
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

Design and Validation of an Accurate GPS Signal and Receiver Design and Validation of an Accurate GPS Signal and Receiver

Truth Model for Comparing Advanced receiver Processing Truth Model for Comparing Advanced receiver Processing

Techniques Techniques

Phillip Martin Corbell

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation

Corbell, Phillip Martin, "Design and Validation of an Accurate GPS Signal and Receiver Truth Model for

Comparing Advanced receiver Processing Techniques" (2000). Theses and Dissertations. 4762.

https://scholar.afit.edu/etd/4762

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholar.afit.edu%2Fetd%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4762?utm_source=scholar.afit.edu%2Fetd%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AHT/GE/ENG/OOM-07

DESIGN AND VALIDATION OF AN ACCURATE GPS
SIGNAL AND RECEIVER TRUTH MODEL FOR COMPARING

ADVANCED RECEIVER PROCESSING TECHNIQUES

THESIS

Phillip Martin Corbell, Second Lieutenant, USAF

AFnVGE/ENG/OOM-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIO QUALITY XN^ICSSD 4

AFTT/GE/ENG/00M-07

The views expressed in this document are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

U.S. Government.

AFTT/GE/ENG/OOM-07

DESIGN AND VALIDATION OF AN ACCURATE GPS
SIGNAL AND RECEIVER TRUTH MODEL FOR COMPARING

ADVANCED RECEIVER PROCESSING TECHNIQUES

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Phillip Martin Corbell, B.S.E.E.

Second Lieutenant, United States Air Force

March, 2000

Approved for public release; distribution unlimited

AFTT/GE/ENG/00M-07

DESIGN AND VALIDATION OF AN ACCURATE GPS
SIGNAL AND RECEIVER TRUTH MODEL FOR COMPARING

ADVANCED RECEIVER PROCESSING TECHNIQUES

Phillip Martin Corbell, B.S.E.E.
Second Lieutenant, United States Air Force

Approved:

Lieutenant Colonel Mikel M. Miller Date
Assistant Professor, Thesis Advisor

Captain John F. Raquet Date
Assistant Professor, Committee Member

Dr. Peter S. Maybeck Date
Professor, Committee Member

Dr. Michael A. Temple Date
Assistant Professor, Committee Member

Preface

First, I would like to give praise to the Lord my God and his Son Jesus Christ,

who has blessed us beyond our ability to comprehend. He has provided many wonderful

sources of strength and encouragement, none more consistent and loving than my wife

Kristi. For all the support, understanding, "picnics," love, patience, and 'magic,' I praise

you—Truly you are The Other Side of Me. You are at least as responsible for the

completion of this work as I—thanks for always believing in me.

At the risk of inadvertently missing some, I would like to thank my fellow

classmates, especially George, Jeremy, Byron, Mike, Brian, Dan, Marcus, Paul, and Todd

for bringing me up to speed on "the REAL Air Force." You have all provided me with a

true education that AF1T can't take credit for—thanks for your support, advice, feedback,

and your stories. I greatly enjoyed working with all of you, and appreciate the

community we shared in the countless hours spent doing homework and finishing Theses.

Thanks for your willingness to help me learn.

To the Promise Keepers at AFJT, I am eternally grateful. You have transformed

my opportunities to learn into opportunities to Grow. Truly, you have nurtured my faith

and lived lives worthy of imitation—I pray I will continue to be sharpened by your

example. Thank you for having such an inspirational priority list.

Last, but certainly not least, I'd like to thank my Thesis Advisor, Lt. Col. Mikel

Miller, my committee, and sponsor, Capt. Andy Proud. You have all provided feedback

and advise which has proved invaluable in my constantly changing Thesis. Thank you

for your support and wisdom.

11

Table of Contents

Page

Preface ii

Table of Contents iii

List of Figures vi

List of Tables ix

Abstract x

1. Introduction 1-1

1.1 Overview 1-1

1.2 Problem Definition 1-3

1.3 Problem Solution 1-7

1.4 Summary of Similar Research 1-8

1.4.1 Simulation and Modeling Tools 1-8

1.4.2 Existing GPS Receiver Simulators/Models 1-9

1.5 Scope 1-12

1.6 Assumptions 1-14

1.7 Approach 1-15

1.8 Materials and Equipment 1-17

1.9 Thesis Organization 1-17

2. Theory 2-1

2.1 Global Positioning System Overview 2-1

2.1.1 GPS History 2-2

2.1.2 Satellite Constellation Overview 2-2

2.1.3 Positioning Services 2-3

2.1.4 Differential GPS 2-4

2.2 Direct Sequence Spread Spectrum Communication 2-5

2.2.1 Spreading Modulation Properties 2-6

2.2.2 Signal Spreading and Anti-Jam Characteristics 2-11

in

2.2.3 Processing Gain 2-14

2.3 GPS Signal Structure 2-15

2.3.1 Overview of Signal Power Measurements and Notation 2-19

2.4 Traditional GPS Receiver Designs 2-21

2.4.1 Signal Down Conversion and Sampling 2-23

2.4.2 Digital Signal Demodulation 2-25

2.4.3 Signal Tracking Methods 2-27

2.4.4 Navigation Processing 2-31

2.5 Advanced GPS Receiver Designs 2-32

2.5.1 Direct Correlator Output Processing: 2-32

2.5.2 GPS/INS Integration Techniques 2-34

2.5.3 Frequency Domain Tracking 2-35

2.6 GPS Error Sources 2-36

2.7 Receiver Clock Performance Analysis 2-40

2.8 GPS Applications and Limitations 2-43

2.9 Summary 2-45

3. Modeling Methodology 3-1

3.1 Overview 3-1

3.2 Digitized IF GPS Signal Simulator 3-2

3.2.1 Signal Model Derivation 3-3

3.2.2 Oscillator Error Model and Impact Analysis 3-12

3.2.3 Matlab® Realization 3-22

3.2.3.1 Get_tp_times.m 3-32

3.2.3.2 Get_corr_noise 3-32
3.2.3.3 Sampled_recv_chan.m 3-36

3.2.3.4 Quantizer.m 3-36

3.2.3.5 Simulmk" Automatic Gain Control 3-37
3.3 GPS Receiver Model 3-42

3.3.1 Receiver Model Simulink® blocks 3-46

3.3.2 Noise floor derivation 3-60

3.4 GPS Analytical Accumulated I and Q model 3-64

3.5 Chapter Summary 3-73

4. Model Validation and Accuracy Analysis 4-1

IV

4.1 Overview 4-1

4.2 Analysis of real data 4-2

4.3 Noise floor validation 4-5

4.4 C-12 Flight Trajectory 4-6

4.5 Simulation Parameters 4-10

4.6 Pseudorange and Carrier-Phase measurement comparison 4-11

4.7 I & Q output comparison 4-17

4.8 Statistical Analysis 4-20

4.9 Summary 4-22

5. Conclusions and Recommendations 5-1

5.1 Conclusions 5-1

5.1.1 GPS IF Signal Simulator 5-2

5.1.2 Applications of the GPS IF Signal Simulator 5-3

5.1.3 Recommendations for further development of the GPS IF Signal Simulator 5-4

5.2 GPS Digital Signal Processing Receiver Model 5-7

5.2.1 Applications of the GPS Receiver Model 5-9

5.2.2 Recommendations for further development of the GPS Receiver Model 5-9

5.3 Analytical I and Q signal/receiver model 5-10

5.3.1 Applications of the Analytical I and Q signal/receiver model 5-10

5.3.2 Recommendations for further development of the I and Q model 5-11

5.4 Performance and Accuracy analysis of all three models 5-11

5.5 Final Remarks: 5-13

APPENDIX A Acronym List A-l

APPENDIX B Matlab® GPS Signal Simulator B-l

APPENDIX C Source Code for Analytical I and Q Model C-l

Bibliography BfB-1

Vita VIT-1

List of Figures

Page

Figure 1-1. Generic GPS Receiver Structure 1-5

Figure 2-1. Basic spread spectrum transmitter 2-6

Figure 2-2. Example of BPSK modulation 2-8

Figure 2-3. Typical multiple access DSSS block diagram 2-9

Figure 2-4. Normalized ideal code autocorrelation function 2-10

Figure 2-5. Auto and cross-correlation plots for PRN 1 &2 2-11

Figure 2-6. DSSS tone jammer effects [34] 2-13

Figure 2-7. Representation of the LI GPS signal components 2-18

Figure 2-8. Layout of a typical GPS receiver 2-22

Figure 2-9. Early, prompt, and late code tracking [14] 2-29

Figure 2-10. Example clock error characteristics [55] 2-42

Figure 2-11. Illustration of Allan variance [55] 2-43

Figure 3-1. Generic GPS RF Front End Model for the Signal Simulator 3-10

Figure 3-2. Individual Allan variance parameters 3-19

Figure 3-3. Typical crystal oscillator Allan variance plot 3-20

Figure 3-4. GP2010 Block Diagram 3-23

Figure 3-5. Signal Simulator function list 3-25

Figure 3-6. Elliptical filter approximating the Mitel chipset IF bandpass filtering 3-33

Figure 3-7. Elliptical filter approximating ideal IF bandpass filtering 3-33

Figure 3-8. PSD of noise before filtering and sampling 3-34

Figure 3-9. PSD of noise after filtering 3-35

vi

Figure 3-10. PSD of noise after filtering and sampling 3-35

Figure 3-11. Simulink® Automatic Gain Control (top level) 3-38

Figure 3-12. Magnitude bit generator block 3-38

Figure 3-13. Configurable quantizer block 3-38

Figure 3-14. AGC block 3-39

Figure 3-15. AGC control logic block 3-40

Figure 3-16. Update Threshold Block 3-41

Figure 3-17. AGC data logging block (debug) 3-42

Figure 3-18. GP2021 block diagram [23] 3-44

Figure 3-19. GP2021 tracking module block diagram [23] 3-44

Figure 3-20. 12-channel Receiver Model (top level) 3-46

Figure 3-21. Single Receiver Channel 3-47

Figure 3-22. Carrier DCO block 3-48

Figure 3-23. Mix to baseband block 3-49

Figure 3-24. DCO signal synthesizer block 3-49

Figure 3-25. Configurable quantizer block 3-49

Figure 3-26. Cosine mixing block 3-49

Figure 3-27. Code DCO block 3-50

Figure 3-28. Estimated Satellite Vehicle (SV) transmit time block 3-51

Figure 3-29. Code correlator block 3-51

Figure 3-30. Multiplier block 3-52

Figure 3-31. Integrate & dump block 3-53

Figure 3-32. Carrier cycle counter block 3-53

Vll

Figure 3-33. Data logging block 3-54

Figure 3-34. Save channel signals block 3-55

Figure 3-35. Bus selector dialog box 3-56

Figure 3-36. Synchronous trigger generator block 3-56

Figure 3-37. DCO command generator 3-57

Figure 3-38. Save receiver signals block 3-58

Figure 3-39. Save receiver signals bus selector block 3-59

Figure 4-1. Calculated Power of real I and Q data 4-3

Figure 4-2. Calculated Power integrating over 20ms 4-4

Figure 4-3. LOS dynamics for C-12 trajectory file 4-7

Figure 4-4. Maximum LOS dynamic environment 4-8

Figure 4-5. Minimum LOS dynamic environment 4-9

Figure 4-6. PRN 4 LOS dynamics 4-10

Figure 4-7. Comparing Carrier Phase errors for PRN 4 in high dynamics 4-12

Figure 4-8. Comparing Pseudorange errors for PRN 4 in high dynamics 4-13

Figure 4-9. Comparison of frequency errors for PRN 4 4-13

Figure 4-10. Costas phase discriminator output, applied to the I and Q samples 4-14

Figure 4-11. 4 Quadrant frequency discriminator applied to the I and Q samples 4-16

Figure 4-12. I and Q output for PRN 4 under high dynamics 4-17

Figure 4-13. Comparison of accumulated S/N ratio, 20 ms integration time 4-18

Figure 4-14. I and Q output for PRN 4 under low dynamics 4-19

Figure 5-1. GP2021 tracking module block diagram [23] 5-8

vin

List of Tables

Page

Table 2.1. Relationship of GPS Signal Parameters to the Fundamental Frequency 2-16

Table 2.2. LI and L2 Minimum received Power Levels [14] 2-19

Table 2.3. Estimated range of received power measurements 2-21

Table 2.4. GPS ranging error classes [33:478] 2-36

Table 2.5. Standard GPS error tables [33] 2-40

Table 2.6. Impacts of oscillator performance on GPS receivers 2-41

Table 3.1. GP2010 Frequency Plan 3-14

Table 3.2. Oscillator Induced Errors in the GP2010 GPS RF Front-End [21] 3-17

Table 3.3. Receiver hardware global variables 3-24

Table 3.4. Global variables defining GPS constants 3-26

Table 3.5. Global variable control parameters 3-27

Table 3.6. Global variable control switches 3-28

Table 3.7. Simulation Parameters stored in global variables 3-30

Table 3.8. Simulink® AGC control parameters 3-40

Table 3.9. Distribution of sampled signal and DCO values 3-60

Table 3.10. Distribution of samples after mixing 3-62

Table 3.11. Operational interface for the GPS 17Q model 3-66

Table 3.12. IQMOD global variables 3-68

Table 4.1. Noise only signal statistics 4-6

Table 4.2. I and Q statistics 4-20

Table 4.3. S/N ratio Statistics 4-21

IX

AFIT/GE/ENG/OOM-07

Abstract

Recent increases in the computational power of computers and digital signal

processors have made possible new, novel signal tracking techniques in GPS receivers.

One such technique is known as Direct Correlator Output Processing (DCOP). This

technique replaces individual traditional tracking loops with a single Kaiman Filter,

which jointly processes the received signals while exploiting their correlated noises.

DCOP is innovative in its potential to replace the tried and true classical signal tracking

loops. It is also an enabling technology for ultra-tightly coupled GPS/INS (Global

Positioning System/Inertial Navigation System). Potential benefits of these new tracking

techniques include an order-of-magnitude improvement in positional accuracy in

environments of jamming and high dynamics. However, such performance gains are

typically based on software simulations of conceptual GPS receiver designs, not working

prototypes. Simulating these new designs requires the modeling of GPS signals and

receiver tracking loops, instead of the traditional pseudorange and carrier-phase

measurements, which many proven GPS simulation software packages accurately model.

The purpose of this research has been to develop an accurate, user-friendly, and

customizable GPS signal and receiver model to use for a fair and unbiased evaluation of

advanced receiver designs. The result of this research is a Matlab® GPS signal simulator,

a Simulink® GPS receiver model implementing true receiver DSP processing, and a

Matlab" high-speed signal/receiver model that approximates the signal simulator and

receiver model.

DESIGN AND VALIDATION OF AN ACCURATE GPS SIGNAL AND RECEIVER

TRUTH MODEL FOR COMPARING ADVANCED RECEIVER PROCESSING

TECHNIQUES

1. Introduction

1.1 Overview

Applications of the Navstar Global Positioning System (GPS) have been growing

rapidly in recent years, with the completion of the entire system in 1993, and the

remarkable demonstration of GPS (operating at only 66% of the full satellite

constellation) during the Persian Gulf War 1991 [27]. Commercial GPS industries have

made large investments in developing techniques to make GPS more accurate, robust,

and useful [27]. Their efforts have resulted in an explosion of markets and applications,

from millimeter level differential carrier-phase positioning to remote animal tracking. In

developing these markets and the technologies necessary to support them, civilian

receivers have achieved amazing advances in receiver design—resulting in higher

positioning accuracy with increased robustness and reliability. Additionally, the doubling

of computer processing power roughly every 18 months continues to fuel the rapid

development of new innovative GPS Digital Signal Processing (DSP) related

technologies. New alternatives to traditional signal tracking, once thought idealistic and

unrealizable in real time, are now achievable with today's technology. Direct Correlator

1-1

Output Processing (DCOP) [39,45, 59] and the ultra-tight integration of the GPS and

Inertial Navigation System (ENS) [35] are two such technologies that the Department Of

Defense (DOD) is eager to acquire, develop, and deploy [2, 3]. The Government's

eagerness has not gone unnoticed—many companies have responded with their own

"new innovative technique" to compete for funding. Sorting through the resulting

proposals is a laborious process, and meaningfully comparing projected performance

gains is often an ambiguous process.

As the DOD struggles to modernize its GPS equipment amidst a sea of competing

technologies, there exists an urgent need for simulation tools that level the playing field

and allow direct comparisons between competing designs, early in the product

development cycle. The general idea is not new: Simulation Based Acquisition (SBA)

[47] is a program being developed by the Modeling and Simulation Information Analysis

Center (MSLAC) [24] under the Defense Modeling and Simulation Office (DMSO) [9].

The advantages to this type of acquisition approach are apparent to the Government, and

this process is actively being developed through these programs.

In the area of advanced GPS receiver design, one such badly needed tool is an

easy-to-use, unbiased, accurate GPS receiver truth model. Such a model would allow

simulation and analysis of new processing techniques earlier in the research and

development (R&D) cycle, providing performance validation (or lack thereof) before

funding occurs.

A direct application of such a tool would be the verification of a particular

receiver processing technique that has the potential to unleash large gains in the area of

carrier-phase precision level positioning in highly dynamic environments with signal

1-2

blockage, attenuation, and jamming. Known by several proprietary names [2, 3, 39, 59],

the technique has been named by the Sensors Directorate of the Air Force Research Lab

(to avoid proprietary favoritism) as Direct Correlator Output Processing (DCOP). The

GPS signal simulator and receiver models developed in this research provide an easy-to-

use tool for unbiased comparison and validation of new DCOP receiver designs against

conventional signal tracking methods.

1.2 Problem Definition

With only a fraction of the development budget of the commercial sector, current

military GPS receiver development lacks many of the latest receiver enhancements.

Although some technologies are not suited for military applications (i.e., theatre

Differential GPS, or DGPS), many offer substantial benefits. As the government

endeavors to acquire and integrate new GPS technologies, it is constantly bombarded

with technologies having "high potential" with few verified results. Verifying results in

today's acquisition environment usually requires funding the development of these

potentially promising technologies until a testable prototype is built. True Radio

Frequency (RF) GPS signal simulators can then be used to verify performance claims.

Many hours and millions of dollars in development costs are spent trying to validate the

predicted performance of promising GPS technologies.

Validating potential technology earlier in the R&D cycle is highly desirable, as it

allows for smarter funding distribution to technologies that are theoretically sound,

reduces wasted time and money, and identifies potential technological caveats early on.

The issue of conceptual validation is complicated by the fact that such validation is

1-3

typically done by the company pursuing the contract using their own in-house products

and simulations—often developed by themselves for their own evaluation. For such

"proof of concept analysis," it is often the job of the government contract manager to

perform an unbiased validation of a company's technology, independent of their in-house

analysis. Unfortunately, such managers rarely have the required tools to conduct an

independent concept validation. In this situation, unsound technological concepts are not

identified until the company goes to demonstrate capabilities of a working prototype.

In the area of advanced GPS receiver technologies, independent validation is

often a challenge due to the non-traditional nature of new designs and a lack of

Commercial-Off-The-Shelf (COTS) products that can validate new receiver processing

schemes. This is a big problem when trying to validate DCOP related technologies.

DCOP techniques involve processing demodulated signals rather than pseudorange and

carrier-phase information, which are the classical observables generated by a GPS

receiver. In order to process the demodulated signal, a DCOP algorithm must take over

the responsibility of signal tracking, a process normally handled by traditional

communication tracking loops. The input signal components used by the DCOP

architecture are known as the In-phase (I) and Quadra-phase (Q) signal components,

which are the sampled and processed components of the received GPS signal generated

inside a GPS receiver. Figure 1-1 shows the structure of a generic GPS receiver, divided

into four key areas (labeled A, B, C, and D). Typical COTS GPS software simulators

model pseudoranges and carrier-phase observables [50], generated in block 'B' of a real

GPS receiver and processed by section 'D' (refer to Figure 1-1). However, DCOP and

ultra-tight INS/GPS architectures directly process the I and Q samples, which are also

1-4

generated by block 'B,' but are typically only given to block 'C. In addition, these

architectures typically assume control of Block 'B', generating the Digitally Controlled

Oscillator (DCO) commands that traditionally originate from Block 'C. Block 'C is

effectively replaced by these architectures, as they take over the responsibilities of signal

tracking. DCOP architectures often integrate portions of Block 'D', but are capable of

simply replacing Block 'C entirely. Ultra-tight GPS/INS structures typically combine

Blocks 'C and 'D' with an INS or Inertial Measurement Units (EvTUs).

Antenna
^UIGPS signal

B
Pre-
Amp

Down-Conversion & Sampling

> In: GPS RF signal (GHz)
* Functions: Downconversion.

Filtering, & Amplification
< Output: Digitized Intermediate

Frequency (IF) GPS signal (MHz)

Signal Demodulation (Hardware)

> Inj, Digitized IF signal, Digitally Controlled
Oscillator (DCO) commands (MHz, kHz)

* Functions: Carrier Removal, Code
Correlation

< Output: I & Q signal components (kHz),
Pseudoranges, Carrier Phase measurements

D Ic
Navigation Processing (Software)

> Iir Pseudorange, Carrier Phase,
and Data measurements (kHz-Hz)

* Functions: Calculate Position,
Velocity, etc. (Software)

< Output: Receiver Position (1-100
Hz)

i Signal Tracking Algorithms (Software)

[> In Demodulated, digitized I & Q signal
' components
i * Functions: Estimate DCO settings to
J maintain Carrier lock; demodulate GPS data
1 message
i < Output: DCO commands, Data Message

Figure 1-1. Generic GPS Receiver Structure

Although many software packages exist that accurately model traditional GPS

observables (pseudorange and carrier-phase measurements, block "C" in Figure 1-1), few

are available that model the signal tracking process (the right half of Figure 1-1), which is

necessary to generate I and Q samples correctly. Ultra-tight integration simulation

1-5

requires I and Q samples be accurately simulated with the same truth trajectory and initial

conditions as those given to the INS model. This ensures the closed-loop feedback in the

integrated system is correlated correctly and stable. Traditional signal tracking

algorithms are well understood and usually very predictable, thereby allowing robust

simulation of pseudorange and carrier-phase measurements without tracking loop

modeling. However, In the case of DCOP and ultra-tight integration, the signal tracking

process is at least partially, if not totally, performed by additional hardware in the system,

either augmenting or replacing traditional tracking loops. Therefore, evaluation of these

techniques requires a receiver tracking loop model to simulate the highly integrated

technologies.

Such in-depth GPS receiver modeling was not necessary in the past, as most

simulation and modeling was/is still done using the traditional raw observables

(pseudoranges and carrier-phase measurements). However, certain applications, i.e.

those that must observe or intervene into the signal tracking process, require this level of

modeling. Tetewsky and Soltz of Draper Laboratory identified which capabilities a

software model/simulator of this type should have, specifically for a test tool capable of

PvF signal modeling, DSP, navigation and modeling simulation [50]:

[A] detailed simulation of an entire GPS receiver ... should generate base-band
in-phase (I) and quadrature (Q) error signals at 2-kHz sample rates. These data
mimic the integrate and dump outputs of the DSP chip found in all modern GPS
receivers. The package should also provide some sample tracking-loop models.
If it generates the actual sample values using a 4 MHz bandwidth for C/A code
and 40 MHz for P(Y) simulation, which includes the front-end automatic gain
control (AGC) and quantizer, this would be very valuable. Simulink, a product
for block-diagram design of dynamic systems for use with MATLAB, is probably
a good implementation option when combined with MEX files for speed. [50:54]

1-6

1.3 Problem Solution

The solution to this problem is to build a user-friendly, accurate truth model of a

GPS receiver. A quality truth model in the hands of a Project Manager would allow for

an unbiased, fair evaluation of competing technologies. As a deployable asset,

companies could be required to demonstrate their technology using the same truth

environment as competing technologies, allowing for a fair and direct comparison. If a

company provides their own evaluation tool, the Project Manager can compare the

company's tool with a verified in-house truth environment. The Project Manager could

also replace the company's models with those developed by this research, in order to

generate comparable results. These results would also be comparable to traditional

receiver design performance evaluated with the same truth model.

The need for a GPS receiver simulation software model was identified in the

previous section with a list of recommendations [50]. Every effort is made to address

these recommendations. The main focus throughout this research is to incorporate error

sources and receiver effects which have a measurable impact on the validity of the

sampled I and Q statistics. Many errors that are typically modeled in the pseudorange do

not have an appreciable impact on tracking performance because they are slowly

changing biases that do not show up in the sampled I and Q values. Biases in the

received signal are quickly removed in the tracking loops and do not significantly

contribute to tracking loop errors, i.e. I and Q statistics are relative to the tracking errors,

not the GPS position error.

1-7

1.4 Summary of Similar Research

Modern day GPS receiver designs were undoubtedly developed with the aid of

computer aided design tools, both for actual hardware chip simulation and testing, and for

advanced receiver algorithm development. In addition to being proprietary and typically

unavailable to the government Project Manager, these tools typically are very costly,

have steep learning curves, and/or are not well documented, since their original purpose

was for development of receiver designs, not for generic receiver modeling and ease of

use. This summary of similar research quickly covers some characteristics of

commercial simulation tools.

In addition to these commercial and internally developed tools, there are some

existing GPS receiver simulators that have been developed for purchase by the GPS

community. These tools vary in complexity, flexibility, and cost. This summary also

includes a short discussion on the existing GPS receiver simulators that are available.

1.4.1 Simulation and Modeling Tools

In pursuing a simulation of any system, there are many modeling packages from

which to choose [10], more than can adequately be listed and described here. Many of

the 138 packages listed at [10] are high fidelity commercial software products used by

companies for product R&D. Commercial software often has a large operational learning

curve, although companies that design these tools have endeavored to make them as user-

friendly as possible. As a result, these packages typically implement block-diagram level

interfaces in a feature laden Graphical User Interface (GUI), instead of older command

1-8

prompt "DOS" type interface. However, many of these packages are cost-prohibitive and

unnecessarily complicated for use in validation.

There is a wide variance in the level of modeling and capabilities among these

tools. The combination of features required for a particular application depend on many

factors, including cost, signal processing needs, built-in function libraries, fixed-point

analysis, real-time evaluation, software vs. hardware end-goals, and level of control [7,8].

There are many commercial resources for help in simulation and modeling [46,56], as

well as government and military resources. Government resources include the Defense

Modeling and Simulation Office (DMSO) [9] and the Modeling and Simulation

Information Analysis Center (MSIAC) [24]. The purpose of these government agencies

is to centralize government and military modeling and simulation knowledge base. One

special interest item being pursued by MSIAC is a concept known as Simulation Based

Acquisition (SBA) [47], which is a proposed method for validating and acquiring new

technology. The results of this research contribute to that very effort. The tools

developed in this research enable project managers to make acquisition decisions based

on simulation of advanced GPS receiver designs from competing companies.

1.4.2 Existing GPS Receiver Simulators/Models

Some existing GPS receiver simulators/models were found in open literature.

One of the publicly available products is the GPS Signal Simulation Toolbox for

Matlab®, written by Navsys Corporation [28]. This product was reviewed in the article

by Tetewsky and Soltz from Draper Laboratory [50] and is written for Matlab® version

4.2 (the current version is 5.31). The toolbox performs single-channel Monte Carlo

1-9

receiver simulation with faithful modeling of the front-end digital signal correlation and

carrier conversion processing (using a 4-MHz model). According to [50], it was the only

Matlab® simulation product available at the time of the article's publication (October

1998) that is capable of this type of analysis.

Another available model recommended by Navtech Inc. [30], is the GPS

Correlator Simulator by Accord Software and Systems [1]. According to Navtech,

Accord's product is a "very powerful software package for understanding the

characteristics of the GPS satellite signal and its processing in a typical GPS receiver"

[30]. Composed of two pieces, an Input Signal Simulator and a Signal Processor, it is

able to simulate noise effects, receiver circuit parameters and baseband converter,

satellite signal acquisition and tracking, and C/A code properties. However, it appears to

be a single-channel simulator, which runs as a compiled stand-alone program on a PC. It

implements the Costas Loop phase tracking algorithm, and can induce Doppler shift on

the code and carrier. It does not appear to be easily interfacable with external tracking

mechanizations, nor could it accept tracking corrections from external sources.

Additionally, its truth environment is not driven by satellite position and receiver

trajectory, a requirement for simulating ultra-tightly coupled navigation systems.

ACOLADE® [26] is a visual block-diagram oriented simulation package, used to

model a GPS Receiver in an Application Note published by ICUCOM, the maker of

ACOLADE®. In this note, the entire signal generation, error sources, and demodulation

process is simulated inside ACOLADE. A review of the note reveals a much higher

emphasis on modeling software flexibility than on accurate implementation of a receiver

model. Although it is probable that a good quality model could be built inside this

1-10

system, the design as described in the application note is not particularly useful for

purposes previously mentioned.

Mr. Ward developed a receiver model for running Monte Carlo simulations to

predict Radio Frequency (RF) Interference Performance [58]. The design presented in

[58] is an analytical representation of a GPS receiver. It is implemented in Matlab®, a

mathematical programming environment. As such, it is not directly comparable to the

other visual block-oriented time-ordered simulators previously discussed. This simulator

does not actually generate the carrier or code waveforms, but keeps track of their phases

and relationships to generate the I and Q samples with mathematical models. The models

used in this paper are the same that are used in [44], and are also used in the Matlab® I

and Q model developed during this research. The simulator in the paper only models a

single channel, and the inputs are not based on satellite or receiver positions, but rather

created to match the desired signal dynamics specified in the paper. While the approach

and design are solid for the research performed in the paper, the design of the Monte

Carlo simulator does not appear to be tailored towards the applications mentioned here.

Nonetheless, the source was found after the Matlab® I and Q model was developed for

this research, and the models used in the paper were found to be the same or very similar

to those used in this research.

Probably the most promising GPS receiver model has been developed by the

GPS/INS Branch of the Naval Air Warfare Center Weapons Division. Unfortunately,

very little information on this tool is available. According to their website [31], they

have developed a GPS receiver that models code and carrier tracking under dynamic

conditions. It is capable of modeling jamming, "multiple types of discriminators, code,

1-11

and carrier loops" [31]. It is possible to incorporate INS aiding into the code and carrier

loops, and it is available in Fortran® and Simulink® realizations. Of existing GPS

receiver simulators found, this one seems to be the most promising existing product in

terms of filling requirements defined in this thesis.

1.5 Scope

Truth models are only useful if their accuracy is verifiable. This requirement

quickly limits the truth model design to one that mimics existing hardware. Thus,

verification is performed against known effects and phenomena of the existing hardware

and compared to real measured data. However, the design must be flexible enough to

model a plethora of varying receiver designs—each company's GPS hardware is

undoubtedly different. In addition to being accurate and adaptable, it must be easy-to-use

with a short operational learning curve—i.e. a project manager must be able to

understand and use the tool within a minimal amount of time.

To confidently model and simulate I and Q samples with any degree of accuracy,

one must take an in-depth look at everything occurring in the signal reception and

demodulation process that can affect these samples. Here, the focus is placed on factors

affecting tracking loop performance and thresholds. The models developed are accurate

to both the real-time operation of the system being modeled and inclusive of all the errors

affecting old and new tracking algorithms. Thus, the truth environment does not favor

traditional tracking methodologies over new competing tracking technologies and vice-

versa.

1-12

The truth trajectory and satellite positions used in this research are simulated.

This prevents measurement errors in recorded trajectories from resulting in unknown

system dynamics. The signal simulation model accepts any trajectory in the specified

format at any sampling rate. However, the receiver model fidelity is greatly affected by

the sampling rate associated with its truth trajectory. This is due to the spline

interpolation applied to the input trajectory to generate an estimate of the truth

environment at each sample time. The I and Q signal components are generated at the

sampling frequency. Therefore, a higher frequency in the truth environment relies less on

interpolation and more on the truth trajectory, resulting in better modeling of receiver

dynamics.

The receiver model does not incorporate GPS receiver navigation processing,

satellite selection logic, or any of the higher-level software functions. It is meant to

model the processing hardware and GPS received signal perturbations faithfully,

impacting the realism of generated I and Q samples in the tracking process. It includes

very little "decision making" logic, except as required to allow for receiver specific

modeling parameters and user control.

A secondary application of this research is its probable deployment as teaching

tool in the Advanced GPS course at AFTT. In light of this, the Matlab® and Simulink®

models are designed such that they are segmentable and incrementally deployable, piece-

by-piece. Every effort is made to comment the code and models well, to aid in the

comprehension of GPS receiver design by the students in these courses and sponsors of

this research alike.

1-13

1.6 Assumptions

It is assumed that Selective Availability (SA) effects [33] are avoided by some

means in this problem. The impact of this assumption is a limitation on the hardware

configuration of the GPS equipment in the real world. SA can be circumvented by using

1) a P(Y) code (keyed) receiver, 2) a C/A code receiver in a differential mode, or 3) a

C/A code receiver with S/A turned off (tentatively scheduled for 2006). SA could also be

bypassed by using a GPS signal simulator.

The receiver model assumes constant (but specific) received signal strength per

satellite per run, avoiding complications of body and terrain masking on a GPS receiver's

trajectory (all Satellites included in the simulation are assumed visible throughout the

duration of the simulation). The receiver model does not incorporate satellite selection

logic and does not change satellites and/or their channel assignments during a simulation.

The simulation uses cubic spline fit interpolation techniques which inherently assume

piece-wise continuous 3rd order dynamics (jerk). The spline fitting interpolates all data

points (determined by the sampling rate) between the provided data points in the input

trajectory, thus smoothing very high dynamic effects from the input trajectory. This

could possibly lead to better than realizable results. The best way to counter this

phenomenon is to provide truth trajectories at higher sampling rates. Clock errors induced

by receiver dynamics are not modeled. Two types of Automatic Gain Control (AGC)

circuits are provided. The first type is implemented in Matlab® and calculates optimal,

fixed thresholds over user-defined intervals. The second AGC is a configurable dynamic

AGC model implemented in Simulink®, which more closely models the finite response

time of an AGC to fluctuations in the received spectrum. The first AGC model is faster,

1-14

and accurate in situations in which the received noise is constant, while the second AGC

model is to be used for analysis in jamming or other RF in-band interference scenarios.

1.7 Approach

The GPS modeling is broken into three distinguishable products. The first

product is a GPS signal simulator model that simulates digitized and down-converted

GPS signals. The second product is a GPS Receiver Correlator/Demodulator model,

which comprises the entire (high-speed) DSP section of a typical GPS receiver. After

developing these two products, an analytical model for accumulated I and Q samples is

mathematically derived and implemented, based on the operating characteristics of the

receiver design and the GPS signal structure.

The logical point to model/create the received GPS signal and noise spectrum is at

the A/D converter output (output of block "A" in Figure 1-1), where the process becomes

digital. There are inherent problems with accurately modeling high-frequency analog

signals in a discrete environment such as Matlab® and Simulink®. Although Simulink® is

designed to model continuous systems, it relies on the computationally expensive and

time-intensive method of solving sets of differential equations at each time step. Analog

simulation of tracking loops in Simulink® was previously explored by Baier [6], where

many assumptions and compromises in modeling accuracy were made to obtain credible

results in a reasonable amount of time in the pseudo-analog world of continuous-time

Simulink® models. Furthermore, most modern GPS receivers digitize at a Intermediate

Frequency (IF) and do all their processing digitally from that point on, so digital

modeling is more accurate in this regard as well. Many of the errors and receiver effects

1-15

can be accurately modeled at this point by deriving analytical error expressions, which

are evaluated at each sample time. The signal simulator does not depend on any fed-back

information; it only requires the knowledge of pre-specified truth parameters that control

simulator operation. With the lack of any feedback control, this model is ideally suited

for mechanization in Matlab".

The receiver model is inherently a time-ordered closed-loop process, which is

better suited for implementation in Simulink®. Whereas Matlab® processes are code-

ordered, Simulink® processes are time-ordered, such that all functions in a process are

evaluated at each time step. This type of processing is difficult and inefficient to

implement in Matlab®. Dynamic feedback is also difficult to provide via Matlab®

programing, and is easier to build into Simulink® Diagrams. Therefore, the receiver

model is implemented in Simulink®.

The final model represents an analytical approximation of the signal simulator

and the receiver model. The purpose of this model is two-fold. First, it is used to provide

theoretical validation of the first two models. Second, given that the analytical model

suitably represents the truth environment provided by the signal and receiver models, it

can be used as a verified (faster) generator of summed I and Q values. Since this model

consists of pseudo-code, implementing equations to approximate the accumulated I and Q

samples, it can be ported to different operating environments and runs much faster than

the high fidelity Matlab® signal simulator and Simulink® receiver model. This analytical

model was used in a thesis by Michael Presnar [35] to simulate an ultra-tightly integrated

GPS/INS system.

1-16

1.8 Materials and Equipment

As recommended by Tetewsky and Soltz [50], Simulink® is used to model the

digital demodulation section of the GPS receiver. Matlab® is utilized to simulate the

digitized IF spectrum of GPS signals plus noise. Due to the amount of information

readily available, and the educational and developmental emphasis of the product, Mitel's

(formerly GEC/Plessey) GPS C/A code chipset is chosen as the GPS receiver design to

model [20-23]. Although this research focuses on modeling this particular chipset, effort

is made to make the design flexible enough to be easily reconfigured to other receiver

designs as well. This chipset was also chosen due to the added bonus that real I and Q

data has been collected and graciously provided by Tracking and Imaging Systems Inc. in

Bloomington IL [52] for validation of the I and Q model.

The version of Matlab® used in this research is the most recent release, Release

11.1, version 5.3.1.29215a. The version of Simulink® used is also the most recent

release, version 3.0.1. The Simulink® model requires only the standard Simulink®

blocks. The Matlab® code developed requires no special toolboxes for its operation.

1.9 Thesis Organization

Chapter 2 details the GPS signal structure and system design, as well as, receiver

design and signal tracking methods. A brief explanation of non-conventional GPS signal

tracking techniques is provided and their potential benefits identified. Chapter 3 details

the model development for the signal simulator software, GPS receiver, and the analytic I

and Q model. It explains the models used for the downconverted and sampled GPS

signal and associated errors. It also includes a discussion of Simulink® as a simulation

1-17

tool and a model-by-model explanation of the blocks comprising the receiver model.

Finally, detailed equations for the accumulated I and Q values are provided. Chapter 4

provides a detailed analysis and validation of the models developed, cross-checking the

analytical I and Q model against equivalently generated I and Q values using the signal

simulator and receiver model. It also compares both results to real logged I and Q data

graciously provided by Tracking and Imaging Systems Inc. Finally, Chapter 5 offers

conclusions and recommendations for further research.

1-18

2. Theory

This chapter provides the background necessary to understand and apply the

models derived in this thesis. The chapter begins with an overview of GPS and an

introduction to Direct Sequence Spread Spectrum (DSSS) communications. After

discussing DSSS signal properties, the GPS signal structure is defined. Following a

review of signal power notation, a discussion of traditional receiver designs and tracking

techniques is presented, followed by a few new and intriguing approaches to signal

tracking. GPS errors are then explored and the rationale for ignoring specific errors in

the model derivation is presented. Finally, some applications of this research are

presented in context with the limitations of current GPS receivers in specific applications.

This chapter does not attempt to discuss all types of GPS receivers, nor does it provide a

comprehensive listing of all the applications of this research.

2.1 Global Positioning System Overview

The NAVSTAR Global Positioning System (GPS) is a modern-day triangulation-

based positioning scheme. GPS satellites transmit ranging signals, that, when received

and processed by a GPS receiver, provide distance measurements between the satellites

and receiver. Because this ranging method relies on measuring the arrival time of radio

waves, very small differences (1CT6 seconds) between a receiver's clock and the satellite's

clock create large errors (300 m) in these distance measurements. Receiver clock errors

dominate the other errors in the distance measurements, known as pseudoranges (PR).

While traditional triangulation suggests only three measurements are required to calculate

2-1

position, these clock errors add the time dimension to the triangulation process. Thus

without any external positioning (or timing) information, a GPS receiver needs PR from

four satellites to calculate position—solving for X, Y, Z coordinates, and time.

2.1.1 GPS History

GPS was officially approved for development on 17 December 1973. The first

satellite was launched in February of 1978, and the entire constellation of 24 satellites

was first complete in December 1993. All system components reached full operational

capability in the spring of 1995, following completion of comprehensive testing on all

production GPS satellites [33].

2.1.2 Satellite Constellation Overview

The GPS constellation of 24 satellites is arranged into 6 nearly circular orbital

planes with 4 satellites per plane. The planes are inclined 55 degrees relative to the

equator and evenly spaced about the equator every 60 degrees. With an orbit of 26,600

km from the earth's center, their orbital period is one-half a sidereal day or 11 hr, 58 min

[14]. The resulting orbital velocities cause a maximum Doppler shift of 6 kHz for a

stationary receiver on the earth's surface [33]. The spacing of the Satellite Vehicles

(SVs) in their orbital planes is optimized to provide at least four visible satellites at any

point on or around the earth at nearly all times. The coverage standard defines a >99.9%

probability of 4 or more satellites in view over any 24 hour interval, averaged over all the

locations on the globe [11]. This standard is predicated on 24 operational satellites;

however, the current constellation contains 30 active (in working order) satellites [54], 24

of which are guaranteed by the control segment to be operational at any one time[l 1].

2-2

2.1.3 Positioning Services

GPS provides two positioning services, with differing accuracies and tolerances to

interference. These services are known as the Standard Positioning Service (SPS) and the

Precise Positioning Service (PPS). SPS is an unrestricted service, i.e., available to

anyone worldwide. This positioning service provides signals modulated by a pseudo-

random spreading code known as the Coarse Acquisition (C/A) code. It provides

positional accuracies of 100 meters (2 drms, 95%) in the horizontal plane and 156 meters

(2 drms, 95%) in the vertical plane [14]. The distance root mean square (drms) is a

common measure of 3-dimensional positioning accuracy. A circle with a radius of

2- drms (twice the drms value) includes 95% of the positions that would be calculated

from the SPS signals [14].

The Department of Defense is currently implementing an intentional degradation

in the positional accuracy of SPS, known as Selective Availability (SA). Without SA, the

standard deviation of estimated error in each PR drops from 33.3 meters to 8 meters.

This equates to accuracy on the order of 25m (2 drms) and 43 m (2 drms) in the

horizontal and vertical planes, respectively [14]. The U.S. Government has announced

that SA is to be turned off in the year 2006.

PPS is a positioning service limited to the military that provides encrypted

positioning signals. Only authorized receivers can decrypt PPS signals. However, the

C/A code of the SPS system is (typically) needed to initially acquire the PPS signal; in

fact, this was its primary original purpose [33]. The Horizontal accuracy of this service is

at least 22 m (2 drms) and the vertical accuracy is at least 27.7 m (2 drms) [14]. The PPS

system provides signals modulated on two different carrier frequencies, allowing for

2-3

direct ionoshperic error correction. The spreading code for this system is known as the

P(Y) code, where the Y code is the encrypted version of the published P-code.

2.1.4 Differential GPS

Differential GPS (DGPS) is a technique using multiple receivers to cooperatively

increase the positional accuracy of a GPS calculated position. It consists of comparing

the GPS calculated position of a fixed (reference) receiver with its surveyed position,

calculating the errors between the two positions, and broadcasting these error corrections

to other (mobile) GPS receivers. According to Kruczynski [33], "Differential GPS was

an integral part of range operations from the beginning [of GPS]." However, DGPS

methods and receiver technologies have resulted in civilian positioning accuracies much

greater than the designers of GPS had anticipated [33]. Differential positioning

techniques attained much higher levels of accuracy when carrier-phase ambiguity

resolution techniques were developed in the early 80's [38]. These techniques currently

provide the highest level of accuracy achievable—without using information external to

GPS measurements. Current GPS receivers using carrier-phase ambiguity resolution

techniques are capable of sub-centimeter accuracy in low-dynamic environments.

However, these techniques require all the receivers in the differential system to track the

carrier-phase of the GPS signal, compared with tracking the carrier frequency. Thus

carrier-phase tracking is required in order to achieve sub-centimeter positional

accuracies.

2-4

2.2 Direct Sequence Spread Spectrum Communication

Because a GPS receiver requires multiple signals from separate satellites, the GPS

signals use a multiple access technique to keep signals from interfering with each other.

The technique used in GPS is called Direct Sequence Spread Spectrum (DSSS)

modulation, which is a type of Code Division Multiple Access (CDMA). DSSS is the

only CDMA technique that uses a continuous, fixed carrier frequency. This method

modulates the carrier in such a way that multiple signals simultaneously occupy the same

frequency spectrum, while still maintaining orthogonality in "code space," thus, they can

be readily distinguished from one another at the receiver. Most importantly (to GPS),

DSSS modulation provides the ability to measure signal propagation times which are

used to form pseudoranges (PRs), the key ingredient to calculating user position. Other

benefits include resistance to jamming and a relatively low amount of interference

contributed by other DSSS signals within the system [34].

In a DSSS system, there are three basic components—the carrier frequency, the

data modulation, and the pseudorandom spreading modulation. Figure 2-1 shows these

three basic components in a very simplified diagram of a DSSS transmitter. The carrier

is data modulated using Phase Shift Keying (PSK); where data bit values are used to shift

the carrier signal phase (see Figure 2-2). The spreading modulation is a pseudorandom

sequence of ones and zeros which applies additional Binary Phase Shift Keying (BPSK)

modulation to the data modulated carrier. The spreading modulation frequency is

typically at least an order of magnitude higher than the data modulation frequency. The

spreading modulation "codes" the signal in the transmitter so that it can only be "un-

2-5

encoded" (or decoded) with the same spreading sequence locally generated in the

receiver. The properties of the spreading modulation are the topic of the next section.

<j2PD(t)C(t)cos(0)t)W

Carrier
Generator -(g)

<j2Pcos(cot)
D(t) C(t)
Data Spreading

Modulation Modulation

Figure 2-1. Basic spread spectrum transmitter

2.2.1 Spreading Modulation Properties

There are various terms used to describe the spreading modulation of a DSSS

system. Pseudorandom spreading code sequence, pseudorandom sequence, pseudonoise

sequence, pseudorandom noise sequence, code signal, spreading signal, ranging code,

and spreading code are all terms that are used to describe the spreading modulation in a

DSSS system (sequence and code are often used interchangeably). The term "PRN"

(usually followed by a number) is used in GPS as an identifier for individual GPS

satellites, however PRN stands for Pseudo-Random Noise, which again refers to the

spreading modulation used in the GPS satellites. Pseudonoise (PN) sequence is used in

the spread spectrum discussion to describe the spreading modulation.

A PN sequence is a deterministic string of "N" ones and zeros that appear

random, but are purposely ordered to achieve noise-like auto- and cross-correlation

properties. These auto- and cross-correlation properties are what prevent signals in the

2-6

same frequency spectrum from interfering with each other. The ones and zeros in these

sequences are referred to as chips, and the number of chips in a sequence is the length (N)

of that sequence. PN sequences always contain an odd number of chips, and the number

of ones and zeros differ by no more than one (i.e., the sequence is nearly zero mean).

Some classes of PN sequences include maximal-length codes, Gold codes, and non-linear

codes [34,48]. GPS uses Gold codes and non-linear codes in the SPS and PPS signal,

respectively. Because this research does not focus on the PPS signal, the discussion here

focuses on the PN sequence properties of the SPS signal, which are a family of Gold

codes.

In a DSSS system, PN sequences are mapped to square waves, which are then

clocked at a frequency known as the "chipping rate." The square wave has values of

"-1" and "+1", and is known as a spreading waveform. In practice, the "zeros" of a

sequence are mapped to "+1" while the "ones" of a sequence are mapped to "-1." BPSK

modulation is then simply the multiplication of the spreading waveform with the carrier,

as demonstrated in Figure 2-2. From Figure 2-2, it can be seen how multiplying the

modulated carrier by the same modulation waveform reproduces the original carrier by

re-inverting sections of the signal that were inverted during modulation. If BPSK is used

for data modulation, such as in GPS, this process happens twice—once with the data

modulation and once with the spreading modulation. In the receiver, the spreading

waveform is known and regenerated, so once code synchronization has occurred, the

phase reversals caused by spreading are reversed, leaving only a BPSK data modulated,

waveform, which is readily demodulated using a BPSK demodulator.

2-7

Pure Carrier

Modulation Waveform (PRN 1), with Bit Values

1

0

1

- 1

I

1 | 0

i i i i i i

o I 1 j o o o o o j 1 1 1 ! o o! 1 0 1 0 0-

1 i i i i i i

BPSK Modulated Carrier

8 10 12
chip number

20

Figure 2-2. Example of BPSK modulation

An example of a typical DSSS multiple access system is depicted if Figure 2-3.

This example includes three DSSS transmitters and one DSSS receiver. Each of the

transmitters uses a unique spreading sequence, and the receiver can demodulate any

transmitted signal by synchronizing a locally generated PN sequence with the same PN

sequence used to generate it, taking into account the time delay induced by the

propagation time. With this background, desirable correlation properties of the PN

sequences are presented.

2-8

l2PDx{t)CA{t)co?,{0)t)s

Carrier
Generator

-j2Pcos((Ot) Dj(t) Cc(t)

Data Spreading
Modulation Modulation

DSSS Receiver

DSSS Transmitter C

Figure 2-3. Typical multiple access DSSS block diagram

The autocorrelation function of white noise is zero everywhere except at a time

difference of x = 0. Likewise, a vector of samples of a white noise process is

uncorrelated with any shifted version of itself. PN sequences have autocorrelations that

approximate those of white noise. Longer sequences exhibit closer approximations of

white noise (in their correlation characteristics), but they also increase the time needed

for a receiver to determine the correct "code phase" of the received signal. Determining

the "code phase" is analogous to synchronizing with the received signal, which must

occur for the signal to be detectable in the receiver. Longer sequences have more

"phases" to search through in the synchronization process. Thus the shorter C/A code

(repeating every millisecond) is used to acquire the longer P-code (repeating every

2-9

week). Because PN sequences are finite in length, the autocorrelation plot is periodic

with a peak occurring at x = 0, and at x = ±n/Tc, where Tc is the chip width in seconds

and n is an integer value. A plot of the a normalized Autocorrelation function at x = 0 is

shown in Figure 2-4.

1.5

S 1

S 0.5
o

o 0

-0.5

-1'
-3T c -2T c -T_c 0 T_c

1/T = 1 chip width
2T c 3T c

Figure 2-4. Normalized ideal code autocorrelation function

Two independent, discrete, finite-length, white noise vectors are uncorrelated with

each other, making their circular cross-correlation values ideally zero [18]. Cross-

correlations between Gold codes in the same family are not completely zero, but

predictably and consistently low when compared to either code's autocorrelation peak.

Any two Gold codes within the same family have the same cross-correlation values,

which get lower (relative to a code's autocorrelation peak) as a code gets longer [34]. In

the case of the C/A codes, the maximum power of any cross-correlation value is at least

2-10

-23.9 dB lower than the autocorrelation peak (only with zero Doppler offset, see [14]).

This is also the power difference between the autocorrelation peak and its 2nd highest

peak. Plots of the autocorrelation and cross-correlation of two GPS Gold codes (PRN 1

& 2) are shown in Figure 2-5. The auto and cross-correlation plots for all other PRNs

have similar values.

Normalized Autocorrelation of PRN 1

1

0.64

0.36

0.16

0.04
0.00379254

-0.00403716
-0.01

0.001

0.00379254

-0.00403716

-0.01

0.001

0.00379254

-0.00403716

-0.01

Close up of Normalized Autocorrelation of PRN 1

Normalized Cross-Correlation of PRN 1 & PRN 2

-500 -400 -300 -200 -100 0 100 200 300 400 500
offset in chips

Figure 2-5. Auto and cross-correlation plots for PRN 1 & 2

2.2.2 Signal Spreading and Anti-Jam Characteristics

Any BPSK modulated signal has a single-sided Power Spectral Density (PSD)

given by Equation (2.1) [34]. As mentioned earlier, A GPS signal is BPSK modulated by

2-11

both the data and the PN sequence. The following equations are for a generic BPSK

modulation scheme, not specifically a GPS signal.

S(f) = PcTBsmc
2
{2x(f-f0)TB}

(2A)

where:

Pc = Power in the carrier signal

TB - Time duration of one "bit," or l/"bit rate"

fo = Carrier frequency

This power spectrum contains -90% of its power in the main lobe (between the

first nulls), which is 2/TB HZ wide [33]. This bandwidth is the null-to-null bandwidth of

the signal, controlled by the period of the BPSK modulation. In a spread spectrum

system (as mentioned earlier), the chipping rate is typically an order of magnitude higher

than the data rate. If the data and PN waveforms transition synchronously, and the

chipping rate is much greater than the data rate, the resulting DSSS modulated signal

exhibits a bandwidth of twice the chipping rate and a PSD given by Equation (2.1).

Given these conditions, the spreading modulation causes 90% of the power in the signal

to be distributed over a bandwidth of 2 x [chipping rate] (Hz). This bandwidth is much

wider than what is required for the data rate, hence the term, "spread spectrum."

Frequencies outside of this bandwidth are typically filtered out in a GPS receiver.

DSSS modulation method also provides inherent anti-jam capability. Figure 2-3

illustrates that the same spreading code (PN sequence) used to spread the transmitted

signal is used to de-spread, or reconstitute the original signal, in the receiver. However,

any power received in the transmitted signal bandwidth which is not modulated by the

2-12

spreading code is effectively spread by the de-spreading process. Figure 2-6 illustrates

this process.

JL*< i i >) -i

i-i«.

pi- I r I

-Jammer are» = — /
2

Signal

(a) Before despreading

JO Jo

(c) IF filter power transfer function

A
sx</>

F" Signs!

•-JT
2 '

(d) Output of IF filter

Figure 2-6. DSSS tone jammer effects [34]

2-13

Part (a) of the figure shows a tone jammer broadcasting at the center frequency of the

transmitted DSSS signal. All the jammer power (J) passes through the initial bandpass

filter of the DSSS receiver. However, in the same way that our original carrier was

modulated by the spreading signal, the jamming signal is modulated by the de-spreading

process, effectively distributing its power over the same bandwidth as the spread signal.

Prior to additional filtering, the jammer power at the center frequency after de-spreading

is reduced from its received power by a factor of l/[chipping rate], illustrated in part (b).

Likewise, the de-spread signal power increases by a factor of the [chipping rate]/[data

rate]. After filtering (c), the jammer power is additionally reduced.

2.2.3 Processing. Gain

The Processing Gain of a DSSS system is a measure of its ability to reject or

tolerate interference. In considering the previous tone jamming scenario, the total

amount of jamming power makeing it through the demodulation process is dependent on

the signal data rate. The data rate determines the bandwidth of signal after de-spreading.

For cases in which the chip rate is much higher than the data rate, the jammer power (in

the above scenario) getting through the data bandpass filter is approximately the peak

jamming power after spreading times the data bandwidth, or:

P = P T RW (4-4)
1
 JAMMER _EFF

l
 JAMMER _RECVD

L
C ""DATA

where:

PJAMMER_EFF = Effective jammer power (after receiver spreading)
PJAMMER_RECVD = Received jammer power (before receiver spreading)
Tc = Spreading chip width (seconds)
BWDATA = Data bandwidth (Hz), typically twice the data rate

2-14

We saw previously that the chipping rate determined how much the jamming power was

reduced. The processing Gain (GP) is defined as a ratio between the chipping period and

the data bit period [34].

G T^ (2.3)
T l
c

2.3 GPS Signal Structure

Each GPS satellite broadcasts three signals using two specific center frequencies,

LI (1575.42 MHz) and L2 (1227.6 MHz). The SPS (C/A code) signal and the PPS (P(Y)

code) signal are both broadcasted on the LI frequency in phase-quadrature. Signals in

phase-quadrature have carriers that are 90 degrees out of phase with each other. The

satellite has the capability of broadcasting either the SPS or the PPS signal on L2, but in

practice this frequency has never contained the SPS signal.

As mentioned earlier, SPS uses a family of Gold codes for its PN sequences, at a

chipping rate of 1.023 MHz. PPS uses a non-linear spreading code called the P(Y) code,

which has a chipping rate of 10.23 MHz. The Gold codes are 1023 chips long, and

therefore repeat every millisecond. The P(Y) code repeats each week, giving it a period

of 604800 seconds and a unique sequence of 6.1871 x 1012 chips. Non-linear codes are

inherently more secure and can be much longer than linear codes. They are more

complex to implement, however. Each GPS satellite BPSK modulates all signals with a

50 Hz data message 37500 bits long, which continuously repeats and periodically

changes (the data message can be turned off on L2 at the government's discretion). An

2-15

entire data message from one satellite is received only after 12.5 minutes of continuous

reception. Each satellite is assigned a unique C/A and P(Y)-code.

The SPS signal has a null-to-null bandwidth is 2.046 MHz. The PPS signal's

bandwidth, modulated by the P(Y) code, is 20.46 MHz. Thus the PPS signal bandwidth

is roughly 10 times the SPS signal bandwidth. Using Equation (2.3), it can be shown that

the processing gain for the civilian signal is -43 dB, where the military signal's

processing gain is -53 dB. The higher processing gain of the P(Y) code contributes to

the PPS having a higher tolerance to jamming than the SPS.

All the frequencies previously mentioned can be generated from the fundamental

frequency of GPS, which is 10.23 MHz. Table 2.1 shows the integer relationships.

Having integer relationships maintains a fixed number of carrier cycles per chip and data

bit, and made frequency plans easier to implement with one standard oscillator [33].

Table 2.1. Relationship of GPS Signal Parameters to the Fundamental Frequency

Fundamental Frequency of GPS: f0 = 10.23 MHz
Parameter Relationship Value
LI Carrier Frequency 154xf0 1575.42 MHz
L2 Carrier Frequency 120xf0 1227.6 MHz
P code chipping rate fo 10.23 MHz
C/A code chipping rate fo/10 1.023 MHz
Data Rate fo/204600 50 Hz

The LI signal's analytical representation generated by the "ith" satellite vehicle

(SV), with respect to GPS time ('t') is shown in Equation (2.4):

Sw = ^Gi(t)Dt(t)cos(aL1t)-tfYi(t)Dimn(.a>L1t) (2-4)

Where
SUi = GPS LI-band signal as transmitted ("sent") from SV;
Pt = Transmitted signal power

2-16

Gi(t) = Pseudorandom noise (PRN) spreading sequence (1.023 MHz)
D{(t) - Data message modulation (50Hz)

(On = LI carrier frequency (1.575.42 MHz)
t = GPS time
Yi(t) = Encrypted P-Code spreading sequence (10.23 MHz)

This signal representation is similar to Spilker's representation in [33:68] The

expression in [14] has the correct lead-lag relationship, but is not exactly in terms of GPS

time. The GPS control document [5], Kaplan [14], and Spilker [33] all agree that the C/A

code bit transitions occur at the LI carrier peaks, while the P-Code bit transitions occur at

the zero crossings of LI carrier. Both the C/A code and the P-code reset and synchronize

their first bit transition with the reset of GPS time. This reset occurs on 12:00 Midnight

on Saturday. Therefore, at "0" GPS time (t = 0), the spreading sequences execute their

initial transition, at which time the C/A code carrier should peak, while the P-Code

carrier should be at a null. Equation (2.4) satisfies all these requirements. The composite

LI signal and its components are illustrated pictorially in Figure 2-7. In practice, the

GPS signal has 154 carrier cycles per P-code chip (and thus 1540 cycles per C/A code

chip). In order to illustrate the relationships specified in Equation (2.4), each carrier

cycle in Figure 2-7 represents 154 actual LI carrier cycles. The spreading sequences

shown are true C/A and P-codes starting at zero GPS time for PRN 1. The data transition

shown was inserted for illustrative purposes, and would never occur at P-code chip #11.

In the SPS and PPS signal plots, the dashed portions represent phase inversion. The data

bit transition additionally inverts the spreading waveform modulation. This plot

represents an ideal depiction of the signals for showing their relationships. In practice,

phase transitions at these frequencies are never as instantaneous as that depicted in Figure

2-7. The composite signal appears similar to a Quaternary Phase Shift Keying (QPSK)

2-17

modulated carrier, exhibiting some 90 degree phase shifts in the carrier as opposed to the

minimum 180 degree phase shifts of BPSK.

Data Modulation

P-Code chips, with Bit Values

1

0

I I I I I

-1| o o! 1 o o| i! o o| 1] o o o o o| 1| o o o| i! o o o o oj i! oj i! oj x

1
i i i i i

10 15 20 25 30

C/A Code (PRN 1), with Bit Values

1

0

1

I I

1

I

1

1

1 1

o

, , 1

0.5 1.5 2.5

Simplified L1 Composite Signal

10 15
P-code Chip Number

20 25 30

Figure 2-7. Representation of the LI GPS signal components

2-18

2.3.1 Overview of Signal Power Measurements and Notation.

Signal power measurements are typically either referenced to one Watt or the

relative noise power. The power levels specified in [5] and [14] provide the expected

range of received signal power over a satellite's life, tabulated in Table 2.2 below.

Table 2.2. LI and L2 Minimum received Power Levels [14]

LI C/A Code LI P-Code L2 (P-Code or C/A code)
Minimum received power -160.0 dBw -163.0 dBw -166.0 dBw
Maximum expected power -153.0 dBw -155.5 dBw -158.0 dBw
Max. Expected Variation 7.0 dB 7.5 dB 8.0 dB

These measurements are referenced to one Watt. However, absolute signal power is not

necessarily meaningful, because it does not consider the noise power. Receiver

performance is more dependent on a signal to noise power ratio than the absolute signal

power. The Carrier to Noise ratio (C/No) is a ratio of total carrier power to the noise

power in one Hz of bandwidth. The equation for calculating the effective received C/No

is shown in Equation (2.5). This received power measurement is meaningful without

specifying the bandwidth of a receiver, and is gives a more generic signal strength

characterization.

where:

Nn

= Sr+Ga-10log(kT0)-Nf-L (dB-Hz) (2.5)

Sr = Received GPS signal power (dBw)
Ga = Antenna gain toward the satellite (dBic)
10log(kTo) = Thermal noise density = -204 dBw-Hz
k = Boltzman's constant = 1.38 x 10"23 (watts-seconds/K)
To = Thermal noise reference temperature = 290 K
Nf = Noise figure of receiver including antenna and cable losses (dB)

2-19

L = Implementation losses plus A/D converter losses (dB)
C = Total received signal power
No = Noise power in a 1 Hz bandwidth

Perhaps the most meaningful measure of signal power when characterizing the

performance of a receiver is the signal-to-noise ratio, S/N. This is a ratio of total signal

power to total noise power, in the same bandwidth. For a BPSK modulated waveform

with a null-to-null bandwidth Bn, an approximation relating C/No to the S/N ratio is in

given in Equation (2.6).

S C

N N0

-BN (dB) (2.6)

where:
BN = Bandwidth of the filter in the receiver to remove out of band

noise (in dB)
S = Power of the signal in BN bandwidth
N = Power of the noise in BN bandwidth

Un-attenuated signal power varies according to Table 2.2, but received signal

power after down-conversion depends on more factors than received signal power. Table

2.3 provides the range of power ratios previously discussed, based on the combination of

received power, ambient noise power, antenna gains, and a typical range of receiver

losses. The following information was compiled from [14] and [33]. Although the P-

Code signal is not implemented in this research, it is included here for comparison. Table

2.3 does not account for signal attenuation by any unnatural interference, and the effects

of parameters not listed (satellite elevation, antenna gains, etc.) are lumped into the

maximum and minimum received signal power. The C/No measurement in Table 2.3 is

the carrier to noise ratio at the antenna, rather than the effective received C/N0 given by

Equation (2.5).

2-20

Table 2.3. Estimated range of received power measurements

Minimum received power and
maximum receiver losses

Maximum received power and
minimum receiver losses

Signal LI C/A Code LI P-Code LI C/A Code LI P-Code
Received signal
power 'C (dBW)

-160.0 -163.0 -150.0 -152.5

Noise floor 'N0'
(dBW)

-204.0 -204.0 -205.2 -205.2

C/No (dB-Hz) 44.0 41.0 55.2 52.7
Noise Figure
'NF (dB)

4 4 2 2

Receiver Losses
'L' (dB)

2 2 1 /

Pre- Correlation
C/No (dB-Hz)

38.0 35.0 52.2 49.7

Bandwidth 'BN'
(dB/Hz)

60.1 70.1 60.1 70.1

Pre- Correlation
S/N (dB)

-22.1 -35.1 -7.9 -20.4

Processing Gain
'GP'

43.1 53.1 43.1 53.1

Post-Correlation
S/N (dB)

21.0 18.0 35.2 32.7

The above table provides a reasonable range of pre-correlation S/N ratios for

typical GPS receivers. The italicized numbers are the high and low estimates previously

discussed, where the bold numbers are the various power measures based on these

parameters. Interference can always cause these levels to go lower, but for the purpose of

this research, this table specifies the upper bound on received signal strength. Therefore,

the highest pre-correlation S/N ratio that is considered reasonable is -7.9 dB.

2.4 Traditional GPS Receiver Designs

Categorizing every GPS receiver into any list of standard types is a difficult, if not

impossible process. Receiver designs have evolved greatly over the 20+ years since the

first design. The numerous application areas of GPS have generated a rich diversity of

2-21

receiver requirements that have resulted in the wide variety of GPS receivers available

today. At the risk of excluding current designs, a "traditional receiver" is defined here as

one that digitizes a down-converted signal prior to any processing, and tracks multiple

GPS signals simultaneously. In Chapter 1, a typical receiver layout was given in Figure

1-1. This layout is expanded in Figure 2-8 to include block diagrams of each task. This

discussion of traditional receiver designs examines each of these blocks in turn.

A
Down Conversion & Sampling

B
Signal Demodulation (Hardware)

Pre-
Amp

RF

GHz

AGC

Down-
Convert,
& Filter

IF

MHz

A/D
Converter

Digital

IF

Carrier
Removal

Code
Correlation

I&Q

MHz
N Channels

kHz

^ 1 C \DCOG

Navigation Processing
> Iir Pseudorange, Carrier Phase,

and Data measurements (kHz-Hz)
> Function: Calculate Position,

Velocity, etc. (Software)
> Output: Receiver Position (1-100

Hz)

DCO Corrections

Signal Tracking Algorithms (Software)

•Ö1

«3

si
Loop
Filter

Code/Carrier
Discriminator

a
N Channels

!._„________________ — .

Figure 2-8. Layout of a typical GPS receiver.

The following discussion pertains to processing a single frequency and spreading

code, although the structure depicted in Figure 2-8 could be duplicated for both GPS

frequencies and spreading codes. In addition, these receiver designs include only the

components required for basic GPS positioning. Effort is made to keep the discussion as

2-22

generic as possible and cover the most common components among most receiver

designs. Much of the information presented here is summarized from [14] and [33].

2.4.1 Signal Down Conversion and Sampling

High carrier frequencies are necessary to propagate signals from space through

the atmosphere. However, these high frequencies are not easy to filter and demodulate.

Downconversion via cosine mixing is used to reduce the received carrier frequency to a

more manageable frequency. Typically, several mixing operations are accomplished

before reaching the final Intermediate Frequency (IF). Equation (2.7) depicts the process

analytically, and includes errors induced by the mixing process.

Sffi = SGPS cos(coL1t) ■ 2cos(cowt)

+ (2.7)

harmonics + LO feedthrough + image noise

SIF1 — isGPS -cos((coLl +coLO)t) + -cos((a)Ll -o)w)t)

where:
SIFI = Signal at a frequency of IFi after mixing and filtering
SGPS = GPS received signal @ ©IF (includes modulation components)

When down-converting the desired signal, the frequency difference term specifies

the generated IF frequency and filtering is done to remove any other frequencies from the

signal. Harmonic frequencies are generated in the non-linear mixing process, but are

generally much higher than the IF frequency and are easily filtered out. Local oscillator

(LO) feed through is a small local oscillator frequency component that "leaks through"

the demodulation process. Image noise is caused by noise energy at the image

frequencies of the mixing process, located at coL1 - 2a>w and a>u - 2coIF. The derivation

of how these image frequencies propagate through the mixing interference is shown

2-23

dbelow; the final image noise terms are given in Equation (2.12). Sm is the negative

image frequency, which can be thought of as the aliased IF frequency. When down-

converting a signal, the IF frequency is defined as:

a)
iF=

C0
L\-

(0
w (2.8)

Now, define the noise at the image frequencies mentioned above with noise "amplitudes"

ni and r%2, and mix these noises with the local oscillator to get:

Sim = r\ cos((coLl - 2(oLO)t) ■ 2cos(cowt)

S
IN2 =

n
i cos((fl>tl - 2colF)t) ■ 2cos(coLOt)

Next expand the mixed noise expressions using trigonometric identities:

(\ 1 ^
Smi =

2r
h -cos((fl>u-2coLO +0)LO)t) + -cos((a)Ll-2coLO-a)w)t)

^IN2 ~ ^
n

2

Next substitute in Equation (2.8) and simplify:

s
im = «i (cos((fl>/F)t) + cos((coLl - 3coLO)0)

S
IN2 = n2{cos((-o)Ll+3coLO)t) + cos((-coIF)t))

After bandpass filtering at <X>IF, this reduces to:

Sm = r\ cos(coIFt)

S
IN2 =

n
2 cos(-öV)

(2.9)

J
f
\ 1 "1
-cos((ö>L1 -2o)IF + cow)t)+-cos((ü)a -0)w-2coIF)t) (2.10)

(2.11)

(2.12)

Image noise can be avoided by filtering the image frequencies before the mixing

process. The frequency plan of a receiver specifies all the previously mentioned

frequencies (LO, IF, carrier, image, and harmonic frequencies) so that only the desired

signal is present and the other frequencies are rejected by filtering. The frequency plan

2-24

design is key to maintaining signal quality at the final IF. The performance of the filters

used in the down-conversion process is also key to removing out-of-band interference,

thereby increasing the signal-to-noise ratio at the final IF.

Once the signal has been down-converted and filtered, it is ready to be sampled.

Sampling performs analog-to-digital conversion of the GPS signal. The analog signal is

typically quantized using 1 to 5-bit resolution. As shown in [33], 5-bit resolution results

in only 0.5 dB of loss and more bits do not yield appreciable improvement. An

Automatic Gain Control (AGC) circuit is used to maximize sampling resolution. The

AGC scales the received signal spectrum so that the A/D converter uses the full

resolution of the A/D converter as the received signal and noise power fluctuates. The

sampling frequency can be selected to convert the IF frequency directly to baseband or to

some residual frequency offset. The sampling frequency can also alias the signal to some

residual frequency offset by sampling the final IF frequency at less than the Nyquist rate.

This type of sampling has the effect of causing a frequency and phase reversal, due to the

high-side mixing process that occurs. This process occurs in the Mitel chipset [21] and is

detailed in Chapter 3.

2.4.2 Digital Signal Demodulation

After downconversion and sampling, the digitized signal contains the GPS

spreading and data modulation at a reduced (or zero) IF frequency. Demodulation is the

process of removing any residual carrier and the spreading modulation via code

correlation. Typically, the signal is split into its In-phase (I) and Quadrature-phase (Q)

components, either in the final down-conversion before sampling, or in the final residual

2-25

frequency offset removal. The I and Q samples are necessary to implement digital signal

tracking algorithms.

Carrier removal is typically accomplished one of two ways: cosine mixing or

phase rotation. Cosine mixing is the same process previously covered for signal down

conversion, except here it is performed digitally. Phase rotation is detailed in [33] and

uses an algorithm that removes the high frequency component that would result from

cosine mixing. Either process requires a digital cosine wave generated at the estimated

IF signal phase or frequency. This cosine wave is generated by a Digitally Controlled

Oscillator (DCO).

Code correlation is the process of de-spreading the signal, mentioned earlier in the

DSSS discussion. Here the Pseudo-Random Noise (PRN) code used by the satellite is

locally generated and correlated with the received signal. When the locally generated

sequence is aligned (within one chip) with the received signal, the GPS signal is de-

spread. The spreading waveform is also generated by a DCO.

As the samples propagate through the carrier removal and code correlation

process, they are accumulated and "dumped" (latched) at fixed time interval, usually

every millisecond. Because the carrier removal and code correlation process operate on

the sampled IF signal—usually clocked at over 2 MHz [33]—this process must be

implemented in dedicated hardware for speed. This block's output is a periodic dump of

these accumulated high frequency samples, providing summed I and Q values at a lower

frequency, which are then processed with embedded computers (software). This

embedded software is discussed next.

2-26

2.4.3 Signal Tracking Methods

The signal tracking method (or loop) of a GPS receiver determines a receiver's

highest possible accuracy and its level of robustness. While the highest positioning

accuracies are chiefly a result of navigation processing (using differential carrier-phase

ambiguity resolution), the signal tracking loop must continuously provide quality PR and

Carrier Phase (CP) observables to the positioning algorithms with the precision that the

algorithms require. Unfortunately, there is a trade-off between robust and precise

tracking loops [57]. Much work has been done to design signal tracking loops to attain

both precision and robustness [3,16,39,33,59]. There are two signal components that

must be tracked—the spreading code and the residual carrier. Both must be

simultaneously tracked in order to de-modulate the received signal. If lock is lost on

either the code or the carrier, the receiver will lose lock on the signal and must re-acquire

the signal. Of the two signal components, the code is easier to track in dynamic

environments, due to the 293 meter equivalent range of one chip length. Carrier

frequency lock is harder to maintain than code lock, and carrier-phase lock is the hardest

to achieve. As previously mentioned, carrier-phase lock is required to provide the

Carrier-Phase (CP) measurements crucial to performing carrier-phase ambiguity

resolution. Since a carrier wavelength for LI is 19 cm, carrier-phase tracking is both

very precise and hard to maintain. A phase error of 90 degrees between the received

signal and the DCO generated frequency equates to a ranging misalignment of only 4.7

cm. Adjusting the carrier DCO to maintain phase lock on this signal in environments

with the large Doppler shifts is very difficult. As a result, phase lock is the weak link in

the tracking process.

2-27

Code tracking is the process of using the PN sequence autocorrelation function to

maintain alignment between the code modulation in the signal and a locally generated

replica. Typically, a Delay Locked Loop (DLL) is used, in which the signal is split and

fed into multiple correlators with locally generated codes that are offset by fractions of a

chip. A Tau-Dither tracking Loop (TDL) is similar to a DLL, but only uses one

correlator, which alternates between offset codes. Code tracking loops can be either

coherent or non-coherent, which is to say they operate with or without carrier-phase

information [33]. Misalignments between the received signal and the locally generated

code are sensed by comparing the autocorrelations of the parallel correlators. These

autocorrelations are the I and Q accumulated samples generated by block "B" in Figure

2-8. Accumulation here serves as a low pass filtering process, which effectively

increases the signal S/N ratio. The I and Q samples generated by Block "B" are typically

produced at 1 kHz. For C/A code receivers, the accumulating over 1 ms (analogous to a

dumping rate of 1 kHz) equates to a processing gain (Gp) of 30 dB. Accumulating 20

1kHz samples utilizes the full 43 dB of processing gain available, but there is a trade-off

between dumping the I and Q accumulated samples at faster rates (with lower S/N) and

having observables with higher S/N ratios at a slower rate [14]. The summation box in

'block "C" of Figure 2-8 accomplishes this additional accumulation process.

Figure 2-9 depicts code tracking with three code replicas spaced at x
h chip

increments:

2-28

Incoming signal

Replica signals

Early

Prompt

Late

Normalized correlator output

Incoming signal

Replica signals

Early

Prompt

Late

Normalized correlator output

•1 -1/2 a

_r

-1 -1/4 6+1/4 +3/4

(c) (d)

Figure 2-9. Early, prompt, and late code tracking [14]

2-29

The signal is tracked so that the three local waveforms are Vi chip late, perfectly

synchronized, and Vi chip early when compared to the received signal. The

autocorrelation values are run through a discriminator that estimates adjustments to the

frequency of all replica waveforms in order to maintain this relationship. A list of code

tracking discriminators can be found in [14]. Some other code tracking loops are detailed

in chapter 4 of [31].

The received carrier frequency must also be tracked and removed from the

sampled signal. The received frequency is constantly changing due to Doppler and

receiver clock frequency drift. Carrier tracking can consist of either frequency or phase

tracking. Frequency tracking is more robust than phase tracking, but is not as precise

[57]. If available, the prompt I and Q values from the code correlation are used as the

observables for the frequency or phase discriminator. Both phase and frequency

discriminators are listed in [14]. These discriminators provide noisy frequency or phase

error measurements between the received signal and the local DCO frequency. As with

the code observables, the 1 kHz I and Q measurements generated in block "B" of Figure

2-8 are summed again, to increase the signal S/N ratio, thereby providing a better

estimate of the phase or frequency error at the output of the discriminator. However, if

the integration time is too long in periods of high dynamics, the tracking loops are not

able to adapt fast enough to track the signal dynamics. This is another trade-off design

point for a GPS receiver [14].

It was mentioned that the discriminators provide a noisy estimate of the receiver

frequency or phase error, due to their low S/N ratios. The loop filter in block "D" of

Figure 2-8 performs filtering on the perceived signal demodulation errors. This filter is

2-30

key to signal tracking performance. These filters are described well by Ward in [14] and

[57]. These filters effectively control how fast the DCO frequencies can change, which

in turn controls the dynamic range over which the receiver can operate. However, as the

loop filter bandwidth is increased, the DCO corrections also increases, which lowers the

quality of the PR and CP measurements.

Because the code tracking process is much less accurate than the carrier tracking

process, the carrier tracking loop is often used to aid the code tracking loop [14]. This

results in higher quality GPS measurements, but puts more strain on the carrier tracking

loop. However, the benefits usually outweigh this drawback and this aiding

configuration is commonly used in GPS receivers.

2.4.4 Navigation Processing

This block of the receiver receives the pseudoranges and carrier-phase

measurements from the digital hardware and the data bits from the signal tracking loop.

This block uses the GPS observables to calculate user position, velocity, and (possibly)

acceleration. This process is usually accomplished by an iterative least-squares algorithm

or a Kaiman Filter [18,19]. The navigation algorithms used to calculate these quantities

are not covered in this thesis. However, it is important to understand know which

quantities are needed and where they originate—from inside blocks "B" and "C" in

Figure 2-8.

The PR measurement comes from the prompt digital correlator of a channel. It is

the speed of light times the time delay (computed from the receiver time—in seconds)

that the local PN sequence is slewed in order to correlate perfectly with the received

2-31

signal. The Carrier-Phase (CP) measurement is the difference between the actual carrier

DCO cycle count over a specified period and the nominal count (zero Doppler and clock

error) over the same period. This measurement is fundamentally the integration of the

perceived Doppler frequency, which provides a measure of the relative motion along

each satellite line of sight path. This precise phase measurement is needed for carrier-

phase ambiguity resolution. The data bits are typically estimated in the signal tracking

algorithm section, from the processed I and Q samples.

2.5 Advanced GPS Receiver Designs

Since the first GPS satellite went into orbit, the signals broadcasted by the

satellites have not changed. The services provided by GPS have remained relatively

constant, but the technology developed to utilize them has grown remarkably over the last

20 years [4]. There are more advanced receiver technologies than those covered here,

and this research does not attempt to touch on all of them. The techniques listed here are

those that have the potential to aid a specific application of GPS—maintaining very high

positional accuracy in highly dynamic environments with signal blockage, attenuation,

and jamming. Of the technologies available and under development for this application,

three are mentioned here: Direct Correlator Output Processing (DCOP), Ultra-Tight

GPS/TNS integration, and frequency domain tracking.

2.5.1 Direct Correlator Output Processing:

Most modern receivers have multiple parallel tracking channels, which

independently demodulate GPS signals digitally after sampling a down-converted

intermediate frequency. There is typically a trade-off in GPS designs between achieving

2-32

position accuracy and providing robustness in reception environments with high-

dynamics and interference. It is currently difficult to maintain carrier-cycle level

positioning in environments of high-dynamics, intermittent signal blockage, and low

signal strengths. Direct Correlator Output Processing (DCOP) is a receiver architecture

which is capable of maintaining carrier-phase signal tracking with periods of signal

blockage and attenuation. DCOP architectures jointly process the received signals while

still expressed in their sampled in-phase (I) and quadrature-phase (Q) components

directly after accumulation. This technique uses an Extended Kaiman Filter [19] to track

the satellite signals received jointly, while taking advantage of the Kaiman Filter's ability

to estimate and remove correlated dynamic errors projected onto the line-of-sight signal

propagation paths. There is also a net increase in signal power from combining signal

components together prior to processing [39]. Using a Kaiman Filter[18] for signal

tracking approaches optimal signal tracking methods, and by jointly processing the

signals, a GPS receiver can potentially eliminate cycle slips. This technique is capable of

maintaining lock on the carrier-phase of every received signal even during short signal

outages of some received signals [43]. Applications for this technology can be found in

situations where robust sub-meter positioning systems are required in highly dynamic

environments prone to signal blockage and attenuation [41]. Inertial aiding could be

added as well, greatly boosting robustness in the same environments.

DCOP involves processing the raw In-phase (I) and Quadrature-phase (Q) signal

components of each received signal directly in an optimum fashion. The I and Q signal

components are those available at the GPS receiver accumulator output, after carrier

removal, code correlation, and accumulation. The group of I and Q signal components

2-33

from each received signal are utilized collectively as the raw observables to an Extended

Kaiman Filter (EKF) [19], a frequently used first-order nonlinear estimation algorithm.

The EKF jointly processes these quantities, taking advantage of correlated tracking errors

among the received signals, caused mostly by receiver dynamics. As a receiver's antenna

undergoes dynamic movement, each satellite signal incurs a Doppler shift due to the

receiver's dynamic motion. With DCOP, these correlated errors are estimated and

removed by jointly processing all signals, taking into account the transmitters' and

receiver's geometry to determine the component of receiver motion on each line of sight

(LOS) signal path. This method effectively combines the signals together to improve the

pre-detection signal-to-noise ratio, resulting in better performance, especially in the

aforementioned reception environments [39].

2.5.2 GPS/INS Integration Techniques

An Inertial Navigation System (INS) provides very accurate measurement of high

dynamics, but is subject to long term drifts in position accuracy. GPS has excellent long-

term positioning accuracy, but lacks very accurate measurement of position during high

dynamics. Integrating these two navigation systems combines the best of both systems,

yielding good positioning performance in high dynamics and over long time periods.

There are typically three different architectures for integrating these systems [35], loose,

tight, and ultra-tight integration.

Loose integration is the optimal combining of GPS-calculated position with an

INS-calculated position. Tight integration optimally combines INS measurements with

GPS pseudoranges and possibly carrier-phase measurements to calculate position. Ultra-

2-34

tight integration goes another step further into the GPS receiver and optimally combines

processed GPSI and Q signal components with INS measurements to calculate position.

One direct application of this thesis is providing a GPS I and Q truth model for

simulating an ultra-tight GPS/INS positioning system. In ultra-tight coupling, the GPS

signal is broken down into its sampled, digitally processed, in-phase (/) and quadraphase

(Q) signal components. The digital signal components are first generated by down-

converting the RF signal to an intermediate frequency (IF) and sampling. These samples

are then digitally correlated and demodulated by the receiver's code and carrier DCOs,

which are controlled by the INU-computed position and velocity to maintain code

alignment and carrier lock. Simulating this type of integration requires the simulation of

previously mentioned I and Q measurements as generated from a receiver. This research

provided this capability for a fellow student's thesis [35], making possible the simulation

of ultra tightly integrated INS/GPS architectures. This level of integration also allows

DCOP architectures to be combined with INS at a very low level, with potentially the

highest attainable level of non-differential positioning accuracy currently possible.

2.5.3 Frequency Domain Tracking

One method for providing GPS positioning in high dynamic environments is with

frequency domain tracking techniques. Frequency domain tracking involves using the

Fast Fourier Transform (FFT) to convert the GPS signal into the frequency domain where

Doppler frequency estimation is performed for signal demodulation. Hurd, while

working under a NASA contract, filed a patent on this concept in 1983 [12]. Although

the patent is for the concept and is not based on any realization of the technology, it

2-35

claims anticipated performance of being able to track accelerations up to 50 g, with an

expected tracking error of only 0.88 meters (added to the pseudorange errors) while

receiving a signal 7.6 dB lower than the minimum specified satellite signal strength.

Even if these claims are met, the potential accuracies of this technique are still much less

than that of DCOP, especially when DCOP is combined with carrier-phase ambiguity

resolution. This technique should be capable of tracking higher dynamics than DCOP,

but with less accuracy.

2.6 GPS Error Sources

A distinction must be made between the errors that affect position accuracy, and

those that affect GPS signal tracking. For example, errors that are slowly changing over

time do not adversely affect the tracking performance of a GPS receiver, but they do

affect the calculated position accuracy. An exploration of all the errors in GPS is

warranted, but this research focuses on those errors that are important to model when

comparing receiver designs.

According to Parkinson, [33] there are six classes of ranging errors, which are

presented below in Table 2.4:

Table 2.4. GPS ranging error classes [33:478]

Ephemeris data Errors in the calculated satellite location
Satellite clock Errors in the transmitted clock, including SA
Ionosphere Errors in the pseudorange corrections caused by ionospheric effects
Troposphere Errors in the pseudorange corrections caused by tropospheric effects
Multipath Errors caused by reflected signals entering the receiver antenna
Receiver Errors in the receiver's measurement of range caused by thermal noise,

software accuracy, and interchannel biases

2-36

Ephemeris errors are satellite position errors. In the data message from each

satellite, there is a complete set of orbital parameters and refinement factors from which

satellite positions are calculated. The error in this calculated position is due to satellite

clock error and the quality of the orbital refinement factors provided by the GPS control

segment. Ephemeris parameters are optimized for 4-hour time windows and will

generate large satellite position errors if used outside this time window [36]. Ephemeris

errors can be removed in post-processing applications if precise orbit information is

obtained. Precise orbits are available for download from several organizations, including

the international GPS service [13]. This error is the epitome of a slowly changing bias,

and thus does not affect signal tracking performance.

Each GPS satellite carries an atomic clock with which to keep accurate time.

These clocks are watched closely and maintained by the control segment to be within one

(j,s of Universal Coordinated Time, (UTC, modulo 1 second) [5]. However, this accuracy

is skewed by Selective Availability (SA). SA has a dominant effect on both position

accuracy and receiver tracking. It inserts an unpredictable acceleration component into

the tracking loop that limits the minimum loop bandwidth, thereby limiting the loop's

tracking accuracy. Its contribution to SPS position error is larger than any other error

term. SA can be removed by using differential GPS or by-passed with PPS. As stated in

Chapter 1, it is assumed SA is removed for the purposes of this thesis. Because satellite

clock errors are independent from satellite to satellite, they affect traditional and

advanced receiver designs equally and are not modeled in this research.

The speed of any electromagnetic wave through a vacuum is the speed of light.

However, a GPS signal must travel through the ionosphere and troposphere before it

2-37

reaches a GPS receiver (on earth). These mediums affect the propagation speed of a

signal, resulting in a time-of-arrival error at the receiver. While the troposphere causes a

net delay on the GPS signal, the ionosphere affects the signal code and carrier differently.

The ionosphere causes a delay on the pseudonoise code, but an advance on the carrier.

The phenomenon is known as carrier advance or code/carrier divergence, and is

explained mathematically by Jorgensen, reprinted in [17]. Ionospheric and tropospheric

errors exhibit some correlation between received signals, depending on whether the

signals under question traveled through similar atmospheres on their way to the receiver.

Signals that propagate through the same elevation angles typically share the same

ionospheric and tropospheric errors. These errors can be also characterized as noisy,

slowly changing biases, but do not greatly influence GPS signal tracking performance.

However, since the errors are somewhat correlated, the DCOP receiver design has the

potential of performing better in the presence of this error over an un-coupled approach,

but time constraints prevented its implementation.

Multipath errors occur when the GPS signal is reflected and then received by the

antenna. Multiple copies of the transmitted signal, attenuated and slightly retarded in

time in relation to the direct signal, are present in the tracking loop. The tracking loop

tries to track the resultant sum of the multiple signals, causing errors in the time-of-

arrival estimation by the tracking loop [6]. Multipath errors are unique to each receiver,

and uncorrelated between signals. Some receiver architectures are specifically designed

to combat multipath [6], in which case modeling this error is essential to ensuring a fair

comparison between receiver designs. However, no assertion has been made that a

DCOP receiver performs better or worse in the presence of multipath than traditional

2-38

tracking loops, therefore it was not modeled in this research. Please see the

recommendations in Chapter 5 for suggestions regarding its implementation.

Receiver errors can be divided into two categories. The first includes those errors

and signal power losses associated with the type of implementation chosen. These effects

include the AGC finite response time effects, sampling and quantization losses, losses in

the code tracking design, and hardware resolution limitations. The second type of

receiver errors originates from the practical limitations of component accuracy. These

errors include receiver clock errors, filter-induced distortions on the signal, and inherent

system noise. Typically, these errors are not completely minimized due to complexity

and cost requirements.

Receiver errors are very important to this research. Fortunately, simply

configuring the developed receiver model to match the chipset design of interest

determines most errors that are implementation dependent (those listed above as the first

type of errors). The second type of errors are difficult to model, but are usually

comparable among all receiver designs (more so for similarly priced receivers).

However, not all errors of this type can be dismissed due to their universal impacts,

because some advanced receiver designs have implemented special techniques to reduce

their effects and so a fair comparison warrants their modeling.

Table 2.5 provides a quantitative overview of the errors that have been discussed

here. True GPS position accuracy cannot be fully understood without a treatment of

Dilution of Precision (DOP) calculations. For the purposes of understanding the table,

Horizontal Dilution of Precision (HDOP) is the horizontal equivalent positioning error

for a particular satellite geometry, and Vertical Dilution of Precision (VDOP) is the

2-39

vertical equivalent positioning error for a given satellite geometry. A more in-depth

discussion is beyond the scope of this research, but can be found in [14] and [33]. User

Equivalent Range Error (UERE) is the Line-of-Sight (LOS) error in the distance from the

receiver to the satellite.

Table 2.5. Standard GPS error tables [33]

Standard Positioning
Service (SPS)

(one-sigma error, m)

Precise Positioning
Service (PPS)

(one-sigma error, m)

Modeled
in this

research?
Error Source Bias Random Total Bias Random Total Yes/No
Ephemeris Data 2.1 0.0 2.1 2.1 0.0 2.1 No
Satellite clock 20 0.7 20.0 2.0 0.7 2.1 No
Ionosphere 4.0 0.5 4.0 1.0 0.7 1.2 No
Troposphere 0.5 0.5 0.7 0.5 0.5 0.7 No
Multipath 1.0 1.0 1.4 1.0 1.0 1.4 No
Receiver
measurement

0.5 0.2 0.5 0.5 0.2 0.5 Yes

UERE, rms 20.5 1.4 20.6 3.3 1.5 3.6

Vertical 1-a errors, "V /DOP = 2.5 51.4 8.3

Horizontal 1-a error 3,HDOP = 2.0 41.1 6.6

2.7 Receiver Clock Performance Analysis

Perhaps the most prominent error source of a receiver is the oscillator. Receiver

oscillator performance greatly impacts the overall receiver performance. Table 2.6 lists

some of the oscillator effects complied by Vig [55]. Oscillator (or clock) errors in a

receiver are inherently correlated between the received signals, and since these errors

have such a large effect on receiver performance, they must be modeled to provide a fair

comparison of the DCOP advanced processing architecture. Portable GPS receivers

typically employ some type of a crystal-based oscillator, since they are lightweight,

relatively cheap, small, and have acceptable stability. The discussion therefore focuses

on crystal oscillators.

2-40

Table 2.6. Impacts of oscillator performance on GPS receivers.

Oscillator parameter GPS performance parameter
Warmup time Time to first fix
Power Mission duration, logistics costs (batteries)
Size and weight Manpack size and weight
Short term stability (0.1 s to 100 s) A-range measurement accuracy, acceleration

performance, jamming resistance
Short term stability (-15 min.) Time to subsequent fix
Phase noise Jamming margin, data demodulation, tracking

performance
Acceleration sensitivity See short term stability and phase noise effects

Accurate receiver clock modeling is not easily achieved. Crystal controlled

oscillators contain a variety of noise components, and the combined effects of these

components cannot be observed with classical variance calculations [32]. The Allan

variance (AVAR—defined in Equation (3.3)) is one method used to specify clock

performance because it can adequately specify a clock's performance statistics over

varying time spans. Where the classical variance statistics diverge for some commonly

observed noise processes (such as a random walk), the Allan variance converges for all

noise processes observed in precision oscillators. Allan variance is easy to compute and

is faster and more accurate in estimating noise processes than the FFT [55].

1 n-\ (2.13)

2(n-l)£r

Vfe = Observation at time tk
yk+j -yk - Change in observed quantity over time interval z (tk+j - tt)

n = Number of samples

Various clock errors have been summarized pictorially by [55] and are shown in

Figure 2-10. Oscillator drift is defined as "the systematic change in frequency with time

of an oscillator [55]." Figure 2-10 details how clock errors vary over different time

periods and due to dynamic effects. Temperature variations typically cause large

2-41

frequency offsets in quartz oscillators, and must be compensated by applying temperature

sensing and error correction, or by "ovenizing" an oscillator to keep it at a constant

temperature. Because a crystal oscillator is fundamentally a mechanical precisely

vibrating device, vibrations to the oscillator itself cause errors in the output frequency.

Additionally, oscillator short-term stability is a key performance parameter for

maintaining carrier-phase lock. Long-term clock stability is important to a GPS receiver

during periods of off/on operation, as an initial clock offset error impacts the time-to-

first-fix. During a receiver's operation, long term stability is not as crucial, because of

the stability of the satellite clock. Shock and 2-g tip-over errors are again caused by the

mechanical nature of crystal vibration. Radiation errors typically only apply to satellite

clocks, and turn-on to turn-on biases affect initial signal reacquisition the most, after

which they add little or no net effect to receiver clock errors.

Idealized Frequency-Time-lnfluence Behavior

f A
♦ Temperature
3r~ Step

Vibration

Oscillator
Turn Oft

Shock &
Turn On

2-g Radiation
Tipover

AgipS.

*8 Time

Figure 2-10. Example clock error characteristics [55]

2-42

In comparing phase noise errors, short-term frequency stability, and long-term

frequency drift, one might understand why a technique that measures statistical variance

over different time periods, such as Allan variance, is useful. An Allan variance plot

illustrating the principle of variable frequency variance for a typical crystal oscillator is

shown in Figure 2-11. The variance parameters are used as the metric by which the clock

error model is defined. The clock error model based on the Allan variance is presented in

Chapter 3.

Frequency Noise and GV(T)
0.1 s averaging time

100 s

3X10-"

Af

T°
-3X10-"

1.0 s averaging time

^v>V^ ^^L

ay(x)io"

10"

10"
0.01 0.1 1 10 100

Averaging time, T, S

Figure 2-11. Illustration of Allan variance [55]

2.8 GPS Applications and Limitations

Tracking the carrier frequency of GPS signals has enabled differentially corrected

receivers to achieve centimeter level positioning accuracies. Performing carrier tracking

in stand-alone receivers also significantly enhances the position and velocity accuracies

2-43

by using techniques such as carrier smoothing of the code pseudoranges. Extending this

level of accuracy to applications in which satellite signals regularly undergo blockage,

attenuation, and interference has been problematic, as these environments are prone to

cycle slips, which cause jumps in the position, velocity, acceleration (PVA) solutions. A

cycle slip occurs when the carrier-tracking loop looses carrier-phase signal lock. When a

cycle slip occurs, there is a large drop in the position accuracy, which remains until the

carrier cycle ambiguities are again resolved. Harsh signal environments, like those

previously mentioned, compound the problem of resolving these cycle ambiguities,

thereby elongating the period of reduced accuracy. Examples of such environments

include dynamic airborne platforms or metropolitan vehicular applications. The lack of

robust carrier-phase positioning techniques has prevented their use in these environments.

While code tracking and frequency domain tracking techniques have

demonstrated improved performance in these environments, they do so with the cost of

higher position and velocity errors. For some applications these larger errors are

acceptable, but nearly all these applications would benefit from increased accuracy. One

application that could benefit from advances in carrier-phase tracking robustness is test

range truth systems. As navigation systems grow more accurate over time, better truth

positioning systems must be developed in order to accurately test these new systems

accurately. A general rule of thumb in navigation test ranges is to have truth reference

system be an order of magnitude more accurate than the system under test. For the next

generation of navigation systems, this will become harder to accomplish. In addition,

since the next generation of navigation systems will undoubtedly utilize GPS, and

because the jamming susceptibility of these navigation systems is of high interest to the

2-44

armed forces, the truth positioning systems for test ranges must be able to operate in

conjunction with GPS jamming testing.

Another concern in the advent of commercially available GPS jammers is the

effectiveness of our GPS-guided munitions in a jamming environment. Techniques that

increase a GPS receiver's robustness in a jamming environment are of great value to the

United States (US) armed forces. Many US weapon systems rely on GPS, and most (if

not all) of the aircraft in the US arsenal employ GPS as a navigation and/or weapon

delivery system. Among the munitions that use GPS for their navigation are the GBU-

31/32 Joint Direct Attack Munition (JDAM), the AGM-86C Air Launched Cruise Missile

(ALCM), the AGM-158 Joint Air-to-Surface Stand-off Missile (JASSM), and the AGM-

154 Joint Standoff Weapon (JSOW) [53].

2.9 Summary

This chapter has presented the fundamentals of GPS, DSSS communication

systems, GPS signal structure, some traditional and advanced GPS receiver topologies,

signal tracking methodologies, GPS error sources, crystal oscillator characteristics, and

some applications of this research. With this diverse background, the next chapter delves

into the signal generator model derivations, the receiver hardware, and an analytical I and

Q simulator. The reader should be well prepared to understand the methodology and

utility of the design process presented.

2-45

3. Modeling Methodology

3.1 Overview

This chapter details the development of the models used in this research. The

models developed by this research are grouped into three independent products: (1) A

digitized IF GPS signal simulator, (2) a realistic receiver signal processing model, and (3)

a GPS accumulated I and Q model. The first and third tools were written in Matlab® and

the receiver signal processing model was implemented in Simulink®.

The IF GPS signal simulator (SS) simulates the downconverted, filtered, and

sampled spectrum of received GPS signals and noise. The receiver signal processing

model (RM) is a complete implementation of the hardware Digital Signal Processing

(DSP) processes that typically occur in a GPS receiver. These processes include carrier

removal, code correlation, and accumulation.

The final model is an equation-based approximation of the other two models

combined. The final product generated by the SS and RM when used together is the

accumulated I and Q samples. The I and Q model takes in the same truth environment as

the SS and the same DCO inputs as the RM to estimate the accumulated I and Q samples.

This high-level, equation-based I and Q model is much faster at generating accumulated I

and Q values than the SS and RM, but with less modeling accuracy. This model is

hereafter referred to as the I and Q model (IQMDL).

3-1

3.2 Digitized IF GPS Signal Simulator

As previously mentioned in Chapter 1 (Approach Section), the location inside a

GPS receiver at which to start modeling the GPS signal was chosen to be the IF sampling

point. This is the point in a true receiver at which the analog spectrum of signals and

noise becomes digital. This sampling process is naturally suited to be approximated in

Matlab®, as continuous-time equations are "sampled" at the discrete points of a time

vector. This is the same location at which NavSys's Correlator model generates its

signals [28, 49].

With the digital computing power currently available, any modeling and

simulation of a signal prior to sampling, while necessary and beneficial for some

applications, is a digital approximation of an analog process. By modeling the signal

where it is sampled in the receiver front end, one can avoid the time-intensive and

computationally expensive analog signal modeling while increasing the potential for

creating accurate and equivalent models of the real hardware. Some effects, such as the

filtering of the received spectrum in the down-conversion, cannot be as accurately

portrayed in the initial "sampling" of the continuous models, but digital filters and

discrete Fourier techniques can approximate these effects after the sampled vector is

created. If the modeling of the signal is accurately portrayed at this point, any subsequent

processing can be easily and accurately equated to real DSP processing used inside

working receivers. Any true digital process could be implemented in Matlab® accurately,

since Matlab® is a digital processing environment.

The SS was designed to be reconfigurable, to model many types of single-

frequency front-ends. As mentioned in Chapter 1, this research focused on modeling the

3-2

Mitel GPS Receiver Front End [22]. Although modeling the P-code signal is not

included in this research, most of the necessary modeling is a scale factor different than

that done for C/A code, so adding this capability should only require modification of the

IF filter bandwidth, the frequency plan, and the addition of a P-code generation routine.

3.2.1 Signal Model Derivation

The theoretical basis for the down-converted IF GPS signal is based on the following

analytical development. For the sake of clarity, start with the single ideal GPS LI signal

as presented in Chapter 2, with the exception of a new time variable. The T' in Equation

(3.1) is the true GPS system time, introduced here for notational purposes. This ideal

time scale is referred to as 'system time' in the derivation.

SLU = V^G,. (T)D, (T) cos(coL1T) - ^Yt (T)Dt (T) sm(coL1T) (3.1)

To derive an expression for the received signal just prior to sampling inside the

receiver, Equation (3.1) is analytically propagated through the atmosphere, to the

receiving antenna, and through the GPS RF front end. During this analytical propagation,

all known observable errors, having a measurable impact on the signal, are included,

followed by a discussion on each error's impact on this research. The set of errors is then

reduced to those that fall within the scope of this research, and the result of this process is

the signal model around which the simulator was written.

The effects of GPS signal perturbations have been studied in detail by the GPS

community [6, 14, 33, 38, 55]. They have been excruciatingly analyzed and

characterized as to their affect on the traditional GPS observables (pseudorange and

3-3

carrier-phase measurements). This development focuses on how these error sources

affect the sampled IF representation of the received signal. Equations (3.2) and (3.3) are

an analytical approximation of the perturbed received GPS signal at the antenna, prior to

any antenna or receiver induced effects. These equations include an error term for all

significant error sources in the GPS satellite and propagation environment. There are

undoubtedly more signal perturbations than are represented here, but their effects on this

level of signal modeling are negligible [33].

Ru, =fiPrGi(T-Stigno -TJD^T-St^ -TdY

rrt 2

cos{(<yL1 + coev){T + 8tiono -Td) + ^ + 2nd — + (psv(T)} - (3 2)

VWr -Stiom -Td)Dt(T - Stiom -Td)-

rp2

sin{(coa + (Oe){T + 8tiono -Td) + ^ + 2nd — + q>sv(T)} + n(T) + RLIM

where:
Gt(), Di(), (On, T Yt() are defined the same as in (2.4) and (3.1)
RLIJ = Received GPS LI signal from the ith satellite
Pr = Received signal power (W)
Stiono = Ionospheric perturbation (s)
tOesv = Non-Stochastic LI carrier frequency error
(j)e_sv = Fixed LI carrier-phase error

27tdT 12 = Frequency drift or aging effect
<psv(T) = Random phase error (SV Phase Jitter)
Ta - Total time delay (see Equation (3.3))
n(T) = Noise, modeled as Additive White Gaussian Noise (AWGN)
RLI_MP = Received reflected signals (multipath)

The RLI_MP term is composed of additional copies of Rui but with reduced amplitudes and

additional delays to simulate the lower power levels and additional distance traveled by

reflected signals (multipath) [6]. The clock error terms were taken from Spilker's clock

error model in Chapter 4 of [33]. Three of the clock terms, 0)e_sv, </>e_sv, and 2ralT2/2, are

not random variables but deterministic quantities. The frequency term is representative

3-4

of clock environmental effects such as temperature, magnetic field, acceleration, and

pressure [33]; only the (p(T) term is random. Notice that the ionospheric error term has

opposite signs for the carrier and code expressions. This is due to the ionospheric

divergence/carrier advance phenomenon, explained in detail in the first appendix of [17].

The term Td contains all those terms that affect propagation time (prior to receiver

effects). It is broken out in detail in Equation (3.3).

Td = R/C+asv+atropo+aSA+svpos_ /c+(aMP) (3.3)

where:

R = True range from the phase centers of the satellite and receiver

antennas (m)
c = Speed of light (299792458 m/s)

asv = Satellite clock error (s)

atropo = Tropospheric perturbation (s)

asA = Selective Availability error (s)

SVPos_eiTor = Satellite ephemeris error (m)

(&MP) = Multipath signal delay (only found inside the RLI_MP term)

It may not be obvious that a Doppler shift is included in Equation (3.2), but the Doppler

term is embedded in the product of Td and o>u, as Td contains the instantaneous relative

velocity dR/dt along the line-of-site (LOS) path.

Before propagating these errors through the downconversion and sampling

process, a reality check must be performed to limit our derivation to those sources that

fall within the scope of this research. There are some applications of the SS where most,

if not all, these errors need to be modeled. If the SS were used to generate pseudorange

and carrier-phase measurements for calculating position, most of the above errors are

expected to be present, and as such a navigation algorithm that accounts for these errors

would not work correctly in their absence. The above equation is included for these

3-5

applications, in the event additional modeling is desired. In this research, the criteria for

determining which error sources were modeled is stated below:

• Does the error have a measurable impact on the receiver's tracking threshold?
• Is the error correlated between multiple signals? In other words, does the error

have the same or a similar impact on multiple channels in the receiver?
• Does the error vary greatly from one receiver design to another?

In-depth receiver hardware modeling is primarily useful for determining a

receiver's tracking performance [50, 57, 58]. Navigation level analysis is not a proposed

application of this research; only errors that impact a receiver's signal tracking

performance are of interest. One of the research objectives is to provide an accurate truth

model for comparing traditional receivers with DCOP equipped receivers. Since DCOP

has the capability of removing correlated errors between satellites, a fair comparison

must include errors that fall into this category. Since a research goal is to support

comparisons of other new receiver designs, even those not yet known, receiver-induced

errors are modeled as well.

Applying the above criteria, the satellite clock errors are not modeled, nor are

tropospheric, ionospheric, multipath, or SA induced errors. It is postulated for the

purposes of this research that these errors are either mainly uncorrelated between the

received signals or have similar effects on receiver tracking performance. However,

adding error models for the errors listed above would greatly increase the potential

application areas of this research.

Ionospheric and tropospheric errors are somewhat correlated, as a function of the

difference in elevation between the received signals, but they can be characterized as a

noisy but slowly changing time delay (advance, for carrier-phase). Although slowly

3-6

changing time delays can have appreciable effects on position error, they do not add

additional stress to the tracking loops, except in the most extreme conditions, when the 11

year sun cycle is at its peak [33].

The phase noise component of the satellite clock errors is a basic limiting factor in

maintaining carrier lock at low signal to noise ratios; [16] however, the phase noise (or

jitter) of the satellite clock is negligible in the presence of the phase noise of the receiver

clock [16]. The other satellite clock errors—frequency drift, GPS time bias,

environmental and aging effects, and SA clock dithering—can be removed or greatly

reduced by using the clock correction parameters in the ephemeris message and DGPS

techniques [33]. Recall that the removal of SA is an assumption of this research stated in

Chapter 1.

Multipath error is usually minimized through the careful placement of a multipath

limiting antenna. However, some receiver designs have been suggested which remove

multipath effects with special receiver processing [6]. If such receivers were to be fairly

compared with the tools develop here, a multipath model would need to be added to the

SS. However, this error was not modeled in this research due to time constraints.

With the exception of multipath errors, differential applications effectively

remove the errors in Equation (3.3) [38]. Therefore, if one assumes the use of DGPS, the

modeled pseudorange and carrier-phase measurements can be used to approximate

differentially corrected measurements. The net effect is that "corrections" are "applied"

at a much earlier point in the process.

It is not intuitively obvious what effect the P(Y) coded signal has on the

demodulation process, but its impact on this type of simulation is minimal. The inclusion

3-7

of the PPS signal in the derivation would show this analytically, but this has the

undesirable effect of doubling the size of each equation in the derivation, making it

harder to follow. The justification for removing this signal from the derivation is as

follows. The power of the P-code signal is half of the C/A code signal, which is typically

-15 dB below the noise floor to start with (see Table 2.3). Also, the same noise

spreading properties of any DSSS system (discussed in Chapter 2) spread the P-Code

signal in the same manner. Additionally, if the signal simulator filters the incoming

signal at the C/A code bandwidth, the band-pass filtering of the signal would filter out

nearly all (roughly (l-(2 MHz/20 MHz))xlOO% = 90%) of the P-code signal power.

Given these facts, it should be seems reasonable to drop the PPS portion of the received

signal from the derivation.

The resulting received signal model (at the antenna) is a subset of Equations (3.2)

and (3.3), and is given by Equations (3.4) and (3.5).

RLh = ^G^T -T^D^T -Td)cos{(ü)L1)(T -Td)} + n(T) (3.4)

where:

Td=R/c (3.5)

Before propagating the expression into the receiver, it is useful to develop some

more rigorous notation for expressing time. This is necessitated by the fact that the

receiver clock be generating perfect system time. The sign convention that was followed

for expressing these clock errors is that used in [14]. Let us define and relate the

following quantities:

3-8

T = GPS system time (ideal time scale, previously defined)
Tt = System signal transmit time
Tr = System signal received time
Td = Tr-Tt = signal propagation time (delay)
6tr = Advance of the receiver clock with respect to system time

(receiver clock bias)
tr = T+ 8tr = Receiver clock time

Note the sign convention for the receiver clock bias term indicates that a receiver

clock that is ahead of system time by 0.005 ms would have a 8tr = + 0.005 ms; this is

opposite of the customary definition of an error as the 'true' minus the 'measured.' Note

also a subtlety in the true range that is important when calculating perfect pseudoranges;

the true range is the distance between the satellite at time Tt and the receiver at time Tr,

not the instantaneous distance between the satellite and the receiver at one instant in time.

Satellites can have LOS velocities on the order of 800 m/s, causing large (~50m) errors in

the calculated 'perfect' pseudoranges if this subtlety is ignored.

A generic representation of a GPS front end is shown in Figure 3-1. This generic

representation is the mold that GPS front-ends must fit to be modeled using the SS. The

SS currently uses 2-bit (4 level) quantization, for analog to digital conversion. The

modeling and effects of more (or less) resolution in the quantization process was not

studied in this research (see [33] for this analysis). A dynamic AGC was implemented in

Simulink® based on the limited information available in the Mitel literature [21]. It was

designed to be a highly reconfigurable so that it could be tuned to portray the AGC

operation accurately, should its dynamic performance be fully specified. At a minimum,

this allows for the investigation of a receiver's operation in dynamic noise environments.

3-9

BPF
Down Conversion & Filtering

RF

Sampling w/ Gain Control

fsF-|

£A*[BPF

IF,
J^-Kgh^^

A.
LO,

Gvco*fo
A

L02

a
LCyGL02

Frequency
Synthesizer

w

A
LO„

LOi/GLOn

Sampling Freq.
LO^GSF

DSP Frequency
LOJ/GDSP

Sampled
Signal

(@nw

DSP
Signal

Correlator

A A

External Oscillator

fosc (TXO, TXCO, etc.)

Figure 3-1. Generic GPS RF Front End Model for the Signal Simulator

The process of choosing the number of down-converter stages and the

intermediate frequencies is a key design consideration in any GPS RF front-end design.

Many factors must be considered and there is no universally accepted "optimal" design.

This research does not attempt to model hardware effects such as image frequencies and

local oscillator leak-through. The only hardware effects that are modeled are filtering

and oscillator errors. Most receivers use crystal oscillators, which are susceptible to large

frequency errors in dynamic environments [55]. These receiver oscillator errors have a

significant impact on maintaining coherent signal tracking, and are common to all

receiver channels, making it an important receiver error to model. The oscillator error

model is described in a subsequent section.

Having defined the RF front-end model, Equation (3.4) is now propagated to the

final IF frequency prior to sampling. The signal and noise amplitudes are modeled at the

final IF expression, and as such, are omitted in the derivation. Since the spreading and

3-10

data modulation is not time or frequency shifted by the cosine mixing process, it is also

omitted from the following derivation. The emphasis here is to track the time and

frequency accurately through the reception process.

Starting with the first local oscillator of Figure 3-1, an expression In terms of

receiver time is shown in Equation (3.6):

ex f\\
LO, = cos(fi>LOiO

The received signal is down-converted through cosine mixing, which is the multiplication

of (3.6) and (3.4). Equation (3.4) is represented in terms of receiver time using the

previously defined time relationships. Applying the appropriate trigonometric identity

and including the relevant terms results in (3.7):

IFX = LOAi,. = cos{coL1(tr-Str -Td)-coLOtr} + cos{coL1(tr-ar -Td) + coLOtr}

Filtering out the high frequency component generated by the mixing process, we have

(3.8):

IF, = cos{(coL1-coLOi)tr-coL1(Td+Str)} (3.8)

Repeating the process for LO2 results in (3.9):

IF2 = cos{(toLl -(0L0i -0)L0i)tr -cou(Td +Str)} (3.9)

Repeating once more for LO3 gives us our final IF prior to sampling:

IF3 = cos{(coLl-coLOi -0)Wi -0)Wi)tr-Q)Ll{Td +Str)} (3.10)

This expression represents the signal model prior to including any oscillator frequency

errors. Such errors can have a significant impact on this expression, and the derivation of

3-11

the oscillator frequency errors and their incorporation into Equation (3.10) is given in the

next section.

3.2.2 Oscillator Error Model and Impact Analysis

The oscillator error model in this research is intended to allow for a reasonable

comparison of a receiver's ability to cope with clock frequency drift. The resulting

model is not claimed to represent an exact characterization of the combined deterministic

and random clock error sources. These include specific force and temperature induced

errors, random frequency drift, and phase noise. Of these errors, the clock model used

can represent the effects of these errors, with the exception of phase noise. Since the

sampled IF signal and carrier DCO signal period is represented by only 4.06 (average)

samples in the Mitel chipset [21], this research ignores the effects of Phase noise. The

following paragraph presents the rationale.

With 2-bit amplitude quantization and essentially 2-bit phase quantization of the

digitized signals, the effects of the phase noise are assumed to have a small effect on the

sampled signal, and therefore a minimal effect on receiver comparisons. This assumption

is invalid if special hardware to remove phase noise is incorporated into a receiver

design, as is the case in [16]. As stated in [16], phase noise has an effect on tracking

performance, but it is assumed here the clock error model and other error models have

dominant effects. The inclusion of a phase noise model is partially coded in the SS, but it

is currently incomplete and 'commented out.' The partial model is retained for future

research. Its inclusion in the SS is listed as a recommendation in Chapter 5.

3-12

Frequency drift originates in the external crystal oscillator. As previously

mentioned in the discussion of equation (3.2), oscillator frequency errors are made up of

a deterministic portion and a random portion. According to [55], deterministic vibration

(g-force induced) crystal oscillator errors dominate over random errors. For this reason, a

clock model of only random oscillator errors is inadequate for testing the effects of

oscillator errors on receiver designs. Equation (3.11) shows the output frequency of the

external oscillator modeled as a nominal frequency component plus an error component:

(3.11)
J tcxo J tcxo _nom J tcxo _err

The frequency DCO error in Equation (3.11) represents the cumulative effects of all the

oscillator errors modeled. Due to the diverse nature of oscillator errors (see Figure 2-10)

a comprehensive model was not developed. The approximation used is discussed

following a derivation of a frequency clock error's impact on the sampled signal.

The net effect of the oscillator error is dependent on the total shift in received

frequency and is independent of the number of downconversion stages. Aliasing in the

sampling process increases the impact of a frequency error, as will be shown. The Mitel

design uses aliasing in its sampling process. The derivation of the oscillator impact is

done for the Mitel frequency plan, provided in Table 3.1. This table formulates the

relationships between the actual local oscillator errors and the frequencies in the chipset.

These relationships are key to deriving the impact of the local oscillator error on the

sampled signal.

3-13

Table 3.1. GP2010 Frequency Plan

Frequency Symbol Description How Produced

10.000 MHz fosc PLL reference signal 10.00 MHz TCXO

1400 MHz LOi 1st Local Oscillator foscx(GVco=140)

140 MHz L02 2nd Local Oscillator LO1/(GLO2=10)
40 MHz föSP GP2021 Clock Signal LOI/(GDSP=35)

31.111MHz L03 3rd Local Oscillator LO!/(GL02=45)

5.7142 MHz fsF Sampling Frequency LO!/(GSF=245)

Nominal Received and Intermediate Frequencies

1575.42 MHz RF LI GPS Signal By the Satellite
175.42 MHz IFi 1st Intermediate Freq. RF-LOi
35.42 MHz IF2 2nd Intermediate Freq. RF-LO1-LO2-

4.3088 MHz EF3 3rd Intermediate Freq. RF-LOi-L02-L03

1.4053 MHz N/A Final (Aliased) IF (RF-LOi-L02-L03-fSF)

Using the relationships in Table 3.1 and Equation (3.11), the oscillator error can be

substituted into the expression for the final (Aliased) IF frequency in order to express the

final aliased IF frequency as a function of the crystal oscillator and its error:

RF-ifosc+ft OSC ' J OSC _ ERR

s ... 140 140 140
i 140 + — + — + —

10 45 245

(3.12)

The ratios in Equation (3.12) were derived from the relationships in Table 3.1.

Substituting in the numbers for the GPS carrier frequency and a 10 MHz nominal

oscillator frequency yields:

1575.42MHz -1576.825396MHz - fc OSC _ ERR

1576.825396MHz

10MHz

(3.13)

In Equation (3.13), the numerical subtraction of just the first two terms in Equation (3.13)

results in a negative frequency. This negative frequency is a result of the high-side

mixing process caused by aliasing [23]. The effects of aliasing in general are not

3-14

necessarily the same, as they depend on what frequencies are involved. The discussion

on aliasing that follows is claimed only applicable to the Mitel chipset.

Simplifying Equation (3.13) and converting the frequency term into a unitless

ratio (recall that the nominal frequency of the oscillator is 10 MHz) results in (3.14):

Final (Aliased) IF frequency = -1.405396-^-1576.825396
/

MHz (3'14)

Where the Af/f term is the normalized frequency error of the oscillator, usually specified

in parts per million (ppm). This is the resulting frequency content of the signal after

sampling. The frequency observed by the user is the mirror (positive) frequency of this

negative frequency. The aliasing occurring in the sampling process reverses the

frequency and phase error/offset in the received signal [21]. This impacts both the

Doppler and the clock error induced frequency shifts. For example, if a positive Doppler

Shift (receiver moving towards the transmitter) occurred such that the received frequency

was 2000 Hz higher than the normal LI frequency, the final IF frequency would be 2000

Hz lower than it's nominal -1.4 MHz. In terms of the oscillator error, a positive local

oscillator error (faster than the nominal) would normally shift the spectrum to a lower

frequency than normal, resulting in a final IF below the nominal. The aliasing process

reverses, and slightly increases this shift above the nominal. How does aliasing increase

the error? The error in the final IF frequency is proportional to the total shift in

frequency of the down-conversion process. Therefore, the larger the total frequency

shift, the larger the net frequency error. Aliasing effectively causes a total frequency shift

equal to the received frequency plus the final IF, because it converts the signal to a

negative IF, of which we see the positive mirror frequency. Therefore, a signal sampled

3-15

at a frequency greater than the Nyquist frequency would have a slightly smaller

frequency error due to oscillator frequency error, because the total frequency shift in the

down-conversion process is less. The difference in error between an aliasing

implementation and sampling meeting the Nyquist criteria is given by Equation (3.15):

(again, it is emphasized this analysis is not valid for aliasing in general):

(IF frequency before sampling - final (aliased) IF frequency) * — Hz

As an illustration, suppose the GP2010's oscillator has a 2.5 ppm frequency error

(maximum error rating of the oscillators recommended by Mitel). If the sampling

frequency were greater than the pre-sampled IF's Nyquist frequency (-4.3 MHz), the

sampled frequency would have an error -14 Hz less in magnitude than incurred by the

same oscillator frequency error in the aliasing case. If aliasing is not present in the

sampling, a frequency error in the sampling frequency does not necessarily result in any

additional shift of the sampled frequency, as long as the error does not cause the sampling

frequency to go below the Nyquist sampling rate.

Table 3.2 lists the four types of oscillator-induced errors that occur in the Mitel

GPS GP2010 RF front end modeled by the SS [21].

3-16

Table 3.2. Oscillator Induced Errors in the GP2010 GPS RF Front-End [21]

Four Main Effects on System Performance Caused by Clock Frequency Variations:
Oscillator Error

(Offset--ppm)
Error at
IF (Hz)

Effect on Receiver Performance

Start-up Frequency Error
Q0.3 ppm)

473 Hz Start searching wrong Doppler bins for signal,
results in longer Time to First Fix (TTFF)

Large Frequency Error
(>50 ppm)

>~79 kHz Significant frequency shift in the down-
converted GPS signal; results in filtering out
signal power.

Abrupt Frequency
Changes («0.1 ppm)

« 158 Hz Cause the system to prevent or lose satellite-
code lock.

Modulation of Reference
Frequency (10s of Hz up
to 10s of MHz)

n/a Adds out-of-band noise to the signal spectrum
and distorts the received signal, resulting in
lower Signal-to-Noise ratios.

Mitel recommends a temperature controlled crystal oscillators (TCXO) with a maximum

frequency error (over the entire temperature range) of 2.5 ppm [21]. This error bound

only specifies the temperature-induced drift error; it does not include the vibration or

shock induced frequency errors (see Figure 2-10). Allan variance parameters were not

available for the oscillators listed, so typical values were taken from [37]. These values

are used as the parameters for the clock error model.

The frequency error term in Equation (3.11) was modeled as a bounded random

walk, using an Allan variance plot to determine the amount of walk, and a "bumper rail"

bounding approach. The bound was implemented such that whenever the random walk

crossed a bound, it was "reflected" back inside the bound, about the last point inside the

bound. Thus the discrete magnitude of the simulated random walk step is not altered,

only the direction, and only when the clock error reaches the user specified bounds. This

bounding is done because the frequency error of an oscillator does not continually grow

as a random walk does. The process could also be simulated using a Gauss-Markov first-

3-17

order lag noise model [18], and it might be more accurate to do so. This approach was

used because it eliminates the specification of a time constant and no existing models for

generating this frequency drift could be found.

Due to the limited information on modeling crystal oscillator clock performance

with only Allan variance and temperature stability specifications, no claims are made to

the realism of the clock model. However, given a time vector of frequency drifts, the

effects of those drifts are fully simulated. So if an accurate (or real) drift vector is

generated or provided (at the sampling rate) the effects are modeled accurately. Without

a proven, realistic time vector of frequency clock drifts, the model is claimed to be

reasonable only from a. performance comparison standpoint. To compensate for this, the

parameters controlling the oscillator frequency error model are easily modifiable via

global variables, and a fixed oscillator frequency error implementation is also available.

The user may specify the Allan variance parameters, the time interval (x) of the Allan

variance, and the bound on the random walk model. The time interval specifies which

integration interval of an Allan variance is used for selecting the noise strength of the

random walk or the variance of the random bias. Attempts were made to model a clock

drift exhibiting typical Allan variance properties, but such a process is not easily

simulated in Matlab®. The equation generating the Allan variance parameters was taken

from [33] and is shown in Equation (3.16), with the hi and I12 terms removed. These

terms specify the long term accuracy of a oscillator, which is not of interest here. Typical

temperature-compensated crystal oscillator (TCXO) Allan parameters [37] are

individually plotted in Figure 3-2, and the composite Allan variance is shown in Figure

3-3.

3-18

(T
2

AV(T) = h2^-\r\ + h12ln2 + ^ AW -2 6 M -1 2 U

(3.16)

Where: [33]

O*AV(T)

h-2

h-i

h0

x

Allan variance
Allan parameter specifying the random walk in frequency
Allan parameter specifying the flicker frequency noise
Allan parameter specifying the white frequency noise
Sampling interval of the Allan variance

10"°

10"

10',u

.h„ term = 2x10"'

h_2 term = 2x10"20

h„ term = 7x10"-'

10" 10 10
Time (s)

10 10'

Figure 3-2. Individual Allan variance parameters

3-19

10" 10"
Time (s)

Figure 3-3. Typical crystal oscillator Allan variance plot

When implementing the random walk, the square-root of the desired variance

(pulled from the Allan Variance plot) is multiplied by a Gaussian noise vector and

divided by the sampling frequency before integrating. This integrated noise is the

frequency drift, and the clock bias is the integral of the drift. In the random constant

mode, the process is repeated except the drift is a constant rather than a random walk.

The random constant's variance is specified by the Allan variance at a user specified time

interval x.

Given this model, it is high time to incorporate the oscillator effects into our

equation modeling the down-converted signal. Applying the frequency relationships in

Table 3.1, our previously derived signal expression (Equation (3.10)) can be expressed

as:

3-20

IF, = cos{a>IFtr-ü)Ll(Jd+Str)} (3.17)

Incorporating all the effects of an oscillator error is not without some implementation

issues. Theoretically, the sampling frequency should be affected by the oscillator error

just as the other LOs. Since aliasing effectively causes a down-conversion in the

sampling process, these errors must be incorporated into the sampling times. In practice

this would require the creation of a vector of sample times that vary according to the

frequency drift. Using a non-uniform sampling time would significantly slow down the

receiver model implementation in Simulink®. The same effect is more efficiently

implemented by generating a vector of sampling times with a fixed delta time (which is

easily done in Matlab®) and inserting the sampling frequency error component into the

equation. This is accomplished by increasing the total frequency shift term (which is

multiplied by the oscillator error) to include the shift caused by aliasing in the sampling

process. In essence, Equation (3.18) illustrates the proper theoretical substitution for IF3,

ö>/F, = oia-coLOx -coL02 -o = 35.42MHz -^(140 +^ + ^-)*10Mtfz °AS)

/ 10 45

and Equation (3.19) shows the substitution adjusted to include the effects of the sampling

frequency error when a perfect nominal sampling frequency is used.

(0„ =6)Ll-a>w-a)lo -cow = 35.42MHz —^-(140 + — + — + —)*WMHz (3-19)

The substitution given by Equation (3.19) is used in the SS. The final equation

modeling a received GPS signal can now be formulated. Combining Equations (3.17)

and (3.19), reinserting the data modulation, code modulation, noise, and amplitude terms,

3-21

and expressing all terms in receiver time yields the complete signal model, given by

Equation (3.20):

RUDC = Wr
G

i^r ~
T

ä ~ & r Wr ~Td ~ St,) COS{ (ß>,„ - ^ fTDC)t r ~ CO u (T, + St,)} ^ ^

In implementation, the receiver time in Equation (3.20) is a vector of sampling times

generated at the fixed sampling frequency. Clock bias and drift vectors are

simultaneously generated at the same sampling frequency and incorporate clock errors in

the sampled signal.

3.2.3 Matlab* Realization

The Signal Simulator was configured to model the RF front-end chip of Mitel's

GPS chipset, the GP2010. The GP2010 is fed by a GPS pre-amplified antenna and

generates a 4-level (2-bit) down-converted representation of the received C/A code signal

spectrum filtered to a bandwidth of 2 MHz. A block diagram of this chip is shown in

Figure 3-4. As shown in Figure 3-4 and specified previously in Table 3.1, the final

analog IF is -4.3 MHz, and the sampling rate is -5.7 MHz.

3-22

176.42MHz FILTER 35.42MHz FILTER AGC CAPACITOR

 <}<&«>

VJ. IF Output
*? (4.309MHz)

PLLREFI/P P^l
10MHz (REF 2) y

REF 1 UP Q—

f OR USEVflTIl I
CKV5TU.REF ;

OX.Y) |

CD! SAMPLE
<j CLOCK l/P(CLK)

(6.71MHz TTL)

40MHz CLOCK O/P
(FOR CORRELATOR

CHIP)
(OPCIK+/-)

(TEST) POWER-ON
REFERENCE

IP
(PREF)

POWER POWER-ON
DOWN UP RESET O/P

(PDn) (PRESET)

Figure 3-4. GP2010 Block Diagram

Currently, 2-bit quantization is all that is supported by the SS. However,

quantization can be turned off, to generate a non-quantized but sampled signal spectrum

for external quantization and AGC algorithms. The thresholds of the quantization

process are fixed in both the Matlab® and Simulink® AGC implementations, but AGC

parameters controlling the response of the Simulink® AGC are coded as global variables.

The parameters of a chipset that are definable for both the SS and the RM are encoded in

global variables, which are listed in Table 3.3. The SS and RM columns indicate if that

particular variable is utilized by the respective model. These parameters can be easily

changed to model other chipsets. By convention, global variables in Matlab® are all

capital letters.

3-23

Table 3.3. Receiver hardware global variables

Receiver Hardware Dependent Variables:
Variable Name ss RM Description / Value
SAMPLING_FREQUENCY Y Y 40/7 MHz
SAMPLING_DT Y Y Time between samples / 0.175 JJ,S

IF_BEFORE_SAMP Y Y IF prior to sampling / 4.308 MHz
IF_AFTER_SAMP Y Y Aliased IF frequency / 8854e4/63 MHz
CLOCK_PARAMS Y N Structure containing Allan parameters,

maximum frequency error, and x
LATCHING_DT Y Synchronized latching interval of channels

(s)
CHIP_SPACING Y Spacing between locally generated early,

prompt, and late PRN sequences (s)

The following list describes the capabilities of the SS, listing all the error models,

signal components, and truth environment parameters that were modeled in this research.

Of these effects and errors, the SS was designed such that the following effects, with the

exception of the smooth dynamic modeling, can be turned on and off easily as needs

arise.

®

Smooth (spline fit) modeling of receiver and satellite dynamics
True C/A code spreading code modulation
Data modulation (random data bits)
Number of signals included in a simulated spectrum limited only by the maximum
number of GPS signals available
IF filtering of noise and signals in Matlab5

Dynamic or fixed AGC implementation for 2-bit quantization
Receiver clock frequency drift model, both variable and constant
User defined frequency plan
S/N ratio individually selectable for each channel

A block diagram of the signal simulator code, structured with respect to the

hierarchy of functions, is shown in Figure 3-5. The order in which the functions are

called is predominantly from the top down, then left to right. Some functions exist inside

other functions, and do not comprise a file by themselves. Those functions are shown in

3-24

italics. However, throughout the chapter when these functions are listed in the text, they

are italicized regardless of whether they are file names or just function names. The

shading is to represent different functional sections of the code. The main signal

generation routine is comprised of 6 functions, but interfaces with the main function

(gen_samples) entirely through sampled_recv_signal. The shading illustrates they

comprise a single 'branch' from gen_samples.

Start

Loop
Start

c
so

Loop
End

End

IF filt

g en_freq_errors

get_allan_yar D>

► AGC_A2D

Simulink® Block

File names/functions

Functions inside Files

Figure 3-5. Signal Simulator function list

Some input parameters are directly specified in the function call to gen_samples,

but both the signal simulator and the receiver model in Simulink® are mostly controlled

by global variables, defined in the Matlab® file load_global_params. Most global

variables are utilized by both the RM and the SS, but some are specific to either model.

To avoid redundancy, the global variables of both the SS and the RM are listed in the

3-25

tables that follow. The global variables include GPS parameters (constants), the

hardware-dependent variables for the chipset being modeled (see Table 3.3), as well as

parameters that control the simulation, specify the truth environment, and switch various

models on and off. Table 3.4 contains the GPS constants used in the SS. The CA_CODE

variable contains the entire sequence of 1023 chips for each PRN stored in a Matlab® cell

array.

Table 3.4. Global variables defining GPS constants

GPS System Constants:
Variable Name SS RM Description
CARRffiR_FREQUENCY Y Y GPS LI Frequency, 1575.42 MHz
CARRIER_WAVELENGTH Y Y GPS LI Wavelength, 0.19029 meters
CHIPPING_RATE Y N C/A code frequency, 1.023 MHz
T_C Y Y C/A code chip duration, 0.9775 (is
SPEED_OF_LIGHT Y Y 299792458 m/s
CA_CODE Y Y Cell array of all 37 PN Gold Code

Sequences

Some global variables initialized in load_global_params are output variables,

generated as the simulation runs. This method of extracting information from a run is

more flexible than specifying output arguments in the function call to gen_samples. This

allows a fixed number of output arguments per function call regardless of what variables

are being exported during a simulation. The only output argument that is returned by

gen_samples is the actual signal. The simulation control parameters are given in Table

3.5.

3-26

Table 3.5. Global variable control parameters

Simulation control parameters:
Variable Name ss RM Description
STARTTME Y N Start time of the simulator, in GPS time (s)
RUN_TIME Y Y Amount of time that simulator runs (s)
STOPJTIME Y N Stop time of the simulator, in GPS time (s)
prr_CNT Y N Global loop counter (used during execution)
PARSE_SIG_INTERVAL Y N Seconds per loop. Specifies how often the

output truth parameters are generated and
the time constant of the Matlab® AGC

NOISE_POWER Y N Power of the noise (arbitrary, used as a
reference point to generate relative signal
strengths)

SNR_DB Y N Signal-to-noise ratio in dB of each signal
simulated

A2D_FACT Y N Specifies the sampling rate of the noise
before it is filtered and sampled to the final
aliased frequency

PRN_VEC Y Y Vector of PRNs to include in the simulator

The START_TIME variable specifies the location within a receiver trajectory at

which to start the simulation. The trajectory file must be time-tagged in GPS time, which

is a count of the seconds in a week, starting at -midnight on Saturday. Obviously, the

START_TIME must lie inside the times given in the trajectory file. The run time

specifies the length of the simulation in seconds. With a -5.7 MHz sampling rate, a one

second simulation generates a time-tagged sampled signal requiring approximately -90

MB of storage space. PARSE_SIG_INTERVAL essentially specifies the number of

samples to process in one "loop" of the gen_samples routine. During a simulation, the

entire sampled signal is generated in sections, the size of which are specified by

PARSE_SIG_INTERVAL. For each section of the sampled signal, a set of truth

parameters is recorded to global variables, and if using the Matlab® quantization routine,

the section is ideally quantized from the distribution of the points in the section.

3-27

Therefore, the PARSE_SIG_INTERVAL variable controls both how often the truth

parameters of the sampled signal are generated, and similarly the number of samples used

to calculate the quantization thresholds in Matlab.

Some control parameters are defined as either a one or a zero, which are used to

'switch' functions in the SS on and off. These switches are given in Table 3.6.

Table 3.6. Global variable control switches

Modeling and debugging switches
Variable Name SS RM Description
APPLY_CA Y Y Apply spreading modulation
QUANTIZE_SIG Y Y Apply quantization to the signal
ADD_NOISE Y N Add noise to the signal
ADD_OSC_ERRORS Y N Apply oscillator error effects
APPLY_DATA Y N Apply data modulation (random)
FTLTER_SIG Y N Apply filtering to the signal
FTLTER_NOISE Y N Apply filtering to the noise
DYNAMIC_AGC Y N Use the dynamic AGC in Simulink®
SAVE_QUANT_THRESH Y N Save the quantization thresholds in Matlab®
SAVE_CLK_ERRORS Y N Save the clock and drift error vectors
REPEATABILITY Y N Use the same noise seed for each run
SAVE_FEE_REF Y N Save LOS radians from receiver to satellite
MTX_TO_BASEBAND N Y Apply cosine mixing in Simulink
DUMP_ON_EPOCH N Y Latch the accumulated I and Q samples on

the code roll-over of each channel
SAVE_TIME N Y Save the simulation time of the Receiver

Model

Most of the variables are self-explanatory. The parameters starting with 'SAVE'

trigger the SS (or RM) to do data logging on the respective quantities at the full sampling

rate. Turning many of these on drastically increases the memory requirements to run the

SS and limits the run time of the simulator. However, saving off some of these quantities

is extremely helpful when debugging or taking an in-depth look at a run. The SS can

generate a sampled signal spectrum without quantization, spreading modulation, and/or

3-28

data modulation. Likewise, the RM can turn off its cosine mixing and spreading

demodulation functions. REPEAT ABILITY is a useful switch for debugging as it uses

the same noise seed for each run. Turning on the data modulation automatically causes

the SS to write the data bits to a global variable. However, the clock errors are not

automatically saved if the ADD_OSC_ERRORS switch is set.

Without processing the generated signal with the receiver model, virtually no

information is readily apparent looking at the simulated signal, especially when multiple

signals are simulated at the appropriate S/N ratios (see Table 2.3). The truth environment

(receiver positions and satellite positions) used to simulate the signals do not readily

provide information on the signals contained in the output vector either. The SS provides

this information via global variables created during the simulation. Table 3.7 lists all the

potential information that can be recorded by gen_samples in global variables. The

switched column specifies if a global switch controls the recording of the information.

3-29

Table 3.7. Simulation Parameters stored in global variables

Saved truth environment variables:
Variable Name Switched Rate Description
DOPPLER_FREQ N PI Perceived Doppler. frequency of each

signal at the beginning of the Parsed
Interval (PI)

RAD_TO_SV N PI Perceived radians to satellite of each
signal at the first sample of the PI

DOPPLER_FREQ_TRUE Y PI True Doppler frequency of each signal
at the beginning of the PI

RAD_TO_SV_TRUE Y PI True radians to satellite of each signal at
the first sample of the PI

DATA_BITS Y PI Cell array of the data bit index, data bit
value, and data bit transition time for
each PI

CLOCK_ERRORS Y SF Clock bias and drift recorded at the
sampling frequency (SF)

ML_QUANT_THRESH Y PI Matlab® quantization thresholds used on
each section of the parsed signal

REAL_SNR N PI Calculated SNR of each signal against
the composite spectrum over the
samples in one PI

IDEAL_SNR N PI Calculated SNR for each signal against
the calculated noise power excluding
any signals over the samples in one PI

The difference between the REAL_SNR and IDEAL_SNR quantities is that

REAL_SNR includes the cross-correlation noise in the measurement. The calculated

SNR in the REAL_SNR variable is lower than the respective IDEAL_SNR calculated

power as (1) the number of signals in the spectrum is increased, (2) the SNR of the

signals in the spectrum is increased, and (3) the power difference between the signals in

the spectrum increase. The Doppler measurements are generated from an average over

the first 500 samples of each signal. The RAD_TO_SV variable contains the LOS

radians, or 27ccoLixTd radians, for each signal at the first sample of the section being

processed. This is simply the distance from the receiver to the satellite expressed in

3-30

radians of the carrier frequency. The RAD_TO_SV_TRUE and

DOPPLER_FREQ_TRUE terms record the true values in the case that oscillator errors

have been added in the simulation. If data modulation is activated, the SS generates an

entire (random) GPS data message. The DATA_BITS variable contains only the data

bits used for each of the signals during the run. Although it is overkill to generate a

complete data set for the time scales of these runs, the simulator was designed around an

entire data message in order that an actual data message could be used in the future,

allowing for valid comparisons of simulated signals with real (data-modulated) sampled

signals.

The last remaining parameters are specified in the function call of gen_samples.

These include (1) the receiver trajectory, (2) the satellite position matrix, and (3) the file

name to which the simulation results are written. The output file generated is a Matlab®

'MAT' file which contains the sampled signal spectrum, all the output global variables

listed in Table 3.7, and the following control parameters: PRN_VEC, SNR_DB,

RUN_TME,and STARTJTME.

The source code (Matlab® pseudocode) for the SS is provided in Appendix A.,

and available in electronic format via the CD in the back cover of this document. While a

complete explanation of all the equations is beyond the scope of this document, certain

sections of the code are covered that are considered key concepts to understanding the

SS. These portions of the simulator are covered here in the order they are called in the

main function gen_samples.

3-31

3.2.3.1 Get tp times.m

This function is the core of the dynamic modeling in the SS. This function uses

the trajectory and satellite position matrices to derive a matrix of LOS distances for each

GPS signal at each time in the input trajectory. This matrix of LOS distances is

calculated once on the first function call, and used in all the subsequent calls. A cubic

spline fit is performed on this matrix for a vector of sample times, specified by the

SAMPLING_FREQUENCY global variable, generating a matrix of true LOS distances

for each signal at each sample time, which are converted to propagation times using the

speed of light specified in Table 3.4. This process, although computationally intensive,

allows for smooth, 3rd order polynomial fit of the LOS dynamics. The Matlab® spline

routine is used, which is a built-in function and not part of the spline toolbox®. The jerk,

or 3rd order dynamic of the LOS path is piece-wise continuous. Because sampling

frequencies are typically >4 MHz, this results in a smoothed but reasonable

representation of the system dynamics.

3.2.3.2 Get corr noise

The filtering process in the downconversion band-limits the noise in the samples.

The correlated noise is generated is the following manner. A Matlab® Gaussian noise

sequence is generated at a higher multiple of the sampling rate, specified by A2D_FACT.

This noise vector is filtered in Matlab® using an elliptical filter model. The model can

either be selected to be a very high-order filter which approximates ideal filtering, or a

more realistic filter modeled after the response of the dominate IF filter in the down-

conversion process [21]. Either of these filters is easily selectable in the if Jilt function.

3-32

The Matlab® generated frequency response of these filters is shown in Figure 3-6 and

Figure 3-7.

50
Noise Filter Frequency Response

0 —

-50

-150

400

200

S 0

°--200

-400

10
Frequency (Hz) x10°

I II

i \

i i i i }

10
Frequency (Hz)

Figure 3-6. Elliptical filter approximating the Mitel chipset IF bandpass filtering

50

-50

Noise Filter Frequency Response

:—"vn^ ifY *""V~~~ :

10
Frequency (Hz)

500

-500-

£-1000

-1500

-2000

I HJI \
I i !

V I I I
H:
\ lr :l

i i i i i

10
Frequency (Hz) x10°

Figure 3-7. Elliptical filter approximating ideal IF bandpass filtering

3-33

Once the noise sequence has been filtered, it is 'sampled' through decimating the

higher frequency noise sequence. The higher the A2D_FACT parameter, the more

'accurate' this filtering process becomes. The Power Spectral Density (PSD) of the

filtered noise is shown before filtering in Figure 3-8, after filtering in Figure 3-9, and

after 'sampling' in Figure 3-10. The ideal filtering parameters and an A2D_FACT of 4

were used to generate these noise PSD plots. The NOISE_POWER parameter specifies

the power of the noise, as measured in Matlab®. Due to the loss of power in filtering, the

initial noise power before filtering is increased such that the end power of the 'sampled'

noise at the IF_AFTER_SAMP frequency meets the NOISE_POWER specification.

noise prior to filtering

I I I I I I II I Ill Mil Mil III ii i II Uli

0 2 4 6 8 10
Frequency (Hz) x^06

Figure 3-8. PSD of noise before filtering and sampling

Because only the signal to noise ratio is relevant in modeling the received signal with an

AGC, the power of the noise can be scaled without loss of simulation accuracy. For this

reason, the amplitudes of Figure 3-8, Figure 3-9, and Figure 3-10 are omitted. The

bandwidth of the bandpass filter used is ~2 MHz. Figure 3-10 shows that the bandwidth

3-34

of the noise remains 2 MHz after sampling it to the final IF. In a discrete environment

such as Matlab, the frequencies of a PSD plot greater than half of the sampling frequency

are not defined. Thus, Figure 3-10 has an upper frequency limit a factor of 4 less than

Figure 3-8, and Figure 3-9.

noise after filtering

Frequency (Hz) x10°

Figure 3-9. PSD of noise after filtering

Noise after 'sampling'

1 1.5 2
Frequency (Hz) x10°

Figure 3-10. PSD of noise after filtering and sampling

3-35

3.2.3.3 Sampled recv chan.m

This function generates the sampled signal using the signal model derived

previously and specified in Equation (3.20). The calc_sig_amp function calculates the

amplitude of the signal according to the signal's specified SNRJDB value. This routine

generates one GPS signal per function call, and the sampled_recv_signal combines the

outputs of this function into a composite simulated sampled spectrum. Although the

ability to filter the signal is available at the 'flip' of a global variable, the practice of

aliasing the signal in the sampling process prevents the feature from being realistic. The

frequency plan of the Mitel chipset results in the sampled signal incurring a chip

transition approximately every 5.5 samples: For the filtering of this signal to approach

realism, it would have to be simulated at a much higher frequency, filtered, and sampled

similar to the correlated noise generation process. The computational burden of this

process is significant, and the effect of the filtering on the signal (as long as the oscillator

error is «50 ppm, see Table 3.2) can be reasonably approximated as a decrease in signal

power.

3.2.3.4 Quantizer.m

The Matlab® quantization routine iteratively determines the threshold values that

meet the sample distribution goals of the Mitel design. The number of samples over

which these thresholds are calculated is determined by the PARSE_SIG_INTERVAL

variable (see discussion of Table 3.5 on page 3-27). This quantization approach yields

acceptable results when the power of the received spectrum is relatively constant,

however, if the noise power of the received spectrum fluctuates, this method does not

adequately characterize the behavior of a real AGC. Thus, an AGC in Simulink® was

3-36

devised to approximate these environments. Although the existing SS does not have the

built-in capability of generating fluxuations in the noise, quantization can be turned off,

generating an unquantized but sampled signal (this is not possible in actual

implementations). Now jamming signals and excess noise can be added to the SS

generated signals to simulate changes in the received noise levels. The composite signal

can then be run through the programmable Simulink® AGC to simulate the effects of a

dynamic AGC.

3.2.3.5 Simulink Automatic Gain Control

Simulink® is a graphical, block-diagram simulation environment. Systems are

built by combining blocks that perform a given function on an input, generating the

processed result on the output. Every block in a Simulink® diagram is executed at each

time step, giving rise to the ability to implement feedback easily in a system. This

feedback capability is the reason to implement an AGC model in Simulink® rather than in

Matlab®.

Systems implemented in Simulink® are typically multiple layers deep, i.e. their

functional blocks have a hierarchy of input-output relationships. As such, a complicated

system can be represented at a higher level by a simple box with a few inputs and

outputs. The Simulink® models developed in this thesis exhibit a hierarchy of processes

logically grouped to reduce the perception of complexity and increase the modularity of

the separable functions.

The top level of the AGC model is shown in Figure 1-1. The single input and

output are clearly marked with gps_sig, the name of the variable generated by

gen_samples that contains the sampled signal. The feedback path is not readily apparent

3-37

from this view of the system. The threshold for determining the magnitude is pulled from

a memory location at each time step, which is updated by the AGC block in the diagram.

Thresh

Data Store
Memory

<3D-
gps_sig in

Sign

Thresh

Data Store
Read

Sign Bit

mag bit
quan signal —►(1)

gps_sig out
Configureable

Quantizer (mod)

Mag Bit

mag bit
generator

AGC

Figure 3-11. Simulink® Automatic Gain Control (top level)

The magnitude bit is generated by the "mag bit generator" block, which is displayed in

Figure 3-12. Any sample having a magnitude greater than the current value of the Thresh

memory location generates a logic "1" at the output.

Thresh Mag
comparitor

Figure 3-12. Magnitude bit generator block

The magnitude bit is fed into a switch in the configurable quantizer block, shown

in Figure 3-13, which outputs the appropriate bit mapping. The sign bit effectively

assigns the sign to the mapped magnitude value with a multiplication.

High Value

Product
Low Value

Figure 3-13. Configurable quantizer block

3-38

The AGC block (Figure 3-14) implements the control algorithm, which updates

the thresh value. The design emphasis of the AGC was on flexibility and configurability;

as such, many tools for analysis and debugging are included in the design. The basic

operation is to accumulate the magnitude bit over a time interval to determine its duty

cycle. The measured duty cycle is compared to a target duty cycle (30% for the Mitel

chipset) and an error signal is generated which modifies the THRESH thus establishing

the feedback of the system.

Buffer

Mag Bit

Clockl

d1

clock

Buffer

0.3 J Swi Switch Galn3

initial
value

mod

Modulus
0

Last Sample?

z-1

End of Interval
Value

Discrete-Time
Integrator

Dump Trig

AGC Control Logic

Int. Mag. Bit

dump trig

total samp n

Out1

Out2

Out3

OuM

<lnt. Mag. Bit>

<Actual Duty cvcle>

<Error in Duty Cycle»

circuitry
enable

Dump Trig

Update Threshold

Switch2 SAVE AGC VAR

Debug

SwitcM SAVE AGC VAR

<Dump Trig. Interval time, Update Threshold. clock>

CYC RES CNT'SAMPLING DT Update Interval

Figure 3-14. AGC block

The control parameters for the AGC are listed in Table 3.8. These parameters

essentially specify the time constant and type of response (critically damped, over-

damped, under-damped, etc.) of the system. These quantities were selected as probable

design parameters for a truly digital AGC implementation, such as the AGC in the Mitel

chipset. Little information of the exact method of operation of the Mitel AGC is

available [21], but based on what is known, the parameters in Table 3.8 should be

3-39

equivalent to design parameters of the AGC in the Mitel chipset. Although the Mitel

AGC controls the gain of the signal and not the threshold, controlling the threshold for a

fixed gain is an equivalent process.

,® Table 3.8. Simulink AGC control parameters

AGC control parameters:
Variable Name Description
CYC RES CNT Number of samples between THRESH updates

GAIN Scale factor applied to duty cycle error to generate
correction to THRESH value

INiT_CYCLES Number of cycles pre-loaded into the integrator at an update
cycle, weighted by the last measured duty cycle. A measure
of averaging the response over more than one update cycle.

AGC DEBUG Output variable for storing the internal signals of a run
CLOSED_LOOP Switch specifying closed or open loop operation
SAVE_AGC_VAR Switch that enables the storing of internal signals in

AGC_DEBUG.

Figure 3-15 shows the control logic of the AGC:

(1)Out1 (2)Out2 (3)Out3 (4)Out4 n
Enable

Int. Mag. Bit Gajn1

Int. Mag. Bit Total Bit Cnt. Actual Duty cycle

Buffer

write to

Product ^

0.3

Error in Duty Cycle

Update
Threshold

Gain4

In1
f

Duty Cycle

total samp Qajn2 initial valuel

Figure 3-15. AGC control logic block

=DumpTrig>

dump trig (2)

3-40

The accumulated samples are divided by the total number of samples, both of which were

"padded" with a specified number of samples scaled from the final actual duty cycle from

the previous run. This prevents large transients at the beginning of each integration

interval in the actual measured duty cycle. These transients would normally occur from

the division of a small number of samples at the output of the product block in Figure

3-15. The gain blocks gainl and gain! convert the integrated data bits and simulation

time into integer samples. The gain4 block contains the GAIN parameter in Table 3.8. If

the CLOSEDJLOOP parameter is set, the Update Threshold block (Figure 3-16)

incorporates the error signal into the THRESH value. Otherwise, the AGC runs with a

fixed threshold, which is useful for comparison purposes.

In1 CLOSED LOOP

Thresh

Constant
Thresh

Switch Data Store
Write

Data Store
Read

Trigger

Figure 3-16. Update Threshold Block

The Debug block in Figure 3-14 allows for the tuning and "viewing" of the AGC

operation as it runs. The contents of the Debug block are shown in Figure 3-17. If the

SAVE_AGC_VAR switch is set, the block is activated and stores the signals entering

into the multiplexer bar. The scope displays the signals as the simulation runs and allows

for immediate analysis of the AGC operation following a run. The signal selector block

allows the user to select from among the available signals so that only the signals of

interest are displayed.

3-41

^ round fc-
V-J—/ <int. Mag. Bit>

 ►

 ►

In1

\JLJ <Total Bit Cnt> round Jl
InV

v * <Actual Duty cycle>
In3

Enab e

^ "* J <Error in Duty Cycle >
ln4 9 _ ^ AGC_DEBUG

Dump Trig w ' Qw

To Workspacel

(' - } 4 fc
Interval time

I °) *
In5 Update Threshold w

**-
J 3 ►

1 l
9 r\ *

UIUUI\

öignai w'—v*
Thresh

Threshold w öeiecLoi

:)ata Stor
Reach

Figure 3-17. AGC data logging block (debug)

This concludes the discussion of the Signal Simulator (SS). The AGC

implementation in Simulink® provides a good primer for understanding the design of the

Receiver Model (RM), done entirely in Simulink®.

3.3 GPS Receiver Model

The GPS Receiver Model (RM) faithfully models a typical (configurable) 12-

channel C/A code signal-processing chip. The functions of this model are those typically

implemented in high-speed DSP chips due to the nature of the computations and the

speed (4 MHz +, typical) at which they must be executed. The design emphasis was on

model configurability and providing access to all the useful information inside the

simulation. A summary of the design features of the RM are listed here:

3-42

S Yl parallel independent channels
■/ User-selected sampling frequency
•S Auto-adapting algorithms for both Nyquist and non-Nyquist sampling
S Independent code and carrier DCOs
•/ User programmable phase and frequency registers for each DCO
S True C/A code waveform generation of PRNs 1-37
S Each channel performs the following functions:

• Cosine mixing to baseband

• Early, prompt, and late code correlation
• Processed I and Q accumulation (summation)
• Pseudorange measurement generation
• Carrier-phase measurement generation

•/ The following quantities are configurable:
• Correlator chip spacing
• Channel PRN assignment
• Latching rate of the accumulator
• Amplitude of the DCO waveform
• Trigger source—synchronized among channels or on code epoch

S Each channel outputs the following quantities:
• Early, prompt, and late accumulated I and Q signal components
• Pseudorange measurement
• Carrier-phase measurement

S Each channel is capable of saving the following signals at any user specified
decimation of the sampling frequency:

• Carrier DCO phase (radians)
• In-phase and quadrature-phase DCO waveforms (2 signals)
• I and Q samples after cosine mixing (2 signals)
• Early, prompt, and late code waveforms (3 signals)
• I and Q samples after correlation (6 signals)
• Pseudorange measurement
• Carrier-phase measurement

The RM was used to model the 12-channel correlator chip of the Mitel GPS

chipset, namely the GP2021. The GP2021 block diagram is shown in Figure 3-18. The

RM does not model the I/O interface, synchronization signals, or control signals of the

GP2021, but focuses on the 12-channel correlator model instead. The purpose of this

model is not to provide an intermediate step towards real implementation, but rather to

provide an accurate model of the signal processing functions of a working chip.

3-43

SIGN, MAG Ö-

SAMPCLK <p-

I
CLK _T, CLKJ f*

POWER_GOOD <p——

PLL_LOCK <j>—«-

z 1-
1 Z

s 1
3 u> (> < <> Ul
< «s

£0 m
X X CC 1-
4
X 3
IC H

z
X

o
X rr

12 CHANNEL
GPS

CORRELATOR

MICRO_CLK

POWER &
RESET

CONTROL n

—T__T

DUAL UART REAL-TIME
CLOCK

WT WH _ M CONTROL BUS |

DATA BUS

n=o

NARMSYS

MICROPROCESSOR INTERFACE K=
ARM SYSTEM STANDARD

INTERFACE

L_iL_J__i_UX_Zj

i A<9:0>

Ö NINTELMOT
WRPROG

tn
in
EC

a A
O O

t- CV
ui <M
tn V
Ul <
(C

Ul

ig
z

fco
oE

0. (0 z □
—I O Ul <
ui z a: ui
J 3 ir

Figure 3-18. GP2021 block diagram [23]

The 12-channel correlator module in Figure 3-18 is faithfully modeled in the RM.

A single channel of this module is shown in Figure 3-19. This diagram is explained in

detail in [23], and it is discussed here in comparison to the RM.

1, z,
3, 6

CODE
MIXER

CARRIER
MIXER

r<8>

SIGN
AND

MAG
-H SOURCE"

-<8M

CARRIER J-*—i
DCO ^n

CARRIER
CYCLE

COUNTER
<£J

H8>

16 BIT ACCUMULATE
AND DUMP - OJTRACKING

16 BIT ACCUMULATE
AND DUMP-Q„PR0MPT

1,0

C/A CODE >"-
GENERATOR Si-

DUMP

CODE L^l_
SLEW <*-

CODEf"-
~"!0 >«r-

CODE
PHASE

COUNTER

EPOCH
COUNTERS

■ ACCUMS, CODE PHASE, ETC

16 BIT ACCUMULATE
AND DUMP - LPROMPT

-<SH 16 BIT ACCUMULATE
AND DUMP - LTRACKING

IN AND OUT
> DATA

BUSSES

Figure 3-19. GP2021 tracking module block diagram [23]

3-44

The tracking module of the GP2021 has only two sets of correlators, described by

Mitel as the "prompt arm" and "tracking arm" [23]. These 'tracking arms' can be

configured to generate any two of the three signals available in the RM (early, prompt,

and late) at a fixed Vi chip spacing between the sequences. If the correlators are set to

generate early and late replicas, the code delay between the early and late remains x
h chip,

which results in a net lA chip spacing of either sequence to the peak of the autocorrelation

function (when perfectly aligned). Each of these code tracking configurations can be

modeled by the RM, by modifying the CHTP_SPACING global variable and ignoring one

of the correlator outputs.

The carrier DCO in the GP2021 generates a 4-valued cosine (or sine) wave

composed of +ls and +2s. At the sampling frequency of -5.7 MHz, there are

approximately 4 DCO phases in the -1.4 MHz IF frequency. These four values therefore

have a nominally uniform distribution. The carrier DCO in the RM has been modeled to

follow this design.

More comparisons between the Mitel GP2021 chip and the RM are made as the

RM is presented. The next section will display and discuss the components of the RM as

grouped in their respective Simulink® blocks. The RM is made up of approximately 33

unique blocks. Not all the blocks are presented here, but they are included in Appendix

B. The blocks shown here offer both a theoretical and an operational view of the RM.

For lack of an independent manual, Section 3.3.1 serves as a manual for the RM.

3-45

3.3.1 Receiver Model Simulink blocks

The top-level view of the entire 12-channel Receiver Model is shown in Figure

3-20. This is what a user sees after first opening the model in Simulink".

gps_sig' »<Jsignal] |

From
GP2010

Sync Trig -^<^sync_t

Sync Trig
Generator

DCO command
generator

Save Receiver
Signals

fCHAhLENABLECQl

|dco_ohj>^

yn c_0>)»

155 A Output V<Tout_oh1
DCO Cmds ^

Sync. Trig Trig_out -^<^dtrig_ch1

Channel 1

[signal]^

|CHAN_ENABLEC2^

', , ¥ s'9ln n output 4<T^t
Hco ch2>£ DCO Cmds j>=d

Sync. Trig Trig_out —|rxCTdtrig_ch2

iel2 pHAN_ENABLE(3)|

bi£H£i>F=^—»H S|9ln A output |i»<;out_ch3
dco_ch3>-fr DCO Cmds J.

■
J ^|Sync. Trig Trig.out L—^H". M,.

Channel 3

dtrig_ch3

=^1 ;0_chO>^

|CHAN_ENABLE(5)|

S'9 ln Jl Output V<Tout ch5 I
DCO Cmds J i
Syno.Trig Trig_oul |-»<dtii9_ch5 |

Channel 5 |CHAN_ENABLECB^

CHAN_ENABLE(4)| £ —
^—*• s,e i" n output ^<>ut oh4 I
M>+ DCO Cmds J> ~
^—»I Sync. Trig Tri9-°ut |~><''trig_ch4 |

Channel 4

EgB>. . riSi9'n n output |4<^
 Hco_ch6>* DCO Cmds ">=
E^c~b==—-» Sync. Trig Trig-°ut Xj

Channel 6

[signal};
dco

ICHAN ENABLE^

=—*Sigln Jl Output
.chj>-fr DCO Cmds

Sync. Trig Trig_out

out_ch7

dtrig_ch7 I

CHAN_ENABLE(9)|

i

Channel 7

[signal^
dco ch8>

!f!änfi>| . -f Si9'n n Output Wf?
dco chffHt DCO Cmds y=

I S. I ~ ' _ - _. Trin ni# _fc~< Al Sync. Trig Trig-""1

pHAN_ENABLE(B)|

r-fpig~inn output 4><^r
ff>#. DCO Cmds ">=
^-». Sync. Trig Tri9-'"1' -X^iSz

out ch9

dtrig_ch9

Channe!9

[signal]

|sync_f>

|dco_ch1(^>^

:HAN_ENABLE(10|

S'3 ln JT. Output ^<fout ch10
DCO Cmds r^^—=

Sync. Trig Trig_out —^<^dtrig_ch10 |

Channel 10

[signal^

[syn o_t)>—

tHAN_ENABLE(11

"3:—
> . f|s'9'n A Output LW'o.ut-OhH
Uco_ch11>4r. DCO Cmds >
i ^. o, T. Trig out -K"dtrig ch11 Sync. Trig

Channel 11

tonf!fe . f
 |jco_ch1j>»
|sync_t^>

|HAN_ENABLE(12]

S'9 ln J~L Output ^<out Ch12
DCO Cmds j; —
Sync. Trig Trig_out -»<dtrig_ch12

Channel 12

Figure 3-20. 12-channel Receiver Model (top level)

3-46

The collection of 12 channels makes the diagram very large, but it is useful to see

the how blocks can be easily duplicated in Simulink. Each block is nearly the same, with

only a few variables that change from channel to channel. In Simulink, connections are

typically shown with lines from block to block, but here the "goto" and "from" shortcuts

have been used extensively reduce clutter caused by many lines. These shortcuts provide

the same function as individual lines.

The inputs to each block consist of the sampled GPS signal, the DCO commands

for each channel, and the synchronized latch trigger. The outputs are the eight

observables previously described in the bulleted list at the beginning of Section 3.3, and

the trigger signal that latches those eight observables inside the channel.

Figure 3-21 displays the contents of a single channel. The progression of the

input signal through the processing blocks to the output can be clearly seen.

Sigln
Sigjn l_1k

DCOrads Q 1k

Mix to Baseband
Code DCO

Sync. Trig

Early
Prompt

SyncT Late

Dump Trig
A PR

R ^APPL^IUgt
Channel
Enable

ay*-
DCO Cmds

-£
Car DCO off

Car DCO Freq Offset

Car DCO Phase

l_1k

Q_1k

Early l&Q Out
Prompt

Late

Code Correlator

-XJE code)|

L»X3L codell

-><P codell

dump trig

a
Data Logging

Chan. Out -S-frC 1) The Data Logging block
Output is where to specify which

signals to save given that
the SAVE_CHX_SIOS
variable is set to one. Integrate & Dump

K_LJ
Trig_out

carrier phase pseudorange
visibilityl visibility

Car_DCO_off LOS_rads

{Lrotated} {Q_rotated} {Correlated}

visibility2 visibility3 visibility?

Carrier DCO offset (Hz) Rads to SV {dco_sig_l} fdco_sig_Q}

Code DCO off

Code DCO off

Code DCO Freq Offset

Code time Offset

Code DCO offset (Hz) Code prop, delay

These are Code/Carrier DCO Register Values.
Note that the Channel # is HARD CODED

into the initial values here.

visibility visibilityl

| {fee_ref} | {L_code} [| {P_code} 11 {E_code} |

visibility visibi!ity6 visibility^" visibility^

These are the "scopes" for the goto/from
blocks used to transport the signals into

other blocks in the system, mainly the Data
Logging block.

TTie LOS_rads & Delta_T
parameters only load ONCE,
at the beginning of the sim.

Carrier & Code Freq. offsets
are loaded at each dump

Figure 3-21. Single Receiver Channel

3-47

The discussion of the entire loop is be divided into analysis of the individual

blocks. The first block to analyze is the carrier DCO block, shown in Figure 3-22. The

block generates the phase of the carrier DCO in radians, based on the initial phase and

frequency offset due to Doppler and any clock error. Logic is included that implements

phase and Doppler reversal in the case that the Nyquist sampling criterion is not satisfied.

LOS rads

LOS distance in radians

SAMPLING FREQUENCY-2*IF BEFORE SAMP

Nyquist Criteria. + for satisfied, - if not satisifed

Car DCO off

Carrier DCO offset (Hz)

V ©
Aliased_final_IF_freq. Clock

Figure 3-22. Carrier DCO block

The carrier (and code) DCO offset registers contain the perceived Doppler value

of the received signal, defined as positive for decreasing LOS distances. If the Nyquist

criterion is satisfied, the perceived Doppler is added to the nominal IF frequency, where

if aliasing does occur, the Doppler frequency must be subtracted from the nominal IF

frequency. The initial phase is reversed in the same fashion.

The carrier DCO radians are fed to the Mix to baseband block (Figure 3-23),

where they are converted into the DCO waveforms by the DCO signal synthesizer

(Figure 3-24). A custom quantization block (Figure 3-25) was built to generate the

waveforms per the Mitel specification.

3-48

DCO signal synthesizer

Out1

DCO rads

n
Out2

MIX TO BASEBAND

|XQ {dco_sig_l}
Cosine Mixing

Block

apply cosing mixing?

Sig_in

I in

sig in mixed out

Qin n

-►<^dco_sig_Q}

-►<C{Lrotated}

■ Goto

I ►-'^^►1 Mk

m
-►<JQ_rotated}

Gotol

Figure 3-23. Mix to baseband block

p~")pcO rads

cos In1 Out1 D
Cos(.) Configureable

Quantizer

Out1

Sjnn Configureable
Quantizerl

JI
Mix signal to Baseband?

Figure 3-24. DCO signal synthesizer block Figure 3-25. Configurable quantizer block

The DCO signals are then mixed with the received signal in the Cosine mixing

block, shown in Figure 3-26. The MTX_TO_BASEBAND enables and disables this

process.

Product

*"| mixed out

Product2

n
Mix signal to Baseband?

Figure 3-26. Cosine mixing block

3-49

After the signal is mixed to baseband, it is correlated with the local code replicas

generated by the code DCO block, shown in Figure 3-27. This block generates the

receiver's estimate of satellite time (Figure 3-28) and converts the satellite time into the

appropriate chip number of the C/A code that was generated at that time. The chip

number (1-1023) is then fed to a look-up table to generate the correct chip value, which is

output for each sample time. The CHIP_SPACING parameter subtracts or adds the

appropriate amount of time to advance or delay the code waveform by the desired chip

spacing. This allows for the chips spacing to be precisely altered with the use of any

sampling frequency.

-CHIP SPACING

SV trans, time

PR -i

Estimated SV
transmit time

CEH-1

PR

Jl
apply ca?

3
EanV
Delay

.001
mod

Code mod E
Period

Code mod P
Periodl

CHIP SPACING CHIP_SF

ft

Late
Delay

.001
mod

Code mod L
Period2

fix

1 |offset from zero

n Prompt Period
L_j_lDelay

KD 1 1 Mmodl fcl^ 1
|.0Q11—H I w*

Product trunkate

-fTcl chip#

Chip
Period

fix

Chip Lookup E

1 offset from zerol

-KJD
Early

Productl trunkate

-fTcl chip#1

Chip
Periodl

Chip Lookup P

-XX)
Prompt

•0

fix

Product.2 trunkate

-fTcl chip#2

Chip

Code Rollover ■ DUMP_ON_EPOCH K
Trigger Source Select

l|offset from zero2 C 1 J~
SyncT

XD
Late

Switch

Chip Lookup L

Period2

Figure 3-27. Code DCO block

The initial satellite time is derived from the "phase" of the code DCO, which is

equivalent to the pseudorange. This time is updated by integrating the code Doppler,

3-50

which is a measure of the LOS velocity. The algorithm is pictorially displayed in Figure

3-28. A positive Doppler frequency indicates a decreasing distance; therefore a negative

sign is required in the "Hz to s/s" conversion. This block also generates the pseudorange

variable, as it is fundamentally defined as the delay in the code tracking loop multiplied

by the speed of light.

K is negative becuase Positive
Doppler subtracts from the

Relative Distance

Code DCO off

The time delay of the Code mult, by the speed
of light is the definition of the PseudoRange

[-►|K>—HM]-KJD
^ *~ Abs PR

Code DCO offset (Hz) Hz to s/s —

sec to
meters

Estimated
Transmit Time

code time offset Discrete-Time
Integrator

Figure 3-28. Estimated Satellite Vehicle (SV) transmit time block

The code correlation block (Figure 3-29) consists simply the signal multiplied

with the locally generated codes. The ability exists to bypass this process by setting the

APPLY_CA global variable to zero. The multiplication process is shown in Figure 3-30.

Apply Code? | APPLY_CA |

Q 1k

COLate Multiplier

Prompt
CÖEarly

APPLY CA

l&Q Out

Apply Code?1

Figure 3-29. Code correlator block

3-51

In this block, the signals become multiplexed onto a single line. This is a very

powerful feature of Simulink® that allows a single line to contain multiple signals, on

which blocks operate on individually. This limits duplication of the same functional

blocks for different signals.

IJk

LJ_-' <Q 1k>
Q 1k ►CD

Corr out

3) Early

Figure 3-30. Multiplier block

After correlation, the samples have been completely processed and are ready to be

accumulated. This is done in the integrate & dump block (Figure 3-31). Here the

frequency of the information is reduced from the sampling frequency to the "latching

rate," specified by the LATCH_DT global parameter. In the Mitel chipset, as is common

in other receivers as well, the latching rate is 1 kHz, 'dumping' the contents of the

accumulator every millisecond. This is usually done synchronously with the code epoch,

or rollover of the code sequence, on each channel. This is because the data bit transitions

occur at the same time, and latching at this point prevents the integration over a data bit

transition, which could cause a loss of signal strength. However, in testing advanced

receiver designs and developing new integration techniques, it is often useful to "latch"

3-52

all the channels at once. This is particularly useful when feeding a Kaiman Filter, as

implementation tends to be less complicated when measurements arrive at the same time.

In such cases, data modulation is often not simulated.

I&Q in
l&Q sum

Trig

Accumulator

cz>
dump trig

Switched

Latch Ro^ndj,n9
Block

Data
out

Trig

6 In Out

pseudorange Latch 1

-► Data
out

Trig 1

I e

Q e

LP

Q_p

Q I

PR

Trig CP

generate CP
measurement

CP

Done to Label
The Signals

Chan. Out

Figure 3-31. Integrate & dump block

The carrier-phase measurement generator is included in this block, and is detailed

in Figure 3-32. This block integrates the perceived offset in frequency over the course of

the run. Again, the need for the negative sign due to the way Doppler has been defined in

this research.

Negate the Doppler becuase
+ Doppler indicates a velocity

towards the satellite, i.e. Discrete-Time
decreasing distance Integrator

Goto

rXClCP}

Car DCO off -1
J_
2-1

Carrier DCO offset (Hz) neg.

The carrier-phase measurement is
the integral of the observed doppler

Latch

CT>>| Trig
Trig

Data
out -KD

CP

Figure 3-32. Carrier cycle counter block

3-53

I -ffee refPÜ>-

From
Sim fee ref

■fdco siq l}J>-

Froml

■fdco sia Q1C>-

DCO_l_sig

From2
DCO_Q_sig

■fl rotated) !>-

From3
rotated

|Q rotatedk>-

From4
Q rotated

QHÜL>-
From5

I IP code}*^»-

E code

From6
P code

IL code} ^

From7
code

■fCorrelatedl>—

From9

I e

Q e

LP

Q_p

I I

Q I

From 10
PR

From 11
CP

SAVE_CH1_SIGS save signals? T
16

R
In1

save Chn
Signals

NOTE: You must specify which of
the signals to the left here are to be
saved using the bus selector block

INSIDE 'save Chn Signals'

Signal Labels

Figure 3-33. Data logging block

Figure 3-33 displays the data logging mechanism available in each channel.

Many of the previous blocks have had "Goto" blocks that match these "From" blocks.

All the signals in the model that are significant are brought into this block for potential

data logging. The global variable SAVE_CH1_SIGS enables data logging on channel

3-54

one. If this variable is not set, no data is logged regardless of the settings inside "save

Chn Signals." The inside of this block is shown in Figure 3-34. Here the signals are

selected using the signal bus selector block, which is the solid black rectangle in Figure

3-34.

Write to Workspace

Jl
Enable BUS SIGNAL SELECTOR 1

10

IT
(T>JS 1
> ' <Rim fpp ref nm

r CH1SIGS

H| J I llll III il I ih il I I I i I l_p, Q_p, |_|, Q_|, PR, CP>

THIS list above shows die ones that are selected in the BUS SIGNAL SELECTOR
16
<Sim fee ref, DCO I siq.DCO Q sig.l rotated, Q rotated, E code.P code.L code, I e, Q e,l p, Q p,l l,Q I, PR, CP> In1 - - ■ — «■ - - - - - - - ■ _ • _ . -F. _H. _. _. .

The above list shows all the signals available

Directions for selecting signals:
1. Double Click the BUS SIGNAL SELECTOR

2. Select the signals on the right that you want to
record during the simulation.

3. Assign them to the output by clicking "select"
4. The order they appear in the Right pane is the

order they will be stored in the output variable

Figure 3-34. Save channel signals block

Figure 3-35 shows the dialog box for the bus selector. Here the user has the

ability to select the signals individually to be saved during a simulation. These signals

are saved at the decimated sampling rate, where the decimation factor is specified by the

global variable DEBUG_DECIMATION.

This concludes the discussion of a single channel. There are a few blocks that

interface with all the channels in the model. One such block is the synchronized trigger

generator (Figure 3-36). This block generates a common trigger signal for latching the

outputs of all the blocks in the system simultaneously. The rate at which the blocks are

latched is specified by the global variable LATCHTNG_DT.

3-55

V Block Parameters: Bus Selector

Bus Selector j

DE El

thissblock accepts mput fiom a Um or BussSdectabtocfcJhetefttt Use the
Setesfcbuttonte Select the output signals:#he;righHistbsxshows the/setecltonss'Usethe Up/Down;orflemove
button to (eordetsthöiseiections. Check 'Muxed output' to «mftiptex the output

Signals in the bus_

Sim_fee_re£
DCO_I_sig
DCO_Q_sig
I_rotated
Q_rotated
E_code
P_code
L_code
I_e
Q_e
I_P
Q_P
I_l
Q_l
PR
CP

_j

d
Refresh Select»

w-

mmm

|§ISlf;|sS

I_rotated
Q_rotated
I_e
CLe
I_P
Q_P
I_l
Q_l
PE
CP

Ml
R M used output

OK Cancel Help I Apply

Figure 3-35. Bus selector dialog box

The "last sample" block detects when an input rises above a given threshold,

generating a logic "1" for one sample time. The SAVE_TIME global variable allows the

logging of the simulation time and the "mod time," which resets to zero after each

trigger. The trigger signal is added to the "mod time" signal to reduce redundancy, as the

trigger signal is zero most of the time.

Last Sample threshold:
LATCHING DT-SAMPLING DT

LATCHING_DT+1e-11
Int. Interval

Clock mod

Modulus Last Sample?

Clockl

Sync Trig

I SAVE TIME Isv timing info?

An time + Trig

time mod 1ms

Save Time block

Figure 3-36. Synchronous trigger generator block

3-56

Because a full tracking loop is not within the scope of this research, the DCO

values must be set manually and fixed during the runs performed in this thesis. To set the

initial DCO values, the output variables from the SS are used to pre-set the DCOs to the

perfect values at the start of the simulation. The block that accomplishes this is shown in

Figure 3-37. This figure is provided to equate the outputs of the SS with the DCO values

oftheRM.

DOPPLER_FREQ{1)(1) \-

RAD TO svmm I—

DOPPLER FREQflHD h

RAD_TO_SV{1K1)/(CARRIER_FREQUENCr2'pi) |>

DOPPLER_FREQ{3}(1) \~

RAD TO SVI3K1)

DOPPLER FREQI3KD h

RAD_TO_SV{3}(1)/(CARRIER_FREQUENCY»2»pi) "}»

DOPPLER_FREQ{5)(1) |

RAD TO SW5K1] I—

DOPPLER FREQM1) h

RAD_TO_SV{5}(1)/(CARRIER_FREQUENCr 2*pi) |>

DOPPLER_FREQ{7}(1) |

RAD TO SVmCD I—

DOPPLER_FREQ{7}(1) |

RAD_TO_SV{7}(1)/(CARRIER_FREQUENCr2'pi) |>

DOPPLER FREQJ9KD h

RAD TO SVf9K1) I

DOPPLER_FREQ{9}(1) h

RAD_TO_SV{9K1)/(CARRIER_FREQUENCr2'pi) |-»

DOPPLER FREQf11|(1)h

RAD TO SVJ11W1) I

DOPPLER_FREQ{11M1)h

RAD_TO_SV{11}(1)/(CARRIER_FREQUENCV2*pi) ")-►

DOPPLER_FREQ{2K1) j

RAD TO SV{2}(1) I—

DOPPLER FREQI2KD

RAD_TO_SV{2}(1)/(CARRIER_FREQUENCr2*pi) |-»

DOPPLER_FREQ{4}(1) |

RAD TO SVI4H1) I

DOPPLER FREQflKQ \-

RAD_TO_SV{4}(1)/(CARRIER_FREQUENCr2*pi) >l
DOPPLER_FREQ{6}(1) |-

RAD TO SVfB>(1) I

DOPPLER_FREQ{6}(1) |-

RAD_TO_SV{B}(1)/(CARRIER_FREQUENCY*2,pi) |-»

DOPPLER_FREQ{B}(1) h

RAD TO SVfBim

DOPPLER_FREQ{BK1) h

RAD_TO_SV{8H1)/(CARRIER_FREQUENCV2'pi)

DOPPLER FREQflDKDh

RAD TO SVI10K1] I

DOPPLER_FREQ{10}(1) \-

RAD_TO_SV{10}(1)/(CARRIER_FREQUENCY*2*pi)

DOPPLER FREQ{12}(1)h

RAD TO SVI12K11 I

DOPPLER_FREQ{12}(1)[-

>l

RAD_TO_SV{12}(1)/(CARRIER_FREQUENCy2',pi)

Figure 3-37. DCO command generator

>l

*< dco ch1

Gotol

Goto2

+< dco ch3
Goto3

Goto4

■►^dco_ch5

Goto5

Goto6

-►^dco_ch7
Goto7

GotoB

-►<Cclco_ch9
Goto9

Gotol 0

-►<dco_ch11
Gotol 1

Gotol 2

The final block covered here is the "Save Receiver Signals" block, shown in

Figure 3-38. This block receives and records the outputs of all the channels during a run.

3-57

It is like the "save channel signals" block in that it utilizes a bus selector for selecting

which signals are to be saved, and the signals available in the "Save Receiver Signals"

block are all available in the "save channel signals" block as well. This block however,

saves the signals only when a trigger hits.

out_ch1^>»

channel outputl

out

channel output2

out_ch3*>—

channel output3

out_ch4^>—

channel output4

out_ch5 J>—
channel outputö

out_ch6>>—

channel outputs

out_ch7 J>—

channel output7

out_ch8^>
8

channel output8

out_ch9^»"
8

channel output9

öüTchTo>—
channel outputl 0

öüTch1?>—
channel outputl 1

öüTcM2>—
channel outputl 2

write to
workspace

In1

OR

12

12

Select Signals
To Output here

chan1tr|g <dwg3hT
sync triggerl

chan2tri° <Srig3hT
sync trigger2

chan3tri3 <Srig^3
sync trigger3

chan4tri9 l<Srig3h4
sync trigger4

chan5triS <dirig3h5
sync triggers

chan6tr|g <d^g3hl
sync triggers

chan 7 trig <Cjltrig_ch7

sync trigger7
chan8tric' <dtrig3h8

sync trigger8
chan9tric' <^rig3h9

sync trigger9
:han10lrl3 <£r^lnlÖ"

sync triggerl 0
:han11tri9 <^JhÜ

sync triggerl 1

^han12tri3 <gt^n7J
sync triggerl 2

Figure 3-38. Save receiver signals block

This centralized signal storage block is intended for recording receiver output for

most applications. If all 12 channels are simultaneously active, 96 signals are available

for logging. If the synchronized trigger is used, these signals are saved at the rate

3-58

specified by LATCHING_DT. However, if the source of the trigger is from the code

epoch in each channel, the signals are logged at 12 times the code epoch rate, or at 12

kHz. That is because a trigger from any channel saves all the signals, and all channels

will experience a code epoch within a 1ms time window. Thus if the synchronized pulse

is set to occur at the code epoch rate, latching the data per channel will cause the output

file to increase by a factor of 12.

Figure 3-39 shows the bus selector dialog box for the bus selector in Figure 3-38.

Here each of the channels show up as composite signals, which can be selected in whole

or in part, as is shown in the figure. This allows the user the ultimate flexibility in

picking which signals are to be logged from a given run.

'4 Block Parameters: Bus Selector 0013

_ Bus Selector,

This block accepts input from a Mux or Bus Selector block, The left tistbox shows the signals in the input bus. Use the
Select button to select the output signals. The right listbox shows the selections. Use the Up, Down, or Remove
button to reorder the selections. Check 'Muxedoutpufttoimitplexthe:output

Signals in the bus.

signall
I_e
Q_e
I_P
Q_P
I_l
Q_l
PR
CP

+ sianalü
+ signal3
+ signal4
+ signals
+ signal6
+ signal7
+ signal8
+ signal9
+ signallO
+ signalll
+ signall2

Refresh | Select» |

Selected signals.

Up

liSBiii!

Remove

signall.I_e
signall.Q_e
signall.I_l
signall.Q_l
signal2

P Muxed output

OK Cancel

Figure 3-39. Save receiver signals bus selector block

3-59

3.3.2 Noise floor derivation

All the signals in the GP2021 tracking module are represented by integers, which

allow fast integer math calculations in the GP2021. The integer values in the tracking

channel are shown in Figure 3-19 next to the signal paths. Thus, the accumulated value is

the sum of only 4 integer magnitudes. If no signal is present in the system, these

accumulators continue to generate sums of these numbers at the output. In order to

determine the presence of a signal, a noise floor estimate of this system must be found.

This is accomplished by calculating the expected value of the system with no signal

present. The derivation of the noise floor and the resulting equations for determining

S/N, phase lock, and frequency lock for this chipset are provided by [20]

The calculation of the noise floor is the process of estimating the power of the

accumulated samples with no signal present. The derivation is an exercise in random

variable math, calculating the mean and variance of discrete values with a given

probability of occurrence. The values involved in this calculation are the quantized

signal levels and those generated by the DCO. With no signal present, the values and

their distributions are given by Table 3.9.

Table 3.9. Distribution of sampled signal and DCO values

Quantized Signal: "S" DCO: "D"
Value Probability Value Probability

-3 0.15 -2 0.25
-1 0.35 -1 0.25
1 0.35 1 0.25
3 0.15 2 0.25

E{S}=0 E{S2}=3.4 E{D}=0 E{D2} = 1.5

3-60

These distributions apply to the signal with noise as well, the difference being in

the correlation of adjacent samples. Without a signal, the samples representing the

quantized signal are completely uncorrelated. The DCO values follow a deterministic

sequence, representing a cosine (or sine) wave at a given IF frequency. The sequence is

not perfectly repetitious, due to the changing frequency of the DCO to track the signal.

The noise floor expected variance of the product of these two random sequences. This

process happens twice for each channel, as the signal is split into it's I and Q components

prior to processing. Let "I" and "Q" each represent the summation of a sequence of "N"

products of the DCO and quantized signal. The expected noise floor is given by Equation

(3.38):

E(I
2
 + Q

2
) (3.21)

Given that the signal is completely random, this is equivalent to:

E(I
2
)+E(Q

2
) (3.22)

Additionally, since the DCO sequences for the I and Q are identical, with one

delayed in reference to the other, and with the provision that the signal is totally random,

this is equivalent to:

2E(I
2
) (3.23)

Now, representing the Signal with a discrete random variable "S" and the DCO with a

discrete random variable "D", given an accumulation of "N" samples, Equation (3.24)

shows the appropriate substitutions for I:

3-61

C N

2E<
i=l

= 2E-
(N \

[IS-D]
{ N \

V '•=') \ <=1)

(3.24)

;th Create a discrete random variable I;, defined as the product of the i S and ith D

realization of the random variables S and D:

/j = S1 ■ D1, 12 = S2 ■ D2l, l3 - S3 • D3, IN - SN ■ DN (3.25)

Taking the product of the two random variables give us a discrete probability distribution

for Ii, given in Table 3.10

Table 3.10. Distribution of samples after mixing

Distribution of I = (S)(D)
Value Probability
+6,-6 0.075
+3,-3 0.075
+2,-2 0.175

+1,-1 0.175
E{I}=0 E{I2} = 8.5

Substituting in for S and D, and expanding the summations, the equation is now:

2E{(/I+/2 + /3+-/„)■(/,+/2 + /3+•••/„)} (3.26)

Now, recombine the terms under new summations:

IE

V '■=' J

+
for i=j

11',',
for i^j

(3.27)

Using the distributive property of the expected value operator, we arrive at Equation

(3.28).

AT N

2S^2}+2XE^{/,/;}
(3.28)

1=1 7=1

3-62

Again applying the property of independence, based on our signal having independent

samples, we have:

2S*}+2££s(/,M',) (3-29)

Because the mean of I is zero, the second term is eliminated, giving us a final noise floor

value of:

(3.30) 2E E{j2}= N ■
E{[2 + ö2

}
=

2 •N ■

8-5
i=i

Where N is the number of samples summed into I and Q. The typical integrate and dump

cycle in a GPS C/A code receiver is 1ms, and the sampling frequency of the Mitel chipset

is -5.714 MHz, so the expected noise floor given these provisions is nominally equal to

97142. This noise floor can be used to estimate the S/N ratio of the signal as follows:

— = 10 * LOG
N

^ I
2
+Q

2

A

v2-AU,-8.5y

(3.31)

This is the formula used by Mitel to express the S/N ratio of the received signal[20]. The

number of samples determines the processing gain. However, this does not represent the

actual S/N received. Consider the ideal case where the signal is phase locked such that

all the power is in the I term, and the Q term averages to zero over the integration.

Because the DCO has an amplitude of 2, the cosine mixing process does not alter the

amplitude of the signal. Recall:

Acos(a)■ t)• 2cos(ßi■ t) = (cos(((ü + cb)t) + cos(co-cb)t)) = A + Acos((co + cb)t) (3.32)

3-63

This mixing process occurs in the GP2021. The equation on the far right is valid when

the frequencies of the cosine terms are equal. As the samples are accumulated, the cosine

term averages to zero, and the resulting summation is ideally equal to A times number of

samples. The normalization to the number of samples is taken care of in the Nsamp term

in the denominator of (3.31). Hence, the power in the signal here is represented as A2,

but the standard equation for the Power in a carrier wave is A 12. Thus, the S/N ratio

power estimate generated by (3.31) is 3 dB higher than the actual received power. This

phenomenon is clearly seen in Chapter 4 with the analysis of real data.

This concludes the discussion on the Receiver Model. The SS and RM work in

concert to generate processed I and Q samples of the received signal. Both the SS and

the RM run at the full sampling rate of a receiver, which is -5.7 MHz in the case of the

Mitel chips. With all the high-fidelity simulation and processing that goes on, a

substantial price must be paid in the time and computing power required. This level of

modeling is not practical for simulating an integrated GPS/TNS system. A faster method

for generating the same observables is required, and was created out of this research. The

I and Q model (IQMDL) is the topic of the next section.

3.4 GPS Analytical Accumulated I and Q model

The analytical I and Q model is a complete stand-alone module which generates

code-correlated, phase-rotated, accumulated I and Q samples. It is entirely managed

using function calls in Matlab®, and all variables are passed through the function calls. It

does not currently model any GPS error sources, and is only a LI C/A code

implementation. Nonetheless, it provides good dynamic modeling and faithfully

3-64

represents the effects of varying pre-integration times, S/N ratios, and DCO errors. An

Ideal autocorrelation function is used, as well as a proven mathematical model for the

accumulated I and Q values as a function of carrier DCO phase and frequency offsets.

The program implements several functions, selected by specifying the "task" to be

performed as a string in the first input argument. The input and output arguments are

dependent on the task that is issued. The four tasks currently implemented are

initialization (init), re-start at a particular time (rstrt), DCO updating (updtdco), and I & Q

generation (geniq). Their input/output arguments are listed in Table 3.11.

The very first call to the I/Q model should always be an init function. The

algorithm for determining satellite selection is one that ensures that all the satellites are

visible (above the specified cutoff angle) over the course of the simulation, defined by the

times in the receiver position input file. The receiver trajectory must be in ECEF

coordinates. The receiver trajectory file format is specified in the function listing in

Appendix C. This first call requires a substantial amount of time to complete, as all of

the satellite positions being simulated at each time step in the trajectory file are

calculated. The satellite positions are generated up front so that the multiple runs of a

simulation are not burdened with re-calculating SV positions at each call. As the

methods for calculating satellite positions are outside the scope of this thesis, the

functions for generating the satellite matrices are not covered here.

3-65

Table 3.11. Operational interface for the GPS I/Q model

Operational Summary for gps_iq_model:
Function call:
[argoutl,argout2,argout3]=gps_iq_model(task, arginl,argin2,argin3,argin4)

Task: 'ink'
Input/Output Variable name Description
arginl eph_filename Ephemeris filename, structure is that used at

AFTT in the the GPS courses [37]
argin2 recv_pos_mat receiver position file, including time
argin3 START_TIME Start time in GPS seconds. Used only if the first

time in the receiver file time vector is zero
argin4 elev_cutoff Cutoff angle for satellite visibility. Default: 5

degrees.
argoutl sv_pos_mat matrix of satellite positions for all visible

satellites and each time step
Task: 'rstrt'

Input/Output Variable name Description
arginl init_time Time, in GPS seconds, to re-initialize to
argoutl doppler_mat Vector of Doppler values

Task: 'updtdco'
Input/Output Variable name Description
arginl car_dco_corr Vector of carrier DCO frequency adjustments
argin2 code_dco_corr Vector of code DCO frequency adjustments
argin3 UPDT_TIME Time stamp that the DCO settings are updated

Task: 'geniq'
Input/Output Variable name Description
arginl LATCHJTME Simulation time to generate I and Q values (s)
argoutl EPLJQ Cell array of early, prompt, & late I and Q values
argout2 PR Vector of pseudoranges
argout3 CP Vector of carrier-phase measurements

The 'rstrt' task is used for restarting and initializing a simulation without

recalculating the satellite positions. The DCO settings are cleared whenever rstrt is

called. This function cannot be used to jump to another location in time while preserving

the current DCO phases and frequencies.

3-66

The 'updtdco' task has two main steps. First it propagates the receiver

environment to the time specified in the function call, then it updates the DCO values.

The IQMOD adds the DCO frequency updates to the existing values.

The 'geniq' command is the main workhorse of the IQMOD. It is responsible for

modeling the I and Q values and propagating the receiver environment forward in time.

Before discussing the models used, the global variable list for this function must be

revealed. The global variables are listed and defined in IQ_model_globals.m. The user

should use caution when running the IQMOD with either the SS or RM in the same

Matlab® workspace, because they do use some of the same global variables. The global

variable list is given in Table 3.12.

The I and Q model is a function of the following quantities:

■S Signal/Noise ratio of the signal

S Integration time over which the samples are "Accumulated"

V Code and Carrier DCO Phase and frequency errors at the beginning of the
integration interval.

Although never true in the real world, for simulation purposes the S/N ratio is set

at the beginning of a simulation and is therefore constant over the simulation. The

integration time is the time that has lapsed since the last call to the function. Therefore,

the IQMDL has to only to keep track of the Code and Carrier DCO phase and frequency

errors. A cubic spline function is used to generate the truth LOS distances and velocities.

Additionally, the DCO phase and frequency values are maintained and updated. The

differencing of the truth LOS values and the DCO estimates generates the carrier-phase,

pseudorange, and DCO errors.

3-67

Table 3.12. IQMOD global variables

Variable Name Description / Value
CARRffiR_FREQUENCY LI received frequency = 1575.42e6 (Hz)
CARRIER_WAVELENGTH LI carrier wavelength =0.1902936 (m)
SPEED_OF_LIGHT 299792458 (m/s)
T_C Length of one C/A code Chip in seconds: 9.775171e-7
CHIP_SPACING Correlator chip spacing (s)
SAMPLING_FREQUENCY Mitel GP2021 Sampling Frequency
SNR_DB S/N ratio of the signals in PRN_VEC
NO_NOISE Switch turning off the noise, giving perfect samples
PRN_VEC Vector of PRNs, chosen by the IQMOD
LAST_LATCH_TIME Stores the last time, in GPS seconds, that the model was

updated (s)
TIME_OFF Time offset of the internal time vector to GPS time
CAR_DCO_PHASE_ERR Carrier phase error vector (radians)
TAU Code correlation error vector (seconds)

CAR_DCO_FREQ_ERR Carrier DCO frequency error vector (Hz)

CODE_DCO_FREQ_ERR Code DCO frequency error vector (Hz)
CAR_DCO_FREQ_MAT Vector of carrier DCO offsets from nominal for each

signal (Hz)
CODE_DCO_FREQ_MAT Vector of code DCO offsets from nominal for each

signal (Hz)
CAR_DCO_PHZ_MAT Vector of LOS distances to each S V as estimated by the

DCO (rads)
CODE_DCO_DELAY_MAT Vector of transmit time estimates for each SV as

estimated by the DCO (sec)
LOS_RANGES_MAT Calculated matrix of LOS ranges for each satellite at the

user specified time (from the function call)
LOS_DIST_MAT Matrix of perfect pseudoranges for each satellite at each

timestep (includes time vector)
DOPPLER_FREQ_MAT Calculated matrix of Doppler Frequencies at the user

specified time (from the function call)

The true LOS range and velocity is calculated for each signal path using the same

spline fit techniques used in the SS (see section 3.2.3.1). This guarantees the truth

environment for both the SS and the IQMDL is the same. Code and carrier DCO

frequency and phase errors are calculated by differencing the current DCO values with

the truth environment. The DCO "frequencies" are only the offsets from an arbitrary

3-68

nominal frequency caused by Doppler, i.e. the DCO Doppler estimate. Both the code and

carrier DCOs are expressed in LI Doppler values. The "phase" of the DCOs are

implemented as the DCO LOS distance estimate. The carrier DCO phase is expressed in

LOS radians, where the code DCO is expressed in seconds of propagation time.

The derivation of the I and Q model is shown for one channel, as the process is

the same for each. Thus, channel numbering is not included in the equations. The

following analysis is done for the carrier DCO, the code DCO derivation is essentially

identical. Sign conventions are very important here, especially when aliasing is involved.

Aliasing effectively reverses the sign of frequency and phase errors from what they

would be if the Nyquist sampling criteria were met. Equations (3.33), (3.34), and (3.35)

define the integration time, the DCO frequency error, and the DCO phase error,

respectively. The phase and frequency errors are defined for the last latch time, or the

beginning of the integration interval.

A* hatch hast latch (3.33)

where:

hatch = Latch time specified in the function call

tiastjatch = Latch time of the last function call
AT = Integration time; time lapsed between calls.

Sco = connpp - conm @ h Hastjatch (3.34)

where:

Sco = DCO frequency error

CODOPP = True Doppler frequency

OJDCO = DCO frequency setting

ö<t> = 0TRUE ~ <P, TRUE YDCO
@h \ast_latch (3.35)

3-69

where:
ö(/> = DCO phase error

0TRUE
=
 True phase of the signal

0DCO
=
 DCO phase of the signal

These equations are paralleled for each of the 12 channels in the IQMOD. Using the

errors defined above, the I and Q error equations, shown in Equations (3.36) and (3.37),

are applied to simulate the effects of the DCO phase and frequency offsets over the

integration interval. These equations are similar to those first published by Sennott [42]

and derived into a more robust form by Ward [58]. These equations adequately simulate

the effects of the integration process, which is not taken into account by the equations in

[33].

(ATSco
I = ^2P~NCos\^- + S<p sine

(ATSco

ATSco CjL

2

ATSco

V 2

(3.36)

(3.37)

where:
I, Q = uncorrupted I and Q magnitudes as a function of the DCO

settings, signal power, and truth environment
PSig = Power of the signal in one sample, using the variance defined

previously in section 3.3.2.
N = Number of samples in the integration time
AT = Integration time
Sco,S(f) = Frequency and Phase errors

The assumption that makes Equations (3.36) and (3.37) realizable is that the true Doppler

frequency is constant over the integration interval. Without this assumption, the equation

that must be integrated has a t2 term inside of a cosine expression, which makes a closed

form solution very difficult, if possible at all. This assumption makes the dynamic model

inaccurate during long integration times in high dynamics. To counter this effect, it is

3-70

recommended that the system interfacing with the IQMDL call it at a rate higher than that

required by the system itself, in order to limit the errors caused by integrating for long

time periods during high dynamics. The system would then sum the outputs over time to

generate the rate desired.

With the proper carrier modeling done, the I and Q values are now scaled

according to the code misalignment. The autocorrelation function "R()", was described

in section 2.2.1 and shown in Figure 2-4.

IE=I-R
f A^

T
2

/
+ n(t) QE=QR

\

IP=I-R(T)+n(t)

T

v 2y
+ n(t)

QP=Q-R{r)+n(t)
(3.38)

IL=IR T + -
/

+ n(t) QL=QR
\

T + — + n(t)

where:

h, QE = Early I and Q values

h, Qp = Prompt I and Q values

J-L, QL = Late I and Q values
T = Code tracking error (s); misalignment of DCO code with the

code of the "received" signal
A = One chip width (s)

n(t) = Noise, where the variance, a\, is related to the noise floor and

the number of samples, N, by Equation (3.39):

at =JV*8.5 (3.39)

The I and Q values now have been completely defined. The code DCO is "controlled"

through the same equations as the carrier DCO, although expressed in different units.

The phase of the carrier DCO is the LOS distance between the receiver and the respective

satellite, expressed in radians of the LI carrier frequency. The "phase" of the code DCO

is simply expressed as the signal propagation time delay, which when multiplied by the

speed of light yields the PR measurement. Although code Doppler should be defined

3-71

referenced to a code period by definition, the code DCO frequency is expressed in terms

of the carrier frequency, s as the units of choice for defining LOS velocity. The code

phase is essentially the PR stored as time, which is in error by x seconds. After

specifying the I and Q values, the only task remaining is to propagate the DCO values to

the current time step, which is specified by the time input parameter to the function call.

The propagation equations for the code and carrier DCOs are given in Equations (3.40).

and (3.41).

Y CARRIER _DCO
=
 YCARRIER _ DCO ~ ®'CARRIER _DCO ' &* (3.4U)

™S2- = * =m -co -AT (3-41)
YCODE DCO YCODE DCO ^CODE DCO

iA1

C

where

0CARRIER _DCO
= Carrier DCO phase (radians)

m
CARRIER _ Dco = Carrier DCO frequency (rad/sec)

PR
DCO

= Pseudorange estimated from code DCO (DCO phase)x(c)

<PCODE _ DCO
= Code DCO phase (s)

03
CODE _DCO

= Code DCO frequency (rad/sec)

c = Speed of Light

As with most real receivers, the phase of the DCOs is not modifiable during a

simulation. Only the frequency may be modified by the user. The phase of the DCO can

only be updated in a reset call to the 'rstrt' task. When the 'updtdco' routine is called, the

DCO values are first propagated up to the update time, and then the DCOs are modified

using the equation below:

a
'DCO =®DCO

+ü)
CORR (3-42)

3-72

where
03

 com
= Frequency correction to the DCO

Both the code and carrier DCOs use this same notation. Although the true definition of

code Doppler would be defined in terms of the code frequency, the code DCO phase

shown here is defined in terms of the LI Carrier frequency, with the variables previously

defined.

<l>DCO = <PDCO -UDCO -
AT (3-43)

This concludes the discussion on the I and Q model derivation. Chapter 4 will

cover some performance aspects of the model, and Chapter 5 recommends several

enhancements that would make it much more useful.

3.5 Chapter Summary

This chapter has presented the models developed in this thesis, providing some

mathematical origins as well as a user-oriented discussion. The SS and RM models are

high-fidelity models that model trajectory dynamics very accurately, especially when

system LOS dynamics are very large. The analytical I and Q model is a faster, more

feasible implementation of generating accumulated I and Q measurements. Both of these

models are compared and analyzed in Chapter 4.

3-73

4. Model Validation and Accuracy Analysis

4.1 Overview

The very definition of the word "model" implies that something else is being

represented. Models exist purposely to replicate in whole or in part a real object or idea.

As such, their value is measured by their ability to faithfully represent the subject of their

existence. This chapter provides a fundamental verification of the models developed in

this research. It should be emphasized that any "new" model is rarely immediately

validated, as it must be used and accepted by others over time. However, there are some

tests that are done to assure basic functionality and technical competency. This chapter

presents the results from several preliminary tests that were performed to determine the

validity of the models developed in this research.

Real I and Q data recorded from the same Mitel chipset modeled here was

provided by Tracking Systems and Imaging Inc. [52] and it is analyzed and compared

with the outputs from the Signal Simulator. This data served as benchmark for

determining typical receiver noise levels, which were then simulated for comparison.

Comparisons are made between the output of Signal Simulator and Receiver Model and

the output of the I and Q model. Mutual verification is achieved as these outputs are

shown to be very similar. The generated pseudorange and carrier-phase measurements

are compared with the truth environment, which shows the divergence of the LOS

observables without signal tracking. Finally, other methods of verification are suggested

that would increase the confidence in the models developed in this research.

4-1

4.2 Analysis of real data

Tracking Imaging and Systems Inc. [52] have a long history of GPS receiver

research. The company's president, Dr. James Sennott, has patented a proprietary

implementation of a DCOP algorithm [45], and has published many papers on his

method, known as Integrated Demodulation Navigation, or IDN [40] [41] [42] [43] [44].

Their technology is implemented using the same Mitel chips modeled here, and they have

the capability of data logging (storing) 1 kHz I and Q data output from the GP2021.

They graciously provided a three minute long recording of I and Q samples, taken from

the same Mitel chipset modeled in this research.

The I and Q data is the output of a single correlator, accumulated and dumped at

-1kHz. As discussed in Section 3.3, the GP2021 has two parallel correlators. The data

provided by TISI was taken from the "prompt" correlator, with a code offset of lA chip.

As a result, the signal magnitude in the I and Q samples is %'s of what it would be if the

channel had been configured for "prompt" correlation. This must be taken into account

when calculating the true received power—a 3/4 reduction in amplitude results in nearly

half the power, or 3 dB [20].

At the start of the I and Q data file, no signal is present. For approximately two

seconds, the I and Q values display only noise, averaging to zero. Figure 4-1 displays the

I2+Q2 power calculation of the captured I and Q samples. As the signal is acquired, the

detected I +Q power jumps up, which is apparent in Figure 4-1. Notice the poor

estimates of the S/N ratio, varying by roughly 5 dB. The quality of the S/N ratio estimate

is directly related to the number of samples used to compute it.

4-2

S/N ratio of real I's & Q's from TISI

Figure 4-1. Calculated Power of real I and Q data

One of the benefits of signal simulation is the ability to turn off the data

modulation. This luxury is not afforded to us with the real data, as data bit transitions are

visible throughout. These transitions do not appear in the power plot due to the squaring

process. The data rate limits how many samples can be accumulated to both increase the

S/N ratio and estimate S/N. Without a priori information, only 20 milliseconds of data

can be integrated without incurring an ambiguity at a data bit transition. Using the

processing gain equation (2.3) in Section 2.2.3, the estimated pre-correlation S/N ratio

can be calculated as follows:

4-3

(c A

K
N

J PRE-CORR.

(C^

K*J

10LOG,
Int.time

POST -CORR.

(4.1)

where:

Int. time = Time over which S/NPOSTCORR was calculated
Tc = Time width of a C/A code chip.

The last term in (4.1) is equivalent to the processing gain for a given integration interval.

Figure 4-2 shows the calculated S/N ratio, integrating over 20ms. The S/N is

approximately 13 dB higher than that shown in Figure 4-1, due to the additional

processing gain afforded by a longer integration time. The mean S/N ratio in Figure 4-2

is 28.2 dB. Due to the correlator spacing, the actual power of the signal that was

recorded should be ~3 dB higher, or 31.2 dB.

S/N ratio of real I's & Q's from TISI

80 100
seconds

180

Figure 4-2. Calculated Power integrating over 20ms.

4-4

The receiver implemented a frequency tracking method, and did not do precise

phase tracking, which makes comparing and displaying the data difficult. Additionally,

the analysis is complicated since the phase of the I and Q samples is constantly rotating

and the data transitions every twenty samples. Phase and Frequency discriminators were

applied to the data, but the resulting plots exhibited little clarity and would not add any

understanding to this presentation.

4.3 Noise floor validation

The derivation of the noise floor was given in Section 3.3.2. The receiver model

must generate the expected noise floor accurately for the S/N estimation to be valid. The

receiver model was fed a quantized signal of only noise, and the samples after cosine

mixing were saved. The simulation used 100 ms of noise, which amounts to 571,428

samples. The variance of these samples was calculated and compared to the theoretical

noise floor value of 8.5 (see section 3.3.2). The results indicated that the noise floor

generated by the receiver model matched very well with the derived estimate. The

comparison is shown in Table 4.1. The positive and negative numbers were combined

because there was a maximum 0.0015 numerical difference between any positive and

negative value for any given number. The samples are shown before and after code

correlation, to show that in the absence of any signal these quantities have the same

statistics. The reader is referred to section 3.3.2 for the theoretical derivation of the noise

floor, and the origination of the component values in Table 4.1.

4-5

Table 4.1. Noise only signal statistics

Component ±6 ±3 ±2 ±1 Mean Var
Expected Values 0.15 0.15 0.350 0.350 0 8.5
I after Mixing 0.150055 0.150355 0.349947 0.349643 -0.002 8.505
Q after Mixing 0.150355 0.150055 0.349643 0.349947 -0.001 8.512
I after Corrleation 0.150055 0.150355 0.349947 0.349643 -0.002 8.505
Q after Correlation 0.150355 0.150055 0.349643 0.349947 -0.008 8.512

4.4 C-12 Flight Trajectory

All the data generated here used portions of a simulated trajectory based on an

actual trajectory flown by a C-12 aircraft at Holloman AFB, NM. The trajectory was

provided by Capt. John F. Raquet and previously used in coursework at AFIT [37]. The

trajectory is -28 minutes in length, and contains a full spectrum of dynamics. The

trajectory begins with the aircraft stationary, after which it takes off and performs several

box pattern landing approaches over the runway, eventually ending in some higher-

dynamic maneuvers. The actual flight profile in any navigational frame is not useful for

characterizing receiver dynamics. The true dynamic stresses on each channel occur in the

line-of-sight (LOS) frame, where the dynamics of both the aircraft and the satellite are

projected onto the signal propagation path. Accompanying this trajectory file was

ephemeris information for eight satellites. The satellites were numbered 1-8, to lessen

confusion in coding. The composite plot of LOS dynamics for all eight satellites over the

entire 28 minutes of the trajectory file is shown in Figure 4-3. This plot is provided to

give the reader an overall feel for LOS dynamics in this trajectory and the range of values

for the LOS distances and velocities.

4-6

x10 LOS Pos, Vel, & Accel

800 1000
time (s)

1000

£■ 0

-1000

5255

800 1000
time (s)

Q. o
Q

5255

800 1000
time (s)

a

co

660

Figure 4-3. LOS dynamics for C-12 trajectory file

4-7

The trajectory was analyzed for its minimum and maximum dynamics. The

maximum jerk (3rd order dynamic) experienced by any LOS path occurred on PRN 4 at

around + 1657 seconds into the flight. A two second view of the LOS dynamics starting

at this time is shown in Figure 4-4.

7 45
X107 LOS Pos, Vel, & Accel

2.4

2.35 \

2.3 -

2.2b -

2.2

2.15

 4 \ 1 1 1 1) 1 \ 1

1657 1657.2 1657.4 1657.6 1657.8 1658 1658.2 1658.4 1658.6 1658.8 1659
time (s)

1000 5255

-1000
1657 1657.2 1657.4 1657.6 1657.8 1658 1658.2 1658.4 1658.6 1658.8 1659

time (s)

5255

20

= 0

-20

660

1657 1657.2 1657.4 1657.6 1657.8 1658 1658.2 1658.4 1658.6 1658.8 1659
time (s)

■660

Figure 4-4. Maximum LOS dynamic environment

4-8

To analyze the low dynamic environment, any time prior to takeoff where the aircraft is

stationary is sufficient, and an offset of 100 seconds from the start of the trajectory was

chosen. The low dynamics in a two second time window are shown in Figure 4-5.

2.4
x107 LOS Pos, Vel, & Accel

2.35

2.3

^2.25
O
c

« 2-2

2.15

2.1

i i i i i i i i i i

100 100.2 100.4 100.6 100.8 101 101.2 101.4 101.6 101.8 102
time (s)

1000

4? 0

>

-1000

5255

o
a

100 100.2 100.4 100.6 100.8 101 101.2 101.4 101.6 101.8 102
time (s)

-5255

660

100.2 100.4 100 100.8 101 101.2
time (s)

101.4 101.8 102
■660

Figure 4-5. Minimum LOS dynamic environment

4-9

As PRN 4 is studied extensively in the results, a close up of just PRN 4's LOS dynamics

is given in Figure 4-6.

LOS Pos, Vel, & Accel for PRN 4

1657 1657.2 1657.4 1657.6 1657.8 1658 1658.2 1656.4 1658.6 1658.8 1659
time (s)

•g-600

1-700 ■3679

1657 1657.2 1657.4 1657.6 1657.8 1658 1658.2 1658.4 1658.6 1658.8 1659
time (s)

1657.2 1657.4 1657.6 1657.8 1658 1658.2 1658.4 1658.6 1658.8 1659
time (s)

Figure 4-6. PRN 4 LOS dynamics

4.5 Simulation Parameters

To equate the output of the SS, RM, and IQMOD models, simulations were run to

generate PR, CP, and I and Q values for two satellites in two different environments.

PRN 4 was chosen to be the satellite used in the simulations. All simulations run were

one second in length, generating accumulated I, Q, PR and CP measurements at a 1kHz

rate. For the data simulated from the SS and RM, the SS generated 5.7 million samples

per run, which reduced to the same final output amount as the I and Q model after

processing by the RM. All the simulations were run with fixed DCO frequencies, and

they perfectly synchronized to the truth phase and frequency at the beginning of each

4-10

Simulation. These simulations included no clock errors or signal filtering because the IQ

model does not have this capability.

The S/N ratio chosen for the run was based off the power of the samples provided

by TISI. According to their correspondence and verified through calculation, the

calculated S/N ratio of the data is ~ 15.5 dB/ms. This value only takes into account an

integration equal to the code period of 1ms. At this integration rate, the processing gain

is only 30 dB, compared with the 43 dB that can be achieved if the sample is integrated

over 20 ms. This estimate is using Mitel's S/N formula, which generates an estimate 3dB

higher than the true value of the signal (see section 3.3.2). However, the data provided is

not the true prompt signal, but offset by Vt chip. In practice, this l
A chip code offset

reduces the accumulated amplitude by %. This results in a loss of nearly half the power

of a full correlation, given that power is proportional to the square of the amplitude.

Therefore, the actual post-correlation power of the signal that was recorded is ~ 15.5

dB/ms. With the 30 dB of processing gain used to achieve this power, the signals below

were simulated at a pre-correlation S/N ratio of-15 dB.

4.6 Pseudorange and Carrier-Phase measurement comparison

As a simple check, the PR and CP measurements generated by both the RM and

the IQMOD were compared against the truth trajectories, to validate that the DCOs had

been programmed correctly and to measure the errors generated from the Fixed DCO

with the truth environment. In the plots that follow, the output generated from the Signal

Simulator (SS) and Receiver Model (RM) is located in the top plot, whereas the bottom

plot is the output of the I and Q model (IQMOD).

4-11

Figure 4-7 shows the phase error in the DCO over the course of the one second

simulation. This error was calculated by subtracting the integrated carrier-phase

measurements generated by the models from the true integrated carrier-phase

measurements. The dynamics are appreciable, keeping in mind that the fixed DCO was

perfectly synchronized at the beginning of the interval.

SS & RM generated output

O 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (s)

0.9

Figure 4-7. Comparing Carrier Phase errors for PRN 4 in high dynamics

These two plots should be exactly the same, as the DCO values are not changed over the

interval and the generation of the truth LOS phase and frequency values is performed

using essentially the same equations in both models. The above two plots, if subtracted,

would yield a maximum error of 7xl0"4 cycles over the entire second. Once again, this is

just to show equivalency in the dynamic truth models and DCO error equations. For

completeness, the pseudorange error plot is generated in the same manner and shown in

Figure 4-8. The maximum difference between these two truth environments is slightly

less than 6 mm.

4-12

SS & RM generated output

I
UJ

o
■D

£-10
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (s)

Figure 4-8. Comparing Pseudorange errors for PRN 4 in high dynamics

The frequency errors were generated in the same manner, by subtracting the DCO

frequency from the LOS Doppler frequency of the truth environment. Either DCO could

be subtracted (carrier or code), as for this example they were set to the same values. A

comparison plot of the frequency errors is shown in Figure 4-9.

SS & RM generated output

Figure 4-9. Comparison of frequency errors for PRN 4

4-13

Incurring approximately 70 Hz of frequency error after only one second is an

indication of the effects dynamics can have on tracking errors. The frequency and phase

errors were estimated from the I and Q data using a Costas 2-quadrent arctangent phase

discriminator and a four-quadrant arctangent maximum likelihood frequency estimator

[14]. These discriminators break down at ±90 degrees, and -±25 Hz, for the phase and

frequency discriminators, respectively. The Phase estimation plot is shown in Figure

4-10.

SS & RM generated output

Figure 4-10. Costas phase discriminator output, applied to the I and Q samples.

4-14

The noises of the two models are independent, so a direct subtraction should yield

a zero mean white noise, if the models were exactly equivalent. The third plot in Figure

4-10 shows this subtraction, with some points removed. The points which are not shown

are those that occurred when one phase estimator experienced a 180 degree flip before

the other. This results in points plotted at -175-180 degrees, until the other phase

estimator incurs its 180 degree flip. With these points removed, an increasing bias can be

seen in the subtraction of the SS and RM estimated phase and the IQMOD estimated

phase. This is due to the increased resolution of the SS and RM model over the IQMOD,

which assumes a fixed Doppler offset over an integration interval.

The Frequency estimation plot is shown in Figure 4-11. It was mentioned

previously that the discriminator breaks down at -±25 Hz, however the plot seems to

indicate a break-down at 20 Hz instead. This is because the last sample to fall below 25

Hz was only slightly higher than 20 Hz, and the axis is set to the limits of the data. Some

points were not plotted in the third plot of Figure 4-11 for the same reasons as before.

The same trend in Figure 4-10 is not seen when subtracting the frequency estimates of the

different models. This is due to the inherently less accurate nature of frequency

measurement. The points that were generated in of Figure 4-11 were estimated from I

and Q values accumulated over 20 ms, in order to reduce the noise of the measurements.

With frequency estimation, the quality of the estimate is not nearly as high as the phase

measurement, when compared in this context. Thus, in order to see visual correlation of

the errors, the I and Q values were summed to generate better frequency error estimates.

.This long integration time causes these estimators to work poorly in high dynamics, a

classical trade off in GPS receiver design. [14].

4-15

SS & RM generated output

0.4 0.5
time (s)

Figure 4-11. 4 Quadrant frequency discriminator applied to the I and Q samples

As the frequency offset gets very large, the frequency estimator starts breaking down, due

to the ambiguity in its phase measurements.

In comparison with the true phase errors (Figure 4-7 and Figure 4-8), the

estimators perform reasonably well. It can be seen already that the models match very

closely with one another. The dynamics are so extreme here that detail is lost in the

discriminators ability to report the errors towards the end of the one second simulation.

4-16

However, the phase discriminator does show a slight increase in modeling accuracy of

the SS and RM over the IQMOD.

4.7 I & Q output comparison

The direct accumulated I and Q outputs from the prompt correlator are now

compared. The Early and Late outputs were also recorded, but displaying them is

redundant as they are linked to the prompt's reaction to the errors in the carrier DCOs.

Over this one second, there are only 7 meters of Code offset, not enough to notice any

difference of the early and late values, especially given that they were perfectly

synchronized at the beginning of the simulation.

Figure 4-12 shows the I and Q outputs from both the SS/RM and the IQMOD.

4000
SS & RM generated output

Figure 4-12. I and Q output for PRN 4 under high dynamics.

If they were not before, the dynamics of the system are readily apparent here.

The fixed DCO values quickly cause the signal to loose phase lock. The zero frequency

offset a the beginning of the run has grown into a -70 Hz offset after one second. This is

4-17

not due to a high Doppler value, but to a high rate of change in Doppler, which can be

seen from Figure 4-6. The Q value, (starting at zero), goes positive first, this indicates

that the phase error is positive, and that the Doppler frequency is increasing. However,

due to the aliasing in the sampling process, this is not the case. A quick look at Figure

4-6 reveals that the Doppler frequency is actually decreasing. This must be taken into

account when applying feedback to this system. If the aliasing phase and Doppler

reversal is ignored, the tracking loop will become unstable.

The effects of the frequency error are readily apparent in the integration of the

samples, shown in Figure 4-13. Here the samples are accumulated over a data bit width

of 20 ms, and then used to calculate signal power.

SS & RM generated output

Figure 4-13. Comparison of accumulated S/N ratio, 20 ms integration time

As the frequency error increases, the integrated samples decrease, due to the

rotation of the I and Q values being integrated. As the frequency increases, the vector

sum of each I and Q value starts to converge back to zero. Essentially, the beat frequency

4-18

caused by the mismatch of the received frequency with the DCO frequency is integrated

over a period of 20 ms. At approximately 0.7 seconds in Figure 4-13 the beat frequency

reaches 50 hertz, at which point the samples integrate over a complete cosine wave,

which averages to zero. As the beat frequency then increases past 50 Hz, the integration

does not average to exactly zero and thus the signal estimate comes back up. This is the

reason to maintain a zero frequency offset, so that signal power is not lost during

accumulation.

To appreciate the impact of the dynamics seen above, the same plot is shown

Figure 4-14 for the low dynamic case in. Here the setup is the same, but the aircraft is

sitting stationary on the runway during this second. Here, the DCO values are fixed for

the same amount of time with little more than 60 degrees phase tracking error. One can

see that again the IQMOD output follows the SS & RM generated output.

<D 4000
T3

S. 2000

SS & RM generated output
~i r i 1 1 r

i i i i i i i i_

4000

p- 2000
CO

E -2000

0.2 0.3 0.4 0.5 0.6 0.7

IQMOD Output

0.8 0.9

ra -4000

~~i r ~i r "i r

i i i i J i_
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (s)

Figure 4-14. I and Q output for PRN 4 under low dynamics.

4-19

4.8 Statistical Analysis

The simulation with limited dynamics, illustrated in Figure 4-14, provides a good

opportunity for statistical analysis. The 1 second simulations generated 6,0001 and Q

measurements—1000 for each of the correlator channels—early, prompt, and late I and

Q. To validate the equation based model, it is valid to compare the statistical mean and

variance of the samples between models. It is also productive to look at other averages,

such as S/N ratio, relative magnitudes between the early prompt and late samples, and the

expected processing gains.

Phase locked I and Q values are necessary for calculating averages and statistics

on the I and Q measurements. If the mean value of either the I or the Q changes, the

validity of a mean and variance calculation drops. Therefore, only the first 300

milliseconds of the I and Q values in the low-dynamics simulation was used in the

statistical analysis. The means and variances on the I and Q values are given in Table

4.2.

Table 4.2. IandQ statistics

Theoretical:
SS&RM

PRN4
IQMOD
PRN4

SS&RM
PRN8

IQMOD
PRN8

I Early Mean 1304.61 1296.02 1210.31 1292.95 1304.74
Q Early Mean 0.00 -28.63 -78.77 -38.01 -81.31
I Prompt Mean 2609.22 2615.01 2601.41 2618.76 2598.30
Q Prompt Mean. 0.00 -99.11 -146.43 -85.44 -140.24
I Late Mean 1304.61 1318.75 1226.96 1287.11 1309.62
Q Late Mean 0.00 -43.47 -66.66 -47.85 -50.29

I Early Var. 220.40 246.16 243.71 216.38 236.90

Q Early Var. 220.40 244.18 231.34 221.49 233.66

I Prompt Var. 220.40 236.00 239.26 221.55 239.20

Q Prompt Var. 220.40 261.95 278.09 252.28 236.49

I Late Var. 220.40 241.17 249.73 215.26 239.56

Q Late Var. 220.40 241.22 255.54 222.53 241.00

4-20

The theoretical column in Table 4.2 was calculated with the same equations used in the I

and Q model. The slight positive bias in the variance of all the measurements is because

although the first 300 samples were relatively unaffected by the slowly growing phase

error, they do experience some of the effects. To prevent this, the DCO values should be

continually updated so accurate statistics can be taken. The mean I values of both models

are very close to the theoretical estimate, as well as each other. Some evidence of signal

phase error is evident in the Q values, as they are all consistently negative and exhibit a

slight bias. From Figure 4-14 we can see the signal start to migrate negatively, which

support the conclusion on the negative Q values. Overall, however, there is good

correlation between the models and theoretical values.

The data in the last table was averaged over the all the samples. The S/N ratios

match almost perfectly. The rows containing the W and W/O are variables calculated

inside the program, and differentiate between signal power with and without the other

signals present. This gives us ability to directly measure the effects of the other signals in

the system, especially useful for pseudolite research.

Table 4.3. S/N ratio Statistics.

SS&RM
PRN4

IQMOD
PRN4

SS&RM
PRN8

IQMOD
PRN8

S/N setpoint -15.00 -15.00 -15.00 -15.00

W/O cross-corr. -15.08 N/A -15.08 N/A
W/ cross-corr. -15.34 N/A -15.34 N/A

Mean 1ms S/N 15.45345 15.46 15.44852 15.44852

Mean 20ms S/N 28.46185 28.48 28.46445 28.46445

Processing Gain 13.00839 13.01314 13.01593 13.01593

4-21

4.9 Summary

This chapter has demonstrated basic functionality and the fundamentals of the

models developed in this research. Chapter 5 presents a summary of the work

accomplished for this research and a list of recommendations for further validation and

application of these models.

4-22

5. Conclusions and Recommendations

5.1 Conclusions

The development and initial testing of three contributions in GPS system and

receiver modeling has been completed. The developed models are rare, if not unique, in

their capabilities and adaptability. The purpose of this research was to design and

validate GPS signal and receiver models that are accurate in all areas pertinent to

comparing or evaluating new receiver technologies. It is recognized that validation is not

an immediate process. Any new product must be used and tested by the community in

order to be trusted. However, initial model validation is performed, and these results

indicate a high level of modeling accuracy.

Three individual models were developed, that provide a new simulation and

testing capability to Air Force Research Laboratory and the Air Force Institute of

Technology. These models are (1) A GPS LI C/A code Intermediate Frequency (IF)

signal simulator (SS), (2) a realistic GPS receiver hardware model (RM), and (3) a fast,

analytical, accumulated I and Q signal/receiver model (IQMOD). The result fills a void

in the GPS industry identified by Tetwsky and Soltz of the Draper laboratory [50]. This

chapter discusses the impact of these models first individually, then as a whole. Some

potential applications of these models are suggested, and recommendations are given for

furthering this research.

5-1

5.1.1 GPS IF Signal Simulator

The main strength of this model its ability to accurately generate a spectrum of

downconverted GPS signals and noise that are correlated with an input trajectory and in

phase with true GPS system time. The output of this model is completely representative

of what is seen at the output of real hardware, and with a few modest enhancements

should be capable of generating a signal that can be processed by real hardware. Many

receiver effects are modeled, although many GPS system error sources are not. Receiver

clock bias and drift are simulated, although the models for the errors themselves have not

been verified. The effects of the errors have been properly handled, however, so in the

event that error models are replaced with more realistic or proven models, their effects

will be accurately portrayed.

Although many software simulators are available that generate pseudorange and

carrier-phase measurements from receiver trajectories and satellite ephemeris, existing

receiver tracking loop models capable of accepting these same inputs were not found in

the literature review. The SS model developed here is unique in that is uses receiver

trajectories and satellite ephemeris as inputs to simulate an accurate GPS signal spectrum

at a sampled IF. The capability of generating sampled GPS signals at a down-converted

IF from a receiver trajectory and satellite ephemeris was not found in the literature

review. As far as is known, the contributions made by this software are original to the

field of GPS simulation.

5-2

5.1.2 Applications of the GPS IF Signal Simulator

The output of the Signal Simulator is typically a quantized bit stream of one's and

three's, which represents the spectrum of un-processed GPS signals and noise. Without

sufficient receiver processing, this bit stream provides little, if any, information prior to

processing. Some devices on the market today generate such sequences only to be

transmitted to a central location. NavSys Corporation makes such a product, based on the

same GPS RF front-end (GP2010) used in this research. The device is known as a

TDDGIT® sensor, and the location system which uses it is called TRACKTAG. This

simulator faithfully models the sampled spectrum that TIDGIT® sends to TRACKTAG.

The general application of this model is to simulate the GPS signals adequately

for input by receiver simulators, such as the RM, and potentially for real hardware as

well. As GPS RF simulators are very costly, it would be advantageous to test the digital

section of a receiver using a software signal model, instead of using a GPS RF simulator

and the RF front-end of a receiver to generate the digital samples. The SS generates a

digitized signal directly, which can then be imported into actual hardware. In the case of

the Mitel chipset, a 20 second signal would consist of 114 million samples, each of which

only require two digital bits to store. This signal, as well as longer ones, could

potentially be stored much more efficiently than what is done in the Matlab® "MAT" file

format (the Matlab® .MAT file requires almost a gigabyte of storage space for this 20

second signal). It is expected that few enhancements to the SS would be necessary,

depending on the desired application, for the SS output to be used in real hardware. The

minimum enhancement is the insertion of an actual GPS data message into the software,

replacing the currently randomly generated data bits. This data sequence is necessary for

5-3

proper synchronization in the receiver. The only component necessary to enable this

capability is the data message itself, as the data modulation has been fully implemented

and synchronized to GPS system time. Using real hardware to process the signal

generated here would be the ultimate verification of this signal simulator, and would

provide the ability to tweak the simulator to maximum accuracy.

5.1.3 Recommendations for further development of the GPS IF Signal Simulator

In order for real hardware to calculate a position from the simulated signal, some

of the GPS system errors would need to be modeled in the software. While the absence

of most of these errors would only increase the accuracy of the position calculated, some

of the errors that are anticipated and accounted for would need to be implemented. A

principal example of this type of error would be ionospheric error. A ionospheric model

is nearly always applied, which reduces the error considerably. Modeling the GPS errors

at this stage is a slightly different process than that modeling performed at the

pseudorange level. Some models are easier and more accurately implemented, such as a

multipath model. Multipath errors can be accurately simulated by including the

simulated signal multiple times, with the multiple copies delayed and reduced in power.

This type of error is difficult to model in the pseudorange (PR) and carrier-phase (CP)

measurements [6]. In fact, the inclusion of multipath in this model could lead to

advances in characterizing multipath errors in PR and CP measurements, for a variety of

different receiver topologies. Other errors are not as easily modeled. The ability to

characterize errors at the high sampling rates of the SS gives rise to a much more detailed

model, and implementing simple models here can fail to recreate the characteristics of the

5-4

error after the samples are processed and accumulated. High fidelity error models would

likely have to be developed and tested to ensure their validity.

A more complicated, but nonetheless valid approach to verifying the SS model

would be through the use of RF satellite simulator. A highly accurate and configurable

RF simulator could be fed the same environment and control parameters as the SS, which

could be fed to a receiver using the Mitel chipset. Some comparisons would be valid

here. Using this approach, the noise corrupting the real signals is not reproducible by the

SS. Only after the true and simulated signals were processed could their results be

adequately compared. If the output of the RM were to be compared to the output of the

real hardware, the comparison would be limited by the effects of different noises on the

tracking process. In addition, the receiver model would need to be expanded and the

effects of the various timing signals used in the real hardware would need to be

implemented. As the purpose of the RM was initially to dodge this level of hardware

modeling, this approach to verification is not recommended. A better approach would be

to data log the digitized samples (@ 5.7 MHz) out of the actual GP2010 (or GP2015),

and run the same signal into the RM as is seen by the actual GP2021. A comparison of

the I and Q values could then be made, if one was very careful to initialize both the RM

and the GP2021 to exactly the same values. There are many quantities here to

synchronize, requiring additional modeling in the RM as well. The DCO settings,

dumping rates, timing signals, correlator configuration, and DCO adjustments would

have to occur at precisely the same times during the simulation as in the real world in

order to directly compare the accumulated I and Q samples. In this approach, the real

hardware would process the signal first, all the while recording and storing all DCO

5-5

values, their corrections and timestamps, I and Q output and the dump times at which the

I and Q data was latched. With this and undoubtedly other information about the chip as

it processed the data, the Receiver model could theoretically generate the same I and Q

values as the real hardware.

There are other enhancements to the SS that would make it very valuable and

extendable into other applications. These include the ability to add and drop satellites

during a run, vary the S/N of the signals individually and/or collectively over the course

of a run, and developing an satellite visibility model as a function of the input trajectory

and antenna mounting to simulate body frame masking. As the largest crystal oscillators

are deterministic and g-force induced, the development of a g-sensitive clock model

would more accurately reflect the performance of a receiver in high dynamics.

Some fundamental programming changes need to be made in order to generate

longer signals. The current implementation requires the machine to have as much RAM

as the final size of the signal being generated. This is due to the complicated nature of

incrementally saving variables to disk in Matlab®. Low-level file writing commands are

available in Matlab®, and could be used to overcome this limitation. Such an

enhancement would be necessary to generate signals long enough to make a real

hardware test practical.

A highly desirable enhancement to the software would be the development of a

Graphical User Interface (GUI) for controlling the parameters of the simulation.

Currently, the load_global_params.m file must be open in an editor and modified to

control the parameters of the simulation. A GUI is easily developed in Matlab®, and

would enhance the utility and lower the learning curve of the SS. This GUI should also

5-6

include the RM parameters, or a separate GUI should be developed for the receiver

model as well.

5.2 GPS Digital Signal Processing Receiver Model

The literature review for this thesis suggests that the 12-channel C/A code RM is

unique in its capacity to process GPS signals simultaneously; other products that were

found with similar capabilities only consist of a single channel (see section 1.4.2).

Simultaneous demodulation is necessary for some advanced receiver designs, such as

DCOP receiver architectures. Additional capabilities of the model are highlighted here;

the combined performance of the SS and RM model is given in subsequent sections.

The RM performs the high-frequency (>4MHz) baseband digital signal

processing in a GPS receiver. These processes are typically very similar among receiver

designs, and are usually implemented in custom digital circuitry. The RM is designed to

allow the user to customize the portions of the design that are likely to vary from one

design to the next. For this research, the RM was configured to model the Mitel GP2021

chip. Only the signal processing section shown in Figure 5-1 is faithfully modeled. The

RM design focus was to accurately duplicate the signal processing functions, while

minimizing the level of digital complexity encountered in an actual hardware chip. For

the purposes of comparing fundamental design topologies, the in-depth digital operation

is not necessary and often hinders the process. The Simulink® modeling environment

allowed this goal to be met.

5-7

1, 2.
3, 6

CODE
MIXER

CARRIER
MIXER

r<8>

SIGN
AND

MAG
-H SOURCE I ,

CARRIER {-"—i
DCO ^

CARRIER
CYCLE

COUNTER
<x

H&

16 BIT ACCUMULATE
AND DUMP - Q_THACKING

16 BIT ACCUMULATE
AND DUMP-Q_PROMPT

C/A CODE
GENERATOR

CODE L^l_
SLEW C,-

CODE-<*-
DCOT-r-

CODE
PHASE

COUNTER

EPOCH
COUNTERS

• ACCUMS, CODE PHASE, ETC

16 BIT ACCUMULATE
AND DUMP - LPROMPT

<SH 16 BIT ACCUMULATE
AND OUMP - LTBACKING

IN AND OUT
> DATA

BUSSES

Figure 5-1. GP2021 tracking module block diagram [23]

Having an easy-to-use graphical interface to a detailed Receiver model is a major

benefit of the RM. As recommended by Tetwsky and Soltz [50], Simulink® was used to

model the GPS receiver model. Simulink® offers a good balance of user-friendliness and

modeling flexibility. Simulink® allows the user to quickly see and understand the

functional hierarchy and layout of a GPS receiver. While this document does not attempt

to teach the operation of Simulink®, it is reasonable to assume that the learning curve is

not prohibitively large. Working in Simulink® is comparable to dragging, dropping, and

connecting block diagrams. There is no programming language to learn with Simulink®.

The RM is designed for closed loop operation, and is readily controllable by any

feedback loop implemented in Simulink®. The tool is designed to save nearly every

signal of interest, at up to the full sample rate, to be used for analysis and/or debugging of

a simulation. Simulink® also allows a user to view signals as the simulation runs, which

gives the user an animated view of the system response at a reduced time scale.

5-8

5.2.1 Applications of the GPS Receiver Model

The receiver model can only perform processing of an externally generated signal.

The individual contribution of the RM, without any signals to process, is very limited.

The verification that the processing is done correctly requires processing signals with

known characteristics. Thus, the validation of the SS and RM must occur

simultaneously, as neither the output of the SS nor the processing abilities of the RM are

verifiable without using them together.

Signals for the RM are not limited to those generated by the SS. The RM could

be used to process actual samples recorded out of the Mitel GP2010 or GP2015 front end.

As the signals are pulled out of the composite signal through a time-frequency search

process, the receiver could be configured to generate a set of pseudoranges and carrier-

phase measurements for calculating position. The samples would need to be time tagged

in order for this to occur. This again represents an application using the TRACKTAG

system from NavSys, [29]. The RM could be experimentally used as the sample

processing section of the system.

5.2.2 Recommendations for further development of the GPS Receiver Model

As mentioned in the recommendation section for the SS, a GUI interface would

be very helpful for simplifying simulation control. The GUI interface would be

additionally useful if it controlled the signal selection done by the bus selector blocks (see

Figure 3-34). To speed up the simulation, some of the functions could be implemented in

MEX files. MEX files are used in Matlab® and Simulink® to speed up processes that run

slowly in either Matlab® or Simulink®. The files are of a specific format and are

5-9

complied to run faster than the pseudocode in Matlab or user defined blocks in

Simulink®.

5.3 Analytical I and Q signal/receiver model

The analytical I and Q model is an important contribution in the area of ultra-tight

INS/GPS integration and DCOP system modeling. In fact, this model has already been

used to generate I and Q values in simulations of an ultra-tight INS/GPS system

performed by a fellow thesis student [35]. The analytical I and Q model was validated in

Chapter 4 against the output of the SS and the RM, which performed simulated signal

generation and processing. In both low and high dynamics the I and Q model generated I

and Q values undistinguishable from those generated by the SS and RM. Direct

mathematical comparison of the I and Q values is not performed due to the relatively

high noise ambiguity of the samples. The visual comparisons of the two outputs in

Chapter 4 provide suitable validation for the scope of this thesis. The equations for

estimating the amplitude and noise variance were also validated against the SS and RM in

Table 4.3.

The I and Q model generates I, Q , PR, and CP measurements. It simulates a 12

channel C/A code single frequency receiver at an arbitrary final IF frequency. The model

can operate in environments were the update rate is not fixed, and the satellites used and

their channel assignments can be changed at any function call.

5.3.1 Applications of the Analytical I and Q signal/receiver model

The I and Q model has direct application in the simulation of both DCOP and

ultra-tight GPS/INS navigation systems. It consists of only a few Matlab® files, and has a

5-10

logical command line interface. It can be used in any Matlab® simulation of these types

of systems. It can also be used for any high-level GPS receiver simulation, such as those

done by Ward to determine tracing thresholds under jamming [57]. In fact, this model

provides a multiple channel extension to the stated capabilities of the model used in his

simulations, described in [58].

5.3.2 Recommendations for further development of the I and 0 model

The I and Q model currently does not employ any GPS error models, system or

otherwise. It is recommended that atmospheric error models be added, as well as receiver

clock errors. Due to the high G-force environments that DCOP and ultra tight

architectures are well suited for, the inclusion of a g-sensitive clock model is also

required. Additionally, as trajectories of aircraft are simulated, body masking of the

antenna should be modeled to accurately simulate the blockage of satellites as the aircraft

maneuvers. Signal attenuation effects could also be added here, and in general the ability

to vary the S/N ratio of the received signals during a run should also be added.

5.4 Performance and Accuracy analysis of all three models

The signal generation and processing models and their operation are inherently

different from the I and Q modeling done in the analytical model. These models are

linked only in that they should generate the same quantities. The SS and RM models

have to do with IF signal generation and receiver processing functions, while the

analytical I and Q model is based on deriving the theoretical effects of the processes

implemented in the SS and RM. Thus, a comparison of their outputs provides a first level

validity check in the modeling. This is the level of validation performed in this thesis.

5-11

More robust and valuable validation techniques were known, and they are listed here

rather than performed due to the time constraints of this work.

The output of the RM model, fed by the SS model, was compared with the output

of the I and Q model with identical input parameters. The results were impressive, the

RM behaved nearly exactly as predicted by the equations. Phase and frequency

discriminators were applied to the output I and Q values, which accurately estimated the

true phase and frequency errors in the system (compared to the known errors). The

results indicated that the extra modeling accuracy afforded by in-depth modeling of the

signal creation and processing was noticeable from comparing the phase discriminator

outputs of the two models. As this simulation was limited to the LOS dynamics of a

commercial C-12 aircraft, and limited to a length of one second, there are some modeling

applications where the high-fidelity dynamic modeling in the SS is needed. However, the

I and Q model is a much more practical model due to its size, speed and portability. It

was previously mentioned that the accuracy of the model could be increased by reducing

the integration time parameter, allowing the assumption of a fixed Doppler frequency

over the integration interval to have less of an impact on the modeling. Therefore, most

applications will benefit from using the analytical I and Q model over the SS and RM,

due the massive differences in processing and memory requirements between the models.

However, the analytical I and Q model would be inherently less accurate at generating I

and Q values perturbed by some GPS error sources such as multipath.

5-12

5.5 Final Remarks:

The results of this research are recognized as the models themselves, not only the

results of the initial validation process. It is known that validation is key for these models

to be accepted, but it is also known that only a very in-depth analysis of these models,

outside the scope of this thesis, could possibly convince the community outright that they

are, in fact, accurate. Therefore, the validation process is just beginning. It starts with

the first person to use these models and never truly ends.

The work done was therefore focused on developing the capabilities and

usefulness of the models to the community that identified their absence. If the models are

not useful or easy to use, their validity does not matter. These models are the only ones

known to exist that generate multiple channels simultaneously, and are fed by receiver

trajectory and satellite positions. This makes them prime candidates for doing DCOP or

ultra-tight GPS/TNS integration research.

In closing, it should also be mentioned that the educational utility of these models

is potentially tremendous. The ability of Simulink® to display the results of the

simulation as it runs, combined with the ability to deploy the Simulink® models

incrementally gives rise to the use of these models in teaching receiver design and spread

spectrum principles.

5-13

APPENDIX A Acronym List

AFTT Air Force Institute of Technology
AGC Automatic Gain Control
BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
COTS Commercial-Off-The-Shelf
CP Carrier-Phase
DCO Digitally Controlled Oscillator
DCOP Direct Correlator Output Processing
DGPS Differential Global Positioning System
DLL Delay Locked Loop
DMSO Defense Modeling and Simulation Office
DOD Department of Defense
DSP Digital Signal Processing
DSSS Direct Sequence Spread Spectrum
EKF Extended Kaiman Filter
GPS Global Positioning System
GUI Graphical User Interface
I In-phase
IF Intermediate Frequency
EVIUs Inertial Measurement Units
INS Inertial Navigation System
LO Local Oscillator
LOS Line of Sight
MEX Compiled MATLAB function
MSIAC Modeling and Simulation Information Analysis Center
PN Pseudonoise
PPS Precise Postioning Service
PR Pseudoranges
PRN Pseudorandom Noise
PSD Power Spectral Density
PSK Phase Shift Keying
Q Quadra-phase
QPSK Quaternary Phase Shift Keying
R&D Research and Development
RF Radio Frequency
SA Selective Avalilability
SBA Simulation Based Acquistion
SPS Standard Positioning Service
SV Satellite Vehicle
TDL Tau-Dither tracking Loop
FFT Fast Fourier Transform
UTC Universal Coordinated Time

A-l

DOP Dilution of Precision
HDOP Horizontal Dilution of Precision
VDOP Vertical Dilution of Precision
HERE Equivalent Range Error
AVAR Allan Variance

A-2

® APPENDIX B Matlatr GPS Signal Simulator

Source code for the Satellite Simulator. Function listing:

gen_samples.m

function signal_out = gen_samples(output_file, sv_pos_mat, flight_traj)
% usage: signal_out = gen_samples(output_file, sv_pos_mat, flight_traj)
%
% This function generates down-converted sampled values of the LI C/A GPS signal at
% the output of a GPS RF front end. At present, the code is taylored to the Mitel
% GP2010 GPS Receiver RF front end.
%
% inputs: output_file name of file where the composite signal & time is stored
% The variable stored in the file is "gps_sig".

flight_traj ECEF recv. position with time in true GPS time
Col #: 1 2 3 4 .5 6 7

time V x V_^ V_z

sv_pos_mat Satellite positions in ECEF with true GPS time
Col #: 1 2 3 4 5

time PRN#

Samples of down-converted C/A code spectrum % Output: signal_out
%
% the rest of inputs/parameters can be found in load_global_params.m Note that the
% time in the receiver & satellite position files must be the same. The rate can
% be variable (1Hz, 10Hz, etc.) but must be constant and common between the input
% files. The gps_iq_model program will generate the sv_j?os_mat file needed here
% in the correct format for a given trajectory file.

B-l

% This function calls the following functions: load_global_params.m (1)
% get_tp_times.m (2)
% test_time_match (2a)
% sampled_recv_signal.m (3)
% get_corr_noise (3a)
% if_filt.m (4)
% gen_clock_errors.m (5)
% gen_freq_errors (5a)
% get_allan_var (5b)
% sampled_recv_chan.m (6)
% calc_sig_amp.m (7)
% quantizer.m (8)
% (simulink Block) agc_a2d.mdl (9)
%
% This function is the 'parent' function for a set of functions comprising the model.
% The functions are called in the following way:

% gen_samples
% \

1oad_global_params
\
get_tp_times

\
time_test_match

\
sampled_recv_signal

\
| get_corr_noise

\
| if_filt.m

gen_c1ock_errors
I , \

| gen_freq_errors
| get_allan_var

sampled_recv_chan
I \

calc_sig_amp.m
I if_filt.m

\
quantizer.m

% \
%(Simulink) agc_a2d.mdl

% specific command for example 1:
% gen_samples('samples.mat',sv_pos_mat_exl,trajectory_mat,PRN_VEC)
% gen_samples('samples.mat',sv_pos_mat(1:end-l,:),lab2,PRN_VEC)

tic
strtflop = flops;

% Perform input variable checking

if nargin<2
disp('Error: not enough input arguments'),-
return

end
if isempty(output_file)|isempty(sv_pos_mat)|isempty(flight_traj)

disp('Error: input argument(s) empty')
return

end
%
% Clear global output variables from any previous run:
%
clear global REAL_SNR IDEAL_SNR DATA_BITS PIT_CNT SNR_DB
clear global DOPPLER_FREQ_TRUE RAD_TO_SV_TRUE DOPPLER_FREQ RAD_TO_SV

%
% Start by loading/defining the global parameters with a call to:
%
load_global_params;
% List the global parameters used in gen_samples: (note, the global is redudant here
% since all the global variables are present and initialized with the above function
% call. However, this provides the ability to comment out the above line and
% interatively change global variables from call to call (without changing the file
% itself)
global START_TIME
global STOP_TIME

B-2

global RUNJTIME
global PIT_CNT
global PARSE_SIG_INTERVAL
global QUANTIZE_SIG
global DYNAMIC_AGC
global SAMPLING_DT
global AGC_DEBUG
global PRN_VEC
global ADD_OSC_ERRORS
global CARRIER_FREQUENCY
global SAMPLING_FREQUENCY
global DOPPLER_FREQ_TRUE
global RAD_TO_SV_TRUE
global DOPPLER_FREQ
global RAD_TO_SV
global DATA_MESG
global REAL_SNR
global IDEAL_SNR
global SNR_DB
global REPEATABILITY
global DATA_BITS
global CLOCK_ERRORS
global ML_QUANT_THRESH

% Commenting out the following line will return the GPS signal as a global variable
% in the workspace:
% global gps_sig

%
% Do a "1st look" check to check time syncronization of the input files
%
index = find(sv_pos_mat(:,2)==PRN_VEC(1));
if sum(sv_j?os_mat (index, 1) -f light_traj (: , 1)) ~=0

disp('Error: time stamps in files not syncronized');
return

end

%
% If START_TIME has not been initialized, then set start time to the first time
% in the input files, trunkated to the first millisecond
%
if isempty(STARTJTIME)

START_TIME=ceil(sv_pos_mat(l,l)*1000)/1000; %start at the first full millisecond
end
STOP_TIME = START_TIME+RUN_TIME; %calculate the real GPS time to stop the simulation
%
% are start and stop times valid?
%
if isempty(find(START_TIME>=flight_traj(1,1)))|...

isempty(find(ceil(STOP_TIME)<=flight_traj(end,l)))
disp('Error: Start or Stop time is not included in range of input file')
return

end

%
% Random number initialization
%
if REPEATABILITY

randn('state',200000); %resets it to the same state each time (200000 is arbitrary)
else

randn(' state' , sum(100*clock)) ,- %resets it to a different state each time,
end

%
% Initialize local simulation parameters
%
t0=0; % simulation start time (see note at bottom of this file)
gps_sig = []; %initialize the final output variable
PIT_CNT=1; %Pre-integration time counter, also an "code epoch" counter if PIT is 1ms

% .
% Begin main loop
%
while t0<RUN_TIME

%
% Create the time vector for this section of samples

B-3

time=[tO:SAMPLING_DT: (PIT_CNT*PARSE_SIG_INTERVAL)] ;
% THE FOLLOWING LINE IS SPECIFIC TO THE MITEL 2010 SAMPLING RATE ONLY!!!!
time=(round(time*10*9) /10~9) ;
% one would think that the above line of code is unnecessary, however
% experimentation has shown otherwise. If you don't believe the following line
% makes any difference, run diff.m on 'time' before and after executing the
% following line. Why the results are different, only Mathworks Knows.
% If your still not convinced, run simulink with and without the following line,
% and subtract the time vector in from the simulation time (generated by Simulink)
% Note that maximum error is much less with the following line.
% ****(DON'T TURN "interpolate data" off in the load from workspace block in
% simulink--if the sample times are just slightly off, and this
% box is unchecked, Simulink won't load those values.)****

%
% Get the signal propagation times (Tp) for each satellite for each sample time
% Note: These times multipled by the speed of light are the TRUE distances
% (assuming no SV position error) from the recevier to each satellite at each
% sample time
%
Tp_vec = get_Tp_times(time, sv_pos_mat, flight_traj);
if isempty(Tp_vec)

disp('Error: Time stamps are not aligned, simulation aborted')
return

end

%
% Generate the sampled, non-quantized recevied signal @ the IF_AFTER_SAMP freq.
% The vector returned here contains the LI C/A code signals from each satellite
% scaled to the approprate S/N ratio, sampled at the SAMPLING_FREQUENCY. Other
% switches in load_global_params control the other signal characteristics.
%
[composite_signal, clk_bias] =sampled_recv_signal (time, Tp_vec) ,-

%
% Quantize the results—Quantization is currently 2-bit, 4-level, and implements
% the Mitel sampling distribution (Magnitude bit has 30% duty cycle, and sign bit
% has a 50% duty cycle.) The MATLAB method selects the correct thresholds for
% each section of the signal provided in the loop such that the resultant vector
% is -zero mean with all l's & 3's (30% are 3's & 70% are l's)
%
if QUANTIZE_SIG&(~DYNAMIC_AGC)

% if using Dynamic AGC, wait until entire signal is generated, then quantize
% it in Simulink
composite_signal_quantized=quantizer(composite_signal);

else
composite_signal_quantized=composite_signal;

end

%
% Concatenate the output variable with the receiver time.
%
samples = [time', composite_signal_quantized']; %samples is a n X 2 vector

%
% Create (or append) to signal output variable
%
gps_sig = [gps_sig samples']; %samples is a 2 X n*PIT_cnt vec.

%
% Setup the correct starting sample time for the next time vector (next loop)
%
tO = time(end) + SAMPLING_DT;
PIT_CNT=PIT_CNT+1; %increment the pre-integration time counter

%
% Occasionally output progress
%
if mod(time(end),0.003)>=(0.003-SAMPLING_DT)

dispfsprintf('Done through time = %.3f (%.lf%% completed)',time(end),...
100*(time(end))/(RUN_TIME)))

pause(O.OOl)
end
%
% REPEAT LOOP
%

end

B-4

% if using the Simulink AGC, perform quantization now:

if QUANTIZE_SIG&DYNAMIC_AGC
global AGC_DEBUG
% setup AGC parameters
config_agc;
disp('running simulink AGC, please wait');
pause(. 5) ;
agc_a2d;
% the following line speeds up the simulation:
set_param('AGC_A2D','InvariantConstants','on');
%set_param('AGC_A2D','LoadExternalInput','on');
%set_param('AGC_A2D','ExternalInput','gps_sig''');
% use the Matlab calculated Thresholds (without iteration) for initial guess
set_param('AGC_A2D/Data Store Memory','InitialValue',...

num2str(std(gps_sig(2,:))*(70/68.3),8));
[T,X,Y]=sim('AGC_A2D',[gps_sig(l,1) gps_sig(1,end)],[],gps_sig');
clear T X
gps_sig(2,:) = Y'; %gps_sig_quan';

end

% Append the final doppler frequency and LOS distance in radians (RAD_TO_SV) to the
% global variables DOPPLER_FREQ and RAD_TO_SV. NOTE: the FINAL values are then for
% the END of the last sample time!!
%
for i=l:length(PRN_VEC)

if ADD_OSC_ERRORS
% Estimate the TRUE Received Doppler at the END of this correlation period
DOPPLER_FREQ_TRUE{i}(PIT_CNT)=(Tp_vec(i,end-500)-Tp_vec(i,end))*...

CARRIER_FREQUENCY* SAMPLING_FREQUENCY/ 500;
%Record the END phase of the received waveform (LOS dist. expressed in Radians)
RAD_TO_SV_TRUE{i}(PIT_CNT)=(2*pi*CARRIER_FREQUENCY*Tp_vec(i,end));
Tp_vec = Tp_vec-repmat(clk_bias,length(Tp_vec(:,1)),1);

end
% Estimate the perceived Received Doppler for the END of this correlation period
DOPPLER_FREQ{i}(PIT_CNT)=(Tp_vec(i,end-500)-Tp_vec(i,end))*CARRIER_FREQUENCY*...

SAMPLING_FREQUENCY/500;
%Record the perceived END phase of the signal (LOS dist. expressed in Radians)
RAD_TO_SV{ i } (PIT_CNT) = (2 *pi *CARRIER_FREQUENCY*Tp_vec (i , end)) ;

end

save(output_file, 'gps_sig','DOPPLER_FREQ','DOPPLER_FREQ_TRUE','RAD_TO_SV,...
' RAD_TO_SV_TRUE' , 'DATA_BITS' , ' CLOCK_ERRORS ' , 'ML_QUANT_THRESH' , 'IDEAL_SNR'
' REAL_SNR' , ' PRN_VEC' , ' SNR_DB' , ' RUN_TIME' , ' START_TIME') ;

if nargout>0;
signal_out = gps_sig;

end
stopflp = flops;
mesg = ['number of flops: ' num2str(stopflp-strtflop)];
disp(mesg)
toe
clear global PIT_CNT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Notes: %%%

% We must start our time vector at 0 rather than true GPS time due to the limitations
% of double precision numbers, note that if:
% time=[0:SAMPLING_DT:(1000*SAMPLING_DT)];
% time (2)-timed)
% yields: 1.750000000000000e-007
% but if:
% time=[400635:SAMPLING_DT:(1000*SAMLING_DT+400635)];
% time (2)-timed)
% yields: 1.749722287058830e-007
% this lack of accuracy causes problems later. So we will start by stripping and
% storing GPS time.

load_global_params.m

These are the global variables that are visible by all other functions
This file functions as the "control file" for the Matlab IF signal and Simulink
Correlator models

B-5

(i.e., functions of the hardware or GPS system parameters)

% LI carrier frequency
% LI wavelength in meters.

% the time period of one chip

% cell array containing all the gold code chips.

% sampling delta time, or the time between samples.

% global "CONSTANTS"
% GPS Constants:
global CARRIER_FREQUENCY
global CARRIER_WAVELENGTH
global CHIPPING_RATE
global T_C
global SPEED_OF_LIGHT
global CA_CODE
% Hardware Dependent Constants
global SAMPLING_FREQUENCY
global SAMPLING_DT'
global IF_BEFORE_SAMP
global IF_AFTER_SAMP
global LATCHING_DT
global CHIP_SPACING
global CLOCK_PARAMS
% Simulink AGC parameters
global CYC_RES_CNT
global GAIN
global INIT_CYCLES
global AGC_DEBUG
% Control/Input parameters
global RUNJHME
global START_TIME
global STOPJTIME
global PARSE_SIG_INTERVAL
global NOISE_POWER
global SNR_DB
global A2D_FACT
global PRN_VEC
global PIT_CNT
% Output parameters
global DOPPLER_FREQ
global RAD_TO_SV
global DOPPLER_FREQ_TRUE
global RAD_TO_SV_TRUE
global DATA_BITS
global REAL_SNR
global IDEAL_SNR
global CLOCK_ERRORS
global ML_QUANT_THRESH

% switches: (boolean values)
% Signal Simulator & Receiver Model Switches
global APPLY_CA
global QUANTIZE_SIG
% Signal Simulator Switches
global ADD_NOISE
global ADD_OSC_ERRORS
global APPLY_DATA
global FILTER_SIG
global FILTER_NOISE
global DYNAMIC_AGC
global SAVE_QUANT_THRESH
global SAVE_CLK_ERRORS
global REPEATABILITY
% Receiver Model Switches
global MIX_TO_BASEBAND
global DUMP_ON_EPOCH
global SAVE_TIME
global CHAN_ENABLE
global SAVE_CH1_SIGS
global SAVE_CH2_SIGS
global SAVE_CH3_SIGS
global SAVE_CH4_SIGS
global SAVE_CH5_SIGS
global SAVE_CH6_SIGS
global SAVE_CH7_SIGS
global SAVE_CH8_SIGS
global SAVE_CH9_SIGS
global SAVE_CH10_SIGS
global SAVE_CH11_SIGS
global SAVE_CH12_SIGS
global DEBUG_DECIMATION
global SAVE_CORR
global SAVE_DCO_OUT
global SAVE_BASEBAND
global SAVE_SIM_CODE

%DETERMINES THE NUMBER OF SAMPLES SIMULATED
%specify start time in GPS seconds, see note below
%declare here, define in gen_samples

%declare here, define in gen_samples

%declare & init. here,
%declare & init. here,
%declare here, define
%declare here, define
%declare here, define
%declare here, define
%declare here, define
%declare here, define
%delcare here, define

define in sampled_recv_chan(s)
define in sampled_recv_chan(s)

in sampled_recv_chan(s)
in sampled_recv_chan(s)
in sampled_recv_chan(s)
in sampled_recv_signal
in sampled_recv_signal
in gen_clock_errors
in quantizer

%single channel only
%single channel only
%single channel only
%single channel only

B-6

global SAVE_FEE_REF
% Simulink ÄGC switches
global CLOSED_LOOP
global SAVE_AGC_VAR

%single channel only

define the 'constants' (for GPS)

CHIPPING_RATE = 1.023E6;
T_C = 1/CHIPPING_RATE;
CARRIER_FREQUENCY = 1575
SPEED_OF_LIGHT=299792458
CARRIER_WAVELENGTH=SPEED
load ca_codes;
%
CA_CODE=CA_code;
clear CA_code;

% CA code chipping rate (Hz)
% Length (in seconds) of a C/A code chip.

.42E6; % LI received frequency (Hz)
,0; % (meters/second)
_OF_LIGHT/CARRIER_FREQUENCY; %L1 wavelength in Meters

% load cell array containing ALL the gold
% sequences for all 37 PRNS
% switch case to global variable case
% clear variable with incorrect case

define the frequency plan and other hardware dependent variables

SAMPLING_FREQUENCY = 40E6/7;
SAMPLING_DT = 1.75e-7;

IF_BEFORE_SAMP = 35.42E6-1400E6/45;
IF_AFTER_SAMP = 88540000/63;
LATCHING_DT = 0.001;

CHIP_SPACING = T_C/2;
CL0CK_P ARAMS. ALLAN_VAR. HO = 2e-19;
CL0CK_PARAMS.ALLAN_VAR.H_1 = 7e-21
CL0CK_PARAMS.ALLAN_VAR.H_2 = 2e-20
CLOCK_P ARAMS. MAX_FREQ_ERR = 2.5e-6
CLOCK_PARAMS.TAU = 1;

From the Mitel GP2021 chip (Hz)
1/SAMPLING_FREQUENCY (sec/cycle)
"DT" = "Delta T" time between samples
about 4.309e6 Hz, From Mitel GP2010 chip
about 1.405e6 Hz, From Mitel GP2010 chip
latch interval in Simulink when all
channels are latched at the same time (s)
Correlator Chip spacing in Simulink model
Allan Variance hO (h_zero) parameter
Allan Variance h-1 (h minus 1) parameter
Allan Variance h-2 (h minus 2) parameter
Max frequency variation of Crystal (ppm)
Tau value to plug into Allan Var. Plot,
to determine noise for random walk or
random constant

% define the parameters that control and define the simulation
%
if isempty(DOPPLER_FREQ)&isempty(RAD_TO_SV); %make sure they are zero first,

for i=l:12
DOPPLER_FREQ{i} = 0; % initialize here to the max size
RAD_TO_SV{i}=0; % initialize here to the max size

end
else

disp('DOPPLER_FREQ & RAD_TO_SV arrays already filled--not initialized')
end
RUN_TIME=0.02;

PARSE_SIG_INTERVAL=0 . 001 ;

A2D_FACT
PRNJVEC

: 4;
[4,8]

% specifies the length of the simulation in
% seconds rounded to the nearest millisecond.
% defines the size of the timevector
% created in gen_samples. Currently
% defines the number of samples the Matlab AGC
% processes at once, (seconds)

START_TIME=400657; % if you fix the start time here, it will be used, otherwise
first time of the satellite and trajectory files will be used.
for Correlated Noise Generation (see IF_filt.m)

% PRN_VEC defines both which signals are included in the
% composite signal and the channel asignments. The index

% location of PRN_VEC corresponds to a particular Channel. For
% example, the PRN# in PRN_VEC(3) will be assigned
% to the 3rd channel of the 12-channel correlator.

% To set the signal to noise ratios, use a loop for now (set them all the same)
% As with PRN_VEC, SRN_DB is a channel indexed vector, so that the first element
% defines the SNR ratio for CHANNEL 1, NOT PRN 1. SNR_DB(4) is the SNR of CHANNEL
% 4, not PRN 4.
% Note: many applications will require being able to vary the SNR over the
% course of run, but for right now the SNR will be fixed for the duration of
% run for each signal. Future enhancements must be made here,
for i=PRN_VEC

% SNR_DB represents the signal-to-noise ratio at the output of the GPS front-end
SNR_DB(i==PRN_VEC)=-15; %indexed by the channel assignments of PRN_VEC

end
clear i;
NOISE_POWER = 100; % specifies the power of the noise (arbitrary value from which
% % the signal amplitudes are derived by relation to maintain the
% % given SNR specified above.
% %
% define the SWITCHES that toggle models on and off and generate debugging info

B-7

APPLY_CA =1; % 1 =>apply CA-code to all measurements, 0 => no CA code mod.
%This switch also turns on/off the code correlation block

DUMP_ON_EPOCH =0; % 1 => latch a channel's I & Q values on its code epoch
% 0 => latch all I & Q values at 1ms time increments

APPLY_DATA =0; % 1 => apply a Random Data modulation, 0 => don't
%Matlab Output Variable: DATA_MESG & DATA_BITS

QUANTIZE_SIG =1; % 1 => apply AGC quantization to signal, 0 => don't
ADD_NOISE =1; % 1 => add noise to the signals, 0 => don't

1 => add oscillator errors to the signal, 0 => don't ADD_OSC_ERRORS=0;
CLOCK PARAMS.CONSTANT DRIFT 0;

FILTER_SIG =0
FILTER_NOISE =0
DYNAMIC_AGC =0
REPEATABILITY = 1
MIX_TO_BASEBAND=l
SAVE_BASEBAND =0;

SAVE CORR

SAVE_DCO_OUT

SAVE TIME

= 0;

% Switch specifing constant frequency drift
% "1" => a constant drift model is to be used
% "0" => bounded random frequency drift.

% 1 => apply bandpass filtering to the signal, 0 => don't
% 1 => apply bandpass filtering to the noise, 0 => don't
% 1 => use simulink dynamic AGC to quantize samples, 0 => Matlab

%if you want the same noise vector for each run, set to "1"
%switch for engaging cosine mixing block in simulink (1=>0N)
%switch for saving off zero-frequency samples in Simulink(1=>0N)

%Simulink Output Variable: Baseband
%switch for saving off Correlated values of Simulink run

%Simulink Output Variable: Correlated
%switch for saving off DCO values of simulink run

%Simulink Output Variable: DCO_output
%switch for saving off time of Simulink run

%Simulink Output Variable: Sim_times
%switch for saving simulated PRN waveforms in simulink

%Simulink Output Variable: Sim_code
%switch that saves the radian measurements for each sample
%time in Simulink (1=>0N)

%Simulink Output Variable: Sim_fee_ref
SAVE_CLK_ERRORS=0;%switch that saves the clock drift and error values (1=>0N)

%Matlab Output Variable: CL0CK_ERR0RS
SAVE_QUANT_THRESH=l;%switch that saves the quantization thresholds in Matlab (1=>0N)

%Matlab Output Variable: ML_QUANT_THRESH

=0;

SAVE_SIM_CODE =0;

SAVE_FEE_REF = 0 ;

(1=>0N)

(1=>0N)

(1=>0N)

(1=>0N)

% define the parameters that control and define the Simulink AGC
% %
CYC_RES_CNT = 5714; % Number Of samples between AGC updates
GAIN =8; % AGC feedback gain (Multiplied by Normalized Errors)
INIT_CYCLES = 1000; % number of samples to pre-load integration
% (INIT_CYCLES + CYC_RES_CNT = averaging interval)
% <
% define the SWITCHES that control the Simulink AGC
% %
CLOSED_LOOP =1; % Operate AGC in Closed Loop Mode
SAVE_AGC_VAR = 0; % Debug Mode, save off parameters and view signals

% Matlab Output Variable: AGC_DEBUG
% s

% define the SWITCHES that control the GPS_rcvr_model

CHAN_ENABLE
SAVE_CH1_SIGS=0
SAVE_CH2_SIGS=0
SAVE_CH3_SIGS=0
SAVE_CH4_SIGS=0
SAVE_CH5_SIGS=0
SAVE_CH6_SIGS=0
SAVE_CH7_SIGS=0
SAVE_CH8_SIGS=0
SAVE_CH9_SIGS=0
SAVE_CH10_SIGS=0
SAVE_CH11_SIGS=0
SAVE_CH12_SIGS=0
DEBUG DECIMATION

[l;0;0;0;0;0;0;0;0,-0;0;0] ; % Enabling switches for each channel
% Enable for saving off signals inside a channel

= [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1] ; % Decimation intervals
% signals

for the channel

% Reasonably bad dynamics occur at t=400657.
% Good dynamics (non-existent) have been simulated at t=399100.
% lab2's first time: 399000
% lab2's last time: 400680

get_tp_times.m

B-8

function Tp_vec = get_Tp_times(time, sv_pos_mat, trajectory_mat);
% usage: Tp_vec = get_Tp_times(time, sv_pos_mat, trajectory_mat);
%
% time = vector of receiver sample times (True GPS time) (lxn)
%
% sv_pos_mat: (Error Free) trajectory_mat: (Error Free)
% coll = time (True GPS time) coll = time (True GPS time)
% col2 = PRN col2 = X ECEF position
% col3 = X ECEF coordinate col3 = Y ECEF position
% col4 = Y ECEF coordinate col4 = Z ECEF position
% col5 = Z ECEF coordinate col5 = X ECEF velocity
% col6 = Y ECEF velocity
% PRN_VEC = global vector of PRNs col7 = Z ECEF velocity
%
% Tp_yec = Output matrix of Tp times, each row is for the respective PRN
% in the PRN_VEC and the columns are the Tp times sync, to "time"
%
% from these files, the exact distance between each SV and the receiver can
% be determined at any time inside the time included in the files by using the
% spline function. These exact distances are then divided by the speed of light
% to get the exact "Tp" times, or propogation times for each signal from each
% satellite

% future versions could just use the perfect pseudoranges instead of
% recalculating them from the SV positions and the Trajectory positions.

global SPEED_OF_LIGHT;
global STARTJTIME;
global RUNJTIME;
global SAMPLING_DT;
global PRNJVEC;
c=SPEED_OF_LIGHT; % define shorter hand notation for light speed
persistent Tp XX

if timed)<3*SAMPLING_DT %If this file is being called the first time, initialize
% get the 'data' rate of the input variables
time_step=(trajectory_mat(2,1)-trajectory_mat(1,1));
for PRN=PRN_VEC

PRN_row_index = find (sv_j?os_mat (: , 2) ==PRN) ;
%sv_pos contains SV positions for current PRN at each time
sv_pos=sv_pos_mat(PRN_row_index,[1 3:5]);
% check to make sure time indexes between satellite positions & trajectory
% match (checks for EACH prn, not just the first one, see start of gen_sample)
not_ok = test_time_match(sv_pos,trajectory_mat);
if not_ok;return;end;
% get the transmit times for every "time" in the input files for the current PRN
% Note: Tp is a row vector (lxn)
Tp(find(PRN_VEC==PRN),:)=(sum(((sv_pos(:,2:4)-...

trajectory_mat(:,2:4)).^2)')."0.5)./c;
end
%form time vector, placing 0 at the START_TIME
XX=[(trajectory_mat(1,1)-STARTJTIME):time_step:(trajectory_mat(end,1)-STARTJTIME)];

% Tp now contains the propagation time of signals from each satellite for each time
% step found in the trajectory and satellite position input files. This step only
% needs to be done once,
end

% Now do the spline interpolation to get the propagation times for the current ms
% being generated. Note that the rows of Tp_vec are equivalent with channel
% assignments, i.e. Row 4 contains the signal assigned to Channel 4

Tp_vec=spline(XX,Tp,time);

%%%
function no_match = test_time_match(sv_pos,trajectory_mat)
% just tests to see the time stamps on the satellite positions and the trajectory
% position match

if length(sv_pos(:,1))~=length(trajectory_mat(:,1));
disp('different number of SV positions and trajectory time tags')
Tp_vec = [];
no_match=l;

end
common_time_test = sv_pos(:,1)-=trajectory_mat(:,1);
if sum(common_time_test)

displ'SV positions and trajectory time tags are not aligned')

B-9

Tp_vec = [] ,-
no_match=l;

end
no_match=0;

%code archive:
%global PSEUDORANGES % ????

% old, slower way:
%for i=l:length(sv_pos(:,1))
% % get the propagation times for each time step in the inputs files for one PRN
% Tp(l,i)=norm(sv_pos(i,2:4)-trajectory_mat(i,2:4))/c;
%end
%XX=[0:.001:(trajectory_mat(end,1)-STARTJTIME)];
%YY=spline((trajectory_mat(:,1)-STARTJTIME),Tp,XX) ;
%Tp=fix(Tp*lel6)/lel6;

%Tp_interp=spline(XX,Tp,time);
%Tp_vec(find(PRN_VEC==PRN),1:length(time))=Tp_interp;

sampled_recv_signal.m

function [composite_sig,clk_bias]=sampled_recv_signal(time, Tp_vec)
% usage: [composite_sig,clk_bias]=sampled_recv_signal(time, Tp_vec)
%
%
% Measurment simulator
% This function generates the GPS (sampled) signal over the desired time
% vector.

global PIT_CNT
global NOISE_POWER
global IF_AFTER_SAMP
global REAL_SNR
global IDEAL_SNR
global ADD_N0ISE
global ADD_OSC_ERRORS
global PRN_VEC
persistent IDEAL_SNR_mat
persistent RUNNING_TOTAL
if PIT_CNT==1

RUNNING_TOTAL=0 ;
end
global AVE_NOISE_POWER

% initialize the composite signal (with/without the noise, depending on ADD_NOISE)
composite_sig=get_corr_noise(length(time),NOISE_POWER);
if ADD_NOISE

% calculate Noise Power:
Pow_noise=sum(composite_sig.^2)/length(composite_sig);
RtlNNING_TOTAL=RUNNING_TOTAL+Pow_noise;
AVE_NOISE_POWER = RUNNING_TOTAL/PIT_CNT;

end
% Generate clock errors:
if ADD_OSC_ERRORS

% get the clock drift and clock bias terms for each sample time
[clk_drft clk_bias phase_noise]=gen_clock_errors(time);

else
clk_drft = zeros(1,length(time));
clk_bias = zeros(1,length(time));
phase_noise = zeros(1,length(time));

end

% process the channels individually,
for i=l:length(PRN_VEC)

sig_chan = sampled_recv_chan(time, Tp_vec(i,:), PRN_VEC(i), clk_drft,...
clk_bias, phase_noise);

sig_chan_filt = IF_filt(sig_chan,'signal');
if ADD_NOISE

% calculate Signal Power:
Pow_sig(i)=sum(sig_chan_filt."2)I length(sig_chan_filt);
% calculate S/N ratio:
IDEAL_SNR{i}(PIT_CNT) = 10*logl0(Pow_sig(i)/Pow_noise);

end
composite_sig = composite_sig + sig_chan_filt;

end

B-10

% calculate the power in the composite signal
if ADD_NOISE

Pow_composite_sig = sum(composite_sig. ~2) /length(composite_sig) ,-
for i=l:length(PRN_VEC)

REAL_SNR{i)(PIT_CNT) = 10*logl0(Pow_sig(i)/Pow_composite_sig);
end

end

%%%
function noise_vec=get_corr_noise(num_samples,noise_power);
%
% usage: noise_vec=get_corr_noise(num_samples,noise_power);
%
% generates a noise_vector "num_samples" long of correlated (band-limited)
% noise containing "noise_power" in the 2 MHz C/A code bandwidth.

global A2D_FACT
global SAMPLING_FREQUENCY
global CHIPPING_RATE
global IF_BEFORE_SAMP
global ADD_NOISE
global FILTER_NOISE

if ADD_NOISE
if FILTER_NOISE

% Pn needs to represent the power of the noise at the output of the GPS
% front end, so if IF filtering is applied, we must scale it appropriately:
% | 41.02 is a "fudge factor" determined experimentally, and is due to the
% characteristics of the filter used.)
%Pn = SAMPLING_FREQUENCY/(2*CHIPPING_RATE)*noise_power*l.02;
Pn = SAMPLING_FREQUENCY/(CHIPPING_RATE)*noise_power*1.02;
% Calculate noise
%A2D_FACT controls the resolution of the IF_filtering of the noise.
In=randn(l,(A2D_FACT*num_samples))*sqrt(Pn);
In=IF_filt(In,'noise'); %Bandpass filter the noise
noise_vec=In(l:A2D_FACT:end); %'sample' the noise back to IF (digitized IF),

else
% since the noise is not filtered, just use the specfied noise power:
noise_vec=sqrt(noise_power)*randn(l,num_samples);

end
else

noise_vec=zeros (l,num_samples) ,-
end

 if_filt.m

function filtered_signal = IF_filt(signal,sig_or_noise)
% usage: filtered_signal = IF_filt(signal,sig_or_noise)
%
% filters the signal using an elliptical filter with parameters listed in this file.
%
% sig_or_noise is a string that either says "noise" or "signal" to tell the function
% how to filter.

global FILTER_SIG
global FILTER_NOISE

switch sig_or_noise

case 'noise'
if FILTER_NOISE

persistent a_nz b_nz
% load only the global parameters needed . .
global SAMPLING_FREQUENCY
global IF_BEFORE_SAMP
global CHIPPING_RATE
global A2D_FACT
if isempty(a_nz) % if noise parameter is empty, define noise parameters

fs=A2D_FACT*SAMPLING_FREQUENCY; % Sampling rate for NOISE
% at this point, the file is being run for the first time, in which case
% a & b need to be defined. The parameters used here are based off of the
% specifications of the SAW filter used in the Mitel Receiver Chipset. See
% the spec, sheet on the DW9255 from Mitel for more specifications on this
% filter. (Note that .this filter operates at a higher IF frequency, but it

B-ll

% has the sharpest cutoffs of any of the IF filters, so it's effects can be
% simulated at lower IF frequencies with acceptable realism.
%
fc=IF_BEFORE_SAMP; % Center frequency of the bandpass filter(Hz)
Wnn=2*CHIPPING_RATE; % Bandwidth (null-to-null for BPF) of the filter (Hz)
%
% Choose between a nearly ideal filter (very tight) or a more realistic
% filter, based on the SAW filter used with the Mitel chipset.
%
ideal = 0;
if ideal

stop_width=Wnn/50; % Difference between the bandpass corner frequency
% % and the stopband frequency (Hz)
Rp=0.05; % Bandpass ripple (dB)
Rs=60; % Sidelobe level down from the peak value in the passband (dB)

else
stop_width=Wnn/4; % Difference between the bandpass corner frequency
% % and the stopband frequency (Hz)
Rp=0.8; % Bandpass ripple (dB)
Rs=35; % Sidelobe level down from the peak value in the passband (dB)

end
freq_pts=2~15; % Number of frequency points for filter frequency response
% % (int) The default is 512. Always specify a power of two for
% % fast computation of the FFT algorithm
%
% calulate the Matlab filter parameters from the above filter statistics.
% Wp and Ws have values between 0 and 1, where 1
% corrsponds to half the sampling frequency (fs/2)
Wp=[(fc-Wnn/2) (fc+Wnn/2)]*2/fs; % Cutoff frequencies.
Ws=[(fc-Wnn/2-stop_width) (fc+Wnn/2+stop_width)]*2/fs;% Stopband frequencies.
% use an elliptic filter. See Filt_ord.m for performance analysis of this
% filter
[n Wn]=ellipord(Wp,Ws,Rp,Rs); % get the order and cuttoff frequencies
[b_nz,a_nz]=ellip(n,Rp,Rs,Wn) ,-
display_response = 0;
if display_response

[H,f,units]=freqz(b_nz,a_nz,freg pts,fs);
freqzplot(H,f,units)
title('Noise Filter Frequency Response')

end
end
a=a_nz ,-
b=b_nz;
fs=A2D_FACT*SAMPLING_FREQUENCY; % Sampling rate for NOISE

else
% If IF filtering is turned off . .
filtered_signal = signal;
return

end

case 'signal'
if FILTER_SIG

persistent a_sig b_sig
% load only the global parameters needed . .
global SAMPLING_FREQUENCY
global IF_AFTER_SAMP
global CHIPPING_RATE
if isempty(a_sig) % if noise parameter is empty, define noise parameters

fs=SAMPLING_FREQUENCY; % Sampling rate for signal
% at this point, the file is being run for the first time, in which case
% a & b need to be defined. The parameters used here are based off of the
% specifications of the SAW filter used in the Mitel Receiver Chipset. See
% the spec, sheet on the DW9255 from Mitel for more specifications on this
% filter. (Note that this filter operates at a higher IF frequency, but it
% has the sharpest cutoffs of any of the IF filters, so it's effects can be
% simulated at lower IF frequencies with acceptable realism.
%
fc=IF_AFTER_SAMP; % Center frequency of the bandpass filter(Hz)
Wnn=2*CHIPPING_RATE; % Bandwidth (null-to-null for BPF) of the filter (Hz)
ideal =0; %choose an (near) ideal filter (very tight)
if ideal

stop_width=Wnn/50; % Difference between the bandpass corner frequency
% % and the stopband frequency (Hz)
Rp=0.05; % Bandpass ripple (dB)
Rs=60; % Sidelobe level down from the peak value in the passband (dB)

else
stop_width=Wnn/4; % Difference between the bandpass corner frequency
% % and the stopband frequency (Hz)

B-12

Rp=0.8; % Bandpass ripple (dB)
Rs=35; % Sidelobe level down from the peak value in the passband (dB)

end
freq_pts=2/"15; % Number of frequency points for filter frequency response
% % (int) The default is 512. Always specify a power of two for
% % fast computation of the FFT algorithm
%
% calulate the Matlab filter parameters from the above filter statistics.
% Wp and Ws have values between 0 and 1, where 1
% corrsponds to half the sampling frequency (fs/2)
Wp=[(fc-Wnn/2) (fc+Wnn/2)]*2/fs; % Cutoff frequencies.
Ws=[(fc-Wnn/2-stop_width) (fc+Wnn/2+stop_width)]*2/fs;% Stopband frequencies.
% use an elliptic filter. See Filt_ord.m for performance analysis of this
% filter
[n Wn]=ellipord(Wp,Ws,Rp,Rs); % get the order and cuttoff frequencies
[b_sig, a_sig]=ellip(n,Rp,Rs,Wn);
display_response = 0;
if display_response

[H,f,units]=freqz(b_sig,a_sig,freq_pts,fs) ;
freqzplot(H,f,units)
titlet'Signal Filter Frequency Response')

end
end
a=a_sig;
b=b_sig;
fs=SAMPLING_FREQUENCY; % Sampling rate for signal

else
% If IF filtering is turned off . .
filtered_signal = signal;
return

end
end % matches switch statement

% filter the signal, when signal is a matrix, filter operates on the columns
filtered_signal = filter(b,a,signal')'; %elliptic filter

% Show PSD plots before and after filtering for debugging purposes
sj******** Switch *********
plot_filt_sig = 0;
if plot_filt_sig

get_psd(signal,fs,'signal before filtering')
get_psd(filtered_signal,fs,'signal after filtering')

end

gen_clock_errors.m

function [clk_drft,clk_bias,clk_jitter]=gen_clock_errors(time);
% usage: [clk_drft,clk_bias,clk_jitter]=gen_clock_errors(time);
%
% for a given time vector of length n, generate clock drift & clock bias
% values for each sampletime in "time". Note that the contents of time
% are unimportant past the first call, which looks for a nearly zero start
% time to declare initalization.

global SAMPLING_DT
global CL0CK_PARAMS
global CLOCK_ERRORS
global SAVE_CLK_ERRORS
persistent LAST_CLK_DRFT
persistent LAST_CLK_BIAS

if time(l)<2*SAMPLING_DT
LAST_CLK_DRFT = 0;
LAST_CLK_BIAS = 0 ;
CLOCK_ERRORS.DRIFT = [];
CLOCK_ERRORS.BIAS = [] ;

end

% Clock modeling in this way is an evolving process. I have not found anyone or any
% documents claiming to model clock errors at this level, in this way. As such, this
% file shall be considered "a work in progress" and past iterations of ideas will be
% commented out, rather than deleted, for educational purposes.

B-13

% the following was the first cut, which has been modified/abandoned. The reference
% was how to model clocks in a Kaiman Filter, not in a truth environment. There are
% some key differences.
%
% Get the power (Variance) of the noises in the clock model:
% source: Brown and Hwang, Introduction of Random Signals and Applied Kaiman Filtering,
% John Wiley & Sons, 1992
% E[Wcl~2] = Expected value of the Clock bias,
% wcl = 2 *CLOCK_PARAMS . ALLANJVAR. HO /SAMPLING_DT ;
% E[Wc2A2] = Expected value of the Clock drift,
% wc2 = 8*pi/s2*CLOCK_PARAMS.ALLAN_VAR.H_2*SAMPLING_DT;

% for now, we will not model any clk_jitter
clk_jitter = zeros(1,length(time));

if CLOCK_PARAMS.CONSTANT_DRIFT
if time(l)<2*SAMPLING_DT

% setup random constant (fixed constant drift)
% base it on the allan variance for .001 second.
LAST_CLK_DRFT = sqrt(get_allan_var(CLOCK_PARAMS.TAU))*randn(l,1);

end
%Wcl_vec=sqrt(wcl)*randn(l,length(time)); % add to clock drift and integate to get

bias
%clk_jitter=Wcl_vec;
%Wcl_vec (1) =LAST_CLK_BIAS,- % inital cond. of integral, from last chunk of data.
% model clock drift as a constant offset:
clk_drft = repmat(LAST_CLK_DRFT,l,length(time));
% add white noise to the clock drift, and integrate:
%clk_bias = cumsum(clk_drft+Wcl_vec);
clk_bias = SAMPLING_DT*cumsum(clk_drft)+LAST_CLK_BIAS;
% save off the last values of clock drift and bias for the next time it's called:
LAST_CLK_DRFT=clk_drft(end);
LAST_CLK_BIAS=clk_bias(end);

else
% Create the noise vectors:
%Wcl_vec=sqrt(wcl)*randn(l,length(time)); % add to clock drift and integate to get

bias
%clk_jitter=Wcl_vec; %mult (Delta t)/t
%Wc2_vec=sqrt(wc2)*randn(l,length(time)); % integrate to get clock drift
%Wc2_vec(1)=LAST_CLK_DRFT; % initial condition of the integral, from last chunk of
%Wcl_vec(l)=LAST_CLK_BIAS; % data.
% Integrate noise to get the clock drift:
clk_drft = gen_freq_errors(length(time),LAST_CLK_DRFT);
% add white noise to the integrated value, and integrate again:
%clk_bias = SAMPLING_DT*cumsum(clk_drf t+Wcl_vec) ,-
clk_bias = SAMPLING_DT*cumsum(clk_drft)+LAST_CLK_BIAS;
% save off the last values of clock drift and bias for the next time it's called:
LAST_CLK_DRFT=clk_drft(end);
LAST_CLK_BIAS=clk_bias(end);

end

% Save off the clock errors?
if SAVE_CLK_ERRORS

i f CLOCK_PARAMS . CONSTANT_DRI FT
CLOCK_ERRORS.DRIFT = [clk_drft(1)];
CLOCK_ERRORS.BIAS = [CL0CK_ERRORS.BIAS clk_bias];

else
CLOCK_ERRORS.DRIFT = [CLOCK_ERRORS.DRIFT clk_drft];
CLOCK_ERRORS.BIAS = [CL0CK_ERRORS.BIAS clk_bias];

end
end

function freq_err = gen_freq_errors(numelemnts, last_freq_err)
%
%
% freq_err = delta_f/f (unitless) parameter of clock drift (of the crystal)

global SAMPLING_FREQUENCY
global CLOCK_PARAMS

max_error = CL0CK_PARAMS.MAX_FREQ_ERR;
%tau = logspacedoglO(O.OOl),loglO(0.01),10); %create number of vectors
% get the scale factor for this vector
aln_std = sqrt(get_allan_var(CLOCK_PARAMS.TAU))/SAMPLING_FREQUENCY;
freq_err=zeros(1,numelemnts);

B-14

% get the random vector
randvec = aln_std*randn(l,numelemnts);
randvec = cumsum (randvec) ;
%figure(50)
%plot(randvec)
freq_err = last_freq_err + randvec;
%figure(51)
%plot(freq_err)
while (find(abs(freq_err)>max_error))>0;

%figure(52)
%plot(freq_err)
if (find(freq_err>max_error))>0;

pts_outside = find(freq_err>max_error);
freq_err(pts_outside)=-freq_err(pts_outside);
freq_err(pts_outside)=+2*freq_err(pts_outside(1)-1)+freq_err(pts_outside);

end
if (find(freq_err<-max_error))>0;

pts_outside = find(freq_err<-max_error);
freq_err(pts_outside)=-freq_err(pts_outside);
freq_err(pts_outside)=+2*freq_err(pts_outside(l)-l)+freq_err(pts_outside);

end
%figure(53)
%plot(freq_err)

end

function aln_var = get_allan_var(tau)
%
% returns the allan variance value for a given averaging interval tau

global CLOCK_PARAMS

% Reference GLOBAL POSITIONING SYSTEM: THEORY AND APPLICATIONS, VOL 1.
% Parkinson & Spilker, P. 156

aln_var = CL0CK_PARAMS.ALLAN_VAR.H_2*((2*pi)A2/6).*tau+CLOCK_PARAMS.ALLAN_VAR.H_l*..
2*log(2)+CLOCK_PARAMS.ALLAN_VAR.H0./(2*tau);

% plot the allan variance parameters
plot_al_var = 1;
if plot_al_var
tau = 0.001:0.01:100;
tau=logspace(loglO(tau(l)),loglO(taufend)).length(tau));

all_var = CLOCK_PARAMS.ALLAN_VAR.H_2 *((2 *pi)^ 2/6) .*tau+CLOCK_PARAMS.ALLAN_VAR.H_l*..
2 *log(2)+CLOCK_PARAMS.ALLAN_VAR.HO./(2 * tau);

all_var1 = CLOCK_PARAMS.ALLAN_VAR.H_2 *((2 *pi)*2/6) .* tau;
all_var2 = CLOCK_PARAMS.ALLAN_VAR.H_l*2*log(2);
all_var3 = CLOCK_PARAMS.ALLAN_VAR.H0./(2*tau);

figure(60)
loglog(tau,sqrt(all_varl),tau,sqrt(all_var2),'r',tau,sqrt(all_var3),'g')
figure(61)
loglog(tau,sqrt(all_var))
end

sampled_recv_chan.m

function signal = sampled_recv_chan(time, Tp, PRN, clk_drift, clk_bias, phz_noise)
% usage: signal = sampled_recv_chan(time, Tp, PRN, clk_drift, clk_bias, phz_noise)
%
% This function generates the raw (sampled) signal for a given channel over
% the specified time vector.
%
% time sampling times in receiver clock time (nxl)
% Tp propagation time for PRN (True_dist/c) (nxl) def: 0
% PRN Satellite PRN number (int 1-37) def: 1
%
% clk_drift vector of (Delta_Freq)/Freq values for determining frequency error
% clk_bias vector of time biases for each sample time (time offsets from GPS time)
% phz_noise vector of radian phase errors (Phase Jitter)
%
% signal output signal vector

B-15

% The propagation time includes the dyanmics of the system, as it represents
% the Line-of-sight (LOS) distance. The change in this distance defines the
% LOS dynamics.

% if variables aren't entered, set the defaults:
if nargin<3

disp('Not enough parameters specified to generate signal');
return

end

global CARRIER_FREQUENCY
global IF_BEFORE_SAMP
global IF_AFTER_SAMP
global SAMPLING_FREQUENCY
global SAMPLING_DT
global T_C
global SPEED_OF_LIGHT
global STARTJHME;
global CA_CODE;
global PRNLVEC;
global APPLY_DATA;
global DATA_BITS;
global APPLY_CA;
global ADD_OSC_ERRORS
% initialize working global variables (dynamic):
global PIT_CNT;
% Load global variables formerly initialized but not defined in load_global_params:
global DOPPLER_FREQ;
global RAD_TO_SV;
global DOPPLER_FREQ_TRUE
global RAD_TO_SV_TRUE
persistent DATA_MESG;
C = SPEED_OF_LIGHT;

% If first time through, initialize persistent variables (generate DATA sequences)
if (time(l)<(2*SAMPLING_DT))&(PRN==PRN_VEC(1))&(APPLY_DATA)

% if first time through, generate a full set of data (1 superframe)
% it has a duration of 12.5 Min & 50 Hz, or 37500 bits. (overkill at this
% point, but if a valid data sequence existed, it could be
% inserted here and the correct data modulation would be simulated)
% for now, make the data the same for all satellites
rand_data = randd, 37500) ;
rand_data(find(rand_data>0.5)) = -1;
rand_data(find(abs(rand_data)<0.5)) = 1;
% for now, make the data the same for all satellites
DATA_MESG=rand_data;

end

% if clock errors are being modeled, insert them now into the Tp vector. This allows
% for the sampling time and the output time to maintain its time step consistency,
% effectively becoming the 'Receiver Time' rather than the perfect GPS time,
if ADD_OSC_ERRORS

% before adding in the oscillator errors, record the true Doppler and LOS radian
% measurments--before "corrupting" the truth environment
% Estimate the TRUE Received Doppler at the start of this correlation period
DOPPLER_FREQ_TRUE{find(PRN==PRN_VEC)}(PIT_CNT)=(Tp(1)-Tp(501))*...

CARRIER_FREQUENCY*SAMPLING_FREQUENCY/500;
%Record the initial phase of the received waveform (LOS dist. expressed in Radians)
RAD_TO_SV_TRUE{find(PRN==PRN_VEC)}(PIT_CNT) = (2*pi*CARRIER_FREQUENCY*Tp(1));
% clk_bias is defined as "the advance of the recever clock with respect to true
% GPS time" See Kaplan Chptr 2.
Tp = Tp+clk_bias;
% NOTE: FROM NOW ON Tp IS CORRUPTED BY CLOCK ERRORS!!!
% the frequency shifts are different if the signal is aliased--test for Nyquist
if 2*IF_BEFORE_SAMP>SAMPLING_FREQUENCY %if true, then aliasing occurs

TFDS = (CARRIER_FREQUENCY+IF_AFTER_SAMP); %Total Frequency Down Shift--the
% total change in frequency from received to final IF

else % no aliasing, the final IF after sampling is the same as before sampling
TFDS = (CARRIER_FREQUENCY-IF_BEFORE_SAMP); %Total Frequency Down Shift

end
% Expression including clock error: clk_bias
TRUE_FEE_REF = (2*pi*(IF_BEFORE_SAMP-clk_drift*TFDS)).*time-...

(2*pi*CARRIER_FREQUENCY.*Tp) ,-%+ phz_noise;
% equivlalent expression:
% TRUE_FEE_REF = (2*pi*(-IF_AFTER_SAMP-clk_drift*TFDS)).*time-...
% (2*pi*CARRIER_FREQUENCY.*Tp);

else

B-16

% both of the TRUE_FEE_REF statements below give the same result, due to aliasing
TRUE_FEE_REF = (2*pi*IF_BEF0RE_SAMP) . »time- (2*pi*CARRIER_FREQUENCY. *Tp) ;
%%% Second TRUE_FEE_REF statement
%TRUE_FEE_REF = (-2*pi*IF_AFTER_SAMP).*time-(2*pi*CARRIER_FREQUENCY.*Tp);

end
% Estimate the initial Received Doppler for the start of this correlation period
DOPPLER_FREQ{find(PRN==PRN_VEC)}(PIT_CNT)=(Tp(1)-Tp(501))*CARRIER_FREQUENCY*...

SAMPLING_FREQUENCY/500;
%Record the initial phase of the received waveform (LOS dist. expressed in Radians)
RAD_TO_SV{find(PRN==PRN_VEC) } (PIT_CNT) = (2*pi*CARRIER_FREQUENCY*Tp (1)) ;
amplitude=calc_sig_amp(find(PRN==PRN_VEC));
% Raw CA code carrier
signal = amplitude*cos(TRUE_FEE_REF);

if APPLY_CA
%
% Apply CA code
%

% get the times in terms of SV time trunkated to the nearest millisecond
time_dyn = mod((time-Tp), 0.001);
chip_num = fix(time_dyn./T_C) +1;
% chip_num now contains the correct chip number for each sample time

% Sample the code at the same sampling frequency for the same number of samples
% (Determine the actual code over all time)
tcode = CA_CODE{PRN}(chip_num);

% Apply the code to the carrier
signal = signal.*tcode;

end

if APPLY_DATA
%
% Apply Data Modulation
%
% determine the current bit index based on the STARTJTIME and current simulation
% time for each sample time. The data "repeats" every 12.5 minutes,
if (fix(mod(START_TIME+(time(l)-Tp(l)),750)*50)+1)~=(fix(mod(START_TIME+...

(time(end)-Tp(end)),750)*50)+l);
data_bit = fix(mod(START_TIME+(time-Tp), [repmat(750,1,length(time))])*50)+1;

else
data_bit = repmat(fix(mod(START_TIME+(time(1)-Tp(1)),750)*50)+1,1,length(time)),

end

% data_bit now contains the correct data bit index (inside a superframe) for
% each sample time

%
% save off the "bit #", the index inside a superframe of the NEWEST bit observed
% during this time interval
%
DATA_BITS{find(PRN==PRN_VEC)}(PIT_CNT,1) = data_bit(end);
% save off the NEWEST bit value
DATA_BITS{find(PRN==PRN_VEC)}(PIT_CNT,2) = DATA_MESG(datajoit(end));
if sum(diff(data_bit))

% get the first sample time at which the bit transistion occurs, i.e. the
% first sample that "sees" the new bit value. This time is the receiver
% time at which the data transistion is OBSERVED
DATA_BITS{find(PRN==PRN_VEC)}(PIT_CNT,3)=time((find(l==diff(data_bit))+l));
% Sample the data at the same sampling frequency for the same number of
% samples (Determine the actual data over all time)
tdata = DATA_MESG(data_bit);
%
% Modulate the signal
%
signal = signal.*tdata;

else %no bit transition has occured
DATA_BITS{find(PRN==PRN_VEC)}(PIT_CNT,3) = nan;
% if no data bit has occured, implement faster "modulation"
if DATA_MESG(data_bit(end))==(-l)

signal = -signal;
end
% if the data bit has not changed and it is a "1", do nothing to the signal

end
end

B-17

calc_sig_amp.m

function amplitude=calc_sig_amp(CHAN_VEC)
% usage: amplitude=calc_sig_amp(CHAN_VEC)
%
% This function returns the amplitude for the PRN listed in the function call
% according to the SNR_ratio & Noise power parameters set in the load_global_params
% file. SNR_ratio is to be expressed in Db.

global SAMPLING_FREQUENCY
global CHIPPING_RATE
global NOISE_POWER
global FILTER_SIG
global SNR_DB

if nargin==l
% Calculate signal power
snr_ratio=ltr (SNR_DB(CHAN_VEC) ./10);
Ps=NOISE_POWER*snr_ratio;
if FILTER_SIG

% kick up the power a little more to compensate for the filtered components.
% Note: the main lobe contains 90.3% of the signal power, so to maintain the
% same signal power specified by the SNR, the power must be increased here.
Ps=Ps/.94;

end
amplitude=sqrt(Ps*2);

elseif nargin==0
% if no input arguments are specified, return all the amplitudes for the signals
% specifed by the global variables. Take the noise powers from the SNR_DB variable
global PRN_VEC
snr_ratios=10.^(SNR_DB(length(PRN_VEC))./10);
Pwr_sigs=NOISE_POWER. *snr_ratios ;
if FILTER_SIG

% kick up the power a little more to compensate for the filtered components.
% Note: the main lobe contains 90.3% of the signal power, so to maintain the

% same signal power specified by the SNR, the power must be increased here.
Pwr_sigs=Pwr_sigs. /0 . 94 ,-

end
amplitude=sqrt (Pwr_sigs*2) ,-

elseif nargin>l
disp('Error: too many input arguments, amplitude set to zero')
amplitude=0;

end

quantizer.m

function sig_quant=quantizer(Sig_in)
% This function quantizes the I and Q values. It's currently using 2-bit
% quantization, and assumes that there is an automatic gain control (AGO
% that is making sure the gain is correct. The AGC implements a 30%
% occurance of 3's & a 70% occurance of l's.

global PIT_CNT
global ML_QUANT_THRESH
global SAVE_QUANT_THRESH

cutoff70=std(Sig_in)*(70/68.3); % approximation to get cutoffs to include 1.7%
% more points than that included within one
% Standard Deviation.

%scaled_Sig_in=Sig_in*l.85/sigma;

% set a default distribution error
dist_err =0.01;
% set the gain
gain = cutoff70;
% use an iterative technique to arrive at 30%/70% distrbution within 0.1% error
while abs(dist_err) > 0.001
scaled_Sig_in=Sig_in;
minus3=find(scaled_Sig_in<=-cutoff70);
minusl=find(scaled_Sig_in>-cutoff70&scaled_Sig_in<=0);
plusl=find(scaled_Sig_in>0&scaled_Sig_in<cutoff70);

B-18

plus3=find(scaled_Sig_in>=cutoff70);

sig_quant=zeros(size(Sig_in)) ,-
sig_quant(minus3) =-3;
sig_quant(minusl)=-1;
sig_quant (plusl)=l;
sig_quant(plus3)=3;

distl_3 = ([100 1;0 1 1 0]*(hist(sig_quant,[-3 -1 1 3])/length!sig_quant))');
% a positive dist_err here means the cutoff is too low, add to cutoff70
dist_err = distl_3(1)-0.3;
if SAVE_QUANT_THRESH

ML_QUANT_THRESH(PIT_CNT) = Cutoff70;
end
cutoff70=cutoff70+gain*dist_err;
end

% For a Gaussian density, 68.3% of the points are within 1 standard deviation. To
% get a 70% boundry for our AGC, we scale the distribution

% P. 354, BLUE BOOK: talks about the AGC in the GEC/Plessy system, comparing it to
% the MAGR

B-19

APPENDIX C Source Code for Analytical I and Q Model

 gps_iq_model.m

function [argoutl,argout2,argout3]=gps_iq_model(task,arginl,argin2,argin3,argin4)
% usage: [argoutl,argout2,argout3]=gps_iq_model(task,arginl,argin2,argin3,argin4)
%
% This program is a GPS receiver model which generates In-Phase (I) and Quadrature-
% Phase (Q) samples of the received signal. These I's & Q's are demodulated and
% accumlated according to DCO values and latch intervals controlled by the user.
%
% The program has several modes of operation, selected by specifying the "task"
% to be performed as a string in the first input argument. The input and
% output arguments are then specifed for a given task. The four tasks currently
% implemented are initialization (init), restart at a particular time (rstrt),
% DCO updating (updtdco), and I & Q generation (geniq). Their input/output
% arguments are listed below:

% task: 'init'

INPUTS:

arginl
argin2

argin3

argin4

OUTPUTS:

argoutl

eph_f i1ename
recv_pos_mat

START TIME

elev_cutoff

sv_pos_mat

filename of the ephemeris file, needed for SV positions
the receiver position file, including time, structure:
col/row 1 = time (if not starting at zero, in GPS time)

= X ECEF position col/row 2
col/row 3
col/row 4
GPS start
zero. If
not zero,

= Y ECEF position
= Z ECEF position
time, if the time
the first time in

in the recv_pos_mat file
the recv_pos_mat file is

this input will be ignored
cutoff angle above the horizion for determining satelite
visibility. If not provided, 5 degrees is used

matrix of satelite positions for all satellites visible
during the entire run at each timestep.

% task: 'rstrt'

INPUTS:

arginl init_time

OUTPUTS:

argoutl doppler_mat

Time at which to initialize the I & Q generator, loading
the initial errors specified in iq_model_globals

Matrix of Doppler frequencies for each channel @ init_time

% task: 'updtdco'

arginl car_dco_corr Carrier DCO correction in Hz.
argin2 code_dco_corr Code DCO correction in Hz.
argin3 UPDTJTIME simulation time of DCO update

% task: 'geniq'

arginl
argoutl

LATCH_TIME Simulation time (either GPS or offset from 0 start time)
EPL_IQ Cell Array of Early, Prompt, & Late I & Q values

For EPL_IQ_MAT{chan#}:
Coll Col2 Col3

Row 1 | I_E | I_P | I_L

Row 2 | Q_E | Q_P | Q_L

argout2
argout3 CP COUNT

Vector of pseudorange measurements
vector of carrier-phase measurements

Alternate output format: if the GENIQ_MATOUT bit in the IQ_model_globals
function is set, the output will have the following

C-l

format:

argoutl MOD_OUTPT Row vector containing earily, prompt, & late I & Q, PR, & CP

Channel 1 Channel 2
/ \/ ___\
Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cll C12 C13 CXX

I_E Q_E I_P Q_P I_L Q_L PR CP I_E Q_E I_P Q_P I_L CP

% The file is further controlled by the global variables found in IQ_model_globals
% This file must accompany this one. The function uses a collection of functions,
% some included at the bottom of the main routine in the "Utilities" section. The
% functions used in this program are:
%
%
% gps_iq_model
% \

IQ_model_globals (external)
{init}\

calc_all_svs_pos (internal)
\

% I load_eph_file (external)
get_valid_prns (internal)

% I \
| ecef211a (external)

calc_sv_pos (external)
| sv_elevation (external)

current_ephemeris (external)
calc_sv_pos_mat (external)

{rstrt}\
IQ_model_globals (external)

{updtdco}\
IQ_model_globals (external)

{geniq}\
IQ_model_globals (external)
gen_IQ (internal)

% R (internal)
%
%
% Written By Phillip M. Corbell
% Last Update: 8 Februrary 2000

% example call statement:
% gps_iq_model('init','lab2.eph',lab2,399100)

%persistent LOS_DIST_MAT
%persistent DOPPLER_FREQ_MAT
%persistent TIME_OFF
%tic
global LOS_DIST_MAT
global DOPPLER_FREQ_MAT
global TIME_OFF
persistent CP_COUNT; %Carrier-phase counter--running carrier-phase total
global LOOKUP % inverse mapping of PRN vec, PRNS to indicees

switch lower(task)

case {'init','rstrt'}
%
% at either initialization or a restart at a different time: (see after individual
% init and rstrt functions for more common code)
%
% do some variable managment
global DEFINE_GLOBALS
DEFINE_GLOBALS=l;
iq_model_globals
% now that globals have been defined, turn that switch off!
DEFINE_GLOBALS=0;
% initialize carrier-phase counter to zero.
CP_COUNT = 0;

switch lower(task)
case 'init'

%
% initialize:

C-2

arginl
argin2

eph_filename
recv_pos_mat

argin3 START_TIME

% argin4 elev_cutoff

% argoutl sv_pos_mat

filename of the ephemeris file, needed for SV positions
the receiver position file, including time, structure:
col/row 1
col/row 2
col/row 3
col/row 4
GPS start
zero. If
not zero,

= time (if not starting at zero,
= X ECEF position
= Y ECEF position
= Z ECEF position
time, if the time
the first time in

in GPS time)

in the recv_pos_mat file is
the recv_pos_mat file is

this input will be ignored
cutoff angle above the horizion for determining satelite
visibility. If not provided, 5 degrees is used

matrix of satelite positions for all satellites visible
during the entire run at each timestep.

% in the initialization, clear persistent/global values from previous runs
LOS_DIST_MAT= [] ;
DOPPLER_FREQ_MAT=[];
LOS_RANGES_MAT=[];
LAST_LATCH_TIME= [] ;
TIME_OFF=[];

global EPHEMERIS
c=SPEED_OF_LIGHT; %shorthand notation

% assign input variable names
eph_filename = arginl; %string, name of the *.eph file in "Raquet *.eph Format"
sz=size(argin2); %the following takes the input traj. in either orientation
if sz(l)<sz(2) %and rotates it so that the time is the first column.

recv_pos_mat = argin2'; %ECEF coord, for the receiver over the entire run
else

recv_pos_mat = argin2; %ECEF coord, for the receiver over the entire run
end
if recv_pos_mat(1,1)==0; %if the time starts from zero, get the GPS start time

if (nargin<3)|isempty(argin3)|(argin3>604800)
disp('Error: GPS start time not specified'),-

end
START_TIME = argin3; %start time in GPS seconds
time = recv_pos_mat(:,1)+START_TIME; %vector of all times in GPS seconds
END_TIME = recv_pos_mat(end,1); %assumes column one is time
TIME_OFF = STARTJTIME;

else % if not, assume the time vector in the trajectory is GPS time
START_TIME = recv_pos_mat(1,1);
END_TIME = recv_pos_mat (end, 1) ,-
time = recv_pos_mat (: , 1) ,- %vector of all times in GPS seconds
TIME_OFF = 0;

end
if nargin<5

elev_cutoff = 5; %degrees ELEVATION CUTOFF HARD CODED HERE (if not given)
else

elev_cutoff = argin4;
end
LATCH_TIME=START_TIME;%initialize "Latch time"—a latch doesn't actually occur
% Calculate SV positions for SV's visible during entire run for all timesteps
[sv_pos_mat,PRN_LST]=calc_all_svs_pos(eph_filename,...

recv_j?os_mat, time, elev_cutof f) ;
% PRN_LST contains the PRN numbers of the SV positions in sv_pos_mat
% Create lookup variable to do inverse mapping of PRNs to indicees
LOOKUP(PRN_LST)=1:length(PRN_LST);
% Assign the first output variable, argoutl, the matrix of satellite positions
argoutl=sv_pos_mat;
% The number of PRN's will be used alot, make it a variable
num_prns=length(PRN_LST);
%create LOS TRUE RANGES for each SV at each time in the receiver position
LOS_DIST_MAT=time; %(column one will be times of the receiver trajectory)
for i=l:num_prns

LOS_DIST_MAT(:,i+l)=(sum(((recv_pos_mat(:,2:4)-...
sv_pos_mat (i :num_prns :end, 3:5))."2)')."0.5)';

end
% LOS_DIST_MAT is has length(PRN_LST)+1 columns and length(time) rows. The col.
% contain the LOS distance between each respective satellite (indexed according
% to the PRN_LST) and the receiver at the GPS time specified in the first col.
% each row then contains the "perfect pseudoranges" for each timestep.

%now that we know the number of PRNs we're dealing with,
%global variables to match:
CAR_DCO_PHASE_ERR=CAR_DCO_PHASE_ERR(1:num_prns);

we need to size our

C-3

TAU=TAU(1:num_prns);
CAR_DCO_FREQ_ERR=CAR_DCO_FREQ_ERR (1 :num_prns) ;
CODE_DCO_FREQ_ERR=CODE_DCO_FREQ_ERR(1:num_prns);
SNR_DB=SNR_DB(1:num_prns);
%get the initial LOS distances and doppler values at the start time.
delta_time = 0.1e-3; % a tenth of a millisecond average time
time_DT = [LOS_DIST_MAT(1,1) LOS_DIST_MAT(1,1)+delta_time];
% END CASE INIT

case 'rstrt'
%
% restart at a given time:
%
% INPUTS:
%
% arginl init. ;_time Time at which to initialize the I & Q generator, loading

the initial errors specified in iq_model_globals

% OUTPUTS:

% argoutl doppler_mat Matrix of Doppler frequencies for each channel @
% init_time
%
%
% assign input arguments:
init_time=arginl + TIME_OFF;
if isempty(LOS_DIST_MAT)

displ'Line of Site matrix empty. Run init to re-create')
return

end
% make sure init time is within the time of the run
if init_time>LOS_DIST_MAT(end,l)|init_time<LOS_DIST_MAT(1,1)

disp('Error: initalization time outside of run time window');
argoutl = 0;
return

end
c=SPEED_OF_LIGHT; %shorthand notation (handy)
% clear values assocated with some other time, to reinitalize to the new time
DOPPLER_FREQ_MAT=[];
LAST_LATCH_TIME= [] ;
% create a variable
num_prns=length(PRN_LST);
% Create lookup variable to do inverse mapping of PRNs to indicees
LOOKUP(PRN_LST)=1:length(PRN_LST);
%now that we know the number of PRNs we're dealing with, we need to size our
%global variables to match:
CAR_DCO_PHASE_ERR=CAR_DCO_PHASE_ERR(1:num_prns);
TAU=TAU(1:num_prns);
CAR_DCO_FREQ_ERR=CAR_DCO_FREQ_ERR(1:num_prns);
C0DE_DC0_FREQ_ERR=CODE_DCO_FREQ_ERR(1:num_prns);
SNR_DB=SNR_DB(1:num_prns);

%get the initial LOS distances and doppler values at the init time.
delta_time = 0.1e-3; % a tenth of a millisecond average time
time_DT = [init_time init_time+delta_time];
LATCH_TIME=init_time;%initialize "Latch time"--a latch doesn't actually occur
% END CASE RSTRT

end
% now run more code common to both init and rstrt
LOS_distances=spline(LOS_DIST_MAT(:,1)',LOS_DIST_MAT(:,2:end)',time_DT)';
Delta_ranges=diff(LOS_distances);
% Delta_ranges now contains the change in LOS range for each PRN over the time
% period delta_time
DOPPLER_FREQ_MAT = -(Delta_ranges./delta_time)./CARRIER_WAVELENGTH; %row vector
LOS_RANGES_MAT = LOS_distances(1,:); % (m) row vector
% initialize DCO values to the correct doppler plus inital errors.
CAR_DCO_FREQ_MAT = DOPPLER_FREQ_MAT + CAR_DCO_FREQ_ERR; % (Hz) row vector
CODE_DCO_FREQ_MAT = DOPPLER_FREQ_MAT + CODE_DCO_FREQ_ERR; % (Hz) row vector
CAR_DCO_PHZ_MAT = 2*pi*LOS_RANGES_MAT./CARRIER_WAVELENGTH + CAR_DCO_PHASE_ERR; %rad
CODE_DCO_DELAY_MAT = LOS_RANGES_MAT./c + TAU; % (s) row vector
LAST_LATCH_TIME = LATCH_TIME;
switch lower(task)
case 'rstrt'

% assign the output variable
argoutl = DOPPLER_FREQ_MAT;

end
% END CASE INIT AND RSTRT

case {'updtdco','geniq'}

C-4

at either a dco update or a generate IQ task:

iq_model_globals
c=SPEED_OF_LIGHT; %shorthand notation (handy)
if isempty(LOS_DIST_MAT)

disp('Line of Site matrix empty. Run init to re-create']
return

end

switch lower(task)
% END CASE UPDTDCO OR GENIQ

case 'updtdco'
%
% update DCO values

% arginl car_dco_corr Carrier DCO correction in Hz.
% argin2 code_dco_corr Code DCO correction in Hz.
% argin3 UPDTJTIME simulation time of DCO update
%
car_dco_corr = arginl;
code_dco_corr= argin2;
UPDTJTIME = argin3+TIME_0FF;
% make sure the user is not trying to go backwards in time!
if UPDT_TIME<=LAST_LATCH_TIME

disp('Error: This Time input equals or preceeds the last time input')
argoutl = [];
return

end
% update the internal carrier phase and code delay values before updating DCO
delta_t = LAST_LATCH_TIME - UPDTJTIME;
CAR_DCO_PHZ_MAT = CAR_DCO_PHZ_MAT - 2*pi*CAR_DC0_FREQ_MAT.*delta_t; %rads
CODE_DCO_DELAY_MAT = CODE_DCO_DELAY_MAT - (CODE_DCO_FREQ_MAT.*delta_t)./...

CARRIER_FREQUENCY; %seconds
% update the DCO values
CAR_DCO_FREQ_MAT = CAR_DCO_FREQ_MAT + car_dco_COrr;
CODE_DCO_FREQ_MAT = CODE_DCO_FREQ_MAT + COde_dco_COrr;
% set last latch time here to the update time, so the same interval is not
% integrated twice.
LAST_LATCH_TIME = UPDTJTIME;
% END CASE UPDTDCO

case 'geniq'
%
% dump I & Q values

% arginl
% argin2

LATCHJTIME
PRN_ASIGN

argoutl EPL_IQ

Simulation time (either GPS or offset from 0 start time)
Vector of PRNS that specifies the assignments of
the PRNs to the 12 channels of the simulator. The
index of the numbers in PRN_ASIGN correspond to the
channel, and the numbers at the 12 locations in the
PRN_ASIGN vector specify the PRN assigned to that
channel.

Cell Array of Early, Prompt, & Late I & Q values
For EPL_IQ_MAT{chan#}:

Coll Col2 Col3
Row 1 I_E I_P I_L
Row 2 Q_E Q_P Q_L

% argout2 Vector of pseudorange measurements
% argout3 CP_COUNT vector of carrier-phase measurements
%
% Alternate output format: if the GENIQJMATOUT bit in the IQ_model_globals
% function is set, the output will have the following
% format:
%
% argoutl MOD_OUTPUT Row vector containing earily, prompt, & late I & Q, PR,
% & CP
%
% Channel 1 Channel 2
% / \/ ___\
% Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cll C12 C13 CXX
% _
% I_E Q_E I_P Q_P I_L Q_L PR CP I_E Q_E I_P Q_P I_L CP

C-5

% assign input arguments
if nargin<2

PRN_ASIGN = PRN_LST;
else

PRN_ASIGN = argin2;
end
LATCH_TIME = arginl + TIME_OFF;
% make sure the user is not trying to go backwards in time!
if LATCH_TIME<=LAST_LATCH_TIME

disp('Error: This Time input equals or preceeds the last time input')
argoutl = [];
return

end

% get the time lapse since the last call
delta_t = LATCHJHME - LAST_LATCH_TIME;

% now get the TRUE LOS distances and signal DOPPLER values:

% use a tenth of a millisecond average time to calculate actual doppler
delta_time = O.le-3;
% need to calculate the phase error at the beginning of the integration interval
% therefore, get the truth Doppler values at that time
time_DT = [LAST_LATCH_TIME LAST_LATCH_TIME+delta_time];■
LOS_distances=spline(LOS_DIST_MAT(:,l)',LOS_DIST_MAT(:,2:end)',time_DT)';
Delta_ranges=diff(LOS_distances);
% Delta_ranges now contains the change in LOS range for each PRN over the time
% period delta_time (one millisecond) just after LAST_LATCH_TIME
DOPPLER_FREQ_MAT = -(Delta_ranges./delta_time)./CARRIER_WAVELENGTH;
% create the truth LOS ranges matrix, at the beginning of the integration
% interval (starting at LAST_LATCH_TIME)
LOS_RANGES_MAT = LOS_distances(1,:); % m
% Calculate the phase/time errors:
CAR_DCO_PHASE_ERR = 2*pi*L0S_RANGES_MAT/CARRIER_WAVELENGTH - CAR_DCO_PHZ_MAT;
% TAU is the time error in the autocorrelation function, or code misallignment
% error between the local and received code waveform, (in seconds)
TAU = LOS_RANGES_MAT./c - CODE_DCO_DELAY_MAT,-
% Calculate the frequency errors:
CAR_DCO_FREQ_ERR = DOPPLER_FREQ_MAT - CAR_DCO_FREQ_MAT ;
CODE_DCO_FREQ_ERR = DOPPLER_FREQ_MAT - CODE_DCO_FREQ_MAT ;
%%%%%%%%%%% PERFECT WORLD CHEAT %%%%%%%%%%%%%
perfect_world=0; %set this to 1 to allow perfect DCO Syncronization Each Time
if perfect_world

CAR_DCO_FREQ_MAT = DOPPLER_FREQ_MAT ,-
CODE_DCO_FREQ_MAT = DOPPLER_FREQ_MAT;

end
%%%%%%%%%%% END PERFECT WORLD CHEAT %%%%%%%%%%%%%
% get the IQ values, w/o code correlation yet.
delta_t_vec = delta_t*ones(size(CAR_DCO_FREQ_ERR));
[I,Q] = gen_IQ(CAR_DCO_PHASE_ERR, CAR_DCO_FREQ_ERR, delta_t_vec, SNR_DB) ;
% I & Q contain the I & Q values for each LOS path, now scale them with the
% autocorrelation function. (I and Q are row vectors)
%apply Code correlation

%I and Q are row vectors, and R returns
%a column vector the same length as I or
%Q.

I_Q_E = [I,-Q] .*(ones(2,l)*R(TAU,'e'))
I_Q_P = [I,-Q] .*(ones(2,l)*R(TAU,'p'))
I_Q_L = [I,-Q] .*(ones(2,l)*R(TAU, '1'))
sz=size(I_Q_E);
if sz(l)>sz(2)

I_Q_E=I_Q_E' ;
I_Q_P=I_Q_P' ;
I_Q_L=I_Q_L';

end
% the above rotation ensures the I_Q_x paramters are 2x(num of sv's)
global NO_NOISE
global SAMPLING_FREQUENCY
I_or_Q_sqrd_var = 8.5;
noise_std = sqrt(I_or_Q_sqrd_var*SAMPLING_FREQUENCY.*delta_t_vec);
if ~NO_NOISE

I_Q_E=I_Q_E+repmat(noise_std,2,1).*randn(size(repmat(noise_std,2,1)))
I_Q_P=I_Q_P+repmat(noise_std,2,1).*randn(size(repmat(noise_std,2,1)))
I_Q_L=I_Q_L+repmat(noise_std,2,1).*randn(size(repmat(noise_std,2,1)))

end

CP_COUNT = CP_COUNT - 2*pi*CAR_DC0_FREQ_MAT.*delta_t; %rads
% update the internal carrier phase and code delay values (since last update)
CAR_DC0_PHZ_MAT = CAR_DC0_PHZ_MAT - 2*pi*CAR_DC0_FREQ_MAT.*delta_t; %rads
CODE_DCO_DELAY_MAT = C0DE_DC0_DELAY_MAT - (CODE_DCO_FREQ_MAT.*delta_t)./...

C-6

CARRIER_FREQUENCY; %seconds
% CAR_DCO_PHZ_MAT now contains the expected LOS radians between each SV and the
% receiver. CODE_DCO_DELAY_MAT contains the expected signal travel times bet.
% each SV and the Receiver.

if ~MOD_OUTPUT
for i=LOOKUP(PRN_ASIGN) %1:length(I_Q_E(1,:))

EPL_IQ{i} = round)[I_Q_E(:,i) I_Q_P(:,i) I_Q_L(:,i)]);
end
argoutl = EPL_IQ;
% assign carrier-phase and pseudorange output variables
argout2 = CODE_DCO_DELAY_MAT(LOOKUP(PRN_ASIGN)).*c; %pseudorange measurement
argout3 = CP_COUNT(LOOKUP(PRN_ASIGN)); %carrier-phase measurement

else
I_Q_E = I_Q_E (: , LOOKUP (PRN_ASIGN)) ;
I_Q_P = I_Q_P (: , LOOKUP (PRN_ASIGN)) ;
I_Q_L = I_Q_L (: , LOOKUP (PRN_ASIGN)) ;
TEMPI = round ([I_Q_E;I_Q_P;I_Q_L]) ;
TEMP2 = [CODE_DCO_DELAY_MAT(LOOKUP(PRN_ASIGN)).*c;...

CP_COUNT(LOOKUP (PRN_ASIGN))/(2*pi)];
TEMP3 = [TEMPI,-TEMP2] ;
argoutl = TEMP3(:) ' ;
argoutl(1:8:num_prns)
argoutl(2:8:num_prns)
argoutl(3:8:num_prns)
argoutl(4:8:num_prns)
argoutl(5:8:num_prns)
argoutl(6:8:num_prns)
argoutl(7:8:num_prns) = CODE_DCO_DELAY_MAT.* c;
argoutl(8:8:num_prns)

end

I_Q_E(1,
I_Q_E(2,
I_Q_P(1,
I_Q_P(2,
I_Q_L(1,
I_Q_L(2,
CODE_DCO_DELAY_MAT.
CP_COUNT;

% update last latch time parameter
LAST_LATCH_TIME = LATCH_TIME;

END CASE GENIQ
end

otherwise
disp('unknown task')

end

%toc

% UTILITY FUNCTIONS:

function [sv_pos_mat,PRN_VEC]=calc_all_svs_pos(ephem_filename,
recv_pos_mat,time,elev_cutoff)

global EPHEMERIS
global SPEED_OF_LIGHT
c=SPEED_OF_LIGHT;

Col 4:
PRN

,1)))

Y cordECEF, Col 5: Z cord ECEF

% Load the ephemerous parameters
load_eph_file(ephem_filename);
% Get a list of valid prns that are visible during the entire run
PRN_VEC = get_valid_prns(recv_pos_mat([1 end],:), elev_cutoff, time) ,-
num_prns = length(PRNJVEC);
% Calculate satellite positions for all timesteps
% form a matrix of SV ECEF positions:
% col 1: Time, Col 2: PRN, Col 3: X cordECEF,
% first create the first two columns, time &
sv_joos_mat= [] ;
coll = ones(num_prns,1)*recv_pos_mat(:,1)' ;
col2 = PRN_VEC *ones (1, length(recv_pos_mat (: ,
SV_pOS_mat (: , 1: 2) = [coll(:> Col2(:)];
true_ranges=sv_joos_mat ;
% now complile the satellite positions for every row in sv_pos_mat
% note that we are calculating the SV positions for where they WERE at the time of
% transmission, not where they all ARE at a given GPS time. In doing this, we must
% interatively solve for the transmission time.

C-7

for i=l:(length(time));
% start off with the transmit times being the true receiver time of reception
strt = (1+(i-1)*num_prns); stp = (num_prns+(i-1)*num_prns);
transmit_time_vec=ones(num_prns,1)*(time (i)-0.07); %0.07 is a nominal prop, time
true_recv_pos = recv_pos_mat(i,2:4);
max_LOS_err = 41;
while max_LOS_err>l; % specify accuracy here in meters

sv_pos_mat(strt:stp,3:5)=...
calc_sv_pos_mat(PKN_VEC,transmit_time_vec,true_recv_pos);

% now calculate the transmit times from the initial positions
prop_times = (((sum(((sv_pos_mat(strt:stp,3:5)-...

ones(num_prns,1)*true_recv_pos)."2)'))')."0.5)./c;
new_transmit_time_vec = ones(num_prns,1)*time(i)-prop_times;
% see if we've converged:
max_LOS_err=max(abs(transmit_time_vec-new_transmit_time_vec))*c;
transmit_time_vec=new_transmit_time_vec;
true_ranges(strt:stp,3)=prop_times*c;

end
%occasionally output progress
if mod(i,round(length(time)/4))==1;

endofmes = '% done calculating SV positions';
startofmes = num2str(100*i/length(time),3);
disp([startofmes endofmes]);

end
end

function prn_vec = get_valid_prns(srt_stp_time_pos, elev_cutoff, time_vec)
% returns the prns that are visible both from the starting location at the start time
% and from the ending location at the end time

global EPHEMERIS

time=[time_vec(1) time_vec(end)]; %start and stop times of the run in GPS seconds
% get list of valid PRN's in the Ephemeris file
prns = [];
for i=l:32

if EPHEMERIS{i}.valid==l
prns=[prns i];

end
end
elvmat=zeros(length(time),length(prns));
% for the start position, determine the SV's above the cutoff angle
recy_pos_ECEF = srt_stp_time_pos (1, 2 :4) ,-
[long, lati]=ecef211a(recv_pos_ECEF);
for (i=prns)

for (t=time)
sv_pos = calc_sv_pos(i, t, recv_pos_ECEF);
elvmat(find(time==t), find(i==prns)) = (180/pi)*sv_elevation(lati,...

long, recv_pos_ECEF, sv_pos);
end

end
% now find those PRNs that are above the cutoff
prnsvi s = [];
elvmatvis = [];
for i=prns

abvhor=find(elvmat(:,find(i==prns))>elev_cutoff); %SV's above the horizion
if -isempty(abvhor)

prnsvis = [prnsvis i] ;
elvmatvis = [elvmatvis elvmat(:,find(i==prns))] ;

end
end
% for the end position, determine the SV's above the cutoff angle
recv_pos_ECEF = srt_stp_time_pos(end,2:4);
[long, lati]=ecef211a(recv_pos_ECEF);
for (i=prns)

for (t=time)
sv__pos = calc_sv_pos (i, t, recv_pos_ECEF) ;
elvmat(find(time==t), find(i==prns)) = (180/pi)*sv_elevation(lati,...

long, recv_pos_ECEF, sv_pos);
end

end
% now find those PRNs that are above the cutoff
prnsvis_end = [] ;
elvmatvis_end = [] ;
for i=prns

abvhor=find(elvmat(:,find(i==prns))>elev_cutoff); %SV's above the horizion

C-8

if -isempty(abvhor)
prnsvis_end = [prnsvis_end i];
elvmatvis_end = [elvmatvis_end elvmat(:,find(i==prns))];

end
end
% now find those PRNs that are above the cutoff at the end and beginning of the run
vecl(prnsvis)=1;
vec2(prnsvis_end)=1;
vec3=vecl&vec2;
PRN_VEC=find(vec3==l),-
% now make sure the ephemeris for these satelites is valid over this time span
for j=PRN_VEC

eph=current_ephemeris(j) ;
toe_value(j)=eph.tOe;

end
%returns the indexes (PRN numbers) of the toe_value vector which has toe values
% within 2 hours of the start and stop times of the run
prn_vec=find((abs(toe_value-time(1))<2*60*60)&(abs(toe_value-time(end))<2*60*60));

% End Function

function [argl,arg2,arg3]=R(tau_err,EPL_switch)
% usage: []=R(tau_err,EPL_switch)
% tau_err is the offset (in seconds) of the code tracking loop (in time) It is
% equivalent to the absolute phase error in cycles, but expressed in seconds
% if EPL_switch isn't specified, argl,arg2,arg3 = E_value,P_value,L_value
% if EPL_switch is "E" then argl = E_value
% if EPL_switch is "P" then argl = P_value
% if EPL_switch is "L" then argl = L_value
%
% a POSITIVE tau_err will return a larger earily than late value, and vice versa
%

global CHIP_SPACING %spacing between chips (in seconds)
global T_C %length of one chip (in seconds)
if nargin<2

E_value = l-min(abs(tau_err-CHIP_SPACING)/T_C,l)
P_value = 1-min(abs(tau_err)/T_C,1)
L_value = l-min(abs(tau_err+CHIP_SPACING)/T_C,1)

else
switch lower(EPL_switch)
case 'e'

argl = l-min(abs(tau_err-CHIP_SPACING)/T_C,1); %E_value
case 'p'

argl = l-min(abs(tau_err)/T_C,1); %P_value
case '1'

argl = l-min(abs(tau_err+CHIP_SPACING)/T_C,1); %L_value
end

end
% End Function

function [I,Q] = gen_IQ (DCO_phase_err, DCO_freq_err, DeltaJT, pre_corr_SNR_dB)
% usage: [I,Q] = gen_IQ(DCO_phase_err, DCO_freq_err, Delta_T, pre_corr_SNR_dB)
%
% This function returns the simulated accumulated I & Q values for the GP2021 chipset
%
% DCOj?hase_err initial phase"error in the DCO at the beginning of the
% Correlation interval of Delta_T, defined as: (in Radians)
%
% DCOj?hase_err = (True Signal Phase)-(Estimated Signal Phase)
%
% Note that for the GP2021, the subsampling causes a phase reversal
% such that a increase in DCO_phase_err must be compensated by a
% physical DECREASE in the ACTUAL DCO phase. Note also that the
% GP2021 doesn't directly adjust the DCO phase, only the frequency,
% when it is in signal tracking mode.
%
% DCO_freq_err inital frequency error in the DCO at the beginning of the
% Correlation interval of Delta_T, defined as: (in Hz)
%

DCO_freq_err = (True Recv. Freq.) - (Estimated Recv. Freq.)

Note again due to the subsampling, the ACTUAL DCO frequency is
LOWERED by a positive Doppler Frequency, and RAISED by a negative

C-9

% Doppler Frequency. (+ Doppier = relative distance DECREASING)
%
% DeltaJT The time interval of the I's & Q's to be summed. Normally an
% integer multiple of 1ms.
%
% pre_corr_SNR_dB Signal To Noise Ratio (in Db) prior to correlation (without the
% 43 Db of Processing Gain for a 20ms accumulation)
%
% This function will work with singlar values OR VECTORS. Notes no VECTOR USE:
% DCO_phase_err, DCO_freq_err, pre_corr_SNR_dB, AND DeltaJT vectors must be the same
% length, in THE SAME DIRECTION (i.e., row vectors or column vectors).

global SAMPLING_FREQUENCY
global NO_NOISE
global SUB_SAMP
% if the I/Q model is "modeling" a subsampling recevier, invert the errors
if SUB_SAMP

DCO_freq_err=-DCO_freq_err;
DCO_phase_err=-DCO_phase_err;

end

s_pls_n_var = 3.4;
I_or_Q_sqrd_var = 8.5;
% max_amplitude equates the output of the I & Q model to a single signal with no
% noise being run through the SS & RM for ideal comparisons
max_amplitude = 1;

% get the signal to noise ratio as a pure ratio
snr_precor = 10.*(pre_corr_SNR_dB./10);
% calculate the signal power in the discrete quantized samples
sig_pwr = s_pls_n_var.*(snr_precor./(snr_precor+l));
if max_amplitude&NO_NOISE

sig_pwr = 4.5;
end
% the signal amplitude, as sumed over a second. The DeltaJT scaling is done below
%sig_amp = SAMPLING_FREQUENCY.*sqrt(2*sig_pwr);
sig_amp = DeltaJT.*SAMPLING_FREQUENCY.*sqrt(2*sig_pwr);
noise_std = sqrt(I_or_Q_sqrd_var*SAMPLING_FREQUENCY.*Delta_T);

% get the indexes of each vector where the DCO_freq_err is zero
%i=find(DCO_freq_err==0);
% now get the indexes of each vector where the DCO_freq_err is not zero
%n=find(DCO_freq_err~=0);
n=l:length(DCO_freq_err) ;
% for those indicees that have zero frequency errors, use these equations
%I(i)=sig_amp(i).*DeltaJT(i). *cos(DCO_phase_err(i));
%Q(i)=sig_amp(i).»DeltaJT (i).*sin(DCO_phase_err(i));
% for those indicees that have non-zero frequency errors, use these equations
%I(n)=sig_amp(n).*cos((DeltaJT (n).*2*pi.*DCO_freq_err(n))/2+DCO_phase_err(n)).*...
% (2./(2*pi.*(DCO_freq_err(n)))).*sin((2*pi*DCO_freq_err(n).12) .*Delta_T(n));
%Q(n)=sig_amp(n).*sin((-DeltaJT (n).*2*pi.*DCO_freq_err(n))/2+DCO_phase_err(n)).*...
% (2./(2*pi.*(DCO_freq_err(n)))).*sin((2*pi*DCO_freq_err(n).12) .*Delta_T(n));

% use a sine implementation
I(n)=sig_amp(n).*cos((DeltaJT (n).*2*pi.*DCO_freq_err(n))/2+DCO_phase_err(n)).*...

sinc((2*DCO_freq_err(n).12) .*DeltaJT(n));
Q(n)=sig_amp(n).*sin((DeltaJT (n).*2*pi.*DCO_freq_err(n))/2+DCO_phase_err(n)).*...

sinc((2*DCO_freq_err(n) .12) .*Delta_T(n)) ,-

%if ~NO_NOISE
% I=I+noise_std.*randn(size(noise_std)) ;
% Q=Q+noise_std.*randn(size(noise_std));
%end

% End Function

C-10

iq_model_globals.m

% These are the global variables that control the Matlab IQ Model

% global "CONSTANTS" (i.e., functions of the hardware or GPS system parameters)
%%% NOTE: THESE VARIABLES ARE COMMON WITH THE SIGNAL SIM & CORRELATOR MOD! !
% GPS Constants:
global CARRIER_FREQUENCY % LI carrier frequency
global CARRIER_WAVELENGTH % LI wavelength in meters.
global SPEED_OF_LIGHT
global T_C
% Hardware Dependent Constants:
global CHIP_SPACING
global SAMPLING_FREQUENCY
% Parameters to set
%global START_TIME
global SNR_DB
global SUBSAMP
%%% NOTE: END VARIABLES THAT ARE COMMON W/ THE SIGNAL SIM & CORRELATOR MOD
% IQ_model_globals
global CAR_DCO_PHASE_ERR
global TAU
global CAR_DCO_FREQ_ERR
global CODE_DCO_FREQ_ERR
global LAST_LATCH_TIME
global CAR_DCO_FREQ_MAT
global CODE_DCO_FREQ_MAT
global CAR_DCO_PHZ_MAT
global CODE_DCO_DELAY_MAT
global LOS_RANGES_MAT
%global IQ_FREQ
global NO_NOISE
global MOD_OUTPUT

%DEFINED IN GPS_IQ_MOD
global LOS_DIST_MAT
global DOPPLER_FREQ_MAT
global TIME_OFF
global PRN_LST %defined by the iq_model
global LOOKUP % inverse mapping of PRN vec, PRNS to indicees

global DEFINE_GLOBALS

if DEFINE_GL0BALS==1;
% %

% define the 'constants' (for GPS)
% %
CHIPPING_RATE = 1.023E6; % CA code chipping rate (Hz)
T_C = 1/CHIPPING_RATE; % Length (in seconds) of a C/A code chip.
CARRIER_FREQUENCY = 1575.42E6; % LI received frequency (Hz)
SPEED_OF_LIGHT=299792458.0; % (meters/second)
CARRIER_WAVELENGTH=SPEED_OF_LIGHT/CARRIER_FREQUENCY; %L1 wavelength in Meters
% %

% define the frequency plan and other hardware dependent variables
% %

CHIP_SPACING = T_C/2; % Correlator Chip spacing in Simulink model
SAMPLING_FREQUENCY = 40E6/7; % From the Mitel GP2021 chip (Hz)
% %

% define the parameters that control and define the simulation
% %

for i=l:12
% SNR_DB represents the signal-to-noise ratio at the output of the GPS front-end
SNR_DB(l,i)=-15; %indexed by channel

end
SUBSAMP=1; %if the final IF frequency is sub-sampled,
% aliasing occurs and the PHASE AND FREQUENCY
% ERRORS ARE REVERSED!
% the rest of these parameters are defined through function interface (i.e., PRN_VEC)

C-ll

define the parameters that control and define the truth environment

CAR_DCO_PHASE_ERR(1:12)
TAU(1:12)
CAR_DCO_FREQ_ERR(1:12)
CODE_DCO_FREQ_ERR(1:12)
LAST_LATCH_TIME
CAR_DCO_FREQ_MAT
CODE_DCO_FREQ_MAT
CAR_DCO_PHZ_MAT
CODE_DCO_DELAY_MAT
NO_NOISE
MOD_OUTPUT

=0*ones(1,12); %initial carrier phase error (radians)
=0*ones(1,12); %initial code correlation error (sec)
=0*ones(1,12); %initial DCO carrier freq. error (Hz)
=0*ones(l,12); %initial DCO code freq. error (Hz)
= []; %(s)
= []; %(Hz)
= []; %(Hz)
= []; %(rads)
= []; %(sec)
=0; % if set to "1", it doesn't add noise to the I's & Q's.
=1; % select alternate output out of IQ_mod.

% IQ_FREQ is defined through the function interface
end

C-12

Bibliography

[I] Accord. "GPS Correlator Simulator," Reference to a GPS Receiver Model,
WWW Site. http://www.accord-soft.com/Crsm.htm. 25 January 2000.

[2] Air Force Research Laboratory Munitions Directorate. "A Request for
Information - Miniature Integrated Navigation Technology (MINT)," Commerce

Business Daily, 27 July 1999.

[3] Air Force Research Laboratory Munitions Directorate. Miniature Integrated

Navigation Technology (MINT) Technology Investment Plan. Eglin AFB, FL,
1999.

[4] Anderson, Jon and Steve Lazar. "Lm and Lc: How the Military and Civilian
Users of GPS Can Reuse Our Existing Spectrum," Proceedings ION GPS

97:1229:1235. Kansas City, Institute of Navigation, September 1997.

[5] Anon. GPS Interface Control Document GPS-JDC-200, with IRN-200C-PR002.
Department of the Air Force. September 25, 1997.

[6] Baier, Fred P. A GPS Code Tracking Receiver Design for Multipath Mitigation

Using Maximum Likelihood Estimation. MS Thesis, AFTI7GE/ENG/97D-18,
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB, OH, December 1997.

[7] Berkeley Design Technology, Inc. "Choosing Block-Diagram Tools for DSP
Design," DSP & Multimedia Technology, April 1995.

[8] Berkeley Design Technology, Inc. "In Search of the Best Tool for DSP Design,"
Electronic Engineering Times, July 11, 1995.

[9] Defense Modeling and Simulation Office, Home Page, WWW Site.
http://www.dmso.mil/. 26 January 2000.

[10] DSP Design Tools & Methodologies (Volume U), List of DSP graphical
development programs, WWW Site, http://www.bdti.com/products/volume2.htm.
26 January 2000.

[II] GPS support Commission. Global Positioning System Standard Positioning

Service Signal specification. DOD-4650.5/SPSSP V3, 1 August, 1998. WWW
Site. http://www.peterson.af.mil/usspacecom/gps%5Fsupport/index.htm, 25
February 2000.

BIB- 1

[12] Herd, William J. High Dynamic Global Positioning System Receiver, U.S. Patent
4,578.678. Washington: USPTO, 25 March, 1986

[13] International GPS Service Homepage, http://igscb.jpl.nasa.gov. 3 Feburary 2000.

[14] Kaplan, Elliott D. Understanding GPS, Principles and Applications. Boston:
Artech House, Inc., 1996.

[15] Leap seconds, WWW Site, http://tycho.usno.navy.mil/leapsec.html. 14 February
2000.

[16] Leimer, Donald and Sanjai Kohli. "Receiver Phase-Noise Mitigation,"
Proceedings ION GPS 95:627:632. Nashville, Institute of Navigation, September
1998.

[17] Lukesh, John, "Optimal Use of Both GPS Carrier and Code Tracking
Observations," Proceedings of the 1999 National Technical Meeting & 19th

Biennial Guidance Test Symposium, Vision 2010: Present and Future:447:454.
1999

[18] Maybeck, Peter S. Stochastic Models, Estimation and Control, I. New York:
Academic Press, Inc., 1979. Republished, Arlington, VA: Navtech, 1994.

[19] Maybeck, Peter S. Stochastic Models, Estimation and Control, II. New York:
Academic Press, Inc., 1982. Republished, Arlington, VA: Navtech, 1994.

[20] Mitel Semiconductor. GP2000 GPS Chipset - Designers Guide. MS4395-2.3.
April 1998. WWW Site, www.mitel.com.

[21] Mitel Semiconductor. GP2000, GPS Receiver Hardware Design. Application
Note AN4855 Issue No 1.4. February 1999. WWW Site, www.mitel.com.

[22] Mitel Semiconductor. GP2010, GPS Receiver RF Front End. DS4056 ver 3.4.
October 1996. WWW Site, www.mitel.com.

[23] Mitel Semiconductor. GP2021,GPS 12 Channel Correlator. DS4077 ver 2.6.
July 1996. WWW Site, www.mitel.com.

[24] Modeling and Simulation Information Analysis Center, Home Page, WWW Site.
http://www.msosa.mil.inter.net/home.htm. 26 January 2000.

[25] Modeling And Simulation of GPS Receivers Is Easier With New Software,
Wireless Systems Design, April 1998. WWW Site.
http://www.wsdmag.com/library/penton/archives/wsd/Aprill998/288.htm. 26
January 2000.

BIB-2

[26] Modeling GPS Receivers in ACOLADE, ACOLADE Application Note, PN -
3313-02-PD, ICUCOM Corporation, 1999.

[27] National Research Council. The Global Positioning System, A Shared National

Asset. Library of Congress Catalog Card Number 95-69627. Washington, D.C.:
National Academy Press, 1995

[28] NavSys Corporation, "GPS Receiver Modeling and Simulation Tools," Site
explaining their GPS Signal Simulation Toolbox, WWW Site.
http://www.navsys.com/Gpstools.htm. 29 January, 2000.

[29] NavSys Corporation, "TRACKTAG Autonomous TIGTT® Geolocation system,"
WWW Site, http://www.navsys.com/tracktag.htm. 10 March, 2000

[30] Navtech Seminars & GPS Supply/Development/Engineering/GPS Correlator
Simulator, Reference on Navtech website to Accord's Correlator Simulator,
WWW Site, http://navtechgps.com/supply/correlator_simulator.asp. 26 January
2000.

[31] NAWCWPNS GPS/INS Branch Modeling & Simulation, Reference to a GPS
Receiver Model, WWW Site, http://sirius.chinalake.navy.mil/model.html. 25
January 2000.

[32] Oak Frequency Control Group, "Understanding AVAR," Microwaves & RF,

Penton Media. December 1996. WWW Site.
http://sites.penton.com/mwrf/library/penton/archives/mrf/Decemberl996/403.htm

[33] Parkinson, Bradford W. and James J. Spiler, Jr. Global Positioning System:

Theory and Applications, Volume 1. Washington, D.C.: American Institute of
Aeronautics and Astronautics, Inc., 1996.

[34] Peterson, R.L., Rodger E. Ziemer, David E. Borth, Introduction to Spread

Spectrum Communications, Englewood Cliffs, NJ: Prentice Hall, 1995.

[35] Presnar, Michael D. Comparison of Ultra-Tightly Coupled Global Positioning

System/Inertial Navigation System (GPS/INS) Integration Designs for Miniature

Integrated Navigation Technology (MINT). MS thesis, AFIT/GE/ENG/00M-12,
School of Engineering and Management, Air Force Institute of Technology and
Management (AU), Wright-Patterson AFB, OH, March 2000.

[36] Raquet, John F. Class Handouts, EENG 533, Navigation Using GPS. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
Spring 1999.

[37] Raquet, John F. Class Handouts, EENG 633, Advanced GPS Theory and
Applications. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, Summer 1999.

BIB-3

[38] Raquet, John. Development of a Method for Kinematic GPS Carrier-Phase

Ambiguity Resolution Using Multiple Reference Receivers. Ph.D. dissertation,
UCGE Reports Number 20116, Department of Geomatics Engineering, University
of Calgary, Calgary, Alberta, Canada, May 1998.

[39] Sennott, James W. "Receiver Architectures for Improved Carrier Phase Tracking
in Attenuation, Blockage, and Interference," GPS Solutions, Vol. 3, No. 2: 40-47
1999

[40] Sennott, James W. and David M. Senffner. "A DGPS Signal Processor with
Improved Blockage and Multipath Properties," Proceedings ION GPS-93: 923-
928. Salt Lake City: Institute of Navigation, September 1993.

[41] Sennott, James W. and David M. Senffner. "A GPS Carrier Phase Processor for
Real-Time High Dynamics Tracking," Proceedings of the 53rd Annual Meeting of
ION:299-308. Albuquerque: Institute of Navigation, June 1997.

[42] Sennott, James W. and David M. Senffner. "Comparison of Continuity and
Integrity Characteristics for Integrated and Decoupled Demodulation/Navigation
Receivers," Proceedings ION GPS-95:1531-1531. Palm Springs: Institute of
Navigation, September 1995.

[43] Sennott, James W. and David M. Senffner. "Robustness of Tightly Coupled
Integrations for Real-Time Centimeter GPS Positioning," Proceedings ION GPS-

97:655-663. Kansas City: Institute of Navigation, September 1997.

[44] Sennott, James W. and David M. Senffner. "The Use of Satellite Geometry for
Prevention of Cycle Slips in a GPS Processor," Journal of the Institute of

Navigation, Vol. 39 No. 2:217-235, Alexandria: Institute of Navigation, Summer
1992.

[45] Sennott, James W. and David M. Senffner. Navigation Receiver with Coupled

Signal-Tracking Channels, U.S. Patent 5,343,209. Washington: USPTO, 30
August 1994.

[46] SimCentral, The Modeling and Simulation Information Network, Commercial
Modeling and Simulation reference site, WWW Site, http://www.simcentral.com/.
26 January 2000.

[47] Simulation Based Acquisition Special Interest Area, Homepage, WWW Site.
http://www.msosa.dmso.mil/sba/default.asp. 31 January 2000.

[48] Sklar, Bernard, Digital Communications, Fundamentals and Applications,

Englewood Cliffs, NJ: Prentice Hall, 1988.

[49] Surathu, Mahesh. Resident GPS Signal Simulation Toolbox expert. Navsys
Corporation. Telephone conversation. 28 January 2000.

BIB-4

[50] Tetwsky, Avram K. and Soltz, Arnold. "GPS MATLAB Toolbox Review," GPS

World. 50-56, June 1998.

[51] The MathWorks, Inc., 21 Elliot Street, Natick, MA 01760. MATLAB. October
1999. Version 5.3.1.

[52] Tracking and Imaging Systems Inc., 418 N. Linden St. Bloomington IL 61701.

[53] United States Air Force Aircraft Fact Sheets. WWW Site.
http://www.airpower.maxwell.af.mil/FactSheets

[54] USNO GPS Data & Information, WWW Site.
http://tycho.usno.navy.mil/gps_datafiles.html. 25 February 2000.

[55] Vig, John R. Quartz Crystal Resonators and Oscillators For Frequency Control

and Timing Applications—A Tutorial. AD-A328861 Rev. 8.3.7, September 1999.
Updated version of report SLCET-TR-88-1, for the U.S. Army Communications-
Electronics Command (CECOM), Fort Monmouth, NJ 07703, USA. WWW Site.
http://www.ofc.com/, (click on App Notes.)

[56] VIS-SIM.ORG - The Visual Simulation Portal, reference site for visual simulation,
WWW Site, http://www.vis-sim.org/. 26 January 2000.

[57] Ward, Phillip W. "Performance Comparisons Between FLL, PLL and a Novel
FLL-Assisted-PLL Carrier Tracking Loop Under RF Interference Conditions,"
ION GPS 98:183:195. Nashville, Institute of Navigation, September 1998.

[58] Ward, Phillip W. "Using a GPS Receiver Monte Carlo Simulator to Predict RF
Interference Performance," ION GPS 97:1473:1482. Kansas City, Institute of
Navigation, September 1997.

[59] Zhodzinshsky, M. Yudanov, S., Veistel, V., and Ashjaee, J., "Co-Op Tracking for
Carrier Phase," Proceedings ION GPS 95:653:664. Nashville, Institute of
Navigation, September 1998.

BIB-5

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, inducing the time for reviewing instiuaicins, searcnmg existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, inducing
suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204. Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, r» p«son shal t» subjert to ary penalty for falirtg to cor
information if it does not dsplay a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYY)

15-03-2000
2. REPORT TYPE

Master'sThesis
DATES COVERED (From - To)

Apr 1999 - Mar 2000
4. TTTLE AND SUBTITLE
DESIGN AND VALIDATION OF AN ACCURATE GPS SIGNAL AND
RECEIVER TRUTH MODEL FOR COMPARING ADVANCED RECETVER
PROCESSING TECHNIQUES

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Phillip M. Corbell, 2Lt, USAF

5d. PROJECT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
2950 P Street
Wright-Patterson AFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Capt. Andrew W. Proud, Navigation Systems Engineer
AFRL/SNAR
2241 Avionics Circle
Wright-Patterson AFB, OH 45433-7318

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/00M-07

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/SNAR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

14. ABSTRACT
Recent increases in the computational power of computers and digital signal processors have made possible new, novel signal tracking
techniques in GPS receivers. One such technique is known as Direct Correlator Output Processing (DCOP). DCOP is innovative in
its potential to replace the tried and true classical signal tracking loops. It is also an enabling technology for ultra-tightly coupled
GPS/INS (Global Positioning System/Inertial Navigation System). Potential benefits include improvement in positional accuracy in
environments of jamming and high dynamics. However, such performance gains are typically based on software simulations of
conceptual GPS receiver designs, not working prototypes. Simulating these new designs requires the modeling of GPS signals and
receiver tracking loops, instead of the traditional pseudorange and carrier-phase measurements, which many proven GPS simulation
software packages accurately model. The purpose of this research has been to develop an accurate, user-friendly, and customizable
GPS signal and receiver model to use for a fair and unbiased evaluation of advanced receiver designs. The result of this research is a
Matlab® GPS signal simulator, a Simulink® GPS receiver model implementing true receiver DSP processing, and a Matlab®
high-speed signal/receiver model that approximates the signal simulator and receiver model
15. SUBJECT TERMS
GPS/INS, ultra-tight integration, receiver model, Matlab, Simulink, signal model, Direct Sequence Spread Spectrum, DSSS, DCOP,
GPS, Global Positioning System, jamming, truth model, NAVSTAR, I and Q model, in-phase, quadrature-phase, sampled signal,
advanced receiver design, DSP, receiver processing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

"UU

118. NUMBER
OF
PAGES

227

19a. NAME OF RESPONSIBLE PERSON
Mikel M. Miller, Lt. Col, USAF

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565 x4278

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day,
month, if available. Must cite at least the year and be
Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written, e.g.,
Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998;
Nov1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they
appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101 A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by

the performing organization, e.g. BRL-1234;

AFWL-TR-85-4017-Vol-21 -PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)

AND ADDRESS(ES). Enter the name and address of the

organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if

available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/

monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are

indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation with;
translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top

and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be

completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev. 8/98)

	Design and Validation of an Accurate GPS Signal and Receiver Truth Model for Comparing Advanced receiver Processing Techniques
	Recommended Citation

	/tardir/tiffs/a380760.tiff

