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Abstract—This paper discusses the design and testing of an air-
craft electric fuel pump drive. The drive is a modular, four-phase,
fault-tolerant system which is designed to meet the specification
with a fault in any one of the phases. The motor employed has a
permanent-magnet rotor with the magnets arranged in a Halbach
array to maximize the air-gap flux density. Exceptionally high elec-
tric loadings are obtained by flooding the entire motor with aircraft
fuel, which acts as an excellent cooling agent. Theoretical results
are compared with test results gained in conditions approaching
those found in an aircraft. Tests are carried out on the unfaulted
drive and with one of several fault scenarios imposed. The elec-
trical and thermal performance of the drive is assessed, showing
how the flooded fuel cooling has excellent performance without in-
troducing significant drag on the rotor.

Index Terms—Aerospace industry, electromagnetic (EM) per-
formance, fault tolerance, high specific output, permanent-magnet
(PM) machines, testing.

I. INTRODUCTION

T
HIS WORK discusses the design and testing of an aircraft

electric fuel pump drive. The drive, which is flooded with

aircraft fuel, must supply 16 kW of mechanical output power

at 15 000 r/min. Two strands of research have been followed

in earlier work: some researchers have concentrated on fault-

tolerant switched reluctance machines (SRMs) [1]–[5], while

other works have focused on permanent-magnet (PM) machines

[6]–[8]. A PM machine is chosen in preference to a SRM [6] be-

cause the drive can be smaller and yet is equally fault tolerant.

A very high magnetic loading is combined with the excellent

cooling properties of the aircraft fuel to produce a very high spe-

cific output machine. In order to meet reliability requirements,

the drive is fault tolerant; four independent modular phases are

used, with the drive capable of meeting the specification when

any one of the phases is faulted.

An earlier work [8] described a six-phase demonstrator which

uses a similar modular design philosophy, how it detects faults

[9], and how it continues to operate in the presence of open-

and short-circuit faults or when a power device fails [10]. This
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paper describes the four-phase drive, which is a refinement of

the earlier work; for the first time, a fault-tolerant fuel pump

drive is operated in conditions approaching those in an aircraft,

revealing thermal performance and capacity to deal with likely

failures.

It has been shown how drives of this type can give rise to

large rotor eddy current losses due to asynchronous magnetomo-

tive-force (MMF) harmonics [11]. Extensive test results are pre-

sented (both using a dynamometer and driving the fuel pump),

giving an insight into the electromagnetic (EM) and thermal per-

formance of the fuel cooled machine under unfaulted and faulted

load conditions.

II. DEMONSTRATOR MACHINE

The demonstrator machine uses the now well-established
technique of making each phase of the machine an indepen-
dent module with magnetic, electric, thermal, and mechanical
isolation between modules. It is perhaps most appropriate
to consider the complete drive as a collection of separate
single-phase drives, rather than a combined multiphase struc-
ture. Mutual coupling between phases is minimized by having
only one phase winding per slot, (thereby removing cross-slot
mutual coupling) and maintaining deep magnets thereby vir-
tually eliminating mutual coupling via the rotor. Windings are
placed around every other tooth, giving mechanical and thermal
isolation between phases, and each phase is supplied from a
single phase bridge, giving electrical isolation between phases.
Short circuits are accommodated by deliberately creating a
per–unit inductance equal to that of the back emf, so that in
the event of terminal short-circuit faults, the fault current is
limited to rated value by the inductance. Internal winding faults
are detected through the associated parameter changes creating
increases in the pulsewidth-modulation (PWM) ripple current
and are dealt with by deliberately shorting the faulted phase via
the power converter.

Earlier work has concentrated on a six-phase drive: that drive
was capable of producing rated output with only five phases
operational and, therefore, had to be overrated by 20%. In
contrast, the four-phase drive (in which each phase is separated
by 90 electrical degrees) must operate with only three phases
operational and must be overrated by 33%. However, the power
electronics are considerably less complex, with two-thirds the
number of power-electronic devices. The lower component
count actually makes the drive more reliable in addition to
making the power electronics smaller and lower cost. The space
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Fig. 1. Four-phase stator.

Fig. 2. Six-pole Halbach array rotor.

and weight of the power electronics are often ignored but, in

fact, can be substantial. At this time, tightly packaged power

electronics have yet to be developed, but choosing a lower

phase number was heavily influenced by these considerations.

Ultimately it was decided that the four-phase drive was the

most attractive option, taking size, reliability, and complexity

into account.

After choosing the phase number, there are a large number

of choices which can be made for pole and teeth number. The

speed of the machine is dictated here by the pump. The pump is

of the gear type and 15 000 r/min is a rather high speed for such

a pump. The drive needs to maintain full control and, hence, the

operating frequency of the power electronics sets limits on the

possible pole number. These arguments tend to favor a relatively

low pole number which, in turn, limits the possible choices for

the stator slotting arrangements. The four-phase drive described

here has four coils, wound round four of the eight teeth, and

six rotor poles. The stator, shown in Fig. 1, is constructed from

0.2–mm-thick cobalt-iron laminations, which combine a high

magnetic flux density with a low iron loss. It has an outside

diameter of 86 mm and a lamination stack length of 73 mm.

The rotor, shown in Fig. 2, contains samarium cobalt mag-

nets, arranged in a Halbach array: This results in a significantly

greater air-gap flux density than has been achieved with earlier

Fig. 3. Magnetic flux distribution in the four-phase machine.

Fig. 4. Assembled machine on the dynamometer.

surface-mounted magnet designs. Samarium cobalt magnets are

used because of their tolerance to temperature.

Fig. 3 shows the magnetic flux distribution in the machine on

no-load, full-load, and with a single-phase short circuit. Phase

coils are placed around the vertical and horizontal teeth, and so

for the rotor position shown, there is peak-induced voltage in

the coil round the vertical tooth. If the right-hand coil is shorted,

then it produces peak demagnetizing MMF at this position, but

note how the demagnetizing flux of (b) does not affect the flux

linking of the other phases. On load there is peak MMF in the
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Fig. 5. Measured back emf waveforms in the four-phase motor.

phase wrapped around the vertical tooth and the resulting arma-

ture reaction field is clearly visible in the stator field. The air-gap

field, however, is relatively unaffected by armature current and

even when a winding is short circuited, the air-gap flux falls by

less than 20%. This is a natural consequence of the deep magnets

and the relatively large air gap which restricts the flux driven by

the armature currents that reaches the rotor. This means that the

magnets are never in danger of demagnetization by a fault, even

in the zones near to the slot openings on the magnet surface. It

also means that the unbalanced magnet pull caused by a fault is

rather small. In fact, tests show that when short circuits are de-

liberately applied, the acoustic emissions from the motor hardly

change, a clear indication of a benign vibration environment.

III. DYNAMOMETER TEST RIG

The assembled test motor, mounted on the dynamometer, is

shown in Fig. 4. The motor has been run on two rigs: the first is a

dynamometer using a dc load machine via a gear box and torque

transducer, the second is a full fuel system rig with the motor

integrated with its pump, fuel system, and controls. For safety

reasons, the machine, while being tested on the dynamometer,

used a very low viscosity oil to replace the fuel. This slightly

impairs the cooling because the oil has a slightly higher vis-

cosity than the fuel but the testing shows the difference to be

very small. In this paper, the majority of the results come from

the dynamometer testing because a full range of electrical tests

is far easier to accomplish. The dynamometer results are pre-

sented in this section and a sample from the fuel system results

is presented in Section VI.

Oil is pumped into the machine at the driving end, with the

outlet pipe on the top of the motor, also at the driving end. The

oil passes through the machine by two routes: one through the

air gap, which is 1 mm deep, and a second through ducts formed

in the laminations between the core back and frame (as may be

seen in Fig. 1).

IV. MOTOR CHARACTERISTICS

The motor back emf characteristics are shown in Fig. 5. The

waveshape is virtually a pure sinusoid, as expected. Halbach

array rotors tend to give a very good sinusoidal air-gap flux

waveshape, leading to a sinusoidal back emf and this machine

is no exception.

Measurements of the phase self and mutual inductances indi-

cated that each phase has effectively 1.0-p.u. phase inductance,

that the mutual inductance between adjacent phases was 0.028

p.u. and that between opposite phases was 0.018 p.u. This level

of mutual coupling was so low that faults in a phase had no mea-

surable effect upon the control and torque produced by any other

phase.

An increase of 10% in self inductance was measured when

compared to the theoretical phase inductance calculated using

two-dimensional finite-element (2-D FE) methods, as shown in

Fig. 3. Further investigation using three-dimensional (3-D) FE

methods indicates that extra flux linkage due to the end windings

account for this increase in inductance.

Because each phase is more or less independent of all others,

each phase can be characterized by its own flux-linkage/cur-

rent/position curves. These were measured in a two-stage

process, first measuring the flux linkage due to the magnets

and second measuring that due to the winding. Integrating the

back emf with respect to time gives the no-load magnet flux.

The variation of flux with current is then produced using a

locked rotor test. The rotor is locked in different positions and

a voltage pulse is applied to the winding. The resulting current

versus time curve allows the flux linkage to be calculated. The

two results are then summed together to produce the curves

shown in Fig. 6.

To put these results into perspective, the machine running at

its rated torque and speed reaches a peak current of 76 A. This

shows that the motor is driven close to saturation and reaches

most of the available flux linkage-current space (i.e., it is quite

close to its EM limit).

V. MOTOR TESTS

The machine has several thermocouples built into the stator

slots and end windings. Temperatures were also measured at the

oil inlet and outlet.

By maintaining a constant flow rate and measuring the differ-

ence between the oil inlet and outlet temperatures, the power



674 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 4, DECEMBER 2004

Fig. 6. Flux linkage/current for the four-phase machine. Each curve represents one rotor position from the magnet-aligned position = 0 electrical degrees (top
curve) to 180 electrical degrees (bottom curve) in steps of 20 electrical degrees.

TABLE I
MEAN AND PEAK TEMPERATURE RISES OF THE MACHINE WHILE OPERATING AT 13 000 r/min.

MEASUREMENTS TAKEN IN THE SLOT, THE END WINDING, AND THE OIL

dissipated into the oil can be calculated. A series of tests was car-

ried out using this method to find the loss produced by various

mechanisms. It is assumed that the majority of loss is dissipated

into the oil as its cooling effect is many times greater then the

air surrounding the motor case and the associated mountings.

A. Winding Loss

With the rotor locked, a dc current was passed through all

four phases and the temperature rise was measured. The winding

temperature rise was found to be 0.014 C/W, an exceptional

thermal performance for such a small machine.

Repeating this test with only one phase reveals no detectable

temperature rise in the adjacent or opposite phases. This is im-

portant as it illustrates the excellent thermal isolation between

the phases, an important factor in reducing the propagation of

any fault through the machine.

At full-load current in the unfaulted mode [equivalent to 38

A root mean square (rms) and 10.2 Nm], the dc winding loss is

395 W while running in the faulted mode (the highest loss mode)

based on these dc tests would give 670 W of (dc) winding loss.

B. No-Load Loss

While open circuited, the machine is driven by a dc machine.

Measuring the oil temperature rise gives an indication of no-load

loss. As a dummy rotor was unavailable, the no-load loss mea-

sured is actually iron loss, generated by the rotation of the mag-

nets, plus viscous drag and bearing loss. At 13 000 r/min, 549

W was dissipated into the oil. This may be compared with the

dc loss above to reveal that the no-load losses are slightly

smaller than the copper loss. It can also be seen that the viscous

friction drag caused by running the rotor at high speed immersed

in the oil is not very large.

C. Full-Load Operation

The drive has been extensively tested on the dynamometer

up to a maximum speed of 13 000 r/min (set by the capability

of the gear system on the dynamometer) and a range of torques,

both during unfaulted and faulted operation. During normal op-

eration, a peak temperature rise of 15 C has been measured,

even under fault conditions at rated torque, the peak tempera-

ture rise has not exceeded 25 C. This is truly exceptional for a

machine of this size. The specific output is 38 MWm , which

results from a combination of moderately high speed, a high

magnetic loading, and very high electric loading, with rms cur-

rent densities in excess of 25 A per square millimeter. Table I

illustrates the mean and peak temperature rises at various loca-

tions throughout the machine, while Table II illustrates the com-
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TABLE II
MACHINE LOSS COMPONENTS WHEN OPERATING AT 13 000 r/min

ponents of loss causing these temperature rises when operating

at 13 000 r/min, the maximum test speed under fault conditions.

These temperature rises are probably lower than might be al-

lowed in the full application, and hence, the machine could be

produced a little smaller for the same output by reducing the

copper cross-section, and hence, slot area and outside diameter

without affecting the EM envelope (which, as has been shown in

Section IV, is close to being fully utilized). The considerations

on allowable temperature rise are related to ambient fuel tem-

perature and to the power-electronics packaging and its temper-

ature limit. In the prototype, the electronic circuits are entirely

separate and air cooled but in a full implementation, it is in-

tended that the electronics be packaged with the motor and fuel

cooled. This is likely to impose a lower allowable temperature

rise.

The distribution of temperature shows that the primary

cooling path for the copper loss is out through the end windings

which are fully immersed in moving coolant. The thermal

gradients are small, which reduces problems associated with

thermal cycling.

The measured total losses estimated from oil inlet and outlet

temperatures are shown in Table II. The results display the

no-load loss, the dc copper loss (according to the actual running

condition), the total measured loss, and the “extra loss” which

is the difference between the dc copper loss plus the no-load

loss and the total loss. It should be noted that the oil temperature

rises are small (with a maximum rise of only 11 C), and hence,

the likely level of error in these measurement is high. As with

the temperature results, the fault modes give the highest losses.

The figures also show that total running losses are substantially

higher than the combination of dc copper loss and the no-load

loss. The extra loss comes partially from the higher fluxes in

the core resulting from the addition of the armature driven

flux to the magnet flux and partially from the ac resistance

of the windings. The other source of extra loss comes from

the nonsynchronous magnetic fields produced by the winding

which cause induced eddy currents in the rotor sleeve, magnets,

and shaft.

During a fault, the healthy phase currents must increase (to

maintain torque): this contributes extra winding loss—296 W

rises to 394 W during an open-circuit phase fault and 502 W

with a short-circuit phase fault because during a short-circuit

fault, the faulted phase current will also contribute extra loss.

Rotor loss is due to eddy currents induced by asynchronous

air-gap rotational fields. During normal operation, the rotor

is only exposed to rotating odd harmonics; however, during

faulted operation, the increased healthy phase currents increase

the magnitude of the odd harmonics and the unbalanced nature

Fig. 7. Air-gap field harmonic spectrum during normal operation (top) and a
short circuit fault (bottom).

of the air-gap field creates loss inducing even harmonics. These

have been calculated using Fourier analysis of the predicted

tangential H field at the stator bore. Fig. 7 illustrates the change

in the air-gap harmonic spectrum during unfaulted, open-cir-

cuit, and short-circuit operation. In considering this figure, it

should be noted that the harmonics are given as the tangential

magnetic field strength appearing at the air gap with the units

of kiloamperes per meter.

Displaying field strength as opposed to MMF means that the

higher harmonics do not diminish as much as is instinctively

expected. The magnet has a six-pole field and the winding’s
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TABLE III
SIMULATED ROTOR LOSS DURING NORMAL AND FAULTED

OPERATING CONDITIONS

Fig. 8. Current in phases A and C when delivering 8.1 Nm at 13 000 r/min.
Unfaulted operation (1 mS/div, 50 A/div).

six-pole field rotates with the rotor and creates the load torque.

The other pole-numbered fields rotate either forward or back-

ward at varying speeds nonsynchronous with the rotor and

create loss via the induced eddy currents in the rotor.

Using a mix of Fourier methods and 2-D finite elements,

the air-gap field is decomposed into its harmonic components,

which are used to calculate rotor loss due to induced eddy cur-

rents. The results are shown in Table III. These calculated fig-

ures are in broad agreement with the measured extra loss con-

sidering the likely measurement errors. They also agree rather

closely with another published work [11].

The measured figures for the extra loss certainly support the

assertion that most of this extra loss is rotor eddy current loss. If

the extra loss was all rotor eddy currents, the short-circuit fault

case should have lead to substantially more loss than the open-

circuit fault. A possible explanation why this is not the case

is that the open-circuit case has full flux in the faulted phase,

and hence, the iron loss associated with that, whereas the short-

circuit phase has no linking flux, and hence, negligible iron loss

in that part of the magnetic circuit. It should be remembered that

the oil temperature rises are small, and hence, the error level will

be high.

Fig. 8 shows the measured phase currents during normal op-

eration at 13 000 r/min with 8-Nm torque, while Fig. 9 shows

the currents during faulted operation at 6 Nm.

In this case, phase C, the lower trace, is short circuited at the

terminals. The figure illustrates how the fault current remains

Fig. 9. Current in phases A and C when delivering 7.1 Nm at 13 000 r/min.
Phase C (lower trace) is subject to a short circuit with all torque produced by
phases A, B, and D (500 �S/div, 50 A/div).

Fig. 10. Full motor and pump system test rig.

within the rated value and that of phase A is unaffected by the

fault.

VI. TESTING OF THE DRIVE WITH THE PUMP

After thorough testing of the drive on the dynamometer, the

machine was mated with its pump and full system tests con-

ducted. Detail of the test rig is shown in Fig. 10. The machine is

identifiable on the left of the picture with the pump and its fuel

connections on the right.

These tests were conducted in actual fuel, as opposed to the

low viscosity oil that was used in replacement of jet fuel in

the dynamometer tests. The pump, which is of the gear type,

was driven over a range of operating conditions both with

and without faults imposed. A full description of the pumping

system is beyond the scope of this paper but perhaps Figs. 11

and 12, which show results from normal operation during a

speed increase from 11 900 to 12 800 and operating through

temporary loss of a phase, serve to illustrate performance.
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Fig. 11. Acceleration of the pump from 11,900 to 12 800 r/min with the
maximum acceleration rate set at 100 000 r/min/s.

Fig. 12. Pump running at 480 1 b=in g (15 000) r/min set point running
through temporary loss of a phase.

In these figures, GP outlet pressure is the pressure directly

at the output of the (gear) pump, FCU outlet pressure is the

pressure at the outlet from the fuel control unit, speed/10 is one-

tenth the speed of the pump, and MPSOV control pressure is the

pressure at the minimum pressure shutoff valve, used to prevent

overheating of the machine if the fuel pressure falls below a

minimum value.

During the pump tests, the speed was controlled by the

MPSOV control pressure measurement, as seen above in

Fig. 12. This method slows down the speed response of the

drive. The scale in Fig. 12 has a truncated zero and the actual

speed changes are small and well within acceptable limits.

The drive runs its own fault detection, and hence, is able to

autonomously correct the required target current for a given

torque demand. Using this would result in faster response to

more or less at the same rate as the current controller. This

action was not employed in these tests as full integration of the

pump and motor controllers has yet to be implemented.

It should be noted that these full pump tests have been per-

formed at full-rated speed and torque (as compared with the

13 000-r/min restriction placed on the dynamometer tests).

VII. CONCLUSION

A four-phase fault-tolerant fuel pump drive has been de-

signed, built, and extensively tested. The drive has demonstrated

its ability to continue to produce rated output, even in the pres-

ence of faults to the machine.

Through the use of Halbach magnets and fuel cooling, an

exceptionally high specific output has been achieved for the

machine. The temperature rises measured in the drive are very

modest even during faulted operation. This indicates some scope

for further improvement in specific output.

It has been possible to assess the various loss mechanisms

present in the machine which has shown that the running losses

due to iron loss, rotor eddy current loss, and viscous drag of

the fuel are all significant. The highest temperatures are reached

during faulted operation during which the healthy phases must

carry higher current and there are extra losses caused by the in-

crease in rotor eddy currents driven by extra nonsynchronous

fields arising from the nonsymmetric armature currents during

the fault. None of these loss mechanisms led to excessive tem-

perature rise during a fault.

Tests have been conducted with the drive integrated with a

fully functional pump and the associated pump control valves.

Excellent performance has been shown in these full running

tests including ride through performance during an imposed

fault in the drive.

The tests to date fully justify the design methodology adopted

to create a fault-tolerant electric drive for a main engine fuel

pump using a modular redundant PM machine-based drive.
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