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ABSTRACT ZnO is a typical direct wide-bandgap semi-

conductor material, which has various morphologies and un-

ique physical and chemical properties, and is widely used in

the fields of energy, information technology, biomedicine, and

others. The precise design and controllable fabrication of

nanostructures have gradually become important avenues to

further enhancing the performance of ZnO-based functional

nanodevices. This paper introduces the continuous develop-

ment of patterning technologies, provides a comprehensive

review of the optical lithography and laser interference li-

thography techniques for the controllable fabrication of ZnO

nanostructures, and elaborates on the potential applications

of such patterned ZnO nanostructures in solar energy, water

splitting, light emission devices, and nanogenerators. Pat-

terned ZnO nanostructures with highly controllable mor-

phology and structure possess discrete three-dimensional

space structure, enlarged surface area, and improved light

capture ability, which realize the efficient carrier regulation,

achieve highly efficient energy conversion, and meet the di-

verse requirements of functional nanodevices. The patterning

techniques proposed for the precise design of ZnO nanos-

tructures not only have important guiding significance for the

controllable fabrication of complex nanostructures of other

materials, but also open up a new route for the further de-

velopment of functional nanostructures.

Keywords: patterned ZnO nanorod arrays, laser interference li-

thography, optical lithography, energy conversion devices

INTRODUCTION
Semiconductor materials have attracted considerable re-

search interest because of their broad applications in in-
formation transmission, detectors, monitors, lasers, and
many other fields [1–3]. The first and second generations
of semiconductor materials, based on silicon and gallium
arsenide, respectively, have contributed to the rapid de-
velopment of the computer electronics and mobile com-
munication industries [4–6]. However, owing to the
limitation of material properties, the devices based on
these semiconductor materials cannot operate at high
temperatures [7]. Their anti-radiation performance and
emission wavelength range are also unable to meet the
increasing needs of societal development [8]. As a re-
presentative of the third generation of semiconductor
materials, gallium nitride (GaN) has been widely used in
short wavelength optoelectronic devices and high-power/
high-frequency electronic devices, owing to its wide
bandgap, high breakdown voltage, and strong radiation
resistance [9,10]. Zinc oxide (ZnO) is another wide-
bandgap semiconductor, which has a similar crystal
structure to GaN and has attracted considerable interest
over the past years [11,12].
As a typical direct bandgap semiconductor, ZnO is a

potential candidate material for photoelectronic applica-
tions, owing to its excellent physical and chemical prop-
erties, such as high electron mobility, excellent
environmental stability, and high thermal conductivity
[13,14]. ZnO exhibits the piezoelectric effect and excellent
photocatalytic performance [15,16]. The large exciton
binding energy of ZnO facilitates efficient exciton emis-
sion at room temperature or higher temperatures. Gen-
erally, the properties of ZnO can be further optimized by
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doping with various elements [17,18]. The incorporation
of Al, Ga, and In reduces the lattice energy of ZnO
[19,20]. In particular, the addition of Ga and In can im-
prove the conductivity of ZnO and enhance the stability
of its crystal structure [21]. The addition of Al, Ga, and In
can further increase the bandgap and conductivity of ZnO
without sacrificing its transmittance. The mechanical and
electrical properties can be enhanced by Sb doping. The
incorporation of transition-metal elements (Sc, Mn, Ti,
Co, Ni, Cu, etc.) into ZnO will form diluted magnetic
semiconductors or semimagnetic semiconductors [22–
24]. The electrical properties of ZnO can be controlled by
precisely tuning the dopant concentration [25]. Ad-
ditionally, the elements of N, P, and others have been
used as effective dopants to obtain p-type semiconductors
[26]. However, it is generally difficult to achieve bipolar
doping for wide-bandgap semiconductors. Furthermore, a
variety of ZnO nanostructures have been synthesized by
low-cost and low-temperature methods [27]. Among the
obtained nanostructures, ZnO nanorods (NAs) can pro-
vide an electron transport pathway for the efficient se-
paration of photogenerated electron–hole pairs [28–30].
ZnO NAs have a large surface area, which is conducive to
compositing with other materials [17]. The light absorp-
tion performance is higher than other structures, because
of the light scattering effect. Therefore, ZnO NAs have
been widely used in optoelectronic, electrochemical, and
electronic devices, such as nanogenerators [31–34], sen-
sors [35–38], light-emitting diodes [39,40], ultraviolet
(UV) detectors [41–45], solar cells [46–49], field emission
devices [50,51], and biosensors [52–55].
ZnO materials are easy to synthesize and have plentiful

preparation methods, which can be divided into the va-
por-phase, solution-phase, and solid-phase growth
methods, according to the state of the synthetic phase
[56–59]. Regarding the ZnO NAs, a wide range of fabri-
cation techniques, such as metal-organic chemical vapor
deposition, chemical vapor deposition, pulsed laser de-
position, electrochemical deposition, and hydrothermal
methods, have been developed [60–62]. However, the
ZnO NAs synthesized by traditional vapor-phase and
solution-phase growth methods have several drawbacks,
such as poor orientation, different space and length of
nanorods, and less morphology homogeneity. These ZnO
NAs resulted in poor electrode contact, leakage current,
large reverse current, and poor stability, which limit the
further improvement of the performance and lifetime of
the devices [63]. In order to solve the above problems,
patterning technology was widely used in the preparation
of ZnO NAs.

Recently, with the continuous development of pat-
terning technology, the precise control of the arrays can
be realized gradually. ZnO NAs with controllable dia-
meter and period, uniform distribution, and high or-
ientation have been widely used in various energy devices.
In this review, we focus on the fabrication techniques of
patterned ZnO NAs and their applications in the field of
energy conversion.

SYNTHETIC METHODOLOGIES AND
PROPERTIES FOR PATTERNED ZnO NAs
Several strategies have been proposed to fabricate highly
ordered ZnO NAs, such as nanosphere lithography (NSL)
[64–68], electron beam lithography (EBL) [69–72], optical
lithography (OL), and laser interference lithography (LIL)
techniques [73–80]. Among these, self-assembled NSL is a
simple and economical technique, which employs two-
dimensional (2D) self-assembled nanometer-sized poly-
styrene spheres as lithography masks to fabricate pat-
terned arrays [64]. The period and size of the patterned
ZnO NAs are dependent on the size of nanospheres [65].
In order to overcome the limitation of period control of
this method, heterogeneous NSL was proposed by using
two different particles [66]. The conventional NSL re-
quired high-temperature post-treatment and had high
requirement on the substrate flatness and hydrophobicity.
On the other hand, the fabrication of defect-free and
period-adjustable ZnO NAs was difficult, owing to the
introduction of metal catalyst dots and the in-
homogeneous distribution of polystyrene nanospheres
[67]. Recently, patterned ZnO NAs were fabricated by an
NSL technique that patterns a thickness variation on a
polymethyl methacrylate layer [68]. The size of the ZnO
NAs was successfully controlled by tuning the etching
time under oxygen plasma. The morphology and or-
ientation of ZnO NAs can be effectively controlled by
tailoring the thickness of the seed layer and solution
concentration. EBL is a high-resolution maskless litho-
graphy technique, in which a focused electron beam is
used to record predetermined shapes on photoresist (PR)
materials [70]. Through this method, highly oriented ZnO
NAs with controllable diameter and tunable pattern
density were obtained. However, the EBL method was too
costly and the processing speed was slow, which was not
suitable for large-area periodic ZnO NAs fabrication [72].
Compared with the above methods, OL and LIL techni-
ques are precision processing methods, which combine
chemical and physical etching techniques to form the
patterned geometry. The OL method uses UV light to
transfer a geometric pattern from the photomask to the
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PR material. By the OL technique, patterns of various size
and shapes on different substrates have been obtained.
However, owing to the diffraction effect, the ZnO NAs are
usually distributed in clusters instead of individual na-
norods, and the nanorod diameter is limited by the in-
cident wavelength [73]. Compared with OL, the LIL
technique is a reliable and fast method, which has been
widely utilized to obtain nanoscale-patterned ZnO NAs
without using a photomask [78]. Generally, an inter-
ference pattern is produced by two or multiple coherent
lights under one or more exposures, and the irradiated
laser energy is recorded on the PR [79]. Then such a
pretreated substrate is used to fabricate patterned NAs
with controllable density and diameter. Thus, this method
allows not only the precise control of the growth cycles
and size of the nanorods, but also the successful fabrica-
tion of large-area highly oriented ZnO NAs.

Fabrication of patterned ZnO NAs by OL technique

The OL technique is a microfabrication method used to
form geometric patterns on substrates. Generally, geo-
metric patterns on masks are transferred to PR materials
by light treatment. Fig. 1 shows the typical fabrication
processes. First, the PR materials are spin-coated onto the
substrate. Second, intense UV light is irradiated onto the
substrate with a mask. The light treatment causes a che-
mical change in positive PR materials, which allows the
exposed regions of PR to be removed by solution. For
negative PR materials, the unexposed regions become
soluble. Thus, the geometric patterns are recorded on the
substrate from the mask. Finally, ZnO NAs with different
geometric patterns are fabricated. The PR materials are

not essential in the OL technique. The geometric patterns
can be observed on a photosensitive surface instead of a
PR layer [81]. The UV exposure could result in carboxylic
acid groups [82] or sulfate anion groups [83] on poly-
carbonate (PC) films and polyethylene terephthalate
(PET) filaments. The acid groups form an acidic en-
vironment, which is not conducive to the nucleation and
growth of ZnO NAs. Thus, the polymer successfully re-
cords the patterns of the mask and is used to grow pat-
terned ZnO NAs. This method enables the direct growth
of well-organized ZnO NAs with different patterns.
The OL technique is a simple and effective method for

preparing patterned ZnO NAs with different periodicities.
The shape, size, and number of ZnO NAs on the substrate
can be controlled by changing the fabrication conditions
and the photomask.

Fabrication of patterned ZnO NAs by LIL technique

The LIL technique uses a dual-beam laser to design the
template patterns [84]. Two-beam laser interference li-
thography (2BLIL) is used to obtain line template [77]. To
obtain various diffraction patterns, multiple exposure
processing is employed, as shown in Fig. 2a. Generally,
the PR is spin-coated onto a c-oriented ZnO seed layer.
Then, 2BLIL processes with single exposure, double ex-
posure at 0°/90°, and triple exposure at −60°/0°/60° are
adopted for line, square, and hexagonal lattice arrays,
respectively. In 2013, based on the 2BLIL technique, the
large-scale patterned ZnO NAs were fabricated on single-
crystalline p-GaN substrates through three-exposure
modes [85,86]. Such three-exposure modes resulted in
different intensity distributions (Fig. 2b–d) and PR tem-

Figure 1 Schematic fabrication process of patterned ZnO NAs by OL method.
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plate patterns (Fig. 2e–g). Based on the line templates, the
large-scale wall-like patterned ZnO NAs with smooth
sidewalls were obtained, as shown in Fig. 2h. The large-
scale individual patterned ZnO NAs with square sym-
metry was also fabricated on a p-GaN substrate by dou-
ble-exposure processing, as depicted in Fig. 2i. By triple-
exposure processing, the ZnO NAs with hexagonal sym-
metry was prepared on a p-GaN substrate (Fig. 2j).
However, the morphology of the patterned ZnO NAs with

hexagonal symmetry was influenced by the orientation of
the PR template.
In order to fabricate highly ordered ZnO NAs by single-

exposure processing, the three-beam laser interference
lithography (3BLIL) was proposed [87]. A schematic
diagram of the three-beam interferometer system is illu-
strated in Fig. 3a. The laser beam with a wavelength of
325 nm was first reflected by two dielectric mirrors (M1,
M2), and then diverged by a spatial filter. Finally, the

Figure 2 (a) Schematic diagram of patterned ZnO NAs by LIL technique. Simulated exposure intensity distribution of (b) single exposure, (c) double
exposure (0° and 90°), and (d) triple exposure (−60°, 0°, and 60°). Such interference patterns can be recorded and the corresponding PR templates are
line template (e), hole templates with square symmetry (f), and hexagonal symmetry (g). The corresponding SEM images of patterned ZnO NAs are
wall-like ZnO NAs with smooth sidewalls (h), square ZnO NAs with rough-top (i), and hexagonal ZnO NAs with flat-top (j) in a period of 774 nm. All
insets show the corresponding magnified SEM images; scale bars are 300 nm. Reprinted with permission from Ref. [85], Copyright 2013, the Royal
Society of Chemistry.
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incident laser beam was divided into three parts by a
three-beam Lloyd’s mirror interferometer, which consists
of a sample holder, two dielectric mirrors, and a rotating
stage, as shown in Fig. 3b. These three laser beams formed
a large diamond-shaped exposure area of approximately
22 cm2, and the irradiated energy was recorded on the PR
(Fig. 3d). The corresponding intensity distribution of the
hexagonal interference pattern by 3BLIL is illustrated in
Fig. 3c. 3BLIL simply fabricated the hole template and the
period of ZnO NAs can be continuously controlled. Fig.
3e–g show patterned PR templates and highly ordered
ZnO NAs with the different periods. The 3BLIL technique
has two advantages compared with the 2BLIL technique.
First, 3BLIL is a simple approach to fabricating PR hole
templates with hexagonal symmetry through a single ex-
posure without any sample rotation or multiple exposure
processes. Second, through 3BLIL, the period of patterned
ZnO NAs is successfully decreased from several wave-

lengths λ to 2λ/3. Periodic regulation can be easily and
precisely achieved by rotating the Lloyd’s mirror inter-
ferometer.
The LIL technique has the advantages of being a

maskless and simple process, which is suitable for the fast
and large-area fabrication of patterned ZnO NAs. The
pattern shape, period, diameter, and distribution can be
flexibly controlled by tuning the exposure dosage, beam
power, LIL angle, and exposure times. The LIL method is
a powerful technique for producing large-area, periodi-
cally patterned ZnO NAs and shows great potential for
material fabrication.

Optical properties of patterned ZnO NAs

The light absorption properties of ZnO NAs with no
pattern, line pattern, and square pattern have been in-
vestigated [68,88]. Owing to the light scattering effect, the
patterned ZnO NAs show wide absorbance bands com-
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Figure 3 (a) Schematic diagram of the three-beam interferometer system. (b) Optical image of the three-beam Lloyd's mirror interferometer. (c)
Simulated intensity distribution of the hexagonal interference pattern. (d) Schematic of the corresponding hexagonal PR hole template by 3BLIL with
single exposure. (e) Top-view SEM image of the PR hole template in a period of 707 nm. (f) SEM image of ZnO NAs in the period of 707 nm. (g) Top-
view SEM image of the ZnO NAs in a smaller period of 353 nm. Insets show the corresponding magnified SEM images; scale bars are 300 nm.
Reprinted with permission from Ref. [87], Copyright 2013, the Royal Society of Chemistry.
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pared with the no-pattern samples. The square-patterned
ZnO NAs demonstrate the highest absorption among the
three samples, as illustrated in Fig. 4a. This result is in
good agreement with the transmission spectra in Fig. 4b.
The square-patterned ZnO NAs have the maximum ab-
sorption and the minimum transmission, indicating an
increased optical path length. Two-dimensional finite
difference time domain (FDTD) simulations were also
performed to understand the light absorption properties.
The FDTD simulations allow solving Maxwell’s time-de-
pendent equations on a discrete spatial grid. This can be
used to analyze the interaction of electromagnetic waves
with complex structures in the UV, visible, infrared, ter-
ahertz, and microwave frequencies. Three simulation
models with different length (1, 1.5, 2 μm) and space (0,
200, 200 nm) were established. The simulation regions
were 1 μm × 4 μm in size. The boundary conditions were
set as periodic boundary conditions and perfectly mat-
ched layer boundary conditions in the x-axis and y-axis,
respectively. A plane-wave light source irradiated the

device from the substrate side [89]. As can be seen from
Fig. 4c, the light absorption in the patterned ZnO NAs has
been enhanced. This is consistent with the observation
from the simulated electric-field intensity |E| distributions
in Fig. 4d. It revealed that the propagation nature of the
plane light in the patterned ZnO NAs was enhanced,
because of the light reflection and interference in the
periodic ZnO NAs. Additionally, the high-frequency
structural simulator was used to obtain the optical
properties by solving Maxwell’s equations [90].
As mentioned above, patterned ZnO NAs with different

sizes and periods have different optical properties. The
highly controllable and uniform growth of ZnO NAs
demonstrates a high application potential for energy de-
vices.

APPLICATIONS OF PATTERNED ZnO NAs
IN ENERGY CONVERSION DEVICES
The fabrication of ZnO nanostructures with high light-
harvesting capability and large charge-transfer efficiency
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Figure 4 (a) UV-vis-NIR absorption spectra, (b) UV-vis-NIR transmission spectra, (c) simulated cross-sectional optical absorption profiles, and (d)
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Simulated profiles used a 500-nm wavelength planar light from the bottom up. Reprinted with permission from Ref. [89], Copyright 2013, American
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is important for highly efficient energy devices [91–96].
Patterned ZnO NAs with adjustable height and con-
trollable period effectively promote light scattering and
provide charge transport channels, which have broad
application prospects in the field of energy devices [97].
In this review, we summarize the application of patterned
ZnO via OL and LIL techniques for solar energy, water
splitting, light emission devices, and nanogenerators.

Photovoltaic devices

In order to address the global energy crisis, it is vital to
exploit abundant, clean, and renewable energy to replace
fossil fuels [98–100]. Photovoltaic (PV) technology is able
to convert sun’s energy to electricity through solar cells
[101]. The device performance is closely related to the
generation and separation of photogenerated charges
[102–105]. To improve the performance of PV solar cells,
it is important to fabricate photoanodes with high light-
harvesting ability, direct electron transport channel, and
efficient carrier collection [106–108].
For dye-sensitized solar cells (DSSCs), the large-scale

patterned ZnO–ZnS core–shell NAs were fabricated by
using 2BLIL, hydrothermal synthesis, and chemical con-
version synthesis methods for the first time [109]. First, a
negative PR was spin-coated onto a substrate and the
substrate was then annealed for 2 min. Second, the above
substrates with top anti-reflective coating were exposed by
2BLIL with different patterns. Third, the patterned ZnO
NAs were synthesized in mixed solution of zinc nitrate
and hexamethylenetetramine. Finally, the ZnO NAs were
immersed in thiacetamide solution to form the ZnS. Four
exposure modes were used to obtain the PR template with
line, long hexagonal, hexagonal, and square patterns.
Compared with other patterned NAs, it is clear that the
patterned ZnO–ZnS core–shell NAs with hexagonal
symmetry have a large unit density and increased surface
area. The UV-vis absorption spectra show that the NAs
with hexagonal symmetry have the highest absorption.
The enhanced light absorption ability is ascribed to the
light scattering effect and increased amount of dye be-
cause of the enlarged surface area. The power conversion
efficiency (PCE) of the DSSCs was enhanced from 1.11%
to 2.09%. The NAs with hexagonal symmetry resulted in
the highest PCE and circuit current density with ap-
proximately 88% and 60% enhancement. Thus, patterned
NAs with tunable arrangement and density are beneficial
for efficient DSSCs.
Patterned ZnO NAs were also applied in the ZnO/Cu2O

heterojunction solar cells [89]. Generally, the contact area
between ZnO and Cu2O and the carrier recombination in

the materials greatly limited the current density, which
further reduced the performance of the solar cells [110–
112]. The vertically aligned highly ordered ZnO NAs not
only enhanced the light harvesting owing to the light
scattering effect, but also increased the carrier collection
efficiency owing to the increased heterojunction area
[113]. Fig. 5a–c show the top-view and cross-section
scanning electron microscopy (SEM) images of three
kinds of ZnO NAs. The density clearly varies with the
patterns of the NAs. The density of ZnO NAs without
pattern has the maximum density of approximately 3.8 ×
109 rod cm−2. The density of the ZnO NAs with line and
hole patterns are reduced to approximately 2.7 × 109 and
1.2 × 109 rod cm−2, respectively. The corresponding ZnO/
Cu2O heterojunctions are shown in Fig. 5d–f. The Cu2O
films based on the no pattern, line-patterned, and square-
patterned ZnO NAs have different grain size, thickness,
and heterojunction area. The ordered space of the pat-
terned ZnO NAs was completely filled by Cu2O, which
promotes the generation and separation of carriers in the
cells [89]. The light absorption ability has been effectively
enhanced owing to the strong light scattering effect. The
light-harvesting capability will be further enhanced by
increasing the ZnO periods. As illustrated in Fig. 5g, the
external quantum efficiency of ZnO/CuO2 heterojunction
cells based on patterned ZnO NAs was significantly in-
creased at 380 nm and reached its peak value at 490 nm. It
is clear that the heterojunction based on the square pat-
tern has the highest light absorption. The PV character-
istics of the ZnO/CuO2 solar cells are shown in Fig. 5h.
The PCE of the ZnO/Cu2O heterojunction solar cell based
on the square pattern was 2.3 times higher than the re-
ference cells. In particular, the current density increased
from 3.29 to 9.89 mA cm−2, which was attributed to the
enhanced light harvesting and the efficient carrier col-
lection. Obviously, the period-adjustable ZnO NAs can
simultaneously enhance the light absorption and photo-
carrier collection capability, which is beneficial for effi-
cient solar cells.

Photoelectrochemical devices

The photoelectrochemical (PEC) cell is one of the most
promising devices for hydrogen generation, owing to the
high theoretical PCE, low cost, and nonpolluting opera-
tion [114–119]. PEC cells have two key processes: light
trapping and the separation and transport of photo-
generated carriers [120,121]. In order to improve the
light-harvesting capability, highly ordered square-pat-
terned ZnO NAs were used as the PEC photoanode [122–
124]. For no-patterned ZnO NAs, the substrate was di-
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rectly immersed in the solution with 2.5 mmol zinc ni-
trate, 2.5 mmol hexamethylenetetramine, and 100 mL
deionized water at 95°C for 3 h. For the synthesis of
square-patterned ZnO NAs, the PR hole template was
first fabricated on the seed layer by the 2BLIL technique.
The patterned ZnO NAs were then synthesized by the
mentioned hydrothermal method. The patterned ZnO
NAs exhibited light scattering properties and induced a
large surface area, which simultaneously improved the
light-trapping ability and the carrier transport efficiency.
The solar to hydrogen conversion efficiency was increased
to 0.18%, representing an improvement of 135% [125].
A tree-like three-dimensional (3D) nanowire structure

based on patterned ZnO NAs was used as the photo-
anode, which lengthened the optical paths for light ab-
sorption and increased the surface areas for
electrochemical reactions [126–129]. The fabrication
process of 3D ZnO NAs-CdS is illustrated in Fig. 6a. A
patterned PR template fabricated by the LIL technique
was used to grow the ZnO NAs. The 3D ZnO NAs were
then synthesized by secondary hydrothermal growth. CdS
nanoparticles were deposited on the 3D ZnO NAs via the
ionic layer adsorption reaction (ILAR) method. At last, a
thin TiO2 layer was coated on the above structure by
atomic layer deposition (ALD). The CdS nanoparticles
and thin TiO2 layer were deposited onto the 3D structure
to increase the light absorption and enhance the photo-
corrosion resistance. Fig. 6b shows a cross-section SEM
image of the patterned ZnO NAs with square symmetry.
After the secondary synthesis, the branched ZnO nano-
wires grew on such patterned ZnO NAs, which con-
tributed to the 3D ZnO nanostructure, as shown in Fig.
6c. Then, the CdS nanoparticles were deposited on the 3D
structure. A top-view SEM image of the complex 3D ZnO
NAs-CdS is shown in Fig. 6d. This structure has an en-
larged roughness factor and improves the light-trapping
capacity, which in turn enhances the device performance.
Fig. 6e shows that the current density of the 3D ZnO NAs
is approximately twice that of the ZnO NAs, owing to the
enlarged surface area of the 3D structure. With the CdS
layer, the photocurrent density exhibits a significant in-
crease, because of the enhanced visible light absorption.
The PCE of the 3D ZnO NAs-CdS devices varied with the
deposition thickness of the CdS nanoparticles and
achieved a maximum photon-to-hydrogen efficiency of
3.1% [130]. As shown in Fig. 6f, the introduction of the
CdS nanoparticles boosts the conversion efficiency, and
the highest efficiency is obtained with fifty deposition
cycles. The loaded CdS effectively increased the light ab-
sorption in visible region. With the CdS nanoparticles,

type-II band alignment effectively promoted the carrier
separation at the interface [130]. The patterned 3D ZnO
NAs offer a large surface area, which is beneficial for
loading other materials. Additionally, the tree-like struc-
ture provides direct electron transport channels for rapid
photogenerated carrier separation and charge transport.
Thus, the PEC efficiency was dramatically improved.
With respect to device stability, the coated TiO2 layer
protected the photoanode from corrosion [131,132]. As
shown in Fig. 6g, the current density of the photoanode
with TiO2 was maintained over 80% of the initial level.
Using such 3D structures based on patterned ZnO NAs is
considered as a promising protocol to design high-per-
formance PEC devices.

Light emission devices

Light emitting diodes (LEDs) are one of the most pro-
mising lighting technologies, and have attracted great
attention owing to the demand for displays and illumi-
nation [133–135]. ZnO-based solid-state LEDs have been
considered as a promising candidate for the next gen-
eration of high-efficiency light emitters [136–138]. How-
ever, the light extraction efficiency is low [139,140]. Many
geometric structures have been used to enhance the light
extraction. Periodically aligned ZnO NAs show a periodic
modulation of dielectric constant, which could regulate
the luminescence property [141]. In 2014, a LIL-patterned
PR was used to grow flower-like ZnO NAs by two-phase
hydrothermal growth [142]. The patterned ZnO hemi-
sphere array was synthesized by two-step hydrothermal
growth. First, a UV-O3 treatment was performed on the
LED substrates with the PR holes, which were then im-
mersed in a mixture of zinc sulfate heptahydrate and
ammonium chloride for 15 min to fabricate the flower-
like ZnO NAs. Second, the structure was immersed in a
solution of zinc sulfate heptahydrate, ammonium chloride
and cadmium sulfate hydrate for a second growth. The
two-step growth effectively enhanced the lateral direc-
tional growth of the ZnO NAs. Compared to a reference
LED, the light output of the LED based on the patterned
structure was enhanced by 20% at 20 mA. This elevated
light extraction efficiency was attributed to the scattering
effect of the patterned ZnO NAs.
Generally, the spatial resolution of LEDs is related to

the size of the lithography patterns. The patterned ZnO
NAs with a diameter of 100 nm derived a resolution of
1.3 μm. Considering the cost, the pore pattern with a
diameter of 5 μm was used in flexible LED devices, which
yielded a spatial resolution of 7 μm [143]. As illustrated in
Fig. 7a, a flexible indium tin oxide (ITO)/PET substrate
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with PR was patterned by the OL technique and then the
ZnO NAs were fabricated. The space between the ZnO
NAs was infiltrated with SU8, but the heads of the ZnO
NAs were exposed by oxygen plasma etching. Subse-
quently, poly(3,4-ethylenedioxythiophene)/polystyrene
sulfonate (PEDOT:PSS) was spin-coated onto the ZnO
NAs. Finally, an Au film was deposited as a positive
electrode of the LED. The OL-patterned ZnO NAs are

shown in Fig. 7b–d. The diameter and length of the ZnO
nanowires are 300 nm and 4 μm, respectively. Based on
such patterned ZnO NAs, a flexible pressure mapping
device was fabricated and the corresponding optical
images are illustrated in Fig. 7e, f. The electro-
luminescence performance of the flexible LED based on
patterned ZnO NAs is shown in Fig. 7g. The controllable
fabrication of patterned ZnO NAs with various periods
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and sizes is beneficial for efficient ZnO-based LED de-
vices. Therefore, the rational design of the pattern struc-
ture is essential to improve the efficiency of light
extraction [144].

Nanogenerator devices

Nanogenerators (NG) are among the most common de-
vices used to convert mechanical energy produced by
mechanical vibration, body movement, airflow, and hy-
draulic energy into electrical energy at the nanometer
scale [145–148]. Vertically aligned ZnO NAs have been
widely used in NG devices, by virtue of the piezoelectric
effect [149–151]. However, the screening effect on the
piezoelectric field induced by the free carriers in ZnO
seriously inhibited the output performance of ZnO NAs-
based NGs [152–155]. Several strategies have been pro-
posed to reduce the surface free-charges on ZnO NAs,
such as the introduction of ZnO p-n homojunctions [156]
and doping with lithium [157]. Although the potential

screening effect was reduced, the free charges in the un-
strained ZnO NAs drifted to neutralize the piezoelectric
charges in the strained ZnO NAs, which seriously reduced
the device performance. Patterned ZnO NAs provide in-
dependent working areas, which effectively inhibit the
charge neutralization [158].
Patterned ZnO NAs were fabricated by the OL techni-

que. The surface morphologies of the patterned ZnO NAs
are illustrated in Fig. 8a–d. It is clearly evident that the
ZnO NAs with a diameter of 50–100 nm were divided to
squares with an interval of 20 μm. These patterned ZnO
NAs were used to fabricate the NG, which showed a
higher output current of 150 nA compared with the
pristine ZnO NAs-based NG. Fig. 8e, f show that the
space of the patterned ZnO NAs is larger than that of the
pristine ZnO NAs. When a compressive strain is applied
on the ZnO NAs, positive and negative potentials are
produced at the stretched and compressed sides, respec-
tively [159]. The electrons then flow from the ZnO NAs to
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Figure 8 Images showing the surface morphologies of patterned ZnO NAs at low magnification (a, b) and high magnification (c, d). Schematic
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the corresponding NGs. Reprinted with permission from Ref. [158], Copyright 2017, AIP Publishing LLC.
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the electrode. However, the free charges within the un-
strained ZnO NAs will neutralize the piezoelectric char-
ges, as shown in Fig. 8g. The patterned ZnO NAs with
independent working areas effectively reduced the
screening effect and in turn optimized the output per-
formance with an improvement of six times, as shown in
Fig. 8h, j. Therefore, the patterned ZnO NAs with in-
dependent working areas provide an effective protocol to
enhance the performance of NGs.

CONCLUSIONS AND OUTLOOKS
ZnO has received increasing attention over the past few
years because of its excellent properties. Various ZnO
nanostructures have been widely used in nanoscale de-
vices. For the improvement of device performances, the
accurate control of ZnO structure is particularly im-
portant. Several synthetic strategies have been exploited to
obtain highly ordered ZnO NAs. The detailed fabrication
processes and the advantages of the OL and LIL techni-
ques could offer platforms for the precise control of na-
nostructure fabrication. Furthermore, we highlight a
range of excellent properties associated with different si-
zes and periods. The relationship between the patterned
ZnO NAs and the material properties provides a guide for
the selection of nanostructures. In terms of energy con-
version applications, the successful integration of pat-
terned ZnO NAs into solar energy, water splitting, light
emission devices, and nanogenerators opens a new route
to improve the device performances. It is of universal
significance for further devotion in the energy conversion
device evolution.
Overall, a comprehensive review of the controllable

fabrication and functional applications of ZnO NAs by
OL and LIL technologies is given. The use of patterning
technology is an effective approach for fabricating large-
scale highly ordered ZnO NAs with controllable period
and diameter, and uniform distribution. Patterned ZnO
NAs have direct electron pathways, excellent light-scat-
tering, and enlarged surface area, which are conducive to
enhanced light-harvesting ability and accelerated charge
transfer in energy devices. Additionally, the segmentation
of the patterned ZnO NAs significantly reduced the
screening effect in ZnO-based NGs. The applications of
the patterned ZnO NAs in energy devices such as solar
energy, water splitting, LEDs, and NGs have been sum-
marized. All of the advantages contribute to the enhanced
performance of these energy devices. Therefore, the pre-
paration of large-area, low-cost, and high-precision ZnO
NAs based on OL and LIL technologies has laid a solid
foundation for the development of efficient functional

nanodevices. Patterning technology provides an effective
approach to fabricating highly efficient devices, which has
huge market value and research significance.
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