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Abstract—The efficient utilization of current supercomputing
systems with deep storage hierarchies demands scientific ap-
plications that are capable of leveraging such heterogeneous
hardware. Fault tolerance, and checkpointing in particular, is
one of the most time-consuming aspects if not handled correctly.
High checkpoint performance can be achieved using optimized
multilevel checkpoint and restart libraries. Unfortunately, those
libraries do not allow for restarts with a modified number
of processes or scientific post-processing of the checkpointed
data. This is because they typically use an N-N checkpointing
scheme and opaque file-formats. In this article, we present a
novel mechanism to asynchronously store checkpoints into a self-
descriptive file format and load the data upon recovery with a
different number of processes. We provide an API that defines
the process-local data as part of a globally shared dataset. Our
measurements demonstrate a low overhead between 0.6% and
2.5% for a 2.25 TB checkpoint with 6K processes.

I. INTRODUCTION

During the last decades, supercomputers have increased in
size and complexity, and exascale computing is on the way.
However, several challenges come with this quest, and one
of the most important is fault tolerance. As the number of
components in high-performance computing (HPC) systems
increase, the systems become more error-prone. It is expected
that the next generation of HPC systems experiences fail-
ures every few hours [10], [28]. Consequently, most long-
running HPC applications will experience multiple failures
during the execution due to the reduced mean time between
failures (MTBF) [18], [24]. Usually, HPC applications employ
checkpoint and restart (CR) to recover from failures [11]. In
CR, the application state is periodically stored and upon a
failure recovered from the last checkpoint. CR has been highly
optimized by multilevel checkpoint libraries to take advantage
of multiple storage levels and minimize the IO bottleneck.

Despite their high performance, multilevel CR libraries still
suffer from some shortcomings. They often use an opaque
file format, and the data layout in the checkpoint files is
agnostic to the developer. Thus, although HPC applications
may potentially run with a variable number of processes, CR
libraries do not support recovery from a checkpoint with an
adjustable number of processes (a.k.a. elastic restart). Conse-
quently, the recovery from a failure needs to take place with
the exact number of processes as the application was formerly
executed with. On the other hand, the developer cannot extract

the data from the checkpoint files manually and restart on a
changed decomposition of the application without knowledge
of the underlying file format. The same applies for utilizing
the checkpointed data for visualization or data analyses, as the
developer cannot extract the data from the checkpoint files.

In this article, we propose a novel multilevel checkpoint
API and runtime that empowers developers to expose the
topological information of the decomposition, and to control
the data layout in the checkpoint files. As the checkpointed
data is often also the object of the analysis, we make two
friends with one gift. The methods described in this article
will be applicable in numerous categories, i.a., cosmological
applications, climate simulations, and reanalyses. For instance,
GISELA5D, a plasma simulation for fusion reactions, already
uses the HDF5 format to combine resiliency and analysis [5].

The contributions of this work are summarized as follows:

• We propose API extensions able to achieve both objec-
tives (i.e., resiliency and IO). Our API simplifies the code,
increases productivity and improves readability.

• We implement an asynchronous strategy that leverages
multiple storage levels for fast checkpointing. We demon-
strate a 5x speedup on comparison with ADIOS Sustain-
able Staging Transport (SST).

• Our results show that our approach has negligible check-
point and restart overheads and high scalability.

• We showcase online recovery using a resilient MPI im-
plementation and demonstrate automatic elastic restart.

• Our study highlights some of the challenges for irregu-
lar applications. We analyze the trade-off between fast
checkpoint vs fast restart and propose several solutions.

The remainder of the paper is structured as follows: Sec-
tion II explains the foundation of this paper. Section III focuses
on the implementation of our extensions. Section IV describes
the methodology for our detailed analysis. Section V presents
and discusses the results of our experiments. Section VII
explores related work, and Section VIII concludes this article.

II. BACKGROUND

In this section, we introduce the main libraries and concepts
necessary to understand the contributions of this work.
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A. Fault Tolerance

1) Multilevel CR libraries: Rollback-recovery is one of
the most used resilience technique for HPC applications and
several libraries focus on this technique. In this work, we are
particularly interested in multilevel CR libraries because of
their speed and their efficient use of deep storage hierarchies.
Among others, common libraries from this class are SCR [29],
FTI [4] and VeloC [7]. Any of these libraries can be adapted
to support elastic restart as proposed in this paper.

Multilevel checkpointing is characterized by providing a
variety of checkpointing methods, called levels. The levels
differ in performance and reliability. Common levels are:
a) Node level, b) Partner, c) Ecnoded, d) Global checkpoint.
Additionally, some libraries offer the possibility to perform
the checkpoints in two stages. The first stage consists of
writing the checkpoint data locally to node storage. Afterward,
the checkpoint is processed further, depending on the level
of reliability. For instance, flushing the files to the parallel
file system (PFS), or sending a copy of the checkpoint files
to another node. Those post-processing stages can then be
performed by dedicated processes asynchronously.

2) MPI Layer Fault Tolerance: Fault-tolerant MPI mech-
anisms have been an object of investigation for many years
now [15], [19], [34]. Some popular mechanisms for fault toler-
ance in MPI are ULFM [2], FT-MPI [34] and MPI Reinit [8],
[22]. The common goal of these frameworks is to provide a
mechanism for the developers to cope with process failures,
allowing them to continue the execution without the need to
launch a new MPI job.

B. General Purpose IO

1) HDF5: HDF5 (Hierarchical Data Format) [35] is a file
format that allows the storage of complex datasets embedded
inside a hierarchical folder-like structure [13]. Inter alia, HDF5
allows the creation of named groups (similar to folders in file
systems) and named datasets (continuing the analogy, the files
in a file system). The HDF5 file format represents the standard
format for scientific datasets. The API is very complete and
actively maintained. Furthermore, there exist bindings to a
great variety of programming languages and applications such
as C/C++, Fortran, Python, MatLab and R, and it has been
optimized for multiple file systems [17], [25].

2) ADIOS: ADIOS [23] is a state-of-the-art IO library for
HPC applications. ADIOS can be operated with several output
engines. The more interesting for this article is sustainable
staging transport (SST) [21] in combination with HDF5. The
latter can be used to stage global checkpoint data locally using
memory buffers and remote direct memory access (RDMA).
Afterwards, the data is combined to a single HDF5 file on the
PFS asynchronically to the application.

III. IMPLEMENTATION

In this section we outline the design objectives of our
extensions and present the basic concepts and mechanisms.
The proposed interface gives developers a tool at hand that
solves the disagreement mentioned in section I. In short, it

consolidates the IO work for resiliency with the IO work
for data processing and it also allows for elastic restart from
the checkpoint files using a variable number of processes.
Deploying our extensions does not restrict the other features
of the CR library in any way. It remains possible to perform
checkpoints in all other reliability levels. We implemented our
extensions on top of FTI (without loss of generality).

A. Design Objectives

The design objectives for our API extensions are:
Complex Data Representation: The core of the problems

that HPC applications try to solve is formulated using
complex data structures. These structures are usually
organized either as structure of arrays or as an array
of structures. Our interface should provide an intuitive
mechanism to define both.

Accessibility to the Data: Checkpoints in HPC CR libraries
do not provide access to the data from outside of internal
library calls. Our objective is to remove this restriction
and to give the developer the capacity of customizing
the structure of the checkpoint data to access the data
processing decoupled from the checkpoint library.

Intuitive API: Developers prefer using libraries and APIs
which they already know before investing their time to
learn a new specification. Consequently, we align our
extensions to the structure and functions of the HDF5
API, which is the file format that we use to achieve the
accessibility of the data.

B. API Specification

In this section we showcase the proposed API extensions.
We use a simple example to demonstrate how the extensions
can be used to structure the data inside the checkpoint file.
This will clarify i) how to organize the data for scientific
post-processing and visualization and ii) how to prepare the
application buffers to allow the elastic recovery.

1) Complex Data Representation: In our example, we sim-
ulate the movement of particles, in the 3-dimensional space,
that are exposed to a force. Each particle state is represented
by its position and velocity. The structure that defines a particle
is presented in Listing 1.

1 typedef struct coord_t {
2 double x,y,z;
3 } coord_t;
4

5 typedef struct particle_t{
6 coord_t position;
7 coord_t velocity;
8 } particle_t;

Listing 1: The particles data-type is represented by a structure with two
members, which are represented by the respective data-structures. This is an
example for a nested composite data-type. We explain how to expose this type
with our API in Listing 2.

Our interface provides mechanisms to describe complex
datasets of the application and store those to the checkpoint
file with the corresponding information about shape, type and
relationship. The first step is to expose the data-types of the
datasets to the checkpoint library. Besides the standard types



(integer, floating-point, char, etc.), which are predefined, the
user can define derived data-types that correspond to structures
or classes. Essentially, derived types are defined by calling
FTI_InitCompositeType to initialize a complex data-
type and by adding further information (members, names, etc.)
with calls to FTI_AddScalarField for scalar members
and FTI_AddVectorField for array members. Listing 2
shows this in detail for the particle type from Listing 1. Since
the members of this type are also of a derived data-type, we
need to expose this type first.

1 fti_id_t FTI_COORD = FTI_InitCompositeType("COORD",
sizeof(coord_t), NULL);

2 FTI_AddScalarField(FTI_COORD, "X", FTI_DBLE,
offsetof(coord_t, x));

3 FTI_AddScalarField(FTI_COORD, "Y", FTI_DBLE,
offsetof(coord_t, y));

4 FTI_AddScalarField(FTI_COORD, "Z", FTI_DBLE,
offsetof(coord_t, z));

5

6 fti_id_t FTI_PARTICLE = FTI_InitCompositeType("PARTICLE",
sizeof(particle_t), NULL);

7 FTI_AddScalarField(FTI_PARTICLE, "POSITION", FTI_COORD,
offsetof(particle_t, position));

8 FTI_AddScalarField(FTI_PARTICLE, "VELOCITY", FTI_COORD,
offsetof(particle_t, velocity));

Listing 2: To expose the nested particle data-type from Listing 1,
we need to expose the coordinate type first. Composite data-types are
defined with FTI_InitCompositeType. Their members are added with
FTI_AddScalarField (or FTI_AddVectorField for array members).

2) Accessibility of the Data: Now that the data-types are
exposed, the next step is to define the global dataset representa-
tion. Listing 3 shows all the necessary steps to take. The prop-
erties of a global dataset are the name, the location in the file
(parent group) and the dimensions. Those properties can be de-
fined using the function FTI_DefineGlobalDataset().
The global dataset in our example is the superset of all the
particles before the domain decomposition. Once the global
dataset is defined, every process needs to define its proportion
(i.e. subset) of the dataset. A subset is sufficiently described
by its coordinates relative to the global dataset and the number
of elements in each coordinate direction. Variables such as the
iteration counter or communicator size, which take the same
value on all ranks can be defined in the same way. In that case,
the values for count and offset need to be identical on all MPI
ranks. The dimensions of the global dataset in our example
are represented by the 3 variables gX, gY and gZ, whereas
the dimension of the subsets for each process are represented
by the variables lX, lY and lZ.

1 lX = gX;
2 lY = gY;
3 lZ = gZ/nbProcs;
4

5 size_t MEMSIZE = lx*ly*lz*sizeof(particle_t);
6 particle_t *particles = (particle_t*)malloc( MEMSIZE );
7

8 int globalDim = {gZ, gY, gX};
9 size_t offset[3] = {0, 0, rank*lZ};

10 size_t count[3] = {lZ, lY, lX};
11

12 FTIT_H5Group GRID;
13 FTI_InitGroup(&GRID, "GRID", NULL);
14

15 int VAR_ID_PARTICLES = 0;
16 int DATASET_ID_PARTICLES = 0;
17

18 FTI_DefineGlobalDataset(DATASET_ID_PARTICLES, 3,
globalDim, "PARTICLES", &GRID, FTI_PARTICLE);

19 FTI_Protect(VAR_ID_PARTICLES, particles, lX*lY*lZ,
FTI_PARTICLE);

20 FTI_AddSubset(VAR_ID_PARTICLES, 3, offset, count,
DATASET_ID_PARTICLES);

Listing 3: In this example, we create an HDF5 group GRID to show how to
create a hierarchy in the checkpoint file. The particle dataset is then added to
this group. Further, we define the global dimensions of the dataset (line 15)
and specify the process local region inside the dataset (line 17) according to
the domain decomposition (here we merely partition along the z-axis.)

C. Scientific Processing of the Checkpoint Files

The underlying file format of our implementation is HDF5,
however, the proposed mechanism works as well with other
formats such as parallel netCDF [20] or ADIOS. We imple-
mented functions to enable HDF5 features such as named
groups and named datasets allowing to structure the data inside
the checkpoint file. Reading the data from the checkpoint file
is straightforward, as the developer has defined the structure
of the HDF5 checkpoint file by himself. Consequently, the
data can be extracted and further processed using third-party
scripts/tools that provide an interface to HDF5.

D. Elastic restart

After defining the global view of the problem, all necessary
information is available for the checkpoint library to perform
an elastic restart. Upon recovery the CR library automatically
determines, which data share needs to be assigned to which
rank in order to perform the elastic recovery and continue the
execution on a different number of processes. What remains,
is to indicate a global checkpoint by passing the level flag
FTI_L4_H5_SINGLE to FTI_Checkpoint().

E. Checkpoint Strategies

1 int iter;
2 for (iter=1; iter<=MAX_ITER; iter++){
3 if( FTI_Status() != 0 ) FTI_Recover();
4 else if(iter%8000==0) FTI_Checkpoint(iter,

FTI_L4_H5_SINGLE);
5 else if(iter%4000==0) FTI_Checkpoint(iter, FTI_L3);
6 else if(iter%2000==0) FTI_Checkpoint(iter, FTI_L2);
7 else if(iter%1000==0) FTI_Checkpoint(iter, FTI_L1);
8 simulateSystem(grid);
9 }

Listing 4: Example of a simple checkpoint strategy that combines
checkpointing into a shared HDF5 file with other levels of reliability. Higher
levels are preferred. The recovery is performed automatically upon restart.

It is important to emphasize, that our extensions are meant to
be used along the native features of the library. The resiliency
strategy should comprise a combination of all reliability levels
available. Most of the CR libraries provide very fast and highly
scalable checkpoint levels (e.g. in memory checkpointing,
leveraging local NVMe’s, etc.) which are suitable to perform
checkpoints with high frequency. At the same time, the ap-
plications may not need to write data for analyses that often.
Typically, the best strategy deploys a mixture of all levels.
Listing 4 shows an example of a simple checkpoint strategy
that uses 4 different levels of reliability.
F. Asynchronous Checkpoint

The global HDF5 checkpoint creation can be divided into
two stages. Initially, the application processes store the data



to fast local storage on the nodes (stage 1). Afterwards, the
local files are merged to a shared file on the PFS in the
background (stage 2). This method is called asynchronous
checkpointing, because the second stage is performed asyn-
chronously to the application by one dedicated MPI process
per node. The structure of the shared file will be the same as
in the synchronous mode as defined by the user with our API
extensions. We implemented this functionality in alignment
to the pre-existing FTI head feature. When operating in this
mode, the job allocation has to be extended by 1 process per
node, since the feature does not use spawned but integrated
MPI processes.

IV. METHODOLOGY

A. Analytical Modeling and Metrics

To evaluate the techniques proposed in this paper we use
an analytical model that provides a clear definition of the
checkpoint and recovery overheads. To measure and estimate
the overheads of our implementation we performed executions
within the following scenarios:
S0: The application is executed without any fault tolerance

support, consequently this is the execution time of the
application alone.

S1: The application is protected and performs Nckpt check-
points during execution.

S2: This scenario is the same as S1, except that the execution
is interrupted by a failure and the recovery.

By subtracting the execution time of S0, T (S0), from the
execution time of S1, T (S1), we can determine the total
checkpoint overhead as:

∆Tckpt = T (S1) − T (S0) (1)

Equivalently, we get the total recovery overhead by subtracting
S1 from S2:

∆Treco = T (S2) − T (S1) (2)

The average overhead per checkpoint, becomes:

tckpt = ∆Tckpt/Nckpt. (3)

and the time for the interrupt and recovery becomes:

treco = ∆Treco − Trecompute (4)

where we have subtracted the time spent in recomputations
from the total recovery overhead.

To provide a normalized quantity to compare between
measurements for different scales and applications, we use
the relative checkpointing overhead, and the relative recovery
overhead:

δckpt =
tckpt

topt
, relative checkpointing overhead (5)

δreco =
treco

tmtbf
, relative recovery overhead (6)

where tmtbf corresponds to the MTBF and topt =
√

2tckpttmtbf
to the optimal checkpointing interval as suggested in [37].

The relative overheads defined as in equations 5 and 6, are
parametrized by the three quantities tmtbf, tckpt, and treco. Let
Texp be the expected time to completion of the application
without protection and failures (for instance, Texp = T (S0) in
our experiments). Once tmtbf, tckpt, and treco are determined,
one can predict the absolute checkpoint overhead of an exper-
iment on any cluster using:

∆Ttot = (δckpt + δreco)Texp + ∆Tcorr (7)

where:

δckptTexp =
Texp

topt
tckpt = Nckpttckpt = ∆Tckpt

and:

δrecoTexp =
Texp

tmtbf
treco = Nfailtreco = ∆Treco

With this, equation 7 gets simply:

∆Ttot = ∆Tckpt + ∆Treco + ∆Tcorr.

∆Tcorr is a correction accounting for the re-executions when
rolling back to a checkpoint after a failure and the additional
overhead, if the difference between the total execution time
and the expected time-to-completion exceeds the MTBF.

B. Checkpoint and Restart Strategies
In addition to clear analytical metrics, it is important to

evaluate all the relevant configurations, both for checkpointing
and restart. To evaluate the performance of our new check-
point implementation, we have tested it against the traditional
checkpointing mechanism that generates one file per process.
Experiments that use the traditional interface are labeled with
Trad and experiments leveraging the new implementation
are labeled with Novel. Each mode, in turn, was measured
with two different configurations for checkpoint and recovery.
The checkpoint configurations are labeled Sync and Async
and denote respectively synchronous and asynchronous check-
pointing. The recovery configurations are labeled Off and On
and denote respectively offline and online recovery.

For asynchronous checkpointing the CR library leverages
dedicated checkpoint processes. In that case, the checkpoint
is separated into a pre- and post-processing stage. During the
pre-processing stage, the checkpoint data is stored to local stor-
age such as DRAM, non-volatile memory (NVMe) or solid-
state drives (SSD) on the compute-nodes. During the post-
processing, the local files are converted into levels of higher
reliability, leveraging the dedicated checkpoint processes. The
second stage happens in parallel to the application, i.e.,
asynchronously. In contrast, for synchronous checkpointing the
application processes perform both stages sequentially.

Online recovery refers to the recovery without termination
of the application upon failure. This becomes possible using
ULFM, Re-Init or another flavor of resilient MPI (See Sec-
tion II-A2). The recovery takes place on the remaining pro-
cesses during runtime. In offline recovery on the contrary, the
application is terminated upon failure and restarted afterward
to perform the recovery of the execution. We have listed the
various configurations and their labels in Table I.



File Format Checkpoint Methodology Recovery methodology

Trad Traditional interface, binary file format
(N-N)

Sync Checkpoint post-processing by the ap-
plication processes

Off Offline recovery; application terminates
upon failure.

Novel Checkpointing into shared HDF5
file (N-1) for independent data post-
processing and elastic restarts

Async Checkpoint post-processing by the ded-
icated processes

On Online recovery; application stays alive
upon failure, reinitialization and restart
with remaining processes.

TABLE I: Different C/R scenarios tested in the evaluation section with respect to the file format, the checkpoint method and the recovery method.

C. Applications

We want to study how the techniques proposed in this paper
can be applied to different types of applications. The HPC
ecosystem has a wide spectrum of scientific codes, some of
them are based on regular static grids that are easy to work
with, while others are more irregular and significantly harder
to work with. This complexity has an impact on both the
checkpoint and the restart. Therefore, we must analyze both
sides of the spectrum to have a complete picture.

1) Heat2D: Heat2D is a 2-dimensional stencil C++ appli-
cation simulating a heat distribution process in a chamber. It
operates on a 1-dimensional domain decomposition. The body
of the application is arranged in three parts 1) initialization
2) mainloop 3) finalization. This structure is very common for
HPC applications. In spite of its simplicity, the application is
a good representative of many HPC codes (i.e., stencils) and
a good test case for an elastic restart with fewer processes on
an online recovery scenario (Novel/On).

2) xPic: xPic is a particle in cell (PIC) application for
space plasma simulations. It is derived from the iPIC3D
code [31]. It studies charged particle streams propagating
inside the magnetic field of the earth (i.e., space weather) [1].
The simulation space is decomposed into a 3-dimensional grid
of cells and each cell is initialized with a certain amount
of particles at the beginning. The number of cells for each
direction is customizable as is the number of particles per cell.
The electric and magnetic fields are discretized and defined at
fixed grid points (nodes). On the contrary, the particle positions
are continuous and the particles can move between the cells of
the grid. As a consequence, the number of elements per cell
is constant for the field arrays, but not for the particle arrays.
This poses a challenge for the elastic restart.

The grid is partitioned into cells as its smallest unit. The
field values on the nodes form a 3-dimensional array. Each
rank operates on a sub-volume of the grid, dictated by the
MPI decomposition. The global field data in the checkpoint
file is organized in row-major data-alignment (3D to 1D
mapping). Writing the fields is straight-forward and every rank
can determine the offset and count of the data in the file
independently. The same applies to the recovery. Every rank
can determine the offset and count corresponding to the current
decomposition due to the fixed number of nodes. This does
not apply to the particles. Given that particles move around
the grid during the execution, the number of particles per cell
varies, thus, at checkpoint time the ranks cannot know the
offset in the shared file without communication among the
other ranks. Even more challenging is the recovery in that case.

Similar challenges are faced by general IO libraries, as the
user has to hand-code some application-specific sections that
are hard to handle automatically (e.g., particle redistribution
upon recovery). Thus, xPic is a good example of an irregular
application to evaluate the generality of the techniques pro-
posed in this paper. We will come back to this in section V-G,
where we discuss the elastic restart for irregular applications.

V. EVALUATION

In this section, we evaluate the performance of our im-
plementation V-B, compare to the state-of-the-art IO library
(ADIOS) V-C, and demonstrate its scalability V-D. We in-
vestigate the benefits of online recovery V-E, and evaluate
the overhead that is imposed due to the increased execution
time when restarting with fewer processes V-F. Finally, we
analyse some of the challenges of elastic restart on irregular
applications and we demonstrate some solutions to achieve
good performance for both checkpoint and restart V-G.

A. HPC Environment

All experiments are performed on MareNostrum IV, the su-
percomputer at the Barcelona Supercomputing Center (BSC).
Each compute node is equipped with 2 Intel Xeon Platinum
CPUs (24 cores each), 12x8 GB DDR4 main memory, a
100Gbit network and 10Gbit ethernet to the PFS [30]. All
local checkpoints are performed in-memory, using the node-
local RAM Drive (/dev/shm).

B. Performance Measurements

Recent studies show that modern HPC systems have several
failures per day [16], [32], consequently, we set MTBF in
equations 5 and 6 equal to 6 hours. This choice corresponds to
the estimated MTBF when the application uses 15K cores [9].
Our evaluation uses the methodology presented in Section IV
and the evaluation parameters are presented in Table II.

Evaluation Parameters xPic Heat2D

Nodes 16 16
MPI-processes per Node 12 47
Threads Per Rank 3 1
CP size per Node (GB) 11 18
Num of MPI-ranks 192 752
Total CP size (GB) 176 288

TABLE II: Configuration and scale for the benchmark experiments.

Table III lists the outcome of our measurements for both
applications and Figure 1c shows the results in greater detail.
As we can see, most of the overhead during the recovery
for xPic comes from the re-distribution of the particles (we



will analyse this in Section V-G). However, in both cases,
the overhead for recovery and checkpointing is very low.
The total relative overhead (i.e., checkpoint and recovery)
exposed by our implementation (Novel) varies from 0.61%
(Heat2D/Async) to 2.99% (xPic/Sync). Compared to the tra-
ditional interface (Trad), we achieve slightly higher values
in the synchronous case and slightly lower values in the
asynchronous case1. With the help of equation 7 we can
now estimate the maximal and minimal overhead for a 12h-
execution (i.e., Texp = 12 h):

∆Ttot ≈

{
22 minutes (Synchronous)
4 minutes (Asynchronous)

In Section V-G we will see, that we can reduce the recovery
overhead for xPic even further by avoiding the re-distribution
of the particles upon the restart.

δckpt [%] δreco [%]

xPic Heat2D xPic Heat2D

Trad Sync 1.56 1.81 0.09 0.15
Async 0.95 1.03 0.11 0.09

Novel Sync 2.40 2.12 0.59 0.05
Async 0.80 0.57 0.61 0.04

TABLE III: Results for the relative CR overheads.

Overall, these results demonstrate that the new technique
proposed in this article performs comparably well to the state-
of-the-art multilevel checkpoint techniques that leverage the
local storage of current deep-memory architectures. The over-
head imposed on both applications is extremely low (< 1.5%)
when applying asynchronous post-processing.

C. Comparison to ADIOS

After comparing the performance of the novel interface to
the traditional interface within the CR library, we compared
it to the asynchronous staging feature (SST) of ADIOS.
The feature leverages fast memory buffers and RDMA to
stage the files though the network. The shared HDF5 file is
created in the background by several dedicated processes, after
receiving the checkpoint data from the application processes.
This feature is similar to the asynchronous case that we have
explained before (See Section II-A1). ADIOS can also stage
the files through node memory, however, this doesn’t match
the functionality of our interface, since the consolidation of
the node-local data needs additional steps to be taken care of
manually. The consolidation of the data in our implementation,
however, is part of the runtime and is transparent for the
developer. Thus, the fair comparison is to the ADIOS solution
that stages and consolidate the files transparently, which is the
solution that stages over the network using RDMA. ADIOS
allows to allocate an arbitrary amount of dedicated processes,
which can as well be located on a separate set of nodes. Due to
hard-coded limitations in the buffer size per dedicated process,

1The latter one results from the fact that the new technique does not create
metadata files, or checksums for integrity checks.

we needed to allocate as many staging processes as application
processes. This is a disadvantage if the total number of
processes in the allocation is limited. In our implementation,
the number of dedicated staging processes is fixed, however,
occupies only 1 process per node.

tckpt (sec) treco (sec) Bandwidth (GB/s)

Novel Sync 19.7 22.6 14.6
Async 0.92 6.9 157.9

ADIOS Sync 18.9 21.4 15.2
Async 5.14 10.4 28.2

TABLE IV: The resulting values for the relative CR overheads for N-1 (shared
HDF5 file on PFS). Comparison between our proposal and ADIOS.

Overall, the flexibility of ADIOS’ staging feature did not
match the performance of our asynchronous checkpoint im-
plementation. Table IV summarizes the results of our mea-
surements. Writing directly to the PFS (Sync) does not show
any significant difference in performance between the two
libraries. When staging the data though (Async), we achieve a
significant performance advantage. Our implementation is over
five times faster, writing the checkpoint files asynchronously,
which could be considered as a 5x increase in terms of
bandwidth. This difference is mostly because ADIOS stages
the data over the network, hence, with more effort on de-
velopers side, as mentioned earlier, this gap could be closed.
An important takeaway from this experiment is that with our
interface, we achieve very high performance with little effort
for the developer, compared to other IO libraries.

D. Scaling

We demonstrated the overall low overhead of our imple-
mentation and its high performance in comparison to a state-
of-the-art IO library. Now we want to study its scalability.
We performed experiments that vary the checkpoint load per
process (similar to strong scaling) and experiments that vary
the total checkpoint size, but keep the size per process constant
(weak scaling).

1) Strong Scaling: Figure 1a shows the outcome of the
strong scaling experiments. A weighted linear regression
model on the data allows an estimation for higher loads.
If we consider, for instance, 1GB per process, we obtain
relative checkpointing overheads for Novel/Sync of about 4%
and Novel/Async of about 1.3%. Both cases show that the
overhead remains low even while increasing the amount of
data per process.

2) Weak Scaling: Figure 1b shows the results of the weak
scaling experiments. We performed experiments on 16, 32,
64 and 128 nodes and 47 processes on each node, while
keeping the checkpoint data per process constant. We can see
that the overhead for the synchronous checkpointing (Sync)
increases linearly with the number of processes. The overhead
for the asynchronous checkpointing (Async) on the other
hand, remains practically constant. Using again a weighted
linear regression model, we can estimate the overheads for
higher scaled runs. The overheads for runs with 15K processes



(a) (b) (c)

Fig. 1: (a) Relative checkpoint overhead for our new extensions for varying checkpoint data per process (strong scaling) and (b) for varying number of nodes
and constant checkpoint data per process (Weak scaling). (c) Top: Relative checkpoint overhead. Bottom: Relative recovery overhead. For xPic we separated
the recovery overhead into read and re-distribution of the particles.The difference in latency between online and offline recovery depending on the number of
nodes.

estimate to 3.1% and 0.6% respectively. The constant behav-
ior of the asynchronous checkpointing is expected since the
checkpoints are performed on each node independently. Thus,
as the number of nodes increases the bandwidth increases
together with the global amount of data.

E. Offline vs Online Elastic Recovery

The checkpoint technique introduced in this paper opens
new opportunities, such as automatic elastic online recovery
on a reduced number of processes. This can be achieved
using our interface in combination with any fault tolerant
MPI implementation. For the experiments of this section, we
implemented elastic online recovery in Heat2D using ULFM.

To get notified upon a process failure, we set the standard
MPI error handler to MPI_ERRORS_THROW. In addition to
that, we wrapped the computation block (99.99% of the
execution time) of the main loop inside a try-catch statement.
Controlled failure injection takes place within the computation
block. After the failure injection, the affected processes termi-
nate execution and the surviving processes throw an exception
and call a customized handler. Inside the handler, the processes
invoke the ULFM function MPIX_Comm_shrink which
excludes the failed processes from the MPI communicator. The
remaining processes are then rolled back to the last checkpoint
and continue execution.

The experiments use the same scale as the benchmarking
experiments from section V-B (Table II). We simulated the loss
of 1 node and then restarted on the remaining 15 nodes using
either online recovery (On) or offline recovery (Off). Figure 2a
shows the time difference between the both methods (x-axis
uses a logarithmic scale!). As expected, online recovery is
faster than offline recovery (and this is assuming an immediate
restart of the job). We can see that the effect is noticeable
already at a small scale. Towards large executions, the effect
becomes ever more important. Applying a linear model, we
can see that the effect doubles when we double the number
of nodes. The effect is likely to depend on the application

complexity and the initial memory allocation. That is to
say, the effect could be even more drastic for applications
with complex initialization processes. For the simple case of
Heat2d, we can estimate a difference of about 10 minutes
at a scale of 10K nodes (∼ 500K processes). If we consider
numerous failures and recoveries, which is expected to happen
at such scale, this is a significant overhead which can be
avoided applying online recovery.

F. Restart on a Reduced Number of Processes

An important effect to consider when restarting on a reduced
number of processes, is the increased iteration time due to
the higher workload per process. In this section, we analyse
the additional overhead resulting from such a situation. We
performed experiments on k = n − i nodes, where n = 50
and i = 0, . . . , 10. The baseline is T0, the iteration time at
k = 50. The additional relative overhead due to the reduced
number of nodes is defined as:

δiter,i =
Ti − T0
T0

. (8)

With this, the additional overhead, ∆Titer,k, after the k-th
recovery and the total additional overhead, ∆Titer,tot, become:

∆Titer,k = δiter,k · T0 (9)

∆Titer,tot =

F∑
k=0

δiter,k · T0 (10)

where F corresponds to the total number of failures during
the execution.

Figure 2b shows the result of these measurements. The y-
axis corresponds to δiter,i and the x-axis to the percentage
of failed nodes w.r.t. the initial number of nodes. Please note
that a loss of 20% of the nodes is very unrealistic. In practice,
we will be confronted with failures of less than 5%. A linear
regression up to 5% shows an almost direct proportional slope,
i.e. 1% loss corresponds to 1% overhead. Hence, assuming
a failure with maximal 5% of the nodes, We can express
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Fig. 2: (a) The difference in latency between online and offline recovery depending on the number of nodes. (b) Relative additional overhead for executions
on fewer nodes with constant total load. The x-axis shows the percentage of nodes lost upon failure. (c) Comparison of the 2 techniques (PP and PC) to
organize the particle data in the checkpoint file. Recovery on 16 nodes means recovery on the same number of nodes, whereas recovery on 15 nodes means
elastic recovery on a reduced number of nodes (i.e., simulates the loss of 1 node upon failure).

equation 10, the total additional overhead due to the reduced
number of nodes by:

δiter,k = 0.01 · nk, nk < 5% (11)

∆Titer,tot =

F∑
k=0

0.01 · nk · T0 (12)

Where nk is the percentage of nodes lost during the k-
th failure w.r.t. the initial number of nodes. Considering an
execution time of 15h and a MTBF of 6h, we can compute
an additional overhead of 7.2 minutes when losing 1% of the
nodes each failure (n1 = 1%, n2 = 2%). Assuming a loss
off 5% of the nodes each time (n1 = 5%, n2 = 10%), the
overhead reaches 36 minutes. Clearly the model we presented
is rather simple, and load balance issues could increase the
additional overhead. Nevertheless, a few extra minutes of
overhead is short in comparison to the time spent in a job
scheduler queue waiting for a new allocation.

G. Data Distribution on Irregular Applications

In section IV-C2, we mentioned the issue about the irreg-
ular number of particles per cell in xPic. Particles in xPic
move within the cells and MPI ranks process a continuously
changing number of particles. This poses a challenge for
elastic restart because it is not trivial to know where in the
file the particles of a process start and where they end with
respect to the other processes. Here we propose and analyse
the generality and performance benefits of two different data
layouts, i) per process (PP) and ii) per cell (PC).

The first layout (PP) is based on the number of particles
per process. This approach is oriented towards the best perfor-
mance while checkpointing. Before writing the particles, the
ranks communicate the number of particles they will write.
With this information, each rank computes its offset within
the global particle dataset and writes the particles accordingly.
No additional information is kept. Thus, upon recovery with
a different number of ranks, we have not enough information
to read the correct particles, that belong to the ranks, from the
file directly. Instead, upon restart, we divide the total number

of particles in the dataset by the number of ranks and read
from the dataset in equal parts. Afterward, we re-distribute
the particles among the ranks until all particles arrive at the
correct destination.

The second layout (PC) is based on the number of particles
per cell. This approach is oriented towards the best perfor-
mance upon recovery by eliminating the necessity of particle
re-distributions after the restart. Each rank writes the particles
according to a pre-defined decomposition to the global dataset.
The decomposition is aligned to the smallest grid units, the
cells. Additionally, we store the number of particles in each
cell at the time of the checkpoint. Upon restart, the ranks read
first the dataset that contains the particle number per cell and
with those, compute the file offset to directly read the correct
particles from the file.

We compare both methods in this section. To have a certain
grade of complexity, we performed the experiments on a cubic
grid (i.e., the number of cells is equal in each coordinate
direction). Table V summarizes the most important parameters.
Figure 2c shows a comparison between the two techniques.

Evaluation Parameters xPic

Nodes 16
MPI-processes per Node 32
Grid Dimensions 120x120x120
Number of Cells 2·106
Number of Particles 3·109
Accumulated CP size 280GB

TABLE V: Configuration for the measurements of the 2 different data
organization pattern in the checkpoint file for xPic.

As we can see, writing the data directly to the PFS (Sync)
imposes significantly more overhead for PC (210 seconds) than
for PP (18 seconds). This is because PC requires to write the
buffers occasionally discontinuous, which is not optimal for
the PFS. However, if we apply the asynchronous checkpoint
mechanism, the overhead of both techniques becomes almost
identical (2 and 3 seconds for PP and PC respectively). The
recovery, on the other hand, is much faster with PC, given
that the time spent in particle redistribution is completely



removed. Therefore, PP is faster at checkpointing because it
is somehow simplistic but that cost is paid at the restart. PC
is faster at restart because a significant effort is done during
checkpointing. This more cost, however, is hidden when using
asynchronous checkpointing. Hence, with our implementation
for the asynchronous write of the shared file, we can efficiently
perform elastic restarts in particle-in-cell applications as an
example for an irregular application.

VI. DISCUSSION

In this work we proposed API extensions and a runtime
to allow multilevel CR libraries to achieve both resilience
and general IO through a simple interface while guaranteeing
high performance. Nonetheless, it would be naive to think
that the proposed API could cover all the corner cases that
the entire HDF5 interface allow. For instance, we did not
implement HDF5 attributes and the API currently does not
offer the possibility to create strided datasets. We expect that
the limitations of the proposed API will become apparent with
time and practical application. However, the runtime that we
developed to consolidate the contributions of the ranks to the
shared file in the background, could be integrated into HDF5
directly. It could represent an alternative to the HDF5 subfiling
mechanism [6].

The asynchronous checkpoint tested in this work can be
applied to any multilevel CR and IO library. We implemented
the mechanism using dedicated MPI processes, yet it could
be adapted to threads or spawned processes. While IO li-
braries have generally focused more on staging through IO
nodes [3], [21], [33], recent deep storage hierarchies (i.e.,
NVME, 3DDRAM) are pushing toward solutions that leverage
the local storage, such we have presented in this work.

We demonstrated that elastic restart is viable at large scale,
and that we can reduce the overhead further using online
recovery. We evaluated the overhead when executing on a
reduced number of nodes and arrived to an acceptable value
compared to the alternative, which is, spending time in the
scheduler queue. It is important to highlight that elastic
restart is useful for other purposes different to resilience (e.g.,
malleability of ensemble runs), which increases the scope of
our proposal.

Finally, we analyzed the generality of our approach by
testing with a highly irregular application. This raised several
challenges and highlighted the trade-off between checkpoint
performance and restart performance. The first approach (PP)
was far more general and did not involve any application-
specific measure other than particle redistribution upon restart.
The second one (PC) is more application-specific but can
leverage the advantages proposed in this work to achieve both
fast checkpoint and fast recovery.

VII. RELATED WORK

The work in this article focusses on two aspects. The first
addresses the consolidation of multi-level checkpointing and
scientific IO, and the second addresses the elastic restart from
a different number of processes. Regarding the first aspect,

besides application-specific solutions, there are several IO-
libraries that can be used for resiliency as well as for scientific
IO. However, as we emphasized, there is no library combining
the virtues of both families optimized for both purposes.

Among the most important IO libraries are ADIOS,
SIONlib [14], netCDF and HDF5. From the libraries above,
ADIOS is the closer work to this paper. It allows asynchronous
staging to the PFS and node-local writes and provides with
those, valuable features that may be used to implement
resiliency in HPC applications. However, basic multilevel
techniques as for instance, partner checkpointing or encoded
checkpoint files are not available. The most important mul-
tilevel libraries such as FTI, SCR and VeloC do not always
provide access to their checkpoint files, as they sometimes
store the data into binary files and do not offer interfaces to
extract the data contained inside those files.

As for the other aspect of our proposal, the elastic restart,
several ways to continue the execution without the missing
processes have been proposed. Redundancy schemes [12],
context migration from checkpointed migratable objects [26]
or process migration using failure prediction [36] are some
of the examples. However, these techniques usually prescribe
certain conditions as, for instance, the allocation of shadow
nodes for proactive process migration and redundancy, or
performance loss when using over-subscription. Migratable
objects, such as used in Charm++ [27], need to be considered
at program creation as it requires the application to use a
specific programming language and code layout. Certainly,
there are other ways to allow for an elastic restart and resilient
scientific IO inside an application using an application-specific
solution. However, the method presented in this work can be
applied to a wide range of applications, with limited effort
from the developer.

VIII. CONCLUSION

We presented a novel checkpointing mechanism, that allows
an elastic restart to an arbitrary number of processes. We
extended a multilevel CR library with functions that allow
creating self-descriptive checkpoint files that can be used
for scientific IO and resilience. We demonstrated that the
checkpoint overhead of our method is comparable to multilevel
checkpoint techniques. We have shown that we can reduce the
overhead further with asynchronous checkpointing, showing
a negligible overhead of about 0.6% (at scale). We have
compared our technique with the state-of-the-art IO library
ADIOS, and demonstrated that our method is five times faster
when leveraging staging methods. We accomplished online
recovery using ULFM together with an elastic restart and
showed that it reduces significantly the latency at restart
compared to traditional offline recovery. Our analysis on the
iteration times at varying loads show that for the loss of
1% of the nodes, we can expect an additional overhead of
about 1%. We also analyzed the challenges raised by irregular
applications and their trade-offs regarding the performance at
checkpointing and recovery, and we have proposed methods
to solve those challenges.



IX. ACKNOWLEDGEMENTS

Part of the research presented here has received funding
from the Horizon 2020 (H2020) funding framework under
grant/award number: 824158; Energy oriented Centre of Ex-
cellence II (EoCoE-II). The present publication reflects only
the authors’ views. The European Commission is not liable
for any use that might be made of the information contained
therein. This work was partially performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract DEAC52-07NA2734 (LLNL-
CONF-811845).

REFERENCES

[1] ipic3d: implicit particle-in-cell code for space weather applications (kth).
[2] Ulfm 2.0, fault tolerance research hub, 2019.
[3] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten

Schwan, and Fang Zheng. Datastager: scalable data staging services for
petascale applications. Cluster Computing, 13(3):277–290, 2010.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. Fti: High performance fault
tolerance interface for hybrid systems. In SC ’11: Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, Nov 2011.

[5] Bigot, Julien, Latu, Guillaume, Cartier-Michaud, Thomas, Grandgirard,
Virginie, Passeron, Chantal, and Rozar, Fabien. An approach to increase
reliability of hpc simulation, application to the gysela5d code***.
ESAIM: Proc., 53:248–270, 2016.

[6] Suren Byna, Mohamad Chaarawi, Quincey Koziol, John Mainzer, and
Frank Willmore. Tuning hdf5 subfiling performance on parallel file
systems. 5 2017.

[7] Franck Cappello, Kathryn Mohror, and Bogdan Nicolae. Overview
veloc documentation, 2019. Available at https://veloc.readthedocs.io/
en/latest/.

[8] Sourav Chakraborty, Ignacio Laguna, Murali Emani, Kathryn Mohror,
Dhabaleswar K. Panda, Martin Schulz, and Hari Subramoni. Ere-
init: Scalable and efficient fault-tolerance for bulk-synchronous mpi
applications. Concurrency and Computation: Practice and Experience,
32(3):e4863, 2020. e4863 cpe.4863.

[9] Camille Coti. chapter Fault Tolerance Techniques for Distributed,
Parallel Applications, pages 221–252. IGI Global, Hershey, PA, USA,
2016.

[10] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel. Resilience-
aware resource management for exascale computing systems. IEEE
Transactions on Sustainable Computing, 3(4):332–345, 2018.

[11] Ifeanyi P Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A
survey of fault tolerance mechanisms and checkpoint/restart imple-
mentations for high performance computing systems. The Journal of
Supercomputing, 65(3):1302–1326, 2013.

[12] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Fer-
reira, and Christian Engelmann. Combining partial redundancy and
checkpointing for hpc. In 2012 IEEE 32nd International Conference
on Distributed Computing Systems, pages 615–626. IEEE, 2012.
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