
a Naginder Singh: naginder.singh0110@gmail.com

Design and Synthesis of Single Precision Floating Point Division based
on Newton-Raphson Algorithm on FPGA

Naginder Singh1, a and Trailokya Nath Sasamal2
1School of VLSI Design and Embedded System, National Institute of Technology, Kurukshetra, Haryana, India
2Department of Electronics and Communication Engineering, National Institute of Technology, Kurukshetra. Haryana, India

Abstract. This paper describes a single precision floating point division based on Newton-Raphson computational
division algorithm. The Newton-Raphson computational algorithm is implemented using 32-bit floating point multi-
plier and subtractor. The salient feature of this proposed design is that the module for computing mantissa in 32-
floating point multiplier is designed using a 24-bit Vedic multiplication (Urdhva-triyakbhyam-sutra) technique. 32-bit
floating point multiplier, designed using Vedic multiplication technique, yields a higher computational speed, hence,
is efficiently used in floating point divider. Another important feature is the efficient use of device utilization parame-
ters and reduced power consumption. An advantage of the Newton-Raphson algorithm is the higher versatility and
precision. For representing 32-bit floating point numbers, IEEE 754 standard format is used. ISim simulator is used
for simulation. The proposed floating point divider is designed using Verilog Hardware Description Language (HDL)
and is verified on Xilinx Spartan 6 SP605 Evaluation Platform FPGA.

1 Introduction
The role of a reconfigurable processor in embedded
system design has increased greatly from the past
decades. Due to the advancement of field programmable
gate array (FPGA), we have reached a point where the
architecture of processors can be modified
instantaneously. Reconfigurable computing processing
provides very versatile high-speed computing. The
enhanced feature of Spartan-6 voluntarily reduces the
cost per logic cell designed. Newton-Raphson
computational algorithm requires mathematical
operations such as, multiplication and subtraction. Here,
mathematical operations used to find the reciprocal of the
denominator (D) and multiply that reciprocal by the
numerator (N) to find the final quotient (Q). Newton-
Raphson computational algorithm initializes with an
approximation close to the final value of the quotient (Q)
and produces twice as many digits of the final quotient
after each iteration. An iterative process which is based
on complex operation used for division in many signal-
processing algorithms, where not only precision to be
maintained, but also the precision is to be maintained for
very large data intervals and should be high for better
operation. This can be achieved by the design and
implementation of floating point division by using
Newton-Raphson algorithms. Several different
algorithms described in literature [1-3]. The Newton-
Raphson algorithm computes three multiplicative inverse
at the same time to provide high throughput [4]. To
implement and design 32-bit floating point division based
on Newton-Raphson computational algorithm, 32-bit
floating point multiplier and 32-bit floating point
subtraction modules are used [5,6]. For efficient
implementation of the floating point multiplier Vedic
multiplication is used for calculating mantissa part [7, 8].
The format for representing 32-bit and 64-bit floating
point numbers are provided by the IEEE 754 standard [9,
10]. IEEE 754 uses a fixed number of bits for

representing the 32-bit floating point number. The
representation format divides into three parts, i.e., sign
(b), exponent (e) and the mantissa (s). Table 1 shows the
structure for IEEE 754 formats and describes the single
and double precision. In IEEE 754 Single precision
format the mantissa is represented by 23 bits, exponent is
represented by 8-bits and MSB corresponds to sign bit.
The Sign of the floating point number depends on the
sign bit or MSB. The number is positive when the MSB
bit is 0 and negative when the MSB bit is 1.

Table 1. IEEE 754 Standard Format for single (32-bit) and
double precision (64-bit).
 Sign (s) Exponent (e) Mantissa (m)

32-bit 1-bit 8-bit 23-bit

64-bit 1-bit 11-bit 52-bit

The formulation of the paper is as follows. Section 2
explains the architecture of the floating point multiplier
using Vedic multiplication. Section 3 presents the
description of 32-bit floating point subtractor. Section 4
describes the Newton-Raphson computational algorithm.
Sections 5 presents the Simulation Results of floating
point division using Newton-Raphson algorithm. The
Conclusion and References are presented in the final
section.

2 Floating point multiplier
In Figure 1 shows the complete architecture of proposed
32-bit floating point multiplier. This multiplier module is
designed using a Vedic multiplication technique, where
mantissa calculation is done using a 24x24 bit Vedic
multiplier. The main purpose of using Vedic multiplier is
to improve the overall performance of the 32-bit floating
point multiplier. IEEE 754 format presents a fixed
number of bits for representing the sign, exponent and
mantissa. The inputs given to the floating point multiplier

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 57 matec 5701009 (2016) 1009

 ICAET 2016-

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

are A[31-0] and B[31-0] as per IEEE 754 format. 32-bit
Floating point multiplication unit is divided into three
parts - sign unit, exponent unit and mantissa unit.

2.1. Mantissa unit
In mantissa unit, for calculation of mantissa a 24x24 bit
Vedic multiplier is used efficiently for higher throughput
and computation. The lower bits of inputs, m1 (A[22-0])
and m2 (B[22-0]) are given to the 24-bit Vedic multiplier
which produces 24-bit normalized output and should
have leading one as their MSB.

2.2. Exponent unit
In Exponent unit, the exponent calculation is done by
using ripple carry adder. The exponent is computed by
providing inputs e1 (A[30-23]) and e2 (B[30 – 23]) to the
8-bit ripple carry adder unit and result is biased to 127.
The overflow and underflow cases are carefully handled.

2.3. Sign unit
In sign unit, the sign bit is computed by xoring the 31st bit
of inputs, s1 (A[31]) and s2 (B[31]) of floating point
inputs. The output of xor gate represents the sign of the
floating point multiplier. The Vedic multiplication
technique is efficiently used for high computational speed
and throughput.

The complete architecture of proposed 32-bit floating
point multiplier is shown in the Figure 1. This proposed
multiplier module designed using Vedic multiplier is
used in the Newton-Raphson computational algorithm for
performing the iteration process.

Figure 1. The proposed architecture for 32-bit Floating point
multiplier.

3 Floating point subtractor
In the subtractor module, X[31-0] and Y[31-0] are given
as inputs to the floating point subtractor. The sign (s),
exponent (e) and mantissa (m) are represented in IEEE
754 format. 32-bit floating point subtraction operation is
done in a stepwise manner as explained further. First of
all, the floating point numbers are unpacked. After
unpacking, the sign, exponent and mantissa are identified

for performing the subtraction operation. Next, the
exponent is equalized for performing alignment and
normalization of mantissa part. If neither of the operands
are infinity, then the relation between e1 (X[30-23]) and
e2 (Y[30-23]) is determined by comparing the mantissa
m1 and m2. The mantissa is shifted right until the
exponent becomes equal, i.e. e1 (X[30-23]) = e2 (Y[30-
23]). After alignment and normalization, the mantissa m1
(X[23-0]) and m2 (Y[23-0]) are subtracted. After that, the
mantissa values are rounded off. Finally, the sign,
exponent and mantissa parts are concatenated. The 32-bit
floating point subtraction module is used in the Newton-
Raphson computational algorithm for performing the
iteration process. Figure 2 shows the complete
architecture of 32-bit floating point subtractor. This 32-
bit floating point subtractor module is used for
calculating the iterative process in Newton-Raphson
algorithm.

 Figure 2. The architecture of 32-bit Floating point subtractor.

4 Newton-Raphson division algorithm
Newton-Raphson computational division algorithm
computes the multiplicative inverse, which is calculated
by the iterative process. Then the calculated
multiplicative inverse is multiplied to the dividend to
compute the final quotient (Q). In this proposed design,
Newton-Raphson computational division algorithm
designed by using a 32-floating point multiplier module
and subtractor module. In this division algorithm minimal
of maximal relative error can be achieved by scaling the
divisor (D) in the interval (0.5, 1). Scaling of the divisor
is done by shifting operation. To produce a precise result
more iterations are required. For this purpose, fast

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 57 matec 5701009 (2016) 1009

 ICAET 2016-

2

division algorithms are developed. The Newton-Raphson
algorithm converges much faster for computing one
iteration. Thus, several multiplication and subtraction
operations needed to perform for the continual iteration
process. Figure 3 shows the flowchart of floating point
division using the Newton-Raphson computational
algorithm in which two multiplier and a subtraction
module are used to produce one iteration. Newton
Raphson computational algorithm produced optimized
result by computing three iterations in one cycle. More
iterations are performed to refine the multiplicative
inverse.

Figure 3. A Flowchart of the 32-bit floating point division
using Newton-Raphson method.

The calculation of multiplicative inverse of the divisor is
performed by equation (1), where Zi is multiplicative
inverse at iteration i, as given below.

 Zi+1 = Zi + Zi (1 − DZi) = Zi (2 – DZi) (1)
Newton-Raphson division algorithm uses a complex
initialization for computing continual iterations. To
minimize the maximum of the relative error in the
interval (0.5, 1), Zi should be initialized. The initialization
is represented by Z0 and is initialized as follows.

 Z0= (48/17) – (32/17) D (2)

5 Simulation Results
The simulation was performed on ISim. Figure 4 shows
the simulation results of the proposed 32-bit floating
point division of two numbers using the Newton-Raphson
method. Table 3 shows the device utilization of the
Xilinx Spartan 6 SP605 Evaluation Platform FPGA.
Table 4 shows the Xilinx Power Estimator (XPE) -14.3
device summary report for the proposed 32-bit floating
point division carried out for the Spartan-6 SP605
Evaluation Platform FPGA. In Figure 4, N represents the
numerator, D represents the denominator, Z0 is the initial
value, the Z1 is the first iteration result, Z2 is the second
iteration result, Z3 is the final iteration result and Q
represents the quotient. The two inputs N and D are given

to the divider in IEEE 754 standard format as shown in
Table 2.

Table 2. Sample inputs and its output for simulation
 Decimal Sign Exponent Mantissa
N 3.14 0 10000000 10010001111010111000011
D 8.56 0 10000010 00010001111010111000011

Q 0.366822 0 01111101 01110111101000000100110

Table 3. Device Utilization of the Xilinx Spartan 6 SP605
Evaluation Platform.

Table 4. Xilinx Power Estimator (XPE) -14.3 device summary
report of Spartan-6 SP605 Evaluation Platform FPGA.

Specifications Values

Junction Temperature 25.5 ºC

Total On-Chip Power 0.036 W

Thermal Margin 59.5 ºC 4.0 W

Effective ϴJA 14.3 ºC/W

Figure 4. Simulation result of Floating point division.

6 Conclusion
The Single precision floating point division using
Newton–Raphson computational algorithm is designed
and synthesized on FPGA. This computational technique
provides high computation speed and throughput by
computing one multiplicative inverse in one iteration.
The multiplier performance is increased by Vedic
technique and hence improved the efficiency of the
floating point divider. The device utilisation parameters

Logic Utilization Used Available Utilization

Number of Slice Registers 408 54,576 1%

Number of Slice LUTs 10,019 27,288 36%

Number of occupied Slices 3,878 6,822 56%

Number of bonded IOBs 192 296 64%

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 57 matec 5701009 (2016) 1009

 ICAET 2016-

3

were optimized thereby the power consumption is
reduced. This presented design is useful in high
computation demanding applications.

References
1. J. M. Muller, Avoiding Double Roundings in Scaled

Newton-Raphson Division, Proceedings of Asilomar

Conference on Signals, Systems and Computers,
396-399 (2013)

2. I. Kong, E. E. Swartzlander, A Rounding Method to
Reduce the Required Multiplier Precision for
Goldschmidt Division, IEEE Transactions on

Computers 59, 1703-1708 (2010)
3. A. R. Garca, L. P. Escalante, R. P. Michel, O. L.

Gandara, J. Cortez, Fast Fixed-Point Divider Based
on Newton-Raphson Method and Piecewise
Polynomial Approximation, Proceedings

International Conference on Reconfigurable

Computing and FPGA, 1-6 (2013)
4. Peter Malik, High throughput floating-point dividers

implemented in FPGA, IEEE conference, (2015)
5. A. Rathor, L. Bandil, Design Of 32 Bit Floating

Point Addition And Subtraction Units Based On
IEEE 754 Standard, International Journal of

Engineering Research & Technology 2, 2278-0181
(2013)

6. Jagadguru Swami Sri Bharati Krisna Tirthaji
Maharaja, Vedic Mathematics Sixteen Simple
Mathematical Formulae from the Veda, (1965)

7. A. Kanhe, S. K. Das, A. K. Singh, Design And
Implementation Of Low Power Multiplier Using
Vedic Multiplication Technique, International

Journal of Computer Science and Communication 3,
131-132 (2012)

8. A. Ashrafy, M. Salem, A. Anis, An efficient
implementation of floating point multiplier,
Electronics Communications and Photonics

Conference, (2011)
9. B. Hickmann, A. Krioukov, M. Schulte, M. Erle, A

Parallel IEEE 754 Decimal Floating Point Multiplier,
25th International Conference on Computer Design,
(2007)

10. IEEE 754-2008, IEEE Standard for Floating-Point
Arithmetic, (2008)

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 57 matec 5701009 (2016) 1009

 ICAET 2016-

4

