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Abstract. This paper describes a single precision floating point division based on Newton-Raphson computational 
division algorithm. The Newton-Raphson computational algorithm is implemented using 32-bit floating point multi-
plier and subtractor. The salient feature of this proposed design is that the module for computing mantissa in 32-
floating point multiplier is designed using a 24-bit Vedic multiplication (Urdhva-triyakbhyam-sutra) technique. 32-bit 
floating point multiplier, designed using Vedic multiplication technique, yields a higher computational speed, hence, 
is efficiently used in floating point divider. Another important feature is the efficient use of device utilization parame-
ters and reduced power consumption. An advantage of the Newton-Raphson algorithm is the higher versatility and 
precision. For representing 32-bit floating point numbers, IEEE 754 standard format is used. ISim simulator is used 
for simulation. The proposed floating point divider is designed using Verilog Hardware Description Language (HDL) 
and is verified on Xilinx Spartan 6 SP605 Evaluation Platform FPGA.  

 
 

1 Introduction  
The role of a reconfigurable processor in embedded 
system design has increased greatly from the past 
decades. Due to the advancement of field programmable 
gate array (FPGA), we have reached a point where the 
architecture of processors can be modified 
instantaneously. Reconfigurable computing processing 
provides very versatile high-speed computing.  The 
enhanced feature of Spartan-6 voluntarily reduces the 
cost per logic cell designed. Newton-Raphson 
computational algorithm requires mathematical 
operations such as, multiplication and subtraction. Here, 
mathematical operations used to find the reciprocal of the 
denominator (D) and multiply that reciprocal by the 
numerator (N) to find the final quotient (Q). Newton-
Raphson computational algorithm initializes with an 
approximation close to the final value of the quotient (Q) 
and produces twice as many digits of the final quotient 
after each iteration. An iterative process which is based 
on complex operation used for division in many signal-
processing algorithms, where not only precision to be 
maintained, but also the precision is to be maintained for 
very large data intervals and should be high for better 
operation. This can be achieved by the design and 
implementation of floating point division by using 
Newton-Raphson algorithms. Several different 
algorithms described in literature [1-3]. The Newton-
Raphson algorithm computes three multiplicative inverse 
at the same time to provide high throughput [4]. To 
implement and design 32-bit floating point division based 
on Newton-Raphson computational algorithm, 32-bit 
floating point multiplier and 32-bit floating point 
subtraction modules are used [5,6]. For efficient 
implementation of the floating point multiplier Vedic 
multiplication is used for calculating mantissa part [7, 8]. 
The format for representing 32-bit and 64-bit floating 
point numbers are provided by the IEEE 754 standard [9, 
10]. IEEE 754 uses a fixed number of bits for 

representing the 32-bit floating point number. The 
representation format divides into three parts, i.e., sign 
(b), exponent (e) and the mantissa (s). Table 1 shows the 
structure for IEEE 754 formats and describes the single 
and double precision. In IEEE 754 Single precision 
format the mantissa is represented by 23 bits, exponent is 
represented by 8-bits and MSB corresponds to sign bit. 
The Sign of the floating point number depends on the 
sign bit or MSB. The number is positive when the MSB 
bit is 0 and negative when the MSB bit is 1. 

Table 1. IEEE 754 Standard Format for single (32-bit) and 
double precision (64-bit). 
 Sign (s) Exponent (e) Mantissa (m) 

32-bit 1-bit 8-bit 23-bit 

64-bit 1-bit 11-bit 52-bit 

The formulation of the paper is as follows. Section 2 
explains the architecture of the floating point multiplier 
using Vedic multiplication. Section 3 presents the 
description of 32-bit floating point subtractor. Section 4 
describes the Newton-Raphson computational algorithm. 
Sections 5 presents the Simulation Results of floating 
point division using Newton-Raphson algorithm. The 
Conclusion and References are presented in the final 
section. 

2 Floating point multiplier 
In Figure 1 shows the complete architecture of proposed 
32-bit floating point multiplier. This multiplier module is 
designed using a Vedic multiplication technique, where 
mantissa calculation is done using a 24x24 bit Vedic 
multiplier. The main purpose of using Vedic multiplier is 
to improve the overall performance of the 32-bit floating 
point multiplier. IEEE 754 format presents a fixed 
number of bits for representing the sign, exponent and 
mantissa. The inputs given to the floating point multiplier 
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are A[31-0] and B[31-0] as per IEEE 754 format. 32-bit 
Floating point multiplication unit is divided into three 
parts - sign unit, exponent unit and mantissa unit. 

2.1. Mantissa unit  
In mantissa unit, for calculation of mantissa a 24x24 bit 
Vedic multiplier is used efficiently for higher throughput 
and computation. The lower bits of inputs,  m1 (A[22-0]) 
and  m2 (B[22-0]) are given to the 24-bit Vedic multiplier 
which produces 24-bit normalized output and should 
have leading one as their MSB. 

2.2. Exponent unit 
In Exponent unit, the exponent calculation is done by 
using ripple carry adder. The exponent is computed by 
providing inputs e1 (A[30-23]) and e2 (B[30 – 23]) to the 
8-bit ripple carry adder unit and result is biased to 127. 
The overflow and underflow cases are carefully handled.  

2.3. Sign unit 
In sign unit, the sign bit is computed by xoring the 31st bit 
of inputs, s1 (A[31]) and s2 (B[31]) of floating point 
inputs.  The output of xor gate represents the sign of the 
floating point multiplier. The Vedic multiplication 
technique is efficiently used for high computational speed 
and throughput.  

The complete architecture of proposed 32-bit floating 
point multiplier is shown in the Figure 1. This proposed 
multiplier module designed using Vedic multiplier is 
used in the Newton-Raphson computational algorithm for 
performing the iteration process.  

 

 
Figure 1. The proposed architecture for 32-bit Floating point 
multiplier. 

3 Floating point subtractor  
In the subtractor module, X[31-0] and Y[31-0] are given 
as inputs to the floating point subtractor. The sign (s), 
exponent (e) and mantissa (m) are represented in IEEE 
754 format. 32-bit floating point subtraction operation is 
done in a stepwise manner as explained further. First of 
all, the floating point numbers are unpacked. After 
unpacking, the sign, exponent and mantissa are identified 

for performing the subtraction operation. Next, the 
exponent is equalized for performing alignment and 
normalization of mantissa part. If neither of the operands 
are infinity, then the relation between e1 (X[30-23]) and 
e2 (Y[30-23]) is determined by comparing the mantissa 
m1 and m2. The mantissa is shifted right until the 
exponent becomes equal, i.e. e1 (X[30-23]) = e2 (Y[30-
23]). After alignment and normalization, the mantissa m1 
(X[23-0]) and m2 (Y[23-0]) are subtracted. After that, the 
mantissa values are rounded off. Finally, the sign, 
exponent and mantissa parts are concatenated. The 32-bit 
floating point subtraction module is used in the Newton-
Raphson computational algorithm for performing the 
iteration process. Figure 2 shows the complete 
architecture of 32-bit floating point subtractor. This 32-
bit floating point subtractor module is used for 
calculating the iterative process in Newton-Raphson 
algorithm. 
 

 Figure 2. The architecture of 32-bit Floating point subtractor. 

4 Newton-Raphson division algorithm 
Newton-Raphson computational division algorithm 
computes the multiplicative inverse, which is calculated 
by the iterative process. Then the calculated 
multiplicative inverse is multiplied to the dividend to 
compute the final quotient (Q). In this proposed design, 
Newton-Raphson computational division algorithm 
designed by using a 32-floating point multiplier module 
and subtractor module. In this division algorithm minimal 
of maximal relative error can be achieved by scaling the 
divisor (D) in the interval (0.5, 1). Scaling of the divisor 
is done by shifting operation. To produce a precise result 
more iterations are required. For this purpose, fast 
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division algorithms are developed. The Newton-Raphson 
algorithm converges much faster for computing one 
iteration. Thus, several multiplication and subtraction 
operations needed to perform for the continual iteration 
process. Figure 3 shows the flowchart of floating point 
division using the Newton-Raphson computational 
algorithm in which two multiplier and a subtraction 
module are used to produce one iteration. Newton 
Raphson computational algorithm produced optimized 
result by computing three iterations in one cycle. More 
iterations are performed to refine the multiplicative 
inverse. 

 
Figure 3. A Flowchart of the 32-bit floating point division 
using Newton-Raphson method. 

The calculation of multiplicative inverse of the divisor  is 
performed by equation (1), where Zi is multiplicative 
inverse at iteration i, as given below. 

                Zi+1 = Zi + Zi (1 − DZi) = Zi (2 – DZi)  (1) 
Newton-Raphson division algorithm uses a complex 
initialization for computing continual iterations. To 
minimize the maximum of the relative error in the 
interval (0.5, 1), Zi should be initialized. The initialization 
is represented by Z0 and is initialized as follows. 

                         Z0= (48/17) – (32/17) D  (2) 

5 Simulation Results 
The simulation was performed on ISim. Figure 4 shows 
the simulation results of the proposed 32-bit floating 
point division of two numbers using the Newton-Raphson 
method. Table 3 shows the device utilization of the 
Xilinx Spartan 6 SP605 Evaluation Platform FPGA. 
Table 4 shows the Xilinx Power Estimator (XPE) -14.3 
device summary report for the proposed 32-bit floating 
point division carried out for the Spartan-6 SP605 
Evaluation Platform FPGA.  In Figure 4, N represents the 
numerator, D represents the denominator, Z0 is the initial 
value, the Z1 is the first iteration result, Z2 is the second 
iteration result, Z3 is the final iteration result and Q 
represents the quotient. The two inputs N and D are given 

to the divider in IEEE 754 standard format as shown in 
Table 2.  

Table 2. Sample inputs and its output for simulation 
 Decimal Sign Exponent Mantissa 
N 3.14 0 10000000 10010001111010111000011 
D 8.56 0 10000010 00010001111010111000011 

Q 0.366822 0 01111101 01110111101000000100110 
 

Table 3. Device Utilization of the Xilinx Spartan 6 SP605 
Evaluation Platform. 

 

Table 4. Xilinx Power Estimator (XPE) -14.3 device summary 
report of Spartan-6 SP605 Evaluation Platform FPGA. 

Specifications Values 

Junction Temperature 25.5 ºC 

Total On-Chip Power 0.036 W 

Thermal Margin 59.5 ºC 4.0 W 

Effective ϴJA 14.3 ºC/W 

 
 

 
Figure 4. Simulation result of Floating point division. 

6 Conclusion
The Single precision floating point division using 
Newton–Raphson computational algorithm is designed 
and synthesized on FPGA. This computational technique 
provides high computation speed and throughput by 
computing one multiplicative inverse in one iteration. 
The multiplier performance is increased by Vedic 
technique and hence improved the efficiency of the 
floating point divider. The device utilisation parameters 

Logic Utilization Used Available Utilization 

Number of Slice Registers 408 54,576 1% 

Number of  Slice LUTs 10,019 27,288 36% 

Number of occupied Slices 3,878 6,822 56% 

Number of bonded IOBs 192 296 64% 
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were optimized thereby the power consumption is 
reduced. This presented design is useful in high 
computation demanding applications. 
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