and steady-state

of voltage with or without PSS. For instance the steady-state

voltage is within 4.5% of the nominal value with OLC and 7%

without OLC.

To better quantify the performance improvement due to OLC

we plot in Fig. 5(a)–(c) the new steady-state frequency, the

lowest frequency (which indicates overshoot) and the settling

time of frequency on bus 66, against the total size of con-

trollable loads. PSS is always enabled. We observe that using

OLC always leads to a higher new steady-state frequency (a

smaller steady-state error), a higher lowest frequency (a smaller

overshoot), and a shorter settling time, regardless of the total

size of controllable loads. As the total size of controllable loads

increases, the steady-state error and overshoot decrease almost

linearly until a saturation around 1.5 pu. There is a similar trend

for the settling time, though the linear dependence is approx-

imate. In summary OLC improves both the steady-state and

transient performance of frequency, and in general deploying

more controllable loads leads to bigger improvement.
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Fig. 4. The (a) frequency and (b) voltage on bus 66 for cases (i) no PSS, no OLC; (ii) with PSS, no OLC; (iii) no PSS, with OLC; (iv) with PSS and OLC.

Fig. 5. The (a) new steady-state frequency, (b) lowest frequency and (c) settling time of frequency on bus 66, against the total size of controllable loads.

Fig. 6. Cost trajectory of OLC (solid line) compared to the minimum cost

(dashed line).

To verify the theoretical result that OLCminimizes the aggre-

gate cost of load control, Fig. 6 shows the cost of OLC over time,

obtained by evaluating the quantity defined in (9) using the tra-

jectory of controllable and frequency-sensitive loads from the

simulation. We see that the cost indeed converges to the min-

imum cost for the given change in .

VI. CONCLUSION

We have presented a systematic method to design ubiquitous

continuous fast-acting distributed load control for primary fre-

quency regulation in power networks, by formulating an op-

timal load control (OLC) problem where the objective is to

minimize the aggregate control cost subject to power balance

across the network. We have shown that the dynamics of gen-

erator swings and the branch power flows, coupled with a fre-

quency-based load control, serve as a distributed primal-dual

algorithm to solve the dual problem of OLC. Even though the

system has multiple equilibrium points with nonunique branch

power flows, we have proved that it nonetheless converges to a

unique optimal point. Simulation of the IEEE 68-bus test system

confirmed that the proposed mechanism can rebalance power

and resynchronize bus frequencies with significantly improved

transient performance.

APPENDIX A

SIMULATION SHOWING FEATURE OF MODEL

A key assumption underlying the analytic model (6)–(8) is

that different buses may have their own frequencies during tran-

sient, instead of resynchronizing almost instantaneously to a

common system frequency which then converges to an equi-

librium. Simulation of the 68-bus test system confirms this phe-

nomenon. Fig. 7 shows all the 68 bus frequencies from the sim-

ulation with the same step change as that in Section V but

without OLC. To give a clearer view of the 68 bus frequencies,

they are divided into the following 4 groups, respectively shown

in Figs. 7(a)–7(d).

1) Group 1 has buses 41, 42, 66, 67, 52, and 68;

2) Group 2 has buses 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 53, 54,

55, 56, 57, 58, 59, 60, and 61;

3) Group 3 has buses 1, 9, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 43, 44, 45, 46, 47, 48, 49, 51, 62, 63, 64, and 65;

4) Group 4 has bus 50 only.
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Fig. 7. Frequencies on all the 68 buses shown in four groups, without OLC.

We see that, during transient, the frequencies on buses within the

same group are almost identical, but the frequencies on buses

from different groups are quite different. Moreover the time it

takes for these different frequencies to converge to a common

system frequency is on the same order as the time for these

frequencies to reach their (common) equilibrium value.

APPENDIX B

PROOFS OF LEMMAS

Proof of Lemma 1: From (12) either or

, and hence in (11) we have

and therefore

Hence the Hessian of is diagonal. Moreover, since

defined in (12) is nondecreasing in , we have

and therefore is strictly concave over .

Proof of Lemma 2: Let denote the objective function of

OLC with the domain .

Since is continuous on , is lower bounded,

i.e., for some . Let be a

feasible point of OLC (which exists by Condition 1). Define the

set .

Note that for any , there is some such that

, and thus

Hence any optimal point of OLC must lie in . By Condition

1 the objective function of OLC is continuous and strictly

convex over the compact convex set , and thus has a min-

imum attained at a unique point .

Let be a feasible point of OLC, then

, specify a feasible point

, where denotes the relative interior [31]. More-

over the only constraint of OLC is affine. Hence there is zero

duality gap between OLC and its dual, and a dual optimal

is attained since [31, Sec. 5.2.3]. By the proof of

Lemma 1 above, ,

i.e., the objective function of the dual of OLC is strictly concave

over , which implies the uniqueness of . Then the optimal

point of OLC satisfies given by (12) and

for .

Proof of Lemma 3: From the proof of Lemma 1, the Hes-

sian is diagonal

and negative definite for all . Therefore is

strictly concave in . Moreover from (32) and the fact that

, we have

(44)
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Therefore we have [using (31)]

From the proof of Lemma 1, is diagonal and nega-

tive definite. Hence is positive semidefinite

and is convex in ( may not be strictly convex in because

is not necessarily of full rank).

Proof of Lemma 4: The equivalence of (41) and (40) follows

directly from the definition of . To prove that (41) is nec-

essary and sufficient for , we first claim that the dis-

cussion preceding the lemma implies that

satisfies if and only if

(45)

Indeed if (45) holds then the expression in (35) evaluates

to zero. Conversely, if , then the inequality

in (36) must hold with equality, which is possible only if

since is strictly concave in . Then we must

have since the expression

in (35) needs to be zero. Hence we only need to establish the

equivalence of (45) and (41). Indeed, with , the

other part of (45) becomes

(46)

(47)

(48)

where (46) results from (44), the equality in (47) holds since

, and (48) results from (24), (27). Note that is

separable over for and

. Writing we have

(49)

Since defined in (12) is nondecreasing in , each term

in the summation above is nonnegative for all . Hence (49)

evaluates to zero if and only if , establishing the

equivalence between (45) and (41).

Proof of Lemma 5: The proof of LaSalle’s invariance prin-

ciple [38, Thm. 3.4] shows that approaches its pos-

itive limit set which is nonempty, compact, invariant and

a subset of , as . It is then sufficient to show that

, i.e., for any point ,

to show that . By (29), (42) and the fact that

, we only need to show that

(50)

Since is invariant with respect to (23)–(25), a trajectory

that starts in must stay in , and hence stay in

. By (42), for all , and therefore

for all . Hence by (23) any trajectory in

must satisfy

which implies (50).
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