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Abstract
The next-generation sequencing technologies are being rapidly applied in biological research.Tens of millions of short
sequences generated in a single experiment provide us enormous information on genome composition, genetic vari-
ants, gene expression levels and protein binding sites depending on the applications. Various methods are being
developed for analyzing the data generated by these technologies. However, the relevant experimental design
issues have rarely been discussed. In this review, we use RNA-seq as an example to bring this topic into focus and
to discuss experimental design and validation issues pertaining to next-generation sequencing in the quantification
of transcripts.
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INTRODUCTION
The next-generation sequencing is a group of new

sequencing technologies that are based on randomly

amplifying and shotgun sequencing techniques.

Short sequences (often around 30 bases) are obtained

in extremely high throughput. The total sequences

generated by each run can be hundreds of millions of

bases due to the extremely high parallel nature of

these technologies [1–3]. Since the marketing in

2004, next-generation sequencing technologies

have dramatically improved, and their application is

growing exponentially [4]. The next-generation

sequencing technologies greatly reduce the cost for

sequencing new genomes [5] and for resequencing

genomes with reference genome sequences for gen-

etic variant discovery [6–8]. They have also been

widely used to characterize DNA–protein inter-

action (ChIP-seq) [9, 10], to survey the transcrip-

tome for expression level and splicing variants

[11–13], and to study epigenomics [14–16] with

more precise digital count outcomes.

The applications of next-generation sequencing

technologies will grow more rapidly as the

technologies continue to improve and the cost con-

tinues to drop. However, in the rapid growth of the

applications, the experimental design issues related to

the next-generation sequencing have rarely been dis-

cussed until very recently [17]. Here, we will review

some statistical experimental design principles and

provide some thoughts on the design and validation.

We will use RNA-seq as an example to discuss the

principles of experimental design and technology-

specific issues. We will briefly mention a few other

issues specific to other applications of next-

generation sequencing at the end.

The next-generation sequencing technologies

have been widely applied to measure gene expres-

sion levels and composition (termed as RNA-seq)

[16, 18–21]. The power of RNA-seq in quantifying

and annotating transcriptomes is striking. By obtain-

ing tens of millions of short sequence reads from the

transcript population of interest and by mapping

these reads to the reference genome, RNA-seq pro-

duces digital signals (counts), and thus leads to highly

reproducible results with relatively little technical

variation [12, 22, 23]. When enough reads are
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collected from a sample, it has the potential to detect

and quantify RNAs from all biologically relevant

classes, including those with low and moderate

abundance [12, 24].

EXPERIMENTALDESIGN
PRINCIPLES
For any experiment that has variation, there are

well-established experimental design principles for

achieving validity and efficiency [25, 26]. These

principles were originally established from low

throughput experiments, but have been widely

accepted for microarray experiments. For detailed

discussion, please refer to book chapters dedicated

to this topic [27, 28]. Although next-generation

sequencing technologies have many characteristics

different from microarray technologies, most of the

experimental design principles still apply. Here, we

briefly review the principles and remind people

about their application in experiments employing

the next-generation sequencing technologies.

Randomization
Randomization dictates that the experimental sub-

jects should be randomly assigned to the treatments

or conditions to be studied in order to eliminate

unknown factors that potentially affect results [29].

For RNA-seq experiments, besides the randomiza-

tion in preparing the research subjects, there are

many other steps to consider for randomization

due to the complexity of the technologies. For ex-

ample, we can randomize the sample order for vari-

ous steps in the library construction and the order/

location of the samples in the sequencer.

Replication
Replication is essential for estimating and decreasing

the experimental error, and thus to detect the bio-

logical (treatment) effect more precisely. A true rep-

lication is an independent repetition of the same

experimental process and independent acquisition

of the observations [26]. As in the expression micro-

array experiments, there are different levels of repli-

cations in RNA-seq experiments. The most desirable

replicates are the biological replicates, which are true

replicates and provide us the variation among bio-

logical samples [30, 31]. In the current RNA-seq

publications, some studies include biological repli-

cates [13, 18, 32–35], while many others only have

technical replicates that are repeated measurements

from the same biological sample [12, 20, 22, 23]. If

the goal is to evaluate the technology, technical rep-

licates alone are sufficient. Otherwise, if the goal is to

investigate the biological differences between condi-

tions/tissues/treatments, biological replicates are

essential. In addition to the intrinsic biological

variation in gene expression, the sequence library

construction often includes PCR amplification.

The PCR amplification artifacts can result in a

large number of identical sequences, which can be

confounded with gene expression level. If consistent

results are obtained from biological replicates, the

count of reads from a gene is more likely to reflect

the expression level [36]. However, it is worth

pointing out that there may be sequence poly-

morphisms between biological replicates, which

can result in a gain or a loss in reads from different

biological replicates depending on their sequence

consistency with the reference genome

sequence [37]. Some sequence reads containing

sequence polymorphisms compared with the refer-

ence sequences are more likely to be discarded

during mapping. Therefore, there could appear to

be an extra biological variation in addition to the

gene expression variation. It might be less of an

issue for inbred model organisms, such as inbred

mice, when comparisons are within an inbred

strain. However, for human studies, this may not

be a negligible issue.

Different levels of replicates often require different

statistical analysis methods. For example, when there

are only strict technical replicates of different runs

from the same library, the variation comes from

the random sampling variance of sequencing. This

variation can be modeled fairly well using a

Poisson distribution [20]. However, when biological

replicates are used, a Bayesian hierarchical error

model or a negative binomial (NB) model is more

appropriate for modeling the variation resulted from

both the random sampling of sequencing and the

natural variation among biological replicates [38, 39].

RNA-SEQ SPECIFIC EFFECTSAND
BLOCKING
As in microarray studies, RNA-seq experiments can

be affected by the variability coming from nuisance

factors, often called technical effects in the RNA-seq

literature. Besides processing date, technician and re-

agent batch, which are commonly known to inves-

tigators, there are some recognized technical effects
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specific to the RNA-seq procedures. One of these

technical effects comes from the generation of

libraries of cDNA fragments, which involves various

ligations of adaptors and PCR amplifications. Besides

the library preparation effect, there are also other

technology-specific effects. For example, the com-

monly used Illumina-sequencing technology can se-

quence eight samples simultaneously in the eight

lanes in one flow cell, of which one lane is often

used for the control sample. Thus, there is variation

from one flow cell to another resulting in flow cell

effect. In addition, there exits variation between the

individual lanes within a flow cell due to systematic

variation in sequencing cycling and/or base-calling.

Among these sources of variation, the library prep-

aration effect is the largest [40]. The flow cell and

lane effects are relatively small [20, 41].

From the experimental design point of view, there

are some steps that can be taken to properly handle

these effects besides the technology improvement.

For the library preparation effect, introducing repli-

cates before this step (often biological replicates) pro-

vides a way to estimate this effect and to properly

handle it in the statistical inference. Blocking design

can be used to eliminate the flow cell and lane effects.

Blocking is also an experimental design principle. It

dictates comparisons within a block, a known un-

interesting factor that causes variation, such as flow

cell effect. Either the randomized complete block

design (RCBD) or the balanced incomplete block

design (BIBD) can be used to achieve this goal, de-

pending on the number of treatments/groups to be

compared. Sequencing lanes can also serve as blocks

when bar-coding during library preparation (for

the protocol for Illumina platform, see http://www.

illumina.com/Documents/products/datasheets/data

sheet_sequencing_multiplex.pdf) is used for multi-

plexing [17]. However, it has been shown that multi-

plexing reduces sensitivity and reproducibility in

miRNA detection [42]. Therefore, caution needs to

be taken when multiplexing is considered for the pur-

pose of reducing flow cell and lane effects.

SEQUENCING DEPTH
One unique characteristic for RNA-seq and some

other applications of next-generation sequencing

technologies is sequencing depth or coverage,

which is often estimated as the number of total

mapped sequences. Genes are expressed at different

levels in each transcriptome. Due to the random

sampling nature of RNA-seq, it will take a large

number of sequences to measure the transcripts

that are expressed at low level. For a given budget,

it is critical to decide whether to increase the sequen-

cing depth to have more accurate measurements on

the genes expressed at low level or increase the

sample size with limited sequencing depth for each

sample. Since gene expressions roughly follow

power law in terms of expression level and number

of genes [43, 44], Bashir et al. [24] has modeled the

sequencing depth for RNA-seq to examine the

number of reads needed to reach the low expression

level. Based on Marioni’s data, they showed that

more than 90% of the transcripts were sampled

with one million sequence reads. For experimental

design, they recommend a small pilot sequencing

(about 1-million sequences) to estimate the distribu-

tion of all transcripts in the population before decid-

ing the actual sequencing depth for the whole

experiment. However, as the authors acknowledged,

the sequencing process is not an unbiased random

sampling process. There are several recognized

biases as discussed later in this review and the poten-

tial lack of fit of the power law or other distributions

to the gene expression in the genome. Therefore,

their model might be too optimistic and the required

total number of reads could be much higher than

estimated to achieve the target coverage. In addition,

it is well known that the low count reads show low

consistency between technical replicates and the low

count transcripts (less than a few reads) are often

excluded from analysis [40] for comparisons across

conditions. Therefore, more than one runs of the

same sample are sometimes used to increase the

depth of the sequencing. However, it is still not

clear what the lower limit of gene expression level

is for being functionally relevant. If the extremely

low expression is stochastic instead of biologically

meaningful, sequencing may not need to reach an

incredible depth. Thus, given the total cost of the

experiment, one needs to carefully consider whether

to increase the sequencing depth per sample or to

increase the biological replicates.

RNA-seq is sometimes used to detect the differ-

ential expression between the two alleles of the same

gene at the heterozygous locations in the genome

when the expressed sequences contain sequence

polymorphisms [45–47]. Heap et al. [45] ran a

simple power analysis based on a Chi-square test at

each SNP and found that it will take about 50 reads

covering a SNP to detect a 2-fold difference
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between the two alleles with 19% power at signifi-

cance level of 0.001. Therefore, they only focused

on the SNPs with at least 50 reads for discovering

allelic differential expression. It would take ex-

tremely deep coverage in order to detect allelic dif-

ferential expression for genes expressed at a fairly low

level.

PAIRED-END SEQUENCING
The development of the paired-end sequencing

technique brought more improvement in the

next-generation sequencing [48–50]. In RNA-seq

experiments, the sequencing of both ends of RNA

fragments adds more information especially in the

detection of alternative splicing and chimeric tran-

scripts [51, 52]. At the same sequencing depth, the

pair-end sequences increase the sensitivity and speci-

ficity of the detection of the alternative splicing and

chimeras in comparison with the single end sequen-

cing. Therefore, paired-end sequencing is a more

efficient strategy for characterizing and quantifying

transcriptome.

BIASES OF NEXT-GENERATION
SEQUENCING
The shotgun short sequences in RNA-seq experi-

ments are expected to be randomly obtained from

the transcripts. Therefore, the number of reads from

a transcript depends on the transcript length [12].

This nature makes the comparison across samples

more efficient for longer transcripts than shorter

ones [40, 53]. In addition, sequence reads are not

exactly randomly obtained from transcripts in reality.

Biases have been found to be related to GC content

of the sequence [54], the use of the random hexamer

primers [55], 30 and 50 depletion or bias towards

30-end [36], and bias toward specific RNA species

[56]. Most of these biases are related to library prep-

aration methods. They directly affect the transcrip-

tion level comparisons across genes, gene end

characterization, and alternative splicing characteriza-

tion. Some attempts for removing these sequence/

spatial biases have been explored both from the ana-

lysis level [55] and the protocol improvement [57].

From the experimental design point of view, these

biases increase the required samples size and sequence

depth, which emphasize the importance of choosing

better protocols and selecting the right analysis

methods.

SAMPLE SIZE CALCULATION FOR
RNA-SEQ
The complexity of RNA-seq experiments makes it

difficult to determine sample sizes. To our know-

ledge, there has not yet been any literature published

on this topic. The sample size may be determined at

two levels—the number of lanes for technical repli-

cates in one treatment or the number of biological

replicates for each treatment.

In the cases when there are only technical repli-

cates and the library preparation effects and lane

effects are negligible or mitigated by proper designs,

sample sizes can be calculated gene-by-gene based

on Poisson models. Here we provide some details

on how this can be done. For the RNA-seq data

(counts) from two tissues/treatments, Xijk, where i
(¼1,2) is the index for the tissues/treatments and

jð¼ 1, 2, . . . , niÞ is the index for the replicates

(lanes) within each treatment for the kth gene, we

assume Poisson models as Xijk� PoissonðLijgikÞ, with

Lij being the total number of mapped reads in this

replicate and gik being the transcript frequency for

this gene. Let Liði ¼ 1, 2Þ be the sum, over j, of Lij.

Then, to obtain a power ð1� bÞ under the alterna-

tive hypothesis Ha : g1k=g2k ¼ r > 1 at the level of

significance a, by using a Wald-type Z-statistic, we

can have the relation

l1 ¼ L1g1k ¼
ðr=d þ 1Þ ðZ1�a þ Z1�bÞ

2

ðr� 1Þ2
, ð1Þ

where d ¼ L1=L2, and Z1�a,Z1�b are normal quan-

tiles [58]. The values for a, b and r are pre-selected.

The values of d, �Li (the average of mapped reads

from each replicate i), and g1k can be determined

by preliminary data. We will have approximate

sample sizes [59]

n1 ¼
l1

�L1g1k
, n2 ¼

d �L1n1

�L2

: ð2Þ

If the likelihood ratio test is employed for testing the

hypothesis, the sample sizes can also be determined

similarly, but the calculation is more complicated.

See Gu et al. [60] for the formula. However, it

needs to be pointed out that the sample size calcu-

lated based on the Poisson model above is the most

optimistic scenario given that only the Poisson

random variation is considered in the calculation.

When there are biological replicates and the

over-dispersion problem exists, NB distributions are

more appropriate than Poisson distributions to model

the RNA-seq data [38, 39]. If we denote NBðm, tÞ as
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a negative binomial distribution with mean m and

variance ðmþ tm2Þ, then we can assume that

X1jk � NBðm, tÞ, and X2jk � NBðdm, tÞ, where d is

the tissue/condition ratio difference. Since there is

no close form for the maximum likelihood estimate

(MLE) of t [61], there is no analytical relation be-

tween power and sample size. As these authors sug-

gest, we can perform Monte Carlo simulations to

obtain the simulated power for a fixed sample size

n (assuming n1 ¼ n2 ¼ n). Specifically, for an effect

size (d 6¼ 1), a numerical relation between power and

the sample size (n) can be built with the following

steps:

(1) Obtain two independent random samples,

fx1jkg
n
j¼1 and fx2jkg

n
j¼1, from NBðm̂, t̂Þ and

NBðdm̂, t̂Þ separately, where m̂, t̂ are the corres-

ponding MLEs from the preliminary data;

(2) Repeat the process in (1) w times;

(3) Calculate the simulated power as the percentage

of times that the null hypothesis is rejected by

likelihood ratio test or Wald-type Z-test.

The sample size formulas discussed above are for a

single gene. They cannot be directly applied to the

RNA-seq experiments since there are thousands of

genes in one RNA-seq experiment. However, we

can handle this as in microarray experiments—first

obtain the sample sizes for one gene and then deter-

mine the overall sample size based on the overall

average power. Another way to compute the

power and sample size could be based on the setting

of effect size, number of non-differential genes, and

the expected number of false positives as that for the

microarray data [62] although error models would

need to be adjusted. A third potential way is based

on modeling the P-values as a mixture of distribution

from genes that are not differentially expressed and

genes that are differentially expressed as the method

behind the PowerAtlas (http://www.poweratlas.org/)

software [63].

VALIDATION
Validation has been an important part in expression

microarray literature. The differentially expressed

genes (at least some) identified using microarray are

often validated using quantitative RT-PCR

(qRT-PCR). Although validation is required by a

lot of journals for publication, it is still debatable

whether qRT-PCR validation of differentially

expressed genes is still necessary after the huge

number of publications with qRT-PCR validation

of the microarray technologies and how to do it

exactly if the answer is yes [64, 65]. In RNA-seq

studies, RT-PCR has also been used for validation

in some studies. For example, Camarena et al. [66]

validated a handful of differentially expressed genes

identified using RNA-seq in pathogen Acinetobacter
baumannii. They showed that the fold changes esti-

mated from RNA-seq had high correlation with that

from the qRT-PCR. High consistency between

RNA-seq and qRT-PCR results have also been

observed in other studies [13, 32, 67]. A detailed

RT-PCR analysis by Ramskold et al. [68] showed

that UTRs especially the 30-UTR are actually

quite variable. Excluding the UTRs from the

RNA-seq data improves the consistency of

RNA-seq and RT-PCR results significantly. This

finding is consistent with the observations that high

consistency exists between microarray and

qRT-PCR results for genes with microarray probes

and PCR primers interrogating exactly the same

transcript while the questionable genes show lower

consistency [69]. In addition, studies on allelic ex-

pression and alternative splicing also validated their

RNA-seq findings using RT-PCR [46, 70]. It is

worth pointing out that validation using

qRT-PCR on the same RNA samples assayed in

the RNA-seq analysis only validates the technology.

It does not validate the conclusion about the treat-

ments/conditions. It is the validation using different

biological replicates from the same populations that

can further validate the biological conclusions from

RNA-seq experiments [65].

SOMEDESIGN ISSUES RELATED
TO OTHER APPLICATIONSOF
THENEXT-GENERATION
SEQUENCING
Next-generation sequencing has been used to iden-

tify genetic variants in a population. For example,

the Thousand Genomes project (http://www

.1000genomes.org/page.phpis) is sequencing at least

1000 individuals to identify all the genetics variants

in humans. To most efficiently identify the genetic

structure variants (such as CNV, Indels) using the

next-generation sequencing technologies, one

factor to consider is the insert length of the library.

Bashir et al. [24] pointed out that having two libraries
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with different insert lengths is beneficial (for example,

200 bp and 20 kb libraries) for mapping the break

points of genetic-structure variants.

ChIP-seq is another common application of the

next-generation sequencing technologies. The DNA

fragments enriched in chromatin immuno-

precipitation (ChIP) are compared with the total

DNA to identify binding sites in the genome for a

given protein [10, 12, 24, 71, 72]. For some DNA

binding factors, the total ChIP-seq sequence needs to

be more than what is obtained from one sequencing

lane. In this case, whether increasing the sequencing

depth by sequencing the same sample in multiple

lanes (technical replicates) or sequencing different

biological samples in different lanes (biological repli-

cates) needs to be considered. Tuteja et al. [73] found

that using biological replicates can increase the

number of peaks identified and increase the enrich-

ment for consensus sequences for the binding factor.

One explanation is that results from technical repli-

cates tend to be affected more by the PCR artifacts

than the independent biological replicates.

Key Points

� Biological replicates are important in most RNA-seq
experiments.

� Sequencing depth and sample size are interrelated. They are
often limited by experiment budget.

� Sequencing biases potentially increase the required sample size
and sequencing depth.

� Validation using biological replicates ismoremeaningful.
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