
 Open access Proceedings Article DOI:10.1109/CCECE.1999.807240

Design and synthesis of an IEEE-754 exponential function — Source link

H. Bui, Sofiène Tahar

Institutions: Concordia University

Published on: 09 May 1999 - Canadian Conference on Electrical and Computer Engineering

Topics: Verilog, VHDL, Hardware description language, Floating-point unit and IEEE floating point

Related papers:

 Table-driven implementation of the exponential function in IEEE floating-point arithmetic

 FPGA-based implementation of a robust IEEE-754 exponential unit

 VHDL implementation of IEEE 754 floating point unit

 Verifying the Accuracy of Polynomial Approximations in HOL

 Floating Point Verification in HOL Light: The Exponential Function

Share this paper:

View more about this paper here: https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-
3de0cmcwdg

https://typeset.io/
https://www.doi.org/10.1109/CCECE.1999.807240
https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg
https://typeset.io/authors/h-bui-3wy9ar90rq
https://typeset.io/authors/sofiene-tahar-3ld224qi1r
https://typeset.io/institutions/concordia-university-1d2cs80a
https://typeset.io/conferences/canadian-conference-on-electrical-and-computer-engineering-2wa1fsmn
https://typeset.io/topics/verilog-bkgb9we7
https://typeset.io/topics/vhdl-2v01l69k
https://typeset.io/topics/hardware-description-language-1t8cwaju
https://typeset.io/topics/floating-point-unit-3jtk1ozt
https://typeset.io/topics/ieee-floating-point-3vcb9vr0
https://typeset.io/papers/table-driven-implementation-of-the-exponential-function-in-1ebg0bx3pa
https://typeset.io/papers/fpga-based-implementation-of-a-robust-ieee-754-exponential-28axt07z2p
https://typeset.io/papers/vhdl-implementation-of-ieee-754-floating-point-unit-5senh27ixa
https://typeset.io/papers/verifying-the-accuracy-of-polynomial-approximations-in-hol-5emkkxc1eq
https://typeset.io/papers/floating-point-verification-in-hol-light-the-exponential-5e14js3blo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg
https://twitter.com/intent/tweet?text=Design%20and%20synthesis%20of%20an%20IEEE-754%20exponential%20function&url=https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg
https://typeset.io/papers/design-and-synthesis-of-an-ieee-754-exponential-function-3de0cmcwdg

Design and Synthesis of an IEEE-754

Exponential Function

Hung Tien Bui andSo� �ene T ahar

Dept. of Electrical and Computer Engineering, Concordia Universit y

1455 De Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

Email: fh tbui, taharg@ece.concordia.ca

Abstract

This work aims at designing a o ating-point ex-

ponential function using the table-driven method.

The algorithm was �rst implemented using sequen-

tial VHDL and later translated to concurrent Verilo g.

The main part of the work consisted of creating mod-

ules that would handle basic IEEE-754 single preci-

sion number manipulation routines such as addition,

multiplication, and rounding to nearest integer. Us-

ing these routines, a model was implemented based on

the table-driven algorithm. The VHDL design, as well

as the V erilo gdesign, wer esimulated and the results

proved to be satisfactory. Synthesis was performed

using CMOSIS5 technology on the VHDL code and

yielde da fairly large result.

1 Introduction

The last tw odecades ha vebrought extraordinary

adv ances in numerical calculations. The improve-

ments in hardware and in execution speed ha ve con-

tributed to the great progress in mathematical calcu-

lation speed and accuracy. Along with these advances

came the development, in 1985, of a format that would

rev olutionize the world of science: the IEEE-754 single

and double precision formats [2]. The numbers repre-

sen ted under these formats, which are respectively 32

and 64 bits in length, have a greater range than their

2's complement counterparts. In the early days, there

w as no hardware a vailable to implement oating-point

arithmetics. The only way to perform these operations

w ouldbe to write softw areroutines. Unfortunately,

the creation of suc hprograms is rather complex and

is not a trivial task for most people. Furthermore, the

execution speed w ouldbe very slow when compared

to a hardware implementation.

The interest then shifted to hardware design of such

mathematical modules. The objective is to create

an integrated circuit that would handle the transcen-

den tal mathematical functions in the IEEE-754 single

and double precision formats. This paper outlines the

work that was put into creating the hardware imple-

mentation of an exponential function. The design of

the circuit was done using tw o di�erent hardware de-

scription languages, namely Verilog and VHDL. Al-

though the implementation was follo wing the algo-

rithm outlined in [5] and [3], several changes had to

be made to accommodate our single-precision imple-

mentation, in con trast to the reference, which used

double-precision operations.

2 Floating-Point Exponential Function

The table-driven implementation of the exponential

function used by Ping Tak Peter T ang [5] consists of

three main parts. The input value is �rst reduced to a

certain working range. A shifted exponential function

is then estimated using known polynomial approxima-

tions. Finally, the exponential function of the original

input is reconstructed using a certain formula.

FUNCTION

FLOATING-POINT

EXPONENTIAL
X EXP(X)

Figure 1: "Black-Box" Representation

Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering
Shaw Conference Center, Edmonton, Alberta, Canada May 9-12 1999

0-7803-5579-2/99/$10.00 1999 IEEE 450

Figure 1 depicts the black-bo x representation of the

oating-point exponential function. The input X can

be seen as being composed of many parts [5]:

x = (32 �m+ j) � (log2)=32+ (r1 + r2) (1)

where jr1+r2j � (log2)=64, m and j are integers, and

r1 and r2 are real numbers. Note that all logarithmic

functions are, in reality, natural logarithmic functions

(base e).

The polynomial approximation required is that of

exp(r) � 1 which can be expressed as a Taylor series.

p(r) = r + a1 � r2 + a2 � r3 + ::: (2)

where a1 and a2 are the coe�cients and r is the v ari-

able of the Taylor series.

The exponential function can then be reconstructed in

the follo wing manner starting from equation (1) and

equating r = r1 + r2:

x = (32 �m+ j) � (log2)=32+ r (3)

x = m � log2 + (j � log2)=32+ r (4)

exp(x) = exp((m � log2) + (j=32) � log2 + r) (5)

exp(x) = exp(log2m + log2j=32 + r) (6)

exp(x) = exp(log2m) � exp(log2j=32) � exp(r) (7)

exp(x) = 2m � 2j=32 � (p(r) + 1) (8)

exp(x) = 2m � (2j=32 + 2j=32 � p(r)) (9)

The objective of the algorithm would then be to isolate

m and j and �nd the coe�cients for the polynomial

(a1 and a2).

Figure 2 contains the algorithm written by John

Harrison [3] used in this implementation of the table-

driven method for the oating-point exponential func-

tion. The algorithm begins by chec king for exceptional

inputs. These are inputs for which the algorithm

w ould yield an incorrect or undetermined answer. Ex-

amples of these type of exceptions are NaN (not a

number), both in�nities, an upper limit for which the

output is positive in�nity and a low er limit for which

the output can be approximated by simple arithmetic

operation. If the input does not fall into one of the

Int 32 = Int(32)

Int 2e9 = Int(2 EXP 9)

Plus one = float(0, 127, 0)

THRESHOLD 1 = float(0, 134, 6066890)

THRESHOLD 2 = float(0, 102, 0)

Inv L = float(0, 132, 3713595)

L1 = float(0, 121, 3240448)

L2 = float(0, 102, 4177550)

A1 = float(0, 126, 68)

A2 = float(0, 124, 2796268)

var x:float, E:float, R1:float, R2:float,

R:float, P:float, Q:float,

S:float, E1:float, N:Int, N1:Int, N2:Int,

M:Int, J:Int;

if Isnan(X) then E:=X

else if X == Plus infinity then e:=

Plus infinity

else if X == Minus infinity then e:=

Plus zero

else if (abs(X) > THRESHOLD 1 then

if X > Plus zero then E := Plus infinity

else E := Plus zero

else if abs(X) < THRESHOLD 2 then E :=

Plus one + X

else

(N := INTRND(X * Inv L);

N2 := N % Int 32;

N1 := N - N2;

if abs(N) � Int 2e9 then

R1 := (X - Tofloat(N1) * L1) -

Tofloat(N2) * L1

else

R1 := X - Tofloat(N) * L1;

R2 := Tofloat(N) * L2;

M := N1 / Int 32;

J := N2;

R := R1 + R2;

Q := R * R (A1 + R * A2);

P := R1 + (R2 + Q);

S := S Lead(J) + S Trail(J);

E1 := S Lead(J) + (S Trail(J) + S * P);

E := Scalb(E1, M)

)

Figure 2: Exponential Function Algorithm

0-7803-5579-2/99/$10.00 1999 IEEE 451

previously mentioned categories, the program contin-

ues.

The next step is to calculate the values for m and

j. The required values can be obtained by �rst mul-

tiplying equation (1) by a value of 32=(log2), known

as INV L. P erforming these operations on equation

(1), we get

X�32=(log2) = (32�m+j)+(r1+r2)�32=(log2) (10)

Knowing that the value of (r1+r2)�32=(log2) cannot

exceed 0.5 (because r1+r2 � (log2)=64), the previous

equation can be approximated quite accurately by

INTEGER(X � 32=(log2)) = (32 �m+ j) (11)

The left hand side of this equation can easily be solved

and will be assigned the letter N . Using the modulo-

32 function, the values for (32 �m) and j, named N1

and N2, respectively, can be calculated with little or

no error.

Equation (11) can be rewritten as

N = N1 +N2 (12)

where N = INTEGER(X � 32=(log2)), N1 = 32 �m,

and N2 = j

The variables m and j can be derived from the previ-

ous results as follows:

m = N1=32 (13)

j = N2 (14)

With the value of N in hand, the value of r1 can be

calculated as follows [5]:

If the absolute value of N < 29

then

r1 = (X �N � L1) (15)

else
r1 = (X �N � L1)�N2 �L1 (16)

The value of r2 is obtained by

r2 = �N � L2 (17)

L1 and L2 are constants that can be added together

in order to approximate 32/(log 2). The reason for

separating the value into tw o constants is to increase

the accuracy to one that is higher than that of single

precision.

The sum of r1 and r2 will represent the scaling of

the input X to a value r in the interval [-(log 2)/64,

(log 2)/64]. Using the value of r in the T aylor series

(2), the function of exp(r) � 1 can be approximated.

For convenience purposes, only the �rst three elements

will be considered.

The following step consists of forming the T aylor

series which can be done in many w ays. The imple-

mented algorithm �rst calculated the second and third

order elements. The coe�cients a1 and a2 are con-

stants that w erecalculated by Ping Tak Peter T ang

using a Remez algorithm [5].

Examination of equation (9) reveals that only tw o

more values need to be calculated in order to obtain

the �nal result: 2m and 2j=32. The table-driven im-

plementation w asnamed so because of the fact that

the v alues for 2j=32, j ranging from 0 to 31, were cal-

culated beforehand and stored in a table. These num-

bers are broken do wn into tw oparts, namely s lead

and s trail, to increase the precision roughly by an or-

der of t w o.With these values known, the �nal result

can be determined, without di�culty, using equation

(9).

3 Hardware Implementation

The implementation of the algorithm, w as done

using tw o di�erent hardware description languages,

namely, V erilogand VHDL. The design constructed

using VHDL made use of the sequential mode in con-

trast to the Verilog implementation that used combi-

national logic. Both essentially implement the same

algorithm outlined in the previous section.

The VHDL and Verilog designs are composed of nu-

merous procedures that perform IEEE 754 operations.

These operations include the addition, multiplication,

division by 32, rounding to the nearest integer, mod-

ulo 32, comparison and powers of 2. These modules

w ere used as building blocks to construct the oating-

point exponential function (Figure 3). T o ensure that

the code is synthesizable, the program was made prim-

itive and the length was much greater than it needed

to be. A general description of each procedure follows.

Interested readers can refer to [1] for a more detailed

description.

3.1 Addition

The addition procedure covers both the addition

and the subtraction operations. The idea is mainly

the same for both but handling both cases together

is an added degree of complexity. The algorithm puts

both numbers to the same exponent, adds or subtracts

the numbers and then normalizes.

0-7803-5579-2/99/$10.00 1999 IEEE 452

ADDER

ADDER

 N - N2

ROUND MOD32

GET J
TABLE

LOOK UP
ADDER

ADDER
MULT

DIV32 2 POWER M

MULT

MULT

ADDER MULT

ADDER

MULT

ADDER

ADDER

MULT

COMP

ADDER

MULT

MULT

MULT

ADDER

ADDER

MULT

 N < 2^9

INV_L N

N2

J Strail

Slead

P

Strail
Slead

N

L2 R2

R1
A2

R

A1

P1

P

(-)

YES

NO

L1S

N1 M

R1

INPUT

N

N

L1S

L1S

N2

INPUT

INPUT

OUTPUT

R1

Figure 3: Block Diagram of the Hardware Implemen-

tation

The �rst part of the addition procedure chec ks

which input is greater. This is especially important

in cases where the inputs are of opposite signs. If the

inputs carry the same sign, the output sign will then

be the same. When the signs are di�erent, the input

with the greater magnitude will impose its sign. The

next step is to denormalize bothinputs and perform

the addition. How ev er, before going on to thatstep,

\01" has to be concatenated to both numbers. The

reason for this is that the 1 is the implied 1 contained

in the IEEE 754 format. The 0 is there to make sure

that the carry bit is not lost. Denormalizing is done by

right-shifting the smaller input by an amount deter-

mined by the di�erence in exponents. The exponent

is unbiased by removing 127 (\01111111") from its bi-

ased value. Addition is then performed normally and

the last part is normalizing. Normalization is done

using a list of IF-THEN-ELSE statements to k eep the

code simple. It would have been more convenient to

use FOR loops but the code would then be more dense

and signi�cantly more complex for later synthesis.

3.2 Multiplication

Multiplication is an operation that is quite straight-

forward. Its algorithm is divided into three main parts

corresponding to the three parts of the single precision

format. The �rst part, the sign, is determined by an

exclusive-OR function of the tw o input signs. The

exponent of the output, the second part, is calculated

by adding the tw oinput exponents. And �nally, the

signi�cand is determined by multiplying the two input

signi�cands each with a \1" concatenated toit. The

result obtained will have about twice as many bits as

the signi�cand should normally have and so, the result

will be truncated, normalized and the implied \1" will

be removed. The normalization process will be fairly

simple knowing that the multiplication of two 24 bit

numbers with a one at the most signi�cant bit position

will yield a result with a one at the most signi�cant

bit (bit 47) or at bit 46. Depending on the situation,

the result will either be shifted once or twice.

A t the beginning of the algorithm, there is an

IF statement that chec ks for exceptional cases where

there is a zero in at least one of the inputs. Since in-

puts such as \zero", \NaN" (Not a Number) and both

in�nities are determined by a speci�c bit pattern, they

have to be treated separately by the multiplication

procedure.

3.3 Division b y32

This function is only required to be used on a spe-

ci�c type of numbers: multiples of 32. Knowing this

fact, the procedure does not need to support all pos-

sible ranges of inputs. The operations performed can

be explained as follows: the algorithm will output zero

if the input exponent is less than �ve and will simply

subtract �ve from the exponent if it is not the case.

3.4 Round to Nearest Integer

The \Round to Nearest Integer" algorithm starts

by checking if the exponent is of the order of -2 or

less. This would result in an output of zero. The

second case is to chec k if the exponent is -1 in which

case the output would be equal to 1. These are tw o

special situations that deal with negative exponents

since the main algorithm cannot handle these cases.

The basic idea here is to verify the bit at the 0.5

position. If the bit is set, the decimal positions are

�lled with zero and we add one to the resulting integer.

If the bit is reset, the bits located to the right of the

decimal point will be reset. T oaccomplish this, the

input is �rst shifted righ t by a number of positions

corresponding to the exponent (so that all the fraction

bits are shifted out). The number obtained should be

an integer. This number is then incremented by one

if the bit at 0.5 is set else it should be left the same.

3.5 Modulo 32

Modulo 32 isan operation that is done by simply

taking the �ve �rst bits located to the left of the dec-

imal point. The result will then be an unsigned 5-bit

0-7803-5579-2/99/$10.00 1999 IEEE 453

in teger that will have to be converted to single preci-

sion format.

The procedure is somewhat similar to that of

rounding to the nearest in teger. The input is �rst

shifted right by the number of bits corresponding to

the exponent. The result is then ANDed with the

\11111" bit pattern in order to isolate the �v ebits.

The conversion process checks where the �rst 1 is lo-

cated starting from the most signi�cant position. An

exponent is then assigned accordingly and the result is

shifted left to comply with the rules of normalization.

3.6 Comparison

Unlike the other procedures, the comparison does

not output a number in the IEEE 754 format. In-

stead, it generates three bits that give a comparative

indication of the size of the �rst input with respect to

the second input. If the �rst input is greater than the

second one, then the most signi�cant bit is set. If the

second input is greater than the �rst, then it is the

least signi�cant bit that is set. If the tw o inputs are

equal then the middle bit is set. Only one bit can be

set at any given time.

3.7 Powers of Two

The powers of tw o function can be implemented b y

realizing that the value of the input is the value of

the output exponent. F or example, placing four as an

input would result in tw o to the pow er of four, yield-

ing four in the exponent �eld. The objective of the

function would then be to convert the input, being an

IEEE 754 number, to a 2's complement number. The

bias of 127 would then be added to the result and the

sum would be placed in the exponent �eld. The sign

and signi�cand �elds will be �lled with zeros because

the result will always be positiv eand will always be

an integer multiple of two.

3.8 Get J

The current implementation of the exponential cir-

cuit uses the table-driven approach. The table index

should ideally be an unsigned integer to make the

searc h easier. The "Get J" procedure tak es care of

this. It takes a n umber in the single-precision format

and transforms it to an unsigned number. The pro-

cedure examines the exponent and extracts the corre-

sponding bits from the signi�cand. Using an unsigned

number for the search makes the task of �nding a cor-

rect v alue for S easier (refer to the algorithm described

in Figure 2).

3.9 Modi�cations and Remarks

The algorithm described by Ping Tak Peter T ang

[5] used single precision in combination with double

precision in order to achiev ebetter accuracy. The

work presented here does not coverdouble precision

calculation and thus, sev eral changes have been made

made.

The beginning of the algorithm contains a multi-

tude of IF statements chec king for special case consid-

erations. One of those cases is an upper limit threshold

beyond which the output goes to in�nity. The second

case is a low er limit threshold that chec ks to see if the

input is low enough for the following approximation

to hold: OUTPUT = 1 + INPUT. The low erlimit

can be left the same without any major consequences.

How ever, the algorithm overows for inputs far smaller

than the upper limit and thus, the boundary had to

be changed. The value for Threshold 1 w as modi�ed

to 89 from its initial value of about 220.

In addition, modi�cations had to be made to the

modulo-32 function which operates di�erently with

negative numbers. The algorithm needs the output

of this function to be positive and so, negative results

will have 32 added to them.

4 Simulation and Synthesis Results

After implementing the algorithm, the next step is

to v erify the accuracy of the outputs. The veri�cation

is done by comparing the expected results obtained

using a normal calculator to the output generated by

the implemented algorithm.

The analysis was performed on 20 test vectors cov-

ering a widely-used range of inputs. The results ob-

tained are tabulated in Table 1. As it can be seen,

the outputs di�er from the expected results by only a

small margin. These errors can be attributed to dif-

feren t factors that include errors in reduction, errors

in approximation and rounding errors. Errors in re-

duction occur because of the mapping of the input to

a range of values r betw een (log2)=64. The approxi-

mation errors are present because of the use of only

the �rst three elements in the T aylor series to calcu-

late the er � 1 function. The rounding errors are due

to the many cases where numbers had to be rounded

because single precision did not provide enough accu-

racy .A more detailed analysis is described in the work

of Ping Tak Peter T ang [5].The numbers given there

are how ev er notapplicable here because this project

does not cover double precision arithmetics.

0-7803-5579-2/99/$10.00 1999 IEEE 454

Input Output Expected

+1 +1 +1

-1 0 0

Nan Nan NaN

0 1.0 1.0

0.25 1.284025430 1.284025417

0.5 1.648721218 1.648721271

1 2.718281745 2.718281828

2 7.389055728 7.389056099

5 148.4131622 148.4131591

10 22026.46679 22026.46579

15 3269017.25 3269017.372

20 485165184.0 485165195.4

-0.25 0.778800726 0.778800783

-0.5 0.606530666 0.606530659

-1 0.36787945 0.367879441

-2 0.135335296 0.135335283

-5 6.737946531E-3 6.737946999E-3

-10 4.539992731E-5 4.539992976E-5

-15 3.059023469E-7 3.059023205E-7

-20 2.061153691E-9 2.061153622E-9

T able 1:Simulation Results

Using the RTL design of the Exponential F unc-

tion described in previous sections, synthesis was per-

formed using CMOSIS5 technology on the VHDL code

and yielded a fairly large result. This can be at-

tributed to the fact that no size restrictions were set

in order to accelerate the process. T able 2 shows the

results obtained using Synopsys.

Number of Ports 64

Number of Nets 15944

Number of Cells 14627

Combinational Area 14810490

Noncombinational Area 47929

T otal Cell Area 14858419

T able 2:Synthesis Results

In T able2, cells refer to the number of standard

cells that the design uses, whereas nets refer to in-

terconnects (internal input/output wires). All area

measures are given in square microns.

5 Conclusions

This paper describes the functionality of the

oating-point exponential function from the inside. It

presents a general view of the building blocks that

constitute the design. Two RTL models were cre-

ated using VHDL and V erilogand both w eresimu-

lated, showing satisfactory results. The VHDL design

w as successfully synthesized and this becomes a good

working element for future research.

Even though the contribution made by this w ork

is substantial, there is still a lot of room left for im-

provement in terms of accuracy and compactness of

the code. Most modi�cations will, how ever, not have

a great impact on the performance of the design. As a

�nished product, this project seems promising in that

it can be integrated along with other similar modules

to form a transcendental mathematical unit.

Using the syn thesized design, veri�cation proce-

dures can be made to formally verify the di�erent lev-

els of abstraction and eventually, check if the RTL im-

plementation implies the high-level speci�cation. The

process of formally verifying the algorithm described

in [5] has previously been targeted by John Harrison

[3]. He used a version of the HOL prover, namely HOL

Light [4], to perform this veri�cation at a high lev el

of abstraction. In contrast to this, w eaim a low er

level v eri�cation that the implementation implies the

algorithm.

References

[1] Hung Tien Bui, Bashar Khalaf and So��ene Tahar.

T able-Driven Floating-Point Exponential F unc-

tion. T echnicalReport. Department of Electri-

cal and Computer Engineering, Concordia Uni-

versity, Montreal, Canada, October 1998

[2] IEEE Standard for Binary Floating Point Arith-

metic. ANSI/IEEE Standard 754-1985. The In-

stitute of Electrical and Electronic Engineers, Inc.

[3] John Harrison. Floating-Poin t Veri�cation in

HOL Light: The Exponential F unction. T ech-

nical Report No. 428, University of Cambridge

Computer Laboratory, UK, June 1997.

[4] John Harrison. HOL Light: A Tutorial Introduc-

tion. Srivas, M. and Camilleri, A. (eds), F or-

mal Methods in Computer-Aided Design , V ol-

ume 1166 of Lectures Notes in Computer Science,

Spinger-Verlag, 1996, pp. 265-269.

[5] Ping T akP eterTang. T able-Driven Implemen-

tation of the Exponential F unction in IEEE

Floating-Poin t Arithmetic. ACM T ransactions

on Mathematical Software, Vol. 15, No. 2, 1989.

0-7803-5579-2/99/$10.00 1999 IEEE 455

