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Abstract 

 In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration 

absorber has been designed, theoretically investigated and experimentally verified. 

The proposed nonlinear-MRE absorber has the dual advantages of a nonlinear 

force-displacement relationship and variable stiffness technology; the purpose for 

coupling these two technologies is to achieve a large broadband vibration absorber 

with controllable capability. To achieve a nonlinear stiffness in the device, two pairs 

of magnets move at a rotary angle against each other, and the theoretical nonlinear 

force-displacement relationship has been theoretically calculated. For the 

experimental investigation, the effects of base excitation, variable currents applied to 

the device (i.e. variable stiffness of the MRE) and semi-active control have been 

conducted to determine the enhanced broadband performance of the designed device. 

It was observed the device was able to change resonance frequency with the applied 

current; moreover, the hybrid nonlinear-MRE absorber displayed a softening-type 

nonlinear response with clear discontinuous bifurcations observed. Furthermore, the 

performance of the device under a semi-active control algorithm displayed the 

optimal performance in attenuating the vibration from a primary system to the 

absorber over a large frequency bandwidth from 4 Hz – 12 Hz. By coupling nonlinear 

stiffness attributes with variable stiffness MRE technology, the performance of a 

vibration absorber is substantially improved. 

Keywords: Magneto-rheological Elastomer absorber; Nonlinear broadband; Transmissibility; 

Semi-active control 
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1. Introduction 

The control of unwanted vibrations is of significant interest in many engineering 

applications; vibration control can improve performance, reduce damage to external 

components and increase the life span of many engineering systems, including, high 

speed trains, vehicles, tall buildings and bridges. To effectively suppress unwanted 

vibrations, the three most commonly investigated systems are damping systems, 

isolation systems and absorption systems [1-3]. Damping systems can attenuate the 

vibration by dissipating the ambient vibration energy into heat through viscoelastic 

materials, and isolator technology reduces the vibration transmission; however, a 

vibration absorber absorbs the energy from the primary system by matching its own 

natural frequency with the frequency of the excitation [4]. As the structure of the 

absorber is quite simple, it is robust and reliable and has been widely used in many 

areas after it was first proposed by Frahm [5]. 

 Due to the working principle of an absorber, the performance of vibration 

suppression is significantly associated with the bandwidth of the device’s own natural 

frequency. The traditional passive absorber only works efficiently in a very narrow 

bandwidth; in order to overcome issues associated with narrow bandwidth, variable 

stiffness magnetorheological elastomers (MREs) can be incorporated into an 

absorbers design [6, 7]. Magnetorheological elastomers, are a smart field-responsive 

material, that can increase their elastic modulus or stiffness monotonically under as an 

applied external magnetic field increases [8-10], and then immediately revert to their 

initial properties as the magnetic field is removed. This smart nature makes MRE 

ideal to develop semi-active absorbers. The incorporation of MRE into an absorber 

makes it possible to enable the natural frequency of the absorber controllable. In this 

way, an MRE absorber can deal with the variations in excitation frequency of 

different excitations. The first prototype of the MRE absorber was presented by 

Ginder et al. [11], and the experimental results showed that the bandwidth can cover a 

range from 500 Hz to 600 Hz. Deng et al [12, 13] later improved the design of Ginder 

et al by adding another wired coil along the magnetic path; when the current was 
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tuned from 0A to 1.5A, the resonant frequency changed from 55Hz to 81.25Hz, 

respectively. Subsequently, to improve the ability of addressing the large amplitude 

vibration of the MRE based absorber, Sun et al [4, 14] proposed a multilayered MRE 

absorber. 

Although the MRE introduces adaptability in a vibration absorber, the effective 

operation bandwidth of the MRE absorber under constant current is still narrow; this 

limits the vibration suppression performance, as the vibration source in a practical 

environment always covers a large range of frequencies and is frequency variant. To 

deal with multi-frequency from the ambient environment, a nonlinear stiffness can be 

included in to expand the effective frequency bandwidth [15-17]. The original idea of 

a passive nonlinear absorber was investigated by Roberson [18]; this absorber 

consisted of a linear and hardening cubic spring; the conclusion of this investigation 

was that the nonlinear absorber can work in a much wider effective frequency 

bandwidth compared to its linear counterpart. This conclusion is further verified with 

experiments conducted by Arnold [19]. However, the existing nonlinear absorbers are 

not adaptive and cannot vary the device’s own resonance frequency to match 

variations in the ambient excitation frequency.  

Based on the literature, and the problems associated with tuneable devices and 

narrow bandwidth; this paper proposes an innovative hybrid nonlinear-MRE absorber, 

which combines the advantages of a nonlinear absorber and an MRE absorber to 

further increase the effective bandwidth of the device under a constant current and to 

realise its adaptability. As we shall see, by including both nonlinear broadband 

behaviour and variable stiffness magneto-rheological technology an enhanced 

broadband vibration absorber has been generated. The rest of this paper is organised 

as follows. The structure and analysis of the nonlinear MRE absorber is presented in 

Section 2. Section 3 illustrates the numerical simulation of the hybrid absorber and the 

experimental evaluation of the absorber is demonstrated in section 4. The vibration 

absorption performance of the absorber is evaluated in Section 5. Section 6 ends with 

concluding remarks. 
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2. The structure and analysis of the MRE absorber 

 In this section, a detailed description of the hybrid nonlinear-MRE absorber and 

associated components are discussed. The geometric relations for analysing the 

generated nonlinear force-displacement relationship and variable stiffness changes of 

the MRE are also discussed.  

2.1 The structure of MRE absorbers 

The newly designed MRE absorber is based on coupling a magnetically induced 

nonlinear stiffness with a multilayered MRE structure [20-22]. To combine the 

advantages of these two components, the new absorber has two essential parts; as 

shown in Fig.1, the main part of the absorber consists of a multilayered MRE 

structure with a permanent magnet in the middle, a solenoid, a steel cylinder, the top 

plate, bottom plate and the rotary arms mounted with two pairs of magnets. The 

multilayered MRE structure is composed of 10 layers of MRE films and 10 layers of 

thin steel circular plates. The thickness of the MRE and steel layers are both 1 mm. 

The MRE is fabricated with 70% carbonyl iron particles (C3518, Sigma-Aldrich Pty 

Ltd), 20% silicon sealant (Selleys Pty Ltd), and 10% silicon oil (Sigma-Aldrich Pty 

Ltd). The multilayered structure has been used as it can maintain the translational 

flexibility needed for large amplitude vibrations. The solenoid has 1000 turns and is 

used as the electro-magnet; a steel cover is mounted around the solenoid including the 

steel cylinder, top and bottom plates. The permanent magnet is used to provide an 

initial magnetic field to the MRE. The direction of the magnetic field generated by the 

solenoid can be the same with the initial magnetic field or opposite to the magnetic 

field when the current direction changes. As a result, the stiffness of the MRE 

structure can be stiffened or softened with the hybrid magnetic field. 

The other important components are the rotary beams that are mounted on both 

sides of the absorber, as shown in Fig.1. As the stroke of the oscillator is limited, it 

cannot generate a nonlinearly induced stiffness in the MRE absorber, if the magnets 

are mounted on the oscillator directly. In order to solve this problem, two rotary 

beams working as mechanical amplifier are innovatively utilised in this device. One 
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end of the beam is hinged to the moving support on the translation track while the 

other end of the beam carries the magnets and is free to move. The beam is also 

hinged about point O, which is fixed to the bottom plate of the absorber (see Fig.1); 

moreover, the oscillator motion can induce the beam to rotate around point O and 

make the displacement of the stroke at the other end of the beam much larger. Two 

permanent magnets with opposite polarities are embedded into one end of the beam 

and the plastic support, respectively. The plastic support is fixed on the bottom plate, 

and the amplified relative motion between the two magnets is able to generate a 

nonlinear elastic restoring force within the MRE oscillator. The detailed dimensions 

of the MRE absorber are shown in Table 1. The ma and mb are the magnetic moment 

of the two magnets.  

 
(a)  

            

(b)  

Figure 1: Structural design of the hybrid nonlinear-MRE absorber (a) schematic 
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representation; (b) photograph of the prototype 
Table 1: Parameters of the hybrid nonlinear-MRE absorber 

Parameters Values  Parameters Values 
d1 90mm h1 7mm 
d2 35mm h2 107mm 
l 105mm h3 27mm 
l1 30mm ma 0.87 
D1 90mm mb 0.87 

2.2 Analysis of multilayered MRE structure 

The adaptability of the absorber is based on the adjustable stiffness of the MRE 

stack. In order to predict the different MRE stiffness under changing magnetism, and 

derive the frequency shift of the absorber, a theoretical analysis of the laminated MRE 

structure is conducted. The increased shear modulus of MRE layers under different 

magnetic field is given by [4]: 

∆G = 36∅µ0µlβ2 H��⃗ 0
2
� 𝑑
𝑑𝑜
�
3
ζ,                                           (1) 

where β=(μp−μl)/(μp+2μl)≈ 1, μp≈ 1000 and μl≈ 1 are the relative permeability of the 

iron particles and silicon rubber, respectively; μ0 is the vacuum permeability; d is the 

average particle radius, ∅ is the volume fraction, 𝑑𝑜 is the particle distance before 

deflection, H��⃗ 0 is the intensity of the applied magnetic field, and ζ = ∑ 1
j3

n
j=1 ≈ 1.202.   

The lateral stiffness of the ith MRE sheet can be formulated as  

kti = GA
h

= (G0+∆G)A
h

=
�G0+36∅µ0µlβ2H��⃗ 0

2
� 𝑑𝑑𝑜

�
3
ζ�A

h
 ,                            (2) 

where G is the overall shear modulus, G0 is the initial shear modulus of the MRE, 

ΔG=G-G0 is the change of shear modulus under the magnetic field applied, h is the 

thickness of the MRE sheet and A is the effective area of an MRE sheet. 

The lateral stiffness of the whole MRE structure which consists of 10 MRE sheets and 

10 steel plates can be derived by the following equation 

1
ktw

= ∑ 1
kti

10
i=1 + ∑ 1

ktj
10
j=1  ,                                              (3) 

where ktw is the overall lateral stiffness of the laminated MRE pillar, ktj is the lateral 

stiffness of the steel sheet, as kti<<ktj, the ktw can be simplified as 
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ktw = kti
10

 ,                                                          (4) 

The natural frequency of the MRE structure can be calculated using 

ft = 1
2π
�ktw

m
 ,                                                       (5) 

where m is the mass of the oscillator. Substituting Eq. (2) and (4) into Eq. (5), the 

translational natural frequency can be obtained as 

ft = 1
2π
��G0+36∅µ0µlβ2H��⃗ 0

2
� 𝑑𝑑𝑜

�
3
ζ�A

10mh
  ,                                      (6) 

The intensity of the magnetic field H��⃗ 0 can be calculated by the method provided in 

the author’s previous work using finite element analysis (FEA) [23]. On the basis of 

the above analysis, the relationship between the stiffness of the laminated MRE 

structure and current can be calculated as shown in Table 2. 

Table 2: The relationship between the current and the stiffness of the laminated MRE 
structure 

Currents (A) Magnetic Flux Density (T) Stiffness (N/m) 

-2 0 1028 

0 0.21 1727 

2 0.26 2100 

4 0.32 2649 

2.3Nonlinear analysis 

A nonlinear force is introduced by two pairs of permanent magnets. The nonlinear 

property induced by the magnetic system makes the MRE-based TMD have wider 

effective bandwidth under certain constant current. With this advantage, the nonlinear 

MRE absorber can well suppress the multi-frequency vibrations which widely exist in 

mechanical or structural systems while the ability of traditional semi-active TMDs to 

control these vibrations are limited because their frequency bandwidth under certain 

constant working conditions is still narrow. 

The magnet with magnetic moment ma is fixed on the plastic support on the 

bottom plate, and the other magnet with magnetic moment mb is settled on the tip of 
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the rotary beam (see Fig 1.). Taking the left magnet pair as an example, the magnetic 

force between them keeps changing under a different rotary angle. The changing force 

provides the MRE absorber a nonlinear stiffness and influences the operation 

performance of the absorber. The magnetic force can be simplified as a 

dipole-to-dipole magnetic interaction force, and calculated as [24] 

F = 3𝜇0
4𝜋|𝑟|4 �(�̂� × 𝑚𝑎) × 𝑚𝑏 + (�̂� × 𝑚𝑎) × 𝑚𝑏 − 2�̂�(𝑚𝑏 ∙ 𝑚𝑎) + 5�̂�((�̂� × 𝑚𝑎) ∙ (�̂� ×

𝑚𝑏))� ,                                                           (7) 

where µ0 is permeability of space (4πe−7Tm/A); r� is the unit vector from ma points 

to mb and |r| is the distance between two magnet center. The magnet with magnetic 

moment ma is fixed on the bottom plate so its position and orientation won’t change 

while the magnet with magnetic moment mb will change with the rotary arm. 

According to the geometry restriction shown in Fig.1 (a), the magnetic force line on 

the vector k� can be formulated as 

Fk = 3µ0|ma||mb|
4π|r|4

(sin(a) + sin(a + b) cos(b) + 2sin(a + b)cos(b) − 5sin(a +

b)sin(a)sin(a + b)),                                                 (8) 

As the input of the nonlinear magnetic force in this study is displacement ∆x instead 

of angles a and b, the relationship between the angles and ∆x needs to be formulated. 

According to the geometric relationship in Fig.1 (a), the geometric relationships can 

be formulated as  

𝑏 = atan �Δx
𝑙1
� ,                                                      (9) 

D5 = �Δx2 + 𝑙12,                                                    (10) 

D2 = 𝑙 − D5 ,                                                       (11) 

D3 = D2sin (b),                                                     (12) 

D4 = D2cos (b)                                                     (13) 

𝑎 = atan ( D3
D1−D4

)                                                    (14) 

The centre distance of the two magnets can be calculated by 
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|r| = �D3
2 + (D1 − D4)2 ,                                             (15) 

As l, l1, and D1 are given in Table. 1, the relationship between displacement and the 

angles a and b can be obtained, and the nonlinear force-displacement relationship can 

be calculated. The nonlinear force is amplified by the lever amplifier; the mechanical 

gain factor is 2.33. There are two nonlinear force generating components in this 

structure and the nonlinear force working on the oscillator can be calculated by  

𝐹𝑛 = 2.33 ×  2 × Fk ,                                                (16) 
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Figure 2: The relationship between the displacement and nonlinear elastic restoring 

force 

According to Eqs. (8) – (16) and considering the real data of the MRE absorber in 

Table 1, the relationship of the magnetic force and the relative displacement can be 

simulated. The simulation result is presented in Fig. 2, for small displacements the 

force-displacement relationship tends to be linear denoted by the AB segment in Fig.2; 

however, for larger displacements (i.e. outside the AB segment), a nonlinear force 

displacement relationship is generated  

3. Numerical simulation of the hybrid nonlinear-MRE absorber 
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A dynamic equation of motion can be used to predict and simulate the behaviour 

of the hybrid nonlinear-MRE absorber under an external excitation. The equation for 

translational response with nonlinear magnetic force can be expressed as 

mẍ + ctw(ẋ− x0̇) + ktw(x − x0) + Fn = 0 ,                             (17) 

where x represents the translational response of the absorber under the excitation (i.e. 

the displacement field), 𝑥0 is the input translational excitation; m=2kg, is the mass of 

the absorber, ctw is the damping of the MRE. ktw is the essential parameter for the 

MRE absorber as it controls the resonance frequency of the MRE absorber. The ktw 

and Fn values calculated in the above section are used in this simulation. This dynamic 

equation including the nonlinear term was solved by numerical calculation technique 

using the Runge-Kutta method in MATLAB. The base excitation acceleration is 

4.5m/s2. The simulation results are presented in Fig. 3; the x axis is the frequency of 

excitation and y axis is the displacement of the oscillator relative to the bottom plate.  

2 4 6 8 10

2

4

6

8
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Figure 3: The frequency shift performance of the absorber under different currents 

As shown in Fig. 3, the adaptability of the absorber and enhanced nonlinear 

bandwidth can be generated. The adaptability of the MRE absorber is controlled by 

the input current of the solenoid; with the current increasing, the natural frequency of 

the absorber increases due to the raising of the MRE stiffness. In this simulation, the 

source is a chirp signal with a sweeping range from 11Hz to 1Hz with the same 

excitation amplitude. Based on Fig. 3, it can be seen that with an increase of the MRE 

stiffness, the response displacement decreases, the nonlinear effect becomes less 
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obvious and the resonant frequency increases from 3.2Hz to 7.3Hz. Moreover, the 

dashed lines represent the frequency of the source signal for the forward sweeping 

direction from 1Hz to 11Hz. The forward sweep simulations have a similar trend of 

amplitude variation and frequency shift when compared to the reverse responses; 

however, when the stiffness is relatively small, the nonlinear response of the forward 

sweep is less obvious than the reverse sweep, the maximum resonant frequency is 

larger and the peak amplitude is smaller than the reverse sweep under the same 

stiffness. The difference between forward and reverse sweeps becomes small as the 

MRE stiffness increases. 

 

4. Experimental test of the MRE absorber 

 The following section describes the interaction of system components and 

experimental procedure for evaluating the large broadband behaviour of the hybrid 

nonlinear-MRE absorber. 

4.1 Experimental setup 

The experiment in this section aims to test the dynamic properties of the MRE 

absorber designed in Section 2. Fig. 4 shows the prototype mounted on the 

experimental setup. In this experimental setup, the proposed absorber was fixed on the 

vibration platform excited by an electrodynamic shaker (VTS, .VC100-8). The 

excitation and the response of the absorber were measured by an accelerometer 

(CA-YD-106) and a laser sensor (MICRO-EPSILON Company), respectively. A DC 

power supply (THURLBY-THANDAR, INSTURMENTS LTD) was used to power 

the solenoid of the absorber. Between the hardware and software, a data acquisition 

(DAQ) board was used to transfer the information collected by the sensors to the 

computer; afterwards, all signal collection, recording and processing system were 

done using LabVIEW software. 



 
12 

 
Figure 4: The experimental setup of the hybrid nonlinear-MRE absorber 

When the shaker begins to work and excite the platform horizontally, the absorber 

attached on it will vibrate with it. With the vibration of the absorber, the relative 

motion between the two magnets will generate a nonlinear elastic restoring force to 

enlarge the effective frequency bandwidth of the absorber. 

 

4.2 Testing result  

Current variation 

The frequency shift ability of the absorber under different currents were tested and 

analysed to illustrate its adaptability. The experimental results of the frequency shift 

properties with different solenoid currents under the same base excitation amplitude 

are shown in Fig. 5. The excitation from the shaker is a chirped signal, sweeping both 

forward and reverse directions from 3Hz to 10 Hz, with a 4.5m/s2 base excitation 

acceleration, where the reversed response has been plotted by solid lines and the 

forward results are presented by the dashed lines. 
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Figure 5: The experimental results of frequency shift performance 

The relative displacement response under various current levels from -2A to 4A 

with step of 2A was collected. The results are shown in the form of the displacement 

of the oscillator. It can be seen that the resonance frequency increased from 3.6Hz to 

7.3Hz as the current was increased from -2A to 4A, respectively. These results 

demonstrate the adaptability under the nonlinear working mode. When the current is 

small, the stiffness of the MRE is small and the nonlinear bandwidth was more 

prevalent. The frequency-response curve rises abruptly before it reached the highest 

point and a discontinuous bifurcation was observed experimentally, these points 

occurred as jump and down points for the forward and reverse sweeping direction, 

respectively. This property of a nonlinear stiffness effectively enlarges the working 

frequency bandwidth of the absorber. It was also observed in Fig. 5 that the nonlinear 

bandwidth is less obvious for the forward sweep compared to the reverse sweep under 

the same current. 

Comparing the results of the experiment and the simulation in Section 3.3, it can 

be concluded that the theoretical analysis of the translational response can describe 

the frequency shift property very well. In summary, the adaptability of the hybrid 

nonlinear-MRE absorber can be realised by modifying current.  

Effect of base excitation amplitude on the nonlinear working mode 
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As analysed in section 2, the magnetic nonlinear elastic restoring force is 

sensitive to the relative displacement of the two magnets, and the hybrid absorber will 

be sensitive to different base excitation amplitudes. In order to test its performance 

subject to different base excitations, different excitation levels are used to test the 

absorber performance. The sweeping excitation frequency range was from 4Hz to 9 

Hz and the current in the solenoid was 0A during the test; as shown in Fig.6, the two 

base acceleration amplitudes used were 4.5m/s2 and 3.5m/s2. 

It was observed that the frequency-response of the hybrid absorber displayed a 

linear response when the amplitude was 3.5m/s2; the resonant frequency was 7.5Hz 

and the displacement under a forward sweep matches well with the reverse sweep. 

When the base excitation was increased to 4.5m/s2, a nonlinear frequency-response 

curve was evident, jump up and down points corresponding to bifurcations in the 

frequency-space parameter were observed and the bandwidth of the hybrid 

nonlinear-MRE absorber was substantially enlarged. The response of the reverse 

sweep covers a far wider effective frequency bandwidth compared to the forward 

sweep. The different response between the two excitation levels is due to the 

nonlinear force model proposed in Section 3.1. Connecting with the analysis of Fig.2, 

it is known that the relationship between magnetic force and displacement tends to be 

linear when the excitation is small (in the AB segment), however, when the excitation 

is fierce enough the magnetic force begins to exhibit nonlinear behaviour. When the 

excitation amplitude is 3.5 m/s2, the magnetic force is linear and when the excitation 

amplitude is 4.5m/s2, the magnetic force exceeds the AB range and displays nonlinear 

behaviour. As a result, the absorber under 3.5 m/s2 excitation is representative of a 

linear absorber and the absorber under 4.5 m/s2 excitation is representative of a 

nonlinear absorber. Comparing their performance in Fig. 6, it can be concluded that 

the effective frequency bandwidth of the proposed nonlinear MRE absorber is much 

wider than that of a linear absorber. 
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Figure 6: Response of the hybrid nonlinear-MRE absorber under different base 

acceleration amplitudes 

5 Vibration reduction evaluations 

The following section describes the experimental evaluation of vibration 

attenuation for a primary system using the nonlinear-MRE absorber; moreover, 

experiments for the semi-active control of the device have been conducted to further 

investigate the enhanced performance of the device. 

5.1 Experimental system setup 

To evaluate the vibration absorption performance of the hybrid absorber, a 

vibration absorption evaluation system which includes a primary system is built. The 

mass of the primary is 6.5kg. This system is similar to the system described in Fig. 4, 

in which the same hardware and software were used, except the primary system 

representing the object whose vibration needs to be controlled. The primary system 

was fixed on the vibration platform driven by the shaker and the absorber was fixed 

on the top plate of the primary system. Two accelerometers were set up to record the 

motion of the controlled primary system and the excitation as shown in Fig. 7. 



 
16 

Figure 7: Photograph of the experimental setup for the vibration attenuation system 

The signals collected by two accelerometers were recorded by the computer and 

the transmissibility of them was used to show the vibration absorption performance of 

the proposed absorber. The transmissibility is defined as the ratio between the primary 

system acceleration and the excitation acceleration. As a result, low transmissibility 

means better vibration attenuation performance and the appearance of a lowest value 

of the transmissibility, means the attenuation effectiveness is the best at that point. At 

that point the absorber reached its resonant frequency and absorbed most of the 

vibration energy so that the vibration of the primary system was reduced. The lowest 

point on the transmissibility curve is the best vibration absorption point of the 

absorber. 

5.2 Testing results 

Various base excitation amplitudes 

As the absorber is sensitive to excitation amplitude, its performance under 

different base acceleration levels is evaluated first. The vibration attenuation 

effectiveness under different excitation amplitudes with the same current is shown in 

Fig. 8. The excitations are in the form of a chirped signal sweeping in the reverse 

direction from 12Hz to 3Hz, with the excitation amplitudes of 4.5m/s2, 4 m/s2 and 3.5 

m/s2, respectively; no current was applied to the excite MRE. The transmissibility 

under the three base excitation amplitudes have sunken shapes, this means that the 

absorber showed good vibration attenuation performance. It is also easy to find that 

three of curves have a sharp increase after the resonant frequency of the absorber, this 

represented that the oscillator continued resonating and absorb the vibration energy 



 
17 

over a larger bandwidth. Comparing the three curves in Fig.8, the important 

conclusion is drawn that with increased base excitation amplitude, the effective 

absorption bandwidth is wider due to the coupled magnetically induced nonlinear 

stiffness. 
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Figure 8: The vibration attenuation performance under different excitation amplitudes 

Different current and semi-active control 

Having analysed the impact of different base excitation amplitudes on the 

performance of vibration suppression; in this part, the response under variable 

currents are tested and analysed. The frequency range of the excitation was from 3Hz 

to 12Hz, sweeping in the reverse direction and the excitation amplitude is maintained 

at 4.5m/s2 during the entirety of the experiment. The current is changed from 0A to 4A 

with a step of 1A. As shown in Fig. 9, the lowest point of transmissibility occurred at 

the resonant frequency and afterwards shifted towards the right with respect to the 

x-axis. The reason for the frequency shift is due to the increased current which 

adversely increased the magnetic field passing through the hybrid nonlinear-MRE 

absorber; this caused an increased stiffness of the MRE layers and the natural 

frequency of the device increased accordingly. Moreover, all the curves show clear 

nonlinear responses. The lowest points for each curve occurred when the absorber 

presents the best vibration attenuation performance at a specific current. So if all these 

lowest points can be connected and the absorber can be controlled by a semi-active 
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control technique, that tracks this optimal curve automatically, the absorber 

effectiveness will be improved dramatically. The red line in Fig.9 shows the 

semi-active control of the nonlinear-MRE absorber. In a semi-active system, sensors 

and controller are used to collect and process the acceleration signals, respectively 

and then give the suitable current for specific situation by STFT control algorithm. 

The control system is the same with the author’s prior work [4]. Then the absorber 

will adjust its stiffness to track the excitation frequency variation. Comparing the 

transmissibility curve of the system with absorber and the system without the absorber 

(green line), it can be concluded that the all kinds of absorbers suppressed the 

vibration effectively. It also can be seen that the controlled absorber outperforms the 

other passive MRE absorber by comparing their vibration absorption performances. 

4 6 8 10 12

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 0A
 1A
 2A
 3A
 4A
 Without absorber
 Semi-active

 

 

Tr
an

sm
iss

ib
ilit

y

Frequency (Hz)

 
Figure 9: The vibration attenuation performance of different systems 

6. Conclusion 

 In this work, magnetorheological elastomers (MRE) and a magnetically induced 

nonlinear force-displacement relationship have been coupled for the design and 

fabrication of an innovative hybrid nonlinear-MRE absorber. To verify the advantages 

of the proposed absorber, theoretical and experimental investigations have been 

performed for the translational motion of the system. It was observed the hybrid 

absorber displayed a softening-type nonlinear behaviour with the frequency-response 
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curves leaning towards the left. With an increased magnetic field applied to the MRE 

layer, the natural frequency of the device increased, which verified its adaptability; 

the experimental result also demonstrated the nonlinear-MRE absorber has boarder 

effective bandwidth than its linear counterpart under constant current. To further 

validate the enhanced performance of the device, evaluation of the nonlinear-MRE 

absorber on vibration absorption were conducted. It was shown that the 

nonlinear-MRE absorber outperforms other absorbers on vibration attenuation. In 

summary, using the added advantages of a nonlinearly induced magnetic stiffness, 

variable stiffness magneto-rheological technology and semi-active control technology, 

an adaptive broadband vibration absorber has been designed and validated. 
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