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The design of sensor networks featuring minimum cost, while satisfying constraints of
redundancy only, is examined. For this purpose, the concept of degree of redundancy for
measurements and degree of obser®ability for unmeasured ®ariables are merged into one
single property, the degree of estimability of a ®ariable. In addition, the concept of
estimation efficiency is introduced. Based on these concepts, mathematical program-
ming procedures are presented that allow the design of sensor networks for different
degrees of estimability of key ®ariables.

Introduction
In recent years, the scope of data usage has increased from

process monitoring, control and production accounting goals,
to fault detection and on-lineroff-line optimization. As a
result, the need for quality and availability of data has in-
creased. Since process measurements contain random errors,
data reconciliation has been used to adjust the measurements
so that they comply with conservation laws. In this way, re-
dundancy of measurements, through hardware duplication
and through software, has been used to correctly assess the
value of different variables. As methods to perform data rec-
onciliation and gross error detection proliferate, the need for
systematic procedures to design sensor networks has emerged.

Different approaches and driving forces have been used
for the design of sensor networks. Vaclavek and Loucka
Ž .1976 used graph theory to guarantee variable observability,

Ž .Kretsovalis and Mah 1987 used a combinatorial search based
on the effect of the variance of measurements on the preci-

Ž .sion of key variables. Madron and Veverka 1992 proposed
to classify measured and unmeasured variables of linear sys-
tems according to a pre-established criterion of ‘‘required’’
and ‘‘nonrequired.’’ Unmeasured variables are later ordered
from ‘‘hardly measured’’ to ‘‘easily measured.’’ Madron pro-
posed to use two objective functions: cost and overall preci-
sion of the system. By means of matrix decomposition and an
elaborate column permutation procedure, suboptimal struc-

Ž .tures are found. Madron 1992 also presents details of this
procedure based on graph theory. The concept of cost-edged
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graph is introduced and minimum spanning trees of these
graphs are used to obtain minimum cost or optimal overall
precision sensor networks. However, the method cannot tar-
get desired precision levels on individual variables. Ragot et

Ž .al. 1992 presented a procedure that allows the identifi-
cation of the set of sensors for which the system becomes

Ž .observable. Luong et al. 1994 presented a method that pro-
vides solutions that feature minimal observability of those
variables required for control and high degree of redundancy
of variables. They use reliability as means of screening alter-

Ž .natives with equal cost. Maquin et al. 1994 proposed to ob-
tain the location of sensors by inverting the expression that
provides the variance of reconciled variables as a function of

Ž .the variance of measurements. Ali and Narasimhan 1993
proposed to maximize reliability, which is based on sensor
failure probability, observability of variables, as well as re-
dundancy. While looking at all networks containing the mini-
mum set of sensors to achieve observability, they propose a
Max-Min problem using reliability as the objective function.
Another graph oriented procedure was proposed by Meyer et

Ž .al. 1994 using cost as the objective function and providing
solutions featuring networks containing the minimum set of

Ž .sensors. Lately, Ali and Narasimhan 1995 extended their
previous work to redundant networks. Their algorithm uses
graph theory to build networks with a specified number of
sensors and maximum reliability. Finally, in a recent article,

Ž .Sen et al. 1998 presented a genetic algorithm that can be
applied to design nonredundant sensor networks using differ-
ent objectives functions.

Departing from graph theory and linear algebra ap-
Ž .proaches, Bagajewicz 1997 proposed a MINLP problem to
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obtain cost-optimal network structures for linear systems sub-
ject to constraints on precision, residual precision and error
detectability. Finally, the connection between cost-optimal
and maximum precision mathematical programming models

Ž .was recently established by Bagajewicz and Sanchez 1999 .´
While all the aforementioned work deals with several as-

pects of the sensor network design and covers an ample spec-
trum of goals, often there is no data available to implement
these methods. For example, the reliability of a proposed in-
strument is often unknown or guidelines to pick bounds on
precision are many times absent, and so on. Therefore, there
is a need of developing design procedures that focus on sim-
ple goals.

The purpose of this article is to present a methodology for
the grassroots design or the upgrade of a sensor network in a
process plant with the goal of achieving a certain degree of
observability andror redundancy for a specific set of vari-
ables. The various forms in which a particular variable can be
redundant and observable have been hardly explored, the only

Ž .exception being the work done by Luong et al. 1994 and
Ž .Maquin et al. 1994 .

This article discusses the goals of sensor network design
andror upgrade first. Then, the concept of degree of estima-
bility and its connections to observability and redundancy are
introduced. In the next section, the relation between degree
of estimability, spanning trees, and cutsets of the process
graph is established. Following, a new method that allows the
design with estimability goals is presented. Several examples
are included throughout the text.

Upgrade and/////or Design Goals
When it is necessary to have data available, the options

are: measure the variable directly, or if it results less expen-
sive, measure other variables that will allow the calculation of
the desired value using model equations. When this idea is
extended to a large system, several objectives can be identi-
fied:

� If the value of all variables is of interest, then the objec-
tive becomes to design a system for which all unmeasured
variables are observable and all measured variables are
nonredundant. However, if only the value of key variables is
required, some may remain unobservable. Thus, a design goal
should be that of observability in only the set of variables of
interest.

� If some reassurance is desired that data for a variable
will remain observable in the presence of sensor failures, then
a certain degree of redundancy is required. Although this is-
sue can also be addressed in light of the concept of reliability
Ž .Ali and Narasimhan, 1993 , this angle of analysis is omitted
in this article.

In addition, restrictions on measuring certain variables can
be imposed due to, for example, space limitations, lack of
proper access for calibration, and so on. In this article, cost is
excluded from this list, as this issue will be handled by the
design procedure itself. In other cases, the measurement of
some variables may be made compulsory. Aside from eco-
nomical reasons, reasons for such compulsory choice can be
related to ease andror small frequency of maintenance, or
even political, as many production accounting personnel may

feel uneasy about not measuring certain variables that they
consider of importance. These fears may not be unfounded,
as, for example, one very reliable instrument may fail less
often than, for example, a set of two instruments.

Estimability
A generalized definition of observability was attempted by

Ž .Ali and Narasimhan 1993, 1995 to denote as observable any
variable measured or unmeasured for which an estimate can
be produced. The new name of estimability is preferred to
avoid confusion and reserve the name observable to unmea-
sured variables, as it has become popular in the literature.
Thus, the definition of estimability is formally presented.

Definition. A variable i is estimable if it is measured, or
unmeasured but observable.

Degree of Estimability
In this section the concepts of degree of observability and

redundancy are reviewed. In addition the concept of degree
of estimability is introduced. It unifies previous definitions in
a single one, making the distinction of measured and unmea-
sured unnecessary.

The concepts of degree of observability and degree of re-
Ž .dundancy have been introduced by Luong et al. 1994 . For

convenience, they are presented in this article in a slightly
different, but equivalent, manner.

Obser©ability and redundancy
The concepts of observability and redundancy in linear sys-

tems are well known. A nonmeasured variable is observable
if it can be calculated in at least one way from the measure-
ments. A measurement is redundant if it can also be calcu-
lated in at least one way from the remaining measurements.
Finally, a measurement of a variable is nonredundant if after
removing this measurement, the variable is unobservable.

Redundancy is, therefore, a desirable property of a system
because in the case when an instrument fails, its variable can
be estimated through balances. Moreover, if the number of
different balances that can be used increases, there will be
additional ways to calculate the variable. We say that the reli-
ability of such a system and the precision of the estimation
increase. There is, therefore, a need to distinguish these dif-
ferent levels of redundancy.

Degree of Redundancy of a System. Definition. A system
has a degree of redundancy k, when, at least, k linearly inde-
pendent balance equations can be written using measured
variables only.

Let us represent the material balances around the nU
process units as

Dxs0 1Ž .

Ž .where D is a n � n matrix and n stands for the number ofU
process streams. By using simple rearrangement of columns
in matrix D, the system can be rewritten in the following way

xUw xD D s0 2Ž .U M xM
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where x corresponds to unmeasured flow rates and xU M
stands for the measured ones.

Depending on the topology of the process and the location
of sensors, unmeasured variables are classified into observ-
able and unobservable. Measured variables are divided into
redundant and nonredundant. Variable classification is
therefore an essential tool for data reconciliation and the de-
sign of monitoring systems. Following one existing classifica-

Ž .tion strategy Madron, 1992 , linear combinations of rows and
column rearrangements are performed to obtain the follow-
ing system, where D is already in its canonical form

Unobservable � � Redundant

Observable � � Non-redundant

xOI 0 yG yGRO NRO xUO0 G G G s0 3Ž .UO RUO NRUO xR0 0 G 0R x^ ` _^ ` _ NR

Unmeasured � � Measured

Rewriting system 3 only for observable and measured vari-
ables, the following expressions are obtained

x sG x qG x 4Ž .O RO R NRO NR

G x s0 5Ž .R R

A third equation involving unobservable variables can be
written. However, this equation is irrelevant for the analysis
that follows.

The system degree of redundancy can now be given a
mathematical interpretation. First, note that matrix G is ofR
full row rank. If this was not the case, there would be one
balance that can be written as a linear combination of the
others. However, by construction, D has as many rows as units
and, thus, all balances are linearly independent. Thus, since
the degree of redundancy is the number of l.i. balance equa-
tions that can be written with measured quantities, it is equal
to the rank of G .R

In principle, this concept implies that a system has poor
redundancy when too many measurements are nonredun-
dant. However, this concept does not fully encompass the
richness of the different types of system redundancies that
one can find. For example, systems can have the same num-
ber of measurements and the same number of units, but dif-
ferent degrees of redundancy. The following example illus-
trates this.

Consider the system of three units depicted in Figure 1a.
Assume all streams are measured. Thus, it contains three
units and four measurements resulting in a degree of redun-
dancy of 3. Consider now the system in Figure 1b, and as-
sume that all but S and S are measured. As in the case of5 6
Figure 1a, this system contains three units and four measure-
ments. However, its degree of redundancy is 1. If the set of

Figure 1. System degree of redundancy.

� 4measured streams is x s S , S , S , S , the degree of re-M 1 2 4 5
� 4dundancy is also one, but if x s S , S , S , S , then the sys-M 1 2 3 6

tem degree of redundancy is 2.
The degree of redundancy of a system is thus a condition

that reflects how effectively a certain number of measure-
ments is distributed throughout the system. For example, two
systems can have the same number of measurements but a
different system degree of redundancy, as in one case, too
many variables are redundant and in the other too many are
nonredundant. However, not much connection has been
found between the degree of redundancy of the system and
specific goals, such as reliability, gross error detectability, re-
silience, or the availability of precision under sensor failure,
other than the fuzzy statement of saying that the more redun-
dancy, the better. For this reason, the attributes of specific
variables at specific locations will be analyzed in the rest of
the article.

Degree of Obser®ability of Variables. For convenience, we
Ž .denote A p as the set of all possible combinations of p

Ž . Žmeasurements. We call A p , the jth element combina-j
.tion of this set. We are now ready for the following defini-

tion:
Definition. An unmeasured variable i has the degree of

�observability O if: it remains observable after the elimina-i
Ž . Ž .4 �tion of any combination A O y1 g A O y1 AND it be-j i i

Ž . Ž .comes unobservable when at least one set A O g A O isj i i
4eliminated .

� 4Consider the system of Figure 2, if x s S , S , then vari-M 1 2
able S has the degree of observability O s1. In turn, if6 6

� 4x s S , S , S then O s2, because elimination of oneM 1 2 3 6
Ž .measurement at a time S , S or S would not make it un-1 2 3

observable. However, a deletion of any of the following two
Ž . Ž .sets: S , S S , S , would render it unobservable. Note,1 2 1 3

Ž .however, that the elimination of the set S , S would not2 3
make S unobservable.6

Degree of Redundancy of Variables. For convenience, we
Ž .denote B p, S as the set of all possible combinations of pi
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Figure 2. Concept of degree of observability.

measured variables, not including the measured stream S .i
Ž . Ž .We call B p, S the jth element combination of this set.j i

The following definition is then presented.
Definition. A redundant measured variable i has degree

�of redundancy R if: it remains redundant after the elimina-i
Ž . Ž .4tion of any combination B R y1, S gB R y1, S ANDj i i i i

� Ž .it becomes nonredundant when at least one set B R , S gj i i
Ž . 4B R , S is eliminated .i i
Remark. Accordingly, the degree of redundancy of a

nonredundant measurement is zero.
� 4In the system of Figure 2, for x s S , S , variable S hasM 1 2 1

a degree of redundancy R s0, because it is already nonre-1
� 4dundant. If S is measured, x s S , S , S , then S has de-3 M 1 2 3 1

gree of redundancy R s1 because it is sufficient to eliminate1
S or S to make it nonredundant.2 3

A redundant measurement is such that the variable be-
comes observable when the measurement is eliminated. A
nonredundant variable, in turn, becomes unobservable if its
measurement is eliminated. Thus, if a variable has degree of
redundancy R , the elimination of its measurement will makei
it a variable of degree of observability O sR .i i

� 4For example, if for Figure 2, x s S , S , S , then theM 1 2 3
elimination of S makes it a nonmeasured variable with de-1
gree of observability O s1, because it is enough to eliminate1
S or S to make it unobservable.2 3

Remark. From the above discussion, the system degree of
redundancy is directly the number of rows of G , and is notR
related to the number and degree of redundancy of other
measured variables.

Degree of Estimability of Variables. Definition. A variable
Ž . �i measured or not has a degree of estimability E if: it re-i

mains estimable after the elimination of any combination
Ž . Ž .4 �A E y1 g A E y1 AND it becomes unobservable whenj i i

Ž . Ž . 4at least one set A E g A E is eliminated .j i i
To illustrate the above definition, consider the process

graph in Figure 3 and assume all flow rates are measured. In
Ž . �Ž . Ž . Ž .4this case B 1, S s S , S , S . Therefore, stream S2 1 3 4 2

has a degree of redundancy R s1, because just the elimina-2
tion of S makes S nonredundant. Since the elimination of1 2
S makes S nonredundant, and the elimination of either S1 2 3
or S does not alter its redundancy status, its degree of es-4
timability is larger than one. Consequently, it is necessary to

Ž . �Ž . Ž .evaluate the elements of the set A 2 s S , S , S , S ,1 2 1 3
Ž . Ž . Ž . Ž .4S , S , S , S , S , S , S , S . From this analysis, it can1 4 2 3 2 4 3 4

Ž .be easily seen that the elimination of S , S makes S unob-1 2 2
servable, thus E s2.2

In a similar way, it can be shown that R s2, because if all3
Ž . �Ž . Ž . Ž .4the elements of B 1, S s S , S , S are individually3 1 2 4

eliminated, variable S stays redundant, but becomes nonre-3

Ž . Ž . Ž .dundant if the elements S , S or S , S from B 2, S s1 4 2 4 3
�Ž . Ž . Ž .4 Ž .S , S , S , S , S , S are deleted. The inspection of A 21 2 1 4 2 4

Ž . �Ž . Ž . Ž .4and A 3 s S , S , S , S , S , S , S , S , S helps to con-1 2 3 1 2 4 2 3 4
Ž .clude that E s3, because the elimination of S , S , S ren-3 2 3 4

ders S unobservable.3
The following are properties that follow naturally from the

definition.
Property. The degree of estimability of a nonmeasured

variable is equal to the degree of observability.
Property. The degree of estimability of a measured redun-

dant variable is its degree of redundancy plus one.
Property. A measured nonredundant variable has a de-

gree of redundancy zero and degree of estimability one.
Property. When the degree of estimability of a variable is

larger than or equal to one, then the number of sensors that
need to fail to render the variable unobservable is equal to its
degree of estimability.

The property follows from the definition, but it has deep
connections with the concept of reliability. In addition, it is
independent of its original status of measured or unmea-
sured.

Property. A system where all variables have a degree of
estimability equal to one is a system of nonredundant mea-
sured variables and observable unmeasured ones.

Proof. If a variable is measured and has degree of estima-
bility one, then it is nonredundant. If in turn, it is unmea-

Ž .sured, it is observable because its estimability is one and its
observability is given by nonredundant variables.

Property. If the degree of estimability of an unmeasured
variable E is larger than one, then the entries in row j ofj
G are all zero.NRO

Proof. If any nonredundant measurement is used to esti-
mate variable j, then the elimination of this variable will make
S unobservable.j

Graph Theory and Estimability
We now connect the concept of spanning tree and cutset

to estimability. The Appendix presents a short overview of
graph theory.

Property. A system where all variables have degree of es-
timability E s1 corresponds to a system where all unmea-i
sured streams are given by a spanning tree.

Figure 3. Reduced process graph.
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Proof. If all variables have E s1, this implies that all un-1
measured variables are observable and measured variables are
nonredundant. If all unmeasured variables are observable,
then I contains all of them, and therefore, as all the mea-D
sured variables are nonredundant, there is no row with zeros
corresponding to the columns of the unmeasured variables.
Thus, I corresponds to all unmeasured variables that form aD
spanning tree.

Adding one measurement to a system can have a different
effect on the estimability of the rest of the variables, depend-
ing on which measurement is added.

Consider the system of Figure 2 and assume the measured
� 4variables are given by x s S , S . The set of unmeasuredM 1 2

variables is a spanning tree, as it can be observed in Figure 4.
The degree of estimability of all variables is one, as they are
all observable, and x is a set of nonredundant measure-M
ments. The canonical form of the incidence matrix is

S3 S4 S5 S6 S1 S2
..1 y1 1.

1 y1. 7Ž ..1 y1 1..1 y1.

Assume now that S becomes measured. Then, the new4
canonical form is

S3 S5 S6 S4 S2 S1
. .
. .1 1 y1. .1 1 y1. . 8Ž .. .1 y1. .. . . . . . . . .. .1 y1. .

� 4The set S , S is now redundant, whereas S remains2 4 1
nonredundant. However, S , S , and S have still a degree of3 5 6
estimability E sE sE s1, because it is enough to delete3 5 6
S to make any one of them unobservable. In turn, S and S1 2 4
increased their degree of estimability to E sE s2.2 4

Consider now that instead of S , S is measured. Then, the4 5
new canonical matrix is:

S3 S4 S6 S5 S1 S2
.
.1 y1 1.1 y1. 9Ž ..1 y1.. . . . . . . . . . . . . .. 1 y1 1.

� 4The set S , S , S is now redundant, and their degree of1 2 5
estimability is E sE sE s2. There are no nonredundant1 2 5
variables and the degrees of estimability of all the unmea-
sured variables is E sE sE s2.3 4 6

We now turn our attention to the relation between cutsets
and estimability.

Definition. A cutset is estimable if it includes no more than
one unmeasured stream.

This definition relates to the estimability of the variables in
the cutset. If all the variables in the cutset are measured,

Figure 4. One spanning tree of the system of Figure 2.

then all the variables are redundant, with a degree of redun-
dancy of at least one. Since the variables could participate in
other cutsets where all streams are measured, then the de-
gree of redundancy can be higher. If one variable is unmea-
sured, then it is observable, and all the measured variables
are nonredundant if this is the only cutset involving them.
Otherwise, they may be redundant if they participate in other
cutsets. Thus, an estimable cutset is a cutset in which all the
variables have a degree of estimability of at least one.

Definition. An estimable cutset is redundant if all its
streams are measured.

Property. The number of all cutsets containing a variable
S is equal to the number of material balances that can bek
written involving variable S .k

This property is self-evident.
Property. A bound on the maximum possible degree of es-

timability of an unmeasured variable S is given by the maxi-k
mum number of cutsets containing S .k

Proof. Consider all the cutsets containing variable S . Ak
nonestimable cutset does not contribute to the estimation of
S . In fact the estimability of S is due only to estimablek k
cutsets. Assume now that S belongs to n estimable cutsetsk
C , C , . . . , C . Since S is unmeasured, then C lCk, 1 k , 2 k , n k k , 1 k , 2
l . . .lC sS . Therefore, the elimination of a measure-k, n k
ment belonging to C makes this cutset nonestimable, but itk, 1
has no effect on the observability of S , since it will still bek
guaranteed by the rest of the estimable cutsets. In fact, one
variable per cutset will have to be eliminated to render Sk
unobservable. Thus, S has a degree of estimability n. How-k
ever, if the intersection of any subset of estimable cutsets
contains at least one more variable in addition to S , thenk
these subset of cutsets can be rendered nonestimable by just
eliminating any variable belonging to such an intersection.
Thus, if S is not measured, the maximum possible degree ofk
estimability cannot be larger than the number of estimable
cutsets.

Property. A bound on the maximum possible degree of es-
timability of a measured variable S is given by the numberk
of redundant cutsets containing S plus one.k

Proof. Assume first that out of the n estimable cutsets,
the first m are redundant. Consider again the case that Ck, 1
lC l . . .lC sS . Then, the elimination of a measure-k, 2 k , n k

Ž .ment belonging to C iFm makes this cutset nonredun-k, i
dant. The elimination of S has no effect on the observabilityk
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Figure 5. Augmented graph corresponding to the flow-
sheet of Figure 2.

of this variable, since the rest of the measurements of this
cutset will still guarantee it. In fact, two variables per redun-
dant cutset will have to be eliminated to render S unobserv-k
able. In general, if the measurement of S is eliminated, thenk
the m redundant cutsets will become nonredundant, and, to
make S unobservable, one additional measurement per re-k
dundant cutset will have to be eliminated.

Property. The degree of estimability of an unmeasured
variable S , whose estimable cutsets have only S as an inter-k k
section, is equal to the number of these estimable cutsets. If
the variable is measured, then its degree of estimability is the
number of the estimable and redundant cutsets plus one.

This property is actually a corollary of the two previous
properties.

To illustrate the above properties, consider the variable S1
in the system of Figure 5 that represents the augmented graph
of the process in Figure 2. All the cutsets containing S are:1

� 4 � 4 � 4C s S , S , C s S , S , S , C s S , S , S , C s1, 1 1 6 1, 2 1 2 3 1, 3 1 2 5 1, 4
� 4 � 4S , S , S , C s S , S , S . These are obtained using linear1 4 3 1, 5 1 4 5
combinations of the fundamental cutsets included in the

Žcanonical form of the incidence matrix see the Appendix for
.details . Assume all variables, except S , are measured. This1

set of measurements should render all the cutsets containing
S estimable cutsets. In particular, a deletion of one variable1
per cutset will certainly make S unobservable. However, the1
minimum number of variables is even smaller. The elimina-
tion of the measurements in variables S , S , and S will2 4 6
render S unobservable. Thus, in this case, the degree of es-1
timability of S is E s3, lower than the bound of five given1 1
by the number of estimable cutsets. However, if x sM
� 4S , S , S , then only C and C are estimable cutsets.2 3 6 1, 1 1, 2
Thus, the bound on the degree of estimability of S is two,1
and, indeed, this is the minimum number of variables re-
quired to render it unobservable.

If, in the same example, all variables are measured, then
all cutsets are redundant, and the bound on the degree of
estimability is six. However, in reality, the degree of estima-
bility is four. Elimination of S , S , S , and S is enough to1 2 4 6

� 4render S unobservable. However, if x s S , S , S , S ,1 M 1 2 3 6
then only C and C are redundant cutsets. Now, the1, 1 1, 2
bound is three, which is indeed the degree of estimability of
S .1

Efficiency of Estimability
We now explore a concept that will be of fundamental im-

portance when designing sensor networks. We are interested
in the ability of the sensor network to provide the value of a
certain variable, even when a certain number of sensors fail
regardless of position. In this sense, the degree of estimabil-
ity of a variable indicates the number of sensors that should
fail to render it unobservable.

As was described above, there is an upper bound for the
degree of estimability of a variable that is related to the num-
ber of estimable cutsets in which it participates. Let us con-
sider that the degree of estimability of an unmeasured
variable S is equal to the number of estimable cutsets;k
therefore, their only intersection is S . Assume now that nok
other cutset exists that could be made estimable, such that its
intersection with the existing estimable cutsets is only vari-
able S . In such a case, the maximum efficiency of the in-k
stalled measurements has been obtained. Any other cutset
made estimable will increase the number of measurements,
but it will not increase the estimability of the variable. Now,
this efficiency will be formally defined.

Definition. The efficiency of estimability of a variable is
given by the ratio of the degree of estimability and the maxi-
mum degree of estimability.

For example, consider in Figure 5 the case where S is1
� 4unmeasured and x s S , S , S . Then, only two estimableM 2 3 6

� 4 � 4cutsets exist, namely C s S , S , C s S , S , S . The in-1, 1 1 6 1, 2 1 2 3
tersection of these two cutsets is only S , and, therefore, its1
degree of estimability is two, and the efficiency is one. If we
make the cutset C estimable, the degree of estimability of1, 5
S is three. In other words, the efficiency of the estimability1
can go as low as 3r5.

Thus, when a variable has an efficiency of estimability one,
no unnecessary estimable cutsets have been used. In other
words, any additional cutset made estimable by the addition
of measurements may contribute to other goals, such as the
increase of precision, but will not affect the degree of estima-
bility.

We are now in a position to discuss another type of effi-
ciency. Consider the case in which a certain unmeasured
variable has a certain degree of estimability. Furthermore,
assume that there exist cutsets whose intersection with all the

� 4estimable cutsets that contain S is S . Thus, one can elimi-k k
nate the measurements of one estimable cutset and introduce
measurements in another of these nonintersecting cutsets to
make it estimable, and, therefore, maintain the same degree
of estimability. This exchange of cutsets can continue until
the minimum number of measurements is used. This moti-
vates the following definition.

Definition. The minimum estimation cardinality of degree
k of a nonmeasured variable is the smallest number of mea-
surements that are needed to obtain a degree of estimability
k for the variable.

The minimum cardinality can thus be obtained by finding a
combination of k cutsets whose intersection is variable Sk
only, and whose union has the minimum number of variables.
Once the cutsets that include the variable in question are
known, this is a simple task. All is needed to do is to enumer-
ate the cutsets in increasing order of cardinality, pick the first
k sets, and count all measurements involved. The efficiency
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defined as the quotient between the actual number of mea-
surements involved and the minimum number can also be
defined.

Consider again in Figure 5 the case where S is unmea-1
� 4sured and x s S , S . Then, only one estimable cutset ex-M 2 3

� 4ists, namely C s S , S , S , and the degree of estimability1, 2 1 2 3
of S is E s1. However, since C lC sS , then the set1 1 1, 1 1, 2 1

� 4x s S can achieve the same degree of estimability, and,M 6
therefore, the minimum estimation cardinality of S is one.1

Design for Estimability
If, for each variable z , there is only one potential measur-i

ing device with associated cost c , then the total cost is giveni
by

C q s c q 10Ž . Ž .Ý i i
� i

where q is a vector of binary variables defined by

1 if z is measurediq s 11Ž .i ½ 0 otherwise

Then, the design of the sensor network is an optimization
problem that can be written as

Min c qÝ i i
� i

s.t.

E q GE� �kg I 12Ž . Ž .k k s

q s0, 1 � ii

where E is the degree of estimability of variable i, and E� isi k
the minimum degree of estimability imposed. The inequality
in the constraint of estimability is essential, as sometimes, in
order to achieve a certain degree of estimability in one vari-
able, a larger degree of estimability than necessary may be
required in others. If, instead of inequalities, equalities are
used, then the problem may be overly constrained and be-
comes infeasible.

A work of caution should be included regarding the above
model. Even though a variable can have a high degree of
estimability, its value may be obtained through differences of
large numbers and, therefore, the precision of such variables
may not be satisfactory. Such shortcomings come from the
fact that estimability cannot directly replace precision con-
straints, as it cannot replace reliability constraints either.
However, in the context of the above model, one can increase
the degree of estimability required for variables that exhibit
inadequate precision. This will force the activation of more
cutsets, and the consequent improvement of precision.

Different types of problems arise depending on the de-
grees of estimability required for the variables. All these as-
pects will be explored next. In addition, if for some reason a

Žmeasurement in a certain variable should be forbidden be-
.cause of safety, space and other constraints , the correspond-

ing binary variable q can be a priori set to zero. Similarly, ifi
the variable is to be compulsory measured, then the corre-
sponding binary variable q can be set a priori to one. This isi

actually one case of instrumentation upgrade in which the
existing instrumentation is not changed and only additions of
new instrumentation are considered.

Several approaches have been proposed to address this
problem. In principle, the problem is MINLP, but it has the

Ž .added inconvenience that the functions E q cannot be ex-i
plicitly represented using expressions in terms of q, so one
has to determine estimability by inspection procedures. To
circumvent this obstacle, one can perform a tree search pro-

Ž .cedure of the type presented by Bagajewicz 1997 . Meyer et
Ž .al. 1994 attempted a similar tree search. These tree-search-

ing algorithms can, of course, be improved in terms of com-
putational speed. This is, however, not the objective of this
article, which concentrates on the development of the con-
ceptual aspects of these problems.

Ž . Ž .Luong et al. 1994 and Meyer et al. 1994 presented a
strategy based on the identification of cycles. However, cycles
are directly related to cutsets, as a cutset that contains a cer-
tain variable also contains one variable from each cycle that
includes this variable. Therefore, the procedures are closely
related.

In this article the power of spanning trees and cutsets to
develop procedures to solve Eq. 12 is explored. Furthermore,
various types of networks obtained from applying different
estimability constraints are analyzed. In particular some net-
works that have been presented in the literature will be shown
to be specific cases of Eq. 12.

Minimal networks
In this section we present networks, which are called mini-

mal networks, that feature the minimum possible number of
sensors. These networks arise from requesting estimability of
order one for all the variables. Indeed, consider a network
where all the variables have estimability of order one. The
deletion of one measurement will cause the loss of observ-
ability of at least one unmeasured variable, as it will make
that variable unobservable.

It was shown in the Appendix that the identity part of the
canonical matrix corresponds to a set of variables that form a
spanning tree. It was also shown that a system where all vari-
ables have degree of estimability E s1 corresponds to a sys-i
tem where all unmeasured streams are given by a spanning
tree. Thus, the task of designing such a system consists of
determining what spanning tree has the largest cost. Once
that is picked, the rest of the variables will be nonredundant,
and will carry the lowest cost. In the special case of equal
cost, any spanning tree suffices.

Direct inspection, however, is costly. A given graph can
have a large number of spanning trees. This number is given
by the determination of DDT. A procedure to obtain all these

Ž .spanning trees is given by Chen 1971 . For example, the
flowsheet of Figure 2 has 10 spanning trees, but the number
grows very rapidly to millions for a fairly normal flowsheet.

The following algorithm, which avoids the enumeration of
Ž .all spanning trees, was presented by Madron 1992 , and is
Ž .based on the notion of minimum spanning tree Even, 1979 :

Ž .1 Pick the edge with the largest cost. This is the first edge
of the tree.
Ž .2 From all the remaining streams that form a tree when

added to the existing tree, pick the one with the largest cost.
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Figure 6. Simplified hydrodealkylation of toluene
( )Douglas, 1988 .

Ž .3 Repeat step 2 until n streams have been picked.U
Example. Let us consider the simplified process of hydro-

Ž . Ž .dealkylation HDA of toluene Douglas, 1988 shown in Fig-
ure 6. Instrumentation costs are assumed to be

wcs 300 150 180 100 200 160 230 250 130

x160 150 270 250 270

and they are indicated between parenthesis after the label of
the stream.

By applying the above procedure, the set of unmeasured
and measured variables are the following

w xx s S S S S S S SU 1 5 7 8 12 13 14

w xx s S S S S S S SM 2 3 4 6 9 10 11

As can be seen from Figure 6, the unmeasured variables
form a spanning tree of the undirected graph that corre-
sponds to the more expensive sensors. The canonical form of
the incidence matrix is the following

S S S S S S S S S S S S S S1 5 7 8 12 13 14 4 9 10 11 2 6 3

1 0 0 0 0 0 0 0 0 0 0 y1 0 y1
0 1 0 0 0 0 0 y1 0 0 0 1 0 1
0 0 1 0 0 0 0 y1 0 0 0 0 y1 0

�D s 0 0 0 1 0 0 0 y1 y1 0 0 0 y1 0
0 0 0 0 1 0 0 y1 y1 1 1 0 y1 0
0 0 0 0 0 1 0 0 0 1 0 y1 0 0
0 0 0 0 0 0 1 0 y1 0 1 0 y1 0

Subminimal networks
When only certain variables are of interest, at least estima-

bility of order one should be requested for these variables,
whereas the rest of the variables can remain unobservable.
These types of networks are here called subminimal because
less than the minimum number of sensors will be needed.
Note, however, that this may not be true if the estimability of
an order larger than one is requested in a subset of variables.
This minimum cost sensor network problem is stated as fol-
lows

Min c qÝ i i
i

s.t.

E q G1 �kg I 13Ž . Ž .k s

q s 0, 1 � iŽ .i

where I is the set of variables with a required degree ofs
estimability.

The term minimal is thus reserved to relate to networks in
which the minimum number of sensors is installed to achieve
the lowest possible estimability of all variables.

Feasibility Analysis for Estimability Constraints. To comple-
ment the tree-type enumeration procedure proposed by

Ž .Bagajewicz 1997 to solve these problems, a simple proce-
dure has been developed to check the feasibility of estimabil-
ity constraints and thus save computation time.

Consider that the vector q is given. The following proce-
Ž . �dure checks the feasibility of constraint E q GE :k k

Ž .1 Identify all the estimable cutsets for variable k. These
cutsets are obtained from the list of cutsets by choosing those
cutsets that contain variable k, and the rest of the variables
in the cutset are measured variables. Assume the number of
these cutsets is s and the total number of variables involved
in all these cutsets is b, excluding k.
Ž . Ž .2 Construct the s� b matrix M by including all thek

Ž .cutsets. The entries of these rows are binary values 1, 0 .
Ž . Ž .3 Determine the minimum number of measurements z

the deletion of which makes k an unobservable variable. This
may be accomplished by solving the following problem

b

Min �Ý pk
1

s.t. 14Ž .
b

� m G1Ý pk pk
1
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Figure 7. Simplified ammonia plant network.

where b is the total number of variables that participate in
the s estimable cutsets excluding k; � is the binary vari-pk

Ž . Žable 0, 1 � s1 implies measurement p participates in thepk
set of measurements the deletion of which makes k unob-
servable. In contrast, � s0 means that measurement p haspk

.not been deleted to make k unobservable ; m is the pthpk
Ž .column of the s� b estimable cutset matrix M ; 1 is thek

Ž .s�1 vector of ones.
The problem is solved by inspecting combinations of an

increasing number of measurements until the constraint of
problem 14 is satisfied.
Ž .4 Determine the degree of estimability of variable k. If k

is unmeasured, its degree of estimability is z, but, if it is mea-
sured, its degree of estimability is E s zq1.k

We now illustrate this procedure to check feasibility using
the simplified ammonia network included in Figure 7. All
cutsets for this network are extracted from Ali and

Ž .Narasimhan 1995 and presented here in Table 1.
Let us consider that E G1 and E G1 are the constraints3 5

Ž .of problem 13. If qs 1, 2, 4 is under analysis, matrices M3
and M are the following5

S S S S S S S1 2 4 5 6 7 8

1 0 0 0 0 0 0M s3 0 1 0 0 0 0 0

S S S S S S S1 2 3 4 6 7 8

0 1 0 1 0 0 0M s5 1 0 0 1 0 0 0

Table 1. All Cutsets of Ammonia Plant Network

No. Streams No. Streams No. Streams

1 S S S 7 S S S 13 S S S5 6 7 1 6 8 1 4 5
2 S S 8 S S S S 14 S S S S1 2 1 4 6 7 2 4 6 7
3 S S 9 S S S S 15 S S S S1 3 1 5 7 8 3 4 6 7
4 S S 10 S S S 16 S S S2 3 2 4 5 3 4 5
5 S S S 11 S S S 17 S S S S2 6 8 4 7 8 2 5 7 8
6 S S S 12 S S S S 18 S S S S3 6 8 4 5 6 8 3 5 7 8

It can be seen from matrix M that the deletion of only3
one measurement at a time does not make S unobservable3
and, thus, does not satisfy the constraint of problem 14. How-
ever, the simultaneous deletion of measurements 1 and 2, that

.is, � s1, � s1, � s0, �us3, . . . , 7 , satisfy the con-1 2 u
straint of problem 14, that is

b
1

� m sÝ p p 11

so the degree of estimability of variable 3 is two for this set of
instruments.

For variable 5, the deletion of measurement 4 only allows
the constraint in 14 to be satisfied and renders this variable
unobservable, so the degree of estimability of variable 5 is
one. Consequently, the set of instruments, represented by
vector q, is feasible.

Although the procedure is combinatorial, the nature of the
design problem avoids a significant increase in the number of
combinations. As the design follows a minimum cost crite-
rion, the number b of measurements involved in the s es-
timable cutsets for a variable k are low.

Example of a subminimal network design
Ž .Consider again the hydrodealkylation process Figure 6

with the instrumentation costs provided earlier. Assume that
a degree of estimability of one is first required for streams
S , S and S , so a subminimal sensor network design is ac-1 8 9
complished. For this case, the minimum cost solution is 590,
which corresponds to the installation of sensors in streams
w xS S S S . For this case, matrices M , M , and M are4 5 6 9 1 8 9
the following

S S S S S S S S S S S S S2 3 4 5 6 7 8 9 10 11 12 13 14

w xM s 0 0 1 1 0 0 0 0 0 0 0 0 01

S S S S S S S S S S S S S1 2 3 4 5 6 7 9 10 11 12 13 14

w xM s 0 0 0 1 0 1 0 1 0 0 0 0 08

M s�9

It is easy to see that the constraint of problem 14 is satisfied.

General networks
General networks arise when the required degree of es-

timability of some variables is greater than one. Estimability
constraints may be imposed on some or all variables. The
general sensor network design problem is stated by Eq. 12.
The feasibility of constraints is checked using the procedure
described previously.

Example of a Network Design Requiring Higher Degrees of
Estimability. If a larger degree of estimability is required for
streams S , S , and S of the hydrodealkylation process,1 8 9
higher instrumentation cost will result. For example, if the
degree of estimability lower bounds are E�s2, E�s3, E�

1 8 9
s1, the feasible set of instruments corresponding to the min-

w ximum cost solution is x s S S S S S S S , whichM 1 5 7 8 9 11 14
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has a cost of 1,530. The corresponding matrices of estimable
cutsets for this example are

S S S S S S S S S S S S S2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 1 0 0 1 0 0 1 0 0 1M s1 0 0 0 1 0 1 0 1 0 1 0 0 1

S S S S S S S S S S S S S1 2 3 4 5 6 7 9 10 11 12 13 14

0 0 0 0 0 0 1 1 0 0 0 0 0M s8 1 0 0 0 1 0 0 0 0 1 0 0 1

S S S S S S S S S S S S S1 2 3 4 5 6 7 8 10 11 12 13 14

0 0 0 0 0 0 1 1 0 0 0 0 0M s9 1 0 0 0 1 0 1 0 0 1 0 0 1

These matrices show that constraints for variables S and1
S are satisfied as equalities, in contrast, variable S has a8 9
degree of estimability of 2, which is higher than its lower
bound.

Design for Estimability Efficiency
If instrumentation costs are not available, a good goal for

mass sensor network design is the selection of the minimum
number of sensors that fulfill estimability constraints for key
variables. This kind of sensor network design problem may
be posed as follows

Min Ns

s.t. 15Ž .
E GE� �kg Ik k s

where N is the number of sensors of the network.s
The tree type enumeration strategy with stopping criteria

Ž .proposed by Bagajewicz 1997 is applied to solve the MINLP
problem. The estimability constraints are checked using the
procedure described above. Although the stopping criterion
avoids the enumeration to be exhaustive, this procedure is
still not efficient for large-scale systems. As the conceptual
development of the problem is the focus of this article, the
implementation of numerical efficient strategies will be con-
sidered as an extension of this work in future articles.

Consider the sensor network design for the simplified
Ž .process flowsheet of ammonia production Figure 7 . Assume

that the estimability constraints are the following E�s2, E�
2 5

s3. These constraints are satisfied when a minimum number
of five instruments is installed. Three alternative sets of in-

wstruments fulfill the estimability requirements: S S S S1 4 5 6
x w x w xS , S S S S S , and S S S S S .7 2 4 5 6 7 3 4 5 6 7
Different runs were performed for the hydrodealkylation

process, considering different estimability constraints. For
each case, the lower estimability bounds on streams, the min-
imum number of sensors, and the solution set of instruments
are presented in Table 2.

It can be seen from results of Cases 1 and 2 that a lower
number of sensors are required by decreasing the estimability
bounds for the same sets of streams. Obviously, the tendency
is that the minimum number of instruments increases when
greater requirements of estimability are imposed.

Table 2. HDA Process: Results for the Minimum
Number of Sensors Problem

�Case Streams E n Solutioni s

1 S 2 7 S S S S S S S1 1 5 7 8 9 11 14
S 38
S 19

2 S 2 5 S S S S S1 1 5 6 8 9
S 28
S 29

3 S 2 9 S S S S S S S S S7 1 2 3 7 9 10 11 12 13
S 3 S S S S S S S S S13 2 3 5 6 9 10 11 12 13
S 211

Compulsory Measurements and Upgrade
It is usually mandatory to install instruments on some

streams due to control, balance accounting, or safety require-
ments. This situation is taken into account by setting a priori
the corresponding binary variable q to one. Thus, the designi
of minimum-cost sensor networks subject to estimability and
location constraints is stated as follows

Min c qÝ i i
� i

s.t.

E q GE� �kg I 16Ž . Ž .k k s

q s1 � jg Ij m

q s0, 1 � tg It r

where I contains all variables that should be measured.m
A similar problem arises when the currently installed sets

of instruments does not fulfill the estimability requirements,
so it is necessary to incorporate others. The formulation of
the optimization problem is as before. The solution involves
the same set of instruments, but the objective function value
is lower, because the cost of the already existing instruments
is zero.

Consider the case where two flowmeters are already in-
stalled on streams S and S of the ammonia process flow-1 4
sheet. Assume again that the estimability constraints are E�

2
s2, E�s3. These requirements are not satisfied with the5
initial set of instruments, so the location of new instruments
is proposed by solving problem 16. Instrumentation costs are

w xgiven by the vector cs 0 300 300 0 220 280 250 250 , where
the already located sensors have a zero cost. The solution
indicates that constraints may be fulfilled by incorporating

w xsensors on streams S S S . The optimal cost is 750.5 6 7
For the hydrodealkylation process, the examples of up-

grading shown in Table 3 were prepared. Cases 1 and 2 have
the same estimability constraints, but the number of already
installed sensors is different. The flow rate on stream S12
is considered unmeasured for Case 2. Nevertheless, this
flowmeter has a cost of 270, and the optimal solution of Case
2 is only 180 more expensive than the optimum value of Case
1. The optimal solution of Case 3 has also been obtained for
the design of minimum number of sensors in the previous
section.
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Table 3. HDA Process: Results for the Upgrading
Design Problem

Streams with
Installed Streams with

�Case Streams E Cost Sensors New Sensorsi

1 S 2 1,080 S S S S S S S S S1 2 11 12 3 5 6 8 9 10
S 38
S 19

2 S 2 1,260 S S S S S S S S1 2 11 3 5 7 8 9 14
S 38
S 19

3 S 2 1,350 S S S S S S S S S7 2 11 3 5 6 9 10 12 13
S 313
S 211

Conclusions
This article presented algorithms to design different types

of sensor networks. The concept of degree of estimability of
variables has been introduced to merge the concepts of de-
gree of observability and degree of redundancy. In addition,
some properties of sensor networks such as estimable cutsets
and the efficiency of estimability of variables have been intro-
duced. These concepts were later used to discuss the design
of subminimal and general networks, and to introduce a new
class of sensor networks where cost is not optimized and
the only concern is the goal of estimability with maximum
efficiency. The article fulfills thus a task of presenting proce-
dures to design redundant and nonredundant sensor net-
works amenable to be used when very little information is
provided about the cost of sensors or about sensor network
robustness goals such as reliability, error detectability, preci-
sion, residual precision, and resilience.

Notation
cs vector of instrument costs

Cs total cost of instrumentation
C scutset including variable kk
D�scanonical representation of D
G smatrices from the Gauss Jordan factorization of Di

Is identity matrix
I sset of compulsory measurementsm
msnumber of redundant cutsets

Ž .Ms s� b matrix of estimable cutsets
n snumber of unitsu
S sstream ii
Visunit i
xs vector of state variables

Subscripts
NRsnonredundant

Osobservable
Rsredundant

UOsunobservable
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Appendix
A few definitions and properties of graphs are presented in

this Appendix. Some relationships to process flowsheets are
briefly reviewed.

Augmented graph
Definition. Given a flowsheet the augmented graph is a

graph that is obtained by adding the environment as another
node of the graph.

For example, the augmented graph corresponding to Fig-
ure 2 is given in Figure 5.

Remark. In an augmented graph every stream connects
nodes and all nodes are connected by streams.

Definition. The Augmented Incidence Matrix is obtained
by adding one row representing the environmental node to
the incidence matrix.

Spanning trees
Definition. A tree of a graph is a set of connected edges

Ž .streams that does not form a cycle.
Definition. A spanning tree of a graph is a tree that con-

Ž .nects all vertices units of the graph.
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Property. The identity part of the canonical representa-
tion of matrix D, that is, D�, corresponds to a set of variables
that form a spanning tree.

Proof. Note first that we refer to a canonical form that
does not distinguish measured from unmeasured, that is, D�

w � x �s I D . The identity part of D is I , and it correspondsD D
to a tree because there are no cycles and, since it has a
nonzero value in every row, it is connected to all vertices
Ž .units .

Cutsets
Definition. Given a graph, a cutset is defined as the set of

Ž .edges streams that, when eliminated, separate the graph in
exactly two disjoint subgraphs.

Consider, for example, the system of Figure 5. The set
� 4S , S is a cutset. When these streams are eliminated, two1 6

Ž .subgraphs are left, the original flowsheet Figure 2 and the
� 4environmental node. The set S , S is another cutset. It sep-2 4

� 4arates all the nodes from V . Finally, the set S , S is not a2 2 5
cutset, because it does not separate the graph into two sets,
that is, after the elimination of these two streams, all the

�units of the graph remain connected. In turn, the set S , S ,1 3
4S , S is not a cutset because the elimination of all these5 6

� 4 � 4streams leaves three disjoint sets of units, ENV , V and3
� 4 � 4V , V , V . In fact, this set is a union of two cutsets, S , S1 2 4 1 6

� 4and S , S .3 5
Remark. A cutset corresponds to a set of variables with

which a material balance involving a certain number of units
can be written.

Ž .This was already pointed out by Kretsovalis and Mah 1987
in the context of process systems. A cutset is, by construction,
a set of streams that connects two subsystems of the graph.
Thus, since no other stream is leaving or entering the subsys-
tems, aside from the ones of the cutset, the sum of all the
flows of the cutset should be equal to zero. This is a material
balance.

Fundamental cutsets
Consider the canonical form of the incidence matrix D�s

w � xI D . This matrix contains as many rows as units are inD
the system. Thus, it represents as many linear independent
balance equations as it is possible to write in the system. In
other words, it contains n cutsets, that are called fundamen-u
tal cutsets.

Definition. The non-zero entries of each row of the
canonical matrix represent the fundamental cutsets of the
system.

Determination of cutsets
Since the rows of the canonical matrix represent all the

linearly independent cutsets of the system, then they are the

base of a linear space of vectors representing linear combina-
tions of balance equations. Since a cutset is a balance equa-
tion, then all cutsets are included in this space. However,
cutsets are represented by entries in each position of the bal-
ance that are restricted to q1, y1, or 0 and they leave only
two disjoint subgraphs after the elimination of the variables
of the cutset.

Thus, to find all the cutsets we resort to the following pro-
cedure:

Ž .1 Create the cutset list by putting all fundamental cutsets
in the list. Set the counter ks2.

Ž .2 Create all linear combinations of k fundamental cut-
sets, restricting the coefficients of such combinations to the
numbers 1 and y1. These linear combinations have to be
such that absolute values of the entries of the resulting vector

Ž .are binary 0, 1 . If the result has any other existing cutset as
a subset, eliminate this result. Otherwise, include it in the list
of cutsets.

Ž .3 kskq1.

Ž . Ž . Ž .4 If k� n perform step 2 n is the number of units .U U

Thus, to find all the cutsets that contain a specific variable,
Ž .step 1 is modified to include only the row that contains the

variable of interest. A canonical form of the incidence matrix
can always be constructed such that the variable of interest
has only one nonzero entry in its corresponding column, that
is, it is included in I . Other methods to obtain cutsets exist,D

Ž .for example, Tsukiyama and Verma 1980 and Fong and
Ž .Buzacott 1987 . The problem should not be underestimated,

as the size of a graph may render some methods impractical.
Consider the system of Figure 2. Assume that all the cut-

sets containing stream S are to be determined. Then we start3
Ž .from 7 . The following combinations of rows have to be ex-

Ž . Ž . Ž . Ž . Žplored: 1qry2 , 1qry3 , 1qry4 , 1qry2qry3 , 1
. Ž .qry2qry4 , 1qry3qry4 .

The fundamental cutset containing S3 is the first row in
� 4the cutset list, that is, C s S , S , S .1, 1 1 2 3

The other members of the cutset line are the results of the
following successful linear operations:

� Addition of row 2 to C to obtain a new cutset C s1, 1 1, 2
� 4S , S , S .1 3 4

� � 4Subtraction of row 3 from C to obtain C s S , S .1, 1 1, 3 3 5

� Subtraction of row 4 from C to obtain C s1, 1 1, 4
� 4S , S , S .3 2 6

Subtraction of row 4 from the addition of rows 1 and 2 to
� 4obtain a new cutset C s S , S , S .1, 5 3 4 6
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