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Abstract— Transaction level modeling allows exploring
several SoC design architectures leading to better perfor-
mance and easier verification of the final product. In this
paper, we present an approach to design and verify SystemC
models at the transaction level. We integrate the verification
as part of the design-flow where we first model both the
design and the properties (written in PSL) in UML; then,
we translate them into an intermediate format modeled with
AsmL (language based on Abstract State Machines (ASM)).
The AsmL model is used to generate an FSM of the design
including the properties. Checking the correctness of the
properties is performed on-the-fly while generating the state
machine. Finally, we translate the verified design to SystemC
and map the properties to a set of assertions (as monitors in
C#) that can be reused to validate the design at lower levels
by simulation. For existing SystemC designs, we propose to
translate the code back to AsmL in order to apply the same
verification approach. At the SystemC level, we also present
a genetic algorithm to enhance the assertions coverage. We
will ensure the soundness of our approach by proving the
correctness of the SystemC to AsmL and AsmL to SystemC
transformations. We illustrate our approach on two case
studies including the PCI bus standard and a Master/Slave
generic architecture from the SystemC library.

I. INTRODUCTION

Modeling hardware architectures usually requires pin-
level descriptions, typically at the RTL level. The design
and verification of models at this level requires great
effort and the simulation is tediously slow. Therefore,
modeling at a higher abstraction level is unavoidable,
considering the growth in complexity and size of the
systems. SystemC [27] is a relatively new system level
language which has been proposed to support modeling
at transaction level.

From the verification point of view, one needs ex-
pressive languages to specify assertions and properties
of systems exhibiting complex behaviour. The Property
Specification language (PSL) [1] from Accellera is meant
to address this issue. However, the language by itself is
not not enough to improve the design and verification
flows.

In this paper, we first provide a methodology to
design SystemC transactional models starting from the
UML level where a more precise specification of the
system and its properties are defined. We used a mod-
ified sequence diagram representation to capture more
precise properties description. The UML model is then
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mapped to an Abstract State Machines (ASM), a formal
specification method for software and hardware systems
that has become successful for specifying and verifying
complex systems. ASMs provide features to capture the
behavioral semantics of programming and modeling lan-
guages where large systems are modeled at a high level
of abstraction allowing easier validation and verification
operations. We wrote the ASM models in the AsmL
language [23] one of the very latest languages developed
for ASM [10] supporting object-oriented modeling at
higher level of abstraction in comparison to C++ or Java.
Besides, using the AsmL Tester, from an AsmL speci-
fication it is possible to generate finite state machines
(FSMs).

To enable the integration of both the model and the
properties at the ASM level, we modelled the PSL se-
mantics in AsmL. At this level, it is possible to verify
these properties using model checking. For instance, we
encode the property’s evaluation in every state which
enables evaluating its correctness on-the-fly while exe-
cuting the FSM generation algorithm (part of the AsmL
tool). An incorrect property detection stops the reach-
ability algorithms and outputs a sub-portion from the
complete FSM which represents a complete scenario for
a counter-example. Eventually, not all the properties can
be verified due to the state explosion problem. For this
reason, we complement our verification methodology
by integrating the properties as assertion monitors in
the final SystemC design. We compile the PSL property
(using the AsmL compiler [23]) to C# while we translate
the design from AsmL to SystemC. Both codes, SystemC
and C#, are then combined to form a single model
enabling the verification of the assertions by simulation.

The objective of the verification process is not only
to write assertions but to verify them. This latter task
is usually performed using test vectors generation tools
mostly based on random processes. This kind of blind
simulation does not guarantee that the assertion will be
covered during the test execution. Therefore, it is very
important to consider a smarter and more efficient test
vector generation approach. To do so, we propose first to
use static code analysis to extract a dependency relation
between the design inputs and the assertion’s variables.
This analysis will also define for every input the range
of possible values that may trigger the assertion which
provides some very useful information to improve the
assertion’s coverage.

In order to enhance the coverage even more, we



JOURNAL OF TVLSI SYSTEMS, VOL. XXX, NO. XXX, XXXX 200X 2

also propose to use a genetic algorithm based on a
community of random generators having a variety of
DNA information [6]. This latter will help defining the
list of variables considered in the test generation, their
possible values and a weighted probability over the
previous range [14]. The DNA update/mutation rules
will be defined according to the coverage each generator
offers. At the end of the genetic procedure, we expect the
final DNA to provide an identification of a generator that
offers a better coverage than a random one.

The soundness of our approach relies on proving
the correctness of the SystemC to AsmL and vice-
versa transformations. The basic concept of this proof of
soundness is based on the systematic design of program
transformation frameworks defined in [4]. For instance,
we provide a formalization of the SystemC and AsmL
semantics in fixpoint based on the OO general case given
in [22]. Then, we prove that, for every SystemC (respec-
tively AsmL) program, there exists an AsmL (respec-
tively SystemC) program preserving the same properties,
w.r.t. an observation function αo.

The rest of this paper is organized as follows: Section
II describes the proposed design methodology. Section
III discusses the proposed verification approach. Section
IV presents the proofs of correctness of our approach.
Section V illustrates our approach on two case studies.
Section VI discusses the related work. Finally, Section VII
concludes the paper.

II. DESIGN METHODOLOGY

Our design methodology, as displayed in Figure 1,
includes two parallel paths concerning the design and
its properties. We model the design in the classical way a
C++ design is modeled using UML (i.e., using use cases,
class diagrams, etc.) Then, we translate the UML model
to an ASM model in AsmL in order to perform model
checking of certain properties. These latter are obtained
from the UML sequence diagram and encoded in the PSL
syntax. The verification process ends to: (1) a completion
either with a success or failure of the property; or (2) a
state explosion. Both tasks, UML update and UML to
AsmL translation are repeated until all the properties
pass (either proved to be correct or do not complete).
Then, we compile the PSL properties into a set of C#
classes, using the AsmL tool to be used as assertion
monitors. The design in AsmL is, from the other side,
translated to SystemC and co-integrated with the asser-
tions for verification by simulation.

A. Modeling PSL Properties

PSL is an implementation independent language to
define properties. PSL is a hierarchical language, where
every layer is built on top of the layer below. This
approach allows the expressing of complex properties
from simple primitives.

UML Level
Use Case

Class Diagram

Sequence Diagram

AsmL Tool

P
ro

p
e

rt
ie

s
 f

a
ils

SystemC Design

ASM Level

PSL Properties

Updates Sequence 

Diagram

SystemC Model in ASM PSL Properties modeled

in ASM

C++/C# Level

PSL Properties modeled

in C#

SystemC modeled

in C++

Compilation

Mapping

Translation

Fig. 1. Design and Verification Methodology.

1) UML Model: Using UML as a high level of abstrac-
tion for design showed a lot of success when applied to
Software. Main proposals consider either to use UML as
new system level design [5] or as top layer in combi-
nation with existent languages (such as SystemC)[31].
Nevertheless, the proposals completely neglected the
properties of the system (PSL like properties in particu-
lar) while sequence diagrams, for example, include very
useful information to set transaction properties for TLM
in particular [13].

Unfortunately, sequence diagrams do not allow a di-
rect mapping to PSL due to two reasons: (1) the com-
plexity of the PSL property which may include temporal
operators; and (2) the need for instantiation in PSL. In
fact, PSL was defined for real instances formed from
objects, from the design, while the sequence diagram
considers only classes. For these facts, UML will not
present completely and precisely all PSL property. How-
ever, it can be used to provide a general skeleton of the
property that could be refined and instantiated at the
ASM level.

In order to make the UML sequence diagram more
adequate for PSL representation, we introduced the fol-
lowing operators:
Clocks: we use the operator to specify the clock that
activates the current action.
Number of cycles: every action can be include the infor-
mation about after how many cycles the action will start
executing (for e.g., Mtd[5]() says that the action Mtd is
executed for exactly 5 consecutive cycles).
Temporal operators: these includes operators specifying
if the action will be always executed (A), eventually
executed (E), executed Until a condition is fulfilled (U),
etc. These, in fact, represent a mapping to the PSL
temporal operators (second layer of PSL).
Sequence operations: includes information about the order
of executing certain sequences (for e.g., next, prev etc.)
Text output: refers to a message that is displayed in case
the action fails.
Action duration: certain actions are supposed to execute
for a certain number of cycles (for e.g., reading cycle
takes four cycles). We added an operator $ to specify
this information.



JOURNAL OF TVLSI SYSTEMS, VOL. XXX, NO. XXX, XXXX 200X 3

The “()” operator: specifies the set of arguments for a
specific action.

Figure 2 gives an example of a sequence diagram
describing a PSL property saying that if a non-blocking
master sends a new request, then in the next cycle, the
arbiter will be notified. After an additional cycle, the
arbitration will take place and the master starts sending.
The bus is released in the fourth cycle and a notification
will be eventually sent by the slave to the bus who will
forward it in the next cycle to the Master.

Fig. 2. Example of a Modified UML Sequence diagram.

2) AsmL Model: There are two ways to embed PSL
properties into the design, either as part of the design
code itself or by adding them as external monitors. We
adopted the second approach, where all the parameters
of PSL properties are defined as objects. The objective of
the embedding is to reuse PSL properties, as modelled
in AsmL, at lower design levels since the AsmL tool
can automatically compile them into a C# or .NET code,
which can be executed with the concrete SystemC level
or as a stand-alone module.

PSL properties are defined in a hierarchical way in-
spired from the hardware design modular concept. For
this reason we defined the embedding in a similar struc-
ture, where all the components are defined as objects
and every PSL layer extends its lower layer using the
inheritance feature of AsmL [13].
Boolean Layer:

This layer is the basic layer of PSL. Even though
it is called Boolean layer, it includes types other than
Boolean such as integers and bit vectors. We modelled
this layer in AsmL by defining classes for all types and
expressions including their actions. Our embedding is
based on the semi–formal semantics presented in the
reference manual [1], and the formal semantics definition
in HOL [7]. Our embedding of the PSL Boolean layer
mainly includes:
(1) Expression type class includes the basic 5 types: Boolean,
PSLBit, PSLBitVector, Numeric and String. Both Boolean
and String types are directly inherited from the AsmL’s
AsmL.Boolean and AsmL.String, respectively.
(2) PSL Expressions includes constructing properties us-
ing the implication and equivalence operators.
(3) PSL Built Functions include all the functions defined
by PSL to operate at the Boolean layer. We distinguish

two actions: a action providing the previous values of a
variable (e.g., prev()) and an action providing the future
values of a variable (e.g., next()).
Temporal Layer:

PSL supports Sequential Extended Regular Expres-
sions (SERE). The syntax is derived from standard UNIX
regular expressions and hence the name SERE. The curly
braces around the sequence mark the beginning and
ending of a SERE. In real life, the delay between two such
expressions can be: (1) more than one; (2) a range; and
(3) not necessarily occurring in contiguous clock cycles.
PSL supports all these requirements via its repetition
operators.

Modelling the SERE feature in AsmL refers to mod-
elling:
(1) Sequential Expressions, where a SERE is defined as an
AsmL sequence of Boolean. It offers several operations to
construct, manipulate and evaluate the SERE expression.
(2) Properties including the operations necessary to create
properties from sequential expressions. It also controls
when and how the sequence is to be verified (i.e., the
property “verify the sequence is true after n states” is
defined as PSL Property.EvaluateNext(n)).

Figure 3 shows the example of the
PSL SERE.Evaluate(), which checks if a sequence is
true in a certain path. This action is activated according
to an INIT signal that must be set by the property.

class PSL_SERE

// Memebers

var m_size as Integer = 0 var m_seq as Seq of Boolean

var m_cycle as Seq of Integer var m_actualState as Integer = 0

var m_evaluation as SERE_Evaluation = NOT_STARTED

// Methods

public Evaluate() as SERE_Evaluation

require m_evaluationState = INIT

if(m_seq(m_actualState) = false)

m_evaluation := FAILED return FAILED

else

if m_actualState = m_size

m_actualState := m_actualState + 1 return IN_PROGRESS

else

m_actualState := 0  return SUCCEEDED

Fig. 3. Embedding PSL SERE in AsmL.

Verification Layer:
This layer is intended to tell the verification tool how

to perform the verification process. It allows to construct
assertions from properties and to specify relations be-
tween them. The embedding mainly includes:
(1) Verification Directives to specify how the property will
be interpreted (assertion, requirement, etc.). This class
extends the PSL Property class from the temporal layer.
(2) Verification Unit is a compact way to include several
properties together. The modelled class includes a set
operations to add,remove and update the unit’s list of
properties.
Modeling Layer:

This layer is not used in our verification approach
since it is intended for VHDL and Verilog flavors of PSL.
So we did not consider it in our embedding.
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B. Modeling SystemC

SystemC is built on standard C++. The core language
consists of an event-driven simulator as the base. It
works with events and processes. The other core lan-
guage elements consist of modules and ports for repre-
senting structures. Interfaces and channels are used to
describe communications. SystemC provides data-types
for hardware modelling and certain types of software
programming as well.

1) AsmL Model: Our design model at the ASM level is
purely OO where every class includes a set of parameters
and methods. The particularity of this model resides
in the fact that it will be used to generate an FSM
using the reachability algorithm part of AsmL tool. So,
a specific style of programming is required in addition
to a precise configuration of the algorithm. This latter
generates the FSM by executing the model program in
a special execution environment, keeping track of the
actions it performs and recording the states it visits. This
process is called exploration.

The FSM generation algorithm requires as input: do-
mains, methods, actions and variables (optional inputs
are filters, action groups and properties). The transitions
in the FSM are the method calls (including argument
values) in the test sequences. The methods in the model
program that appear in the transitions are called actions.
The states in the FSM are determined by the values
of selected variables in the model program. In order
for the exploration to succeed to generate the FSM, the
algorithm requires: (1) initializing all the model’s objects;
(2) defining a set of pre-conditions for every action
considered in the exploration process; and (3) providing
for every state variable an exploration domain.

For a model M including a set of classes, C =
{c1, . . . , cn}, where n is the total number of classes in
M. For every class ci in C, we denote its set of methods
by cmth

i and the set of members by cmem
i . We defined a

set of rules (called RFSM) to guarantee the generation of
an FSM representing a portion of the complete system’s
FSM; these include:

Rule R1
FSM: For every class ci in C, we have to define

a list of instantiations of the class. This ensures that the
algorithm will not throw an exception.

Rule R2
FSM: The firstly executed method in the design

must verify that all the objects from the class domains
were correctly instantiated. This ensures that the algo-
rithm will not misbehave.

Rule R3
FSM: For every class ci in C, every method in

cmth
i must include a list of pre-conditions to specify when

the algorithm considers this method in the exploration
process. This ensues that in every state we only explore
the involved methods.

Rule R4
FSM: For every class ci in C, domains for all mem-

bers in cmem
i must be inherited from AsmL types and

restricted to the possible values the system can accept (in
particular for inputs). This will allow exploring known
types and limits the risks of state explosion.

The optimal scenario is to explore all the methods and
domains in the model; nevertheless, this is not possible
all the time due to the state space explosion. For this rea-
son, working carefully the domains and the set of actions
is the very critical path in the FSM generation process.
For illustration purpose, Figure 4 shows a generic AsmL
model with a method including a precondition (denoted
by the require keyword) setting that the method needs the
system to be initialized (SystemInit = true) and that it has
both variables m gnt and m req set to false before it can
be executed. Such a conditions define strictly at which
state the system can execute a particular set actions.

class PCI_Arbiter

private var m_ActiveMaster as Integer = -1

private var m_req as Boolean = false

private var m_gnt as Boolean = false

public PCI_Arbiter()

public PCI_ArbiterUpdate_m_req()

require (SystemInit = true) and m_gnt = false and m_req = false

m_ActiveMaster := min id | id in Masters_Range where

(MASTERS(id).m_req = true)

m_req := true

Fig. 4. An Example of an AsmL Model.

2) Translation to SystemC: Once the AsmL model is
verified using the properties describing its behaviour,
we translate it to SystemC according to a set of rules to
ensure that the final SystemC model preserves the origi-
nal AsmL code properties. The transformation is purely
syntactical, it is performed to certain rules (that we call
RC++) that could be summarized in the following:
Rule R1

C++: “Basic types”: AsmL basic types are all
mapped to their equivalent SystemC types (e.g. Integer to
int, Byte to unsigned char, etc.). AsmL includes the same
types as C++ which are used for SystemC also.
Rule R2

C++: “Class Translation”: this includes two sepa-
rate rules for variables and methods:
Rule R2.1

C++: “Class Members”: are translated into Sys-
temC signals having the same basic type. For e.g., var
m val as Integer is translated to sc signal<int> m val.
Rule R2.2

C++: “Class Methods”: in AsmL contain two parts
first one defining the post-/pre-conditions for its execu-
tion and the method itself. The first part is integrated
in the SystemC module’s constructor. For instance, a
method Send defined in AsmL with the following pre-
condition require clk=true is inserted in the SystemC
module constructor area as “SC THREAD(Send); sensitive
<< clk;”. The method itself is integrated as it is in
the SystemC module (we just modify the basic types
according to the Rule 1).
Rule R3

C++: “Global Modules”: are integrated in the Sys-
temC’s main procedure sc main. The naming mapping is
used to link different modules together.

III. VERIFICATION METHODOLOGY

The verification process is decomposed into two parts:
(1) by model checking at the ASM level; and (2) by
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assertion based verification at the SystemC (C++)/C#
level.

A. Model Checking

PSL properties are modelled in AsmL as specific ob-
jects providing a unique view of the property in every
system’s state (we will refer to these particular object as
A-Property: AsmL Property). It also simulates the design
with the property as a monitor. We build the object
starting from basic Boolean components, sequences, and
then verification units. We encapsulate sequences in the
verification unit as an A-Property which is embedded in
the design. Given a set of Boolean items x1, x2, . . . , xn,
and y1, y2, . . . , ym belonging to the Boolean layer, and
the sequences, S1 and S2 belonging to the temporal
layer, we can define: S1 = {x1, x2, . . . , xn}, and S2 =
{y1, y2, . . . , ym} and then use a A-Property to check any
PSL operation between S1 and S2 such as S1 OP S2,
where OP is a PSL operator (e.g., implication (:), or
equivalence (⇔)). The A-Property is built as follows:

1. Add all the Boolean items to the sequences:
∀ i in 1 to n : S1.AddElement(xi)

∀ j in 1 to m : S2.AddElement(yi)
2. Create the property: P := S1 OP S2

3. Define the verification unit as an A-Property, A, that
includes the property P: A.Add(P)
This property is monitored in every state in the FSM
generated by the AsmL tool and is represented by two
Boolean state variables P eval and P value (saying, re-
spectively, if the property can be evaluated and the value
of the property in the current state). A violated property
is detected once P eval = true and P value = false. We set
the previous condition as filter for the FSM generation
algorithm. This way the generation stops when an error
is detected. The generated portion of the state machine,
at this point, can be used to identify the problem through
a scenario of a counter-example. For multiple properties,
the filter is set as conjunction of all the conditions for the
separate properties. This technique minimizes radically
the number of the state variables (the FSM size and its
generation time). A correct verification process results
on the generation of the system’s FSM (according the
configuration file constraints).

B. Assertion Based Verification

Figure 5 describes our methodology to integrate and
verify PSL assertions for SystemC designs, which con-
sists of the following three main steps: (1) Updating the
SystemC design to interface to the assertion monitor; (2)
Generating the assertion as a C# code from its AsmL de-
scription; and (3) Integrating the assertion in the design.

Generating the table of symbols from the SystemC
design is important in order to validate the variables
(names and types) that are used in the assertion. While
compiling the assertion, we are concerned with, first,
its syntactical correctness, and second, its semantical
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PSL Assertion 
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Design Updater

List of Updates

Updated Design

Assertion Integrator
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(AsmL Compiler)

PSL Assertion in C#

Fig. 5. Methodology to verify PSL assertions for SystemC designs.

validity where we check the type and the naming of the
assertion variables.

Once the assertion’s structure is verified, we translate
it to its equivalent AsmL code. In our embedding of the
assertion in AsmL, we defined a one to one mapping
between the PSL assertion and their AsmL embedding.
Hence, the transformation is purely syntactical, which
guarantees the correctness of the modelled assertion.

In the validation phase of the assertion structure, we
also generate a list of updates required to prepare the
design to integrate the assertion. For instance, the signals
(variables) that are used in the assertion have to be input
to the assertion monitor. For this reason, we provide the
Design Updater with a list of variables as defined by
their unique identifier in the table of symbols. Then,
the Design Updater modifies the SystemC design to
make the needed variables visible to the monitor. This
transformation does not affect the behavior of the code
because these variables will be accessed in a read–only
mode.

Once the code is updated and the assertion is gen-
erated, the Design Integrator will add the required in-
stantiation of the assertion to bind it to the existing
SystemC design modules. The assertion monitor, acting
as part of the design, can do the following: (1) stop the
simulation when the assertion is fired; (2) write a report
about the assertion status and all its variables; and (3)
send a warning signal to other modules (if required). We
note that the internal code of the assertion is C# so the
designer can update it or do any other functionalities
that can be coded in C#.

C. Assertions’ Coverage Enhancement

Once the assertion integrated in with the design, our
next goal is to define a test generation approach that
offers better coverage of the assertions. To do so, we first
start by statically analyzing the design in order to define
a dependency relation between the system inputs and
the assertions variables. Such a relation is very useful
to omit the inputs that are not affecting the assertion. It
serves also identifying the required inputs and the range
of their possible values that may affect the assertion.
We also identify which processes need to be activated
in order to get the assertion fired. Figure 6 gives an
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overview of our methodology, including the following
steps:
1. Static Analysis: We apply a static analysis technique to
generate an abstract representation of the design mod-
eled as graph, called hypergraph [32], that will include a
representation of both the program’s environment and
the process’s environment.
2. Dependency check: From the hypergraph representation,
we extract the dependency graph and the range of inputs
that may affect the assertion.
3. Test Program generator: Using the abstract program
(modeled as a hypergraph structure) and the depen-
dency graph, we generate a reduced model containing
only the units involved in the assertion.
4. Initial DNA generation: Considering the list of input
variables of interest for the assertion and their ranges,
we create a DNA structure that will serve as starting
point for the genetic algorithm.
5. DNA evaluation/update: Using the initial DNA, the al-
gorithm will update the generators’ community starting
from the initial DNA to obtain an optimal DNA using
the assertion coverage as selection criteria.

AssertionSystemC Code

Static

Analysis
Dependency

check

Initial DNA 

generation

Abstract program

1. Dependency

relations

2. Inputs ranges

DNA evaluation

DNA update

Final generator’s DNA

Test program 

generator

Fig. 6. Enhancing the Assertion’s Coverage.

1) Static Code Analysis: In order to analyze SystemC
designs statically and extract the required information to
generate the “inputs/assertions variables” dependency
relation, we considered an approach based on abstract
interpretation [3], a formal technique that has proven
to be efficient with object-oriented languages and large
programs.

At the end of the analysis, the program is represented
as a hypergraph [32], which can be interpreted as a
general automata connecting its states by branches (also
called hyper-branches). These branches can be seen as an
extension to Binary Decision Diagrams (BDDs), but more
adapted to programs representation. We augmented this
work to support the SystemC library and simulator in
the form of specific classes to extract information related
to SystemC processes and events from the design [17].

2) Genetic Algorithm: Genetic algorithms belong to a
family of computational models inspired by evolution
[20]. They encode a potential solution to a specific
problem on a simple chromosomes like data structure
and apply recombination operators to these structures
to preserve critical information. Since their introduction
by Holland [20], genetic algorithms have been applied

to a broad range of learning and optimization problems
[29]. Typically, a genetic algorithm starts with a random
population of encoded candidate solutions (test gener-
ators for our case), called chromosomes. The objective
is to maximize the likelihood of generating an optimal
solution. This can be guaranteed by: (1) evaluating the
fitness of each candidate solution in the current popu-
lation; (2) selecting the fittest candidate solutions to act
as parents of the next generation of candidate solutions;
and (3) selected parents are recombined and mutated to
generate offsprings.

In our context, the search space to be explored is the
state space of the system that may trigger the asser-
tion(s) under verification. Candidate solutions are finite
sequences of input ranges and probability weights. Each
candidate solution is encoded by a chromosome (a finite
string of bits). The information encoded in the DNA
includes: (1) the list of input variables, (2) their ranges
(possible values), and (3) a weighted probability to their
random generation. The algorithm evaluates the fitness
of the candidate by executing a test generation based on
the information embedded in the corresponding chro-
mosome. A coverage report is then generated to serve
in the fitness evaluation phase.

The chromosome encoding is the most important as-
pect of our algorithm. During the static analysis phase,
we obtain the list of variables of the program and their
types. Each variable is given a unique identifier. Each
type is also given a space of possible values (for the type
char for example the range is [0..255]). The chromosome
encodes the list of variables, their types and a weight
relation over the range of possible values. This latter
varies according to the type and its interpretation. For
every basic type, we defined a list of possible weight
relations, e.g., for Integer, we use the following window
relation: I < −50 or I > 50 for w = 0.2 and
−50 ≤ I ≤ 50 for w = 0.8.

This relation states that the integer variable I is gener-
ated randomly in the interval [-50, 50] with a probability
of 80% and 20% inside and outside the interval, respec-
tively.

The proposed fitness function serves to guide the
genetic search towards firing the assertion’s variables. Its
intuitive idea is to reduce the range of possible values
of the input variables and to find the best probability
distribution of the random test generation that will mod-
ify the assertion’s variables. This way, we maximize the
assertion evaluations, since the evaluation of the chro-
mosomes is defined as an award bonus proportional to
the number of assertion evaluations. In order to improve
the efficiency of the algorithm, we keep track of the best
and worst chromosome fitness in each generation; if both
fitness values become equal, we increase the mutation
rate, in order to help the genetic evolution get out of local
maxima. Once there is an improvement in the overall
fitness, we restore the original mutation rate to continue
the evolution normally.
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IV. CORRECTNESS OF THE SYSTEMC/ASML AND

ASML/SYSTEMC TRANSFORMATIONS

The work of Patrick and Radhia Cousot in [4] is the
essence for any program transformation using abstract
interpretation. The tactical choice of using semantics to
link the subject program to the transformed program
is very smart in the sense that it enables proving the
soundness proof of the transformation, related to an
observational semantics. The transformation from Sys-
temC to AsmL, and vice-versa, represents an online
program transformation which corresponds to the ap-
proach described in Section 3.9 of [4]. Figure 7 displays
a projection of that generic methodology on a SystemC
subject program and an AsmL transformed program.
The same figure can be used to perform the soundness of
a transformation and also to construct it. In both cases,
we need to define the syntax, semantics and observation
functions for both AsmL and SystemC.

Subject Program 

PSC

Transformed Program 

t[PA]

Syntactic

Transformation t

Subject Program 

Semantics SSC[PSC]

Transformed Program 

Semantics SA[t[PA]]

Semantic

Transformation t

(SSC[PSC]) (SA[t[PA]])

SSC SA

Fig. 7. Online Program Transformation.

A. SystemC Fixpoint Semantics

1) Syntactical Domains: SystemC have a large number
of syntactical domains. However, they are all based on
the single SC Module domain. Hence, the minimum
representation for a general SystemC program is as a
set of modules.

Definition 4.1: (SystemC Module: SC Module)
A SystemC Module is a set 〈DMem, Ports, Chan, Mth,
SC Ctr〉, where DMem is a set of the module data mem-
bers, Ports is a set of ports, Chan a set of SystemC
Chan, Mth is a set of methods (functions) definition and
SC Ctr the module constructor.

Definition 4.2: (SystemC Port: SC Port)
A SystemC Port is a set 〈IF, N, SC In, SC Out,
SC InOut〉, where IF is a set of the virtual methods
declarations, N is the number of interfaces that may
be connected to the port, SC In is an input port (pro-
vides only a Read method), SC Out is an output port
(provides only a Write method) and SC InOut is an
input/output port (provides Read and Write methods).

In contrast to default class constructors for OO lan-
guages, the SystemC module constructor SC Ctr con-
tains the information about the processes and threads
that will be executed during simulation.

Definition 4.3: (SystemC Constructor: SC Ctr)
A SystemC Constructor is a set 〈Name, Init, SC Pr,
SC SSt〉, where Name is a string specifying the module
name, Init is a default class constructor, SC Pr a set of
processes and SC SSt is a set of sensitivity statements
(to set the process sensitivity list SC SL).

Definition 4.4: (SystemC Process: SC Pr)
A SystemC process is a set 〈PMth, PTh, PCTh〉, where
PMth is a method process (defined as a set 〈Mth, SC SL〉
including the method and its sensitivity list), PTh is a
thread process (accepts a wait statement in comparison
to the method process), PTh is a clocked thread process
(sensitive to the clock event).

Definition 4.5: (SystemC Program: SC Pg)
A SystemC program is a set 〈LSC Mod, SC main〉, where
LSC Mod is a set of SystemC modules and SC main is the
main function in the program that performs the simula-
tor initialization and contains the modules declarations.

2) Fixpoint Semantics: In this section, we define the
semantics of the whole SystemC program, W [[SC Pg]],
and the SystemC module, MSC[[m sc]]. Then, present
the proofs (or proof sketches) of the soundness and
completeness of MSC[[m sc]].

Definition 4.6: (Delta Delay: δd)
The SystemC simulator considers two phases evaluate
and update. The separation between these two phases is
called delta delay.

Definition 4.7: (SystemC Environment: SC Env)
The SystemC environment is the summation of the de-
fault C++ environment (Env) as defined in [22] and the
signal environment (Sig Store) specific to SystemC:
SC Env = Env + Sig Env = [Var → Addr]+ [SC Sig
→ Addr,Addr], where Var is a set of variables, SC Sig
is a set of SystemC signals and Addr ⊆ N is a set of
addresses.

Definition 4.8: (SystemC Store: SC Store)
The SystemC store is the summation of the default C++
store (Store) as defined in [22] and the signal store
(Sig Store): SC Store = Store + Sig Store = [Addr
→ Val]+ [(Addr, Addr) → (Val,Val)], where Val is a
set of values such that SC Env ⊆ Val.
Let R0 ∈ P(SC Env×SC Store) be a set of initial states,
pcin be the entry point of the main function and →⊆:
(SC Env×SC Store)×(SC Env×SC Store) be a transi-
tion relation.

Definition 4.9: (Whole SystemC Program Semantics:
W [[SC Pg]])
Let SC Pg = 〈LSC Mod, SC main〉 be a SystemC pro-
gram. Then, the semantics of SC Pg, W [[SC Pg ]]∈
P(SC Env×SC Store) → P(T (SC Env× SC Store)) is

W[[SC Pg]](R0) =

lfp ⊆
∅

λX. (R0) ∪ {ρ0 → . . . ρn → ρn+1

|ρn+1 ∈ (SC Env× SC Store) ∧
{ρ0 → . . . ρn} ∈ X ∧ ρn → ρn+1}

Both definitions of the semantics of process declaration
(PR [[SC Pr]]) and SystemC module constructor (PCtr

[[SC Ctr]]) are given in [15]. In contrast to the semantics
definition of an OO object in [22], a SystemC method
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can be activated either by the default context or by the
SystemC simulator through the sensitivity list of the pro-
cess. A complete definition of the semantics of a SystemC
module object (OSC[[o sc]]) through the definition of
a transition function nextsc(σ)=next(σ)

⋃
nextsig(σ),

including both parts C++ related and SystemC specific
functions, can be found in [15].

Definition 4.10: (SystemC Module Semantics:
MSC[[m sc]]))
Let m sc = 〈DMem, Ports, Chan, Mth, SC Ctr〉 be a
SystemC module, then its semantics MSC[[m sc]]) ∈
P(T (Σ)) is:

MSC[[m sc]]= {OSC[[o sc]](vsc, ssc) | o sc is an
instance of m sc, v sc ∈ D in,
s sc ∈ SC Store}

Theorem 4.1: (SystemC Module semantics in fixpoint)
Let

Gsc〈S〉= λT. {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪

{σ0
l0→ . . .

ln−1
→ σn

l′
→ σ′| σ0

l0→ . . .
ln−1
→ σn ∈ T, nextsc(σn) ∋ 〈σ′, l′〉}

Then MSC[[m sc]](vsc, ssc) = lfp ⊆
∅

Gsc〈 Din×Store〉

Proof: Although the SystemC model presents some
additional functionalities on top of C++, the proof of this
theorem is similar to the proof of Theorem 3.2 in [22]. For
instance, considering the definition of MSC and applying
in order Definition of a SystemC module object in [15],
Theorem 2.10 in [18] and the fixpoint theorem in [2], the
proof is straightforward.

The last step in the SystemC fixpoint semantics is
to relate the module semantics to the whole SystemC
program semantics. Hence, we consider an updated
version of the function abstract ( α◦) as defined in [22].
The new function is upgraded to support the SystemC
simulation semantics, environment and store. The com-
plete definitions of α SC◦ can be found in [15].

Theorem 4.2: (Soundness of MSC[[m sc]]) Let MSC be a
whole SystemC program and let mSC ∈ MSC. Then

∀ R0 ∈ SC Env×SC Store.
∀ τ ∈ T (SC Env×SC Store).
τ ∈ W[[SC Pg]](R0) :
∃τ′ ∈ MSC[[mSC ]]. α SC◦({τ}) = {τ′}

Proof: (Sketch) We have to consider both cases when
τ contains an object oSC, instantiation of mSC, and when
it does not include any oSC. For the second situation, the
proof of the theorem is trivial considering that τ will be
an empty trace. In the first case, the trace is not empty
(let it be τ′′). Since SystemC modules are initialized
in the main program sc main before the simulation
starts, there exist an initial environment, store and set
of variables that define the initial trace σ0 ∈ τ′′. The rest
of the traces in τ′′ are interaction states of oSC because
they are obtained by applying α SC◦ on τ. Therefore,
τ′′ ∈ MSC[[mSC]].

Theorem 4.3: (Completeness of MSC[[]]) Let mSC be a
SystemC module. Then

∀τ ∈ T (Σ). τ ∈ MSC[[mSC ]]: ∃ SC P ∈ 〈LSC Pg〉.
∃ρ0 ∈ SC Env× SC Store.
∃ oSC instance of mSC.
∃ τ′ ∈ T (SC Env× SC Store).
τ′ ∈ W[[ρ0]]∧ α SC◦({τ′}) = {τ}

Proof: (Sketch) A SystemC program satisfying the
previous theorem can be constructed by creating and
instance of mSC in the sc main function, the initial state
corresponds to the state when the module’s constructor,
SC Ctr, was executed. An execution of a method of
mSC corresponds to executing a method thread (setting
of the events in its sensitivity list to Active) and a
change of a port corresponds to updating its internal
signal by the new values. Hence, it is always possible
to construct both SC P and ρ0. For instance, there exist
many other possible constructions involving SystemC
threads, clocked threads, etc.

B. AsmL Fixpoint Semantics

1) Syntactical Domains:
Definition 4.11: (AsmL Class: AS C)

An AsmL class is a set 〈AS DMem, AS Mth, AS Ctr〉,
where AS DMem is a set of the module data members,
AS Mth a set of methods (functions) definition and
AS Ctr is the module constructor.

One of the important features that we are going to
use in AsmL corresponds to the methods pre-conditions
(Boolean proposition verified before the execution of the
method).

Definition 4.12: (AsmL Method: AS Mth)
An AsmL method is a set 〈AS M, AS Pre, AS Pos,
AS Cst〉, where AS M is the method’s core, AS Pre is a
set of pre-conditions, AS Pos is a set of post-conditions
and AS Cst is a set of constraints.

Note that AS Pre, AS Pos and AS Cst share the same
structure. They are differentiated in the methods by
using a specific keyword for each of them (e.g., require
for pre-conditions).

Definition 4.13: (AsmL Program: AS Pg)
An AsmL Program is a set 〈LAS C, INIT〉, where LAS C is
a set of AsmL classes and INIT is the main function in
the program.

2) Fixpoint Semantics: Similar to the notion of delta
delay (δd) of SystemC, AsmL considers two phases:
evaluate and update. The program will be always running
in the evaluate mode except if an update is requested.
There are two types of updates, total and partial (usually
performed using the Step instruction).

Definition 4.14: (AsmL Environment: AS Env)
The AsmL Environment is a modified OO environment
AS Env = [Var → Addr,Addr], where Var is a set of
variables and Addr ⊆ N is as set of addresses (two
addresses store the current and new values of v ∈ Var).

Definition 4.15: (AsmL Store: AS Store)
The AsmL store is AS Store = [(Addr, Addr) →
(Val,Val)], where Val is a set of values such that
AS Env ⊆ Val.
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The whole AsmL program semantics (WAS [[AS Pg]]),
method semantics (MAS [[. ]]) and object semantics
(OAS[[o AS]]) through the definition of a transition func-
tion nextas(σ) can be found in [16]. The AsmL class
constructor can be defined according to the Definition
3.8 in [22].

Definition 4.16: (AsmL Class Semantics: CAS[[c as]])
Let c as = 〈as dmem, as mth, as ctr〉 be an AsmL
class, then its semantics CAS[[c as]]) ∈ P(T (Σ)) is:
Cas[[c as]]= {OAS[[o as]](v as,s as) | o as is an instance
of c as, v as ∈ D in, s as ∈ SC Store}

Theorem 4.4: (AsmL Class semantics in fixpoint) Let
Has〈S〉= λT. {S0〈v, s〉 | 〈v, s〉 ∈ S }

∪ {σ0
l0→ . . .

ln−1
→ σn

l′
→ σ′| σ0

l0→ . . .
ln−1
→

σn ∈ T, nextas(σn) ∋ 〈σ′, l′〉}

Then CAS[[c as]](vas, sas) = lfp ⊆
∅

Has〈 Din×Store〉
Proof: (see [18])

The function α AS◦ is an updated version of the func-
tion abstract (α◦) defined in [22]. The complete definition
of α AS◦ is given in [16].

Theorem 4.5: (Soundness of CAS[[c as]]) Let PAS be a
whole AsmL program and let cAS ∈ CAS. Then ∀ R0 ∈
AS Env× AS Store. ∀ τ ∈ T (AS Env× AS Store).

τ ∈ W[[AS Pg]](R0) : ∃τ′ ∈ CAS[[cAS ]].
α AS◦({τ}) = {τ′}
Proof: (see [18])

Theorem 4.6: (Completeness of CAS[[]]) Let cAS be a
AsmL class. Then
∀τ ∈ T (Σ). τ ∈ CSC[[cSC ]]: ∃ AS P ∈ 〈LAS Pg〉.

∃ρ0 ∈ AS Env× AS Store. ∃ oAS instance
of cAS. ∃ τ′ ∈ T (AS Env× AS Store).
τ′ ∈ W[[ρ0]]∧ α AS◦({τ′}) = {τ}

Proof: (see [18])

C. Program Transformation

The equivalence in behavior, with respect to an ob-
servation αo, between the source SystemC program and
the target AsmL program is required to ensure the
soundness of any verification result at the AsmL level.
Our objective is to define a relation between the SystemC
processes active for certain delta cycle and the set of
methods allowed to be executed in the AsmL model.
Hence, we will map every thread (method, sensitivity
list) in the SystemC design to a method (method core,
pre-conditions) in the AsmL model.

The SystemC observation function needs to see all
the active processes at the beginning of a delta-cycle by
checking for the end of the update phase.

Definition 4.17: (SystemC observation function: αSC
o )

Let SC Pg= 〈LSC Mod, SC main〉 be a SystemC program,
the observation function αSC

o ∈ P(SC Env× SC Store)
→ P(T (SC Env× SC Store)) is

αSC
o [[SC Pg]](R0) =

lfp ⊆
∅

λX. R0 ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×
SC Store) ∃ {ρi

0 → . . . ρi
m} ∈ X ∧

ρi
m → ρ̃i ∧ { m sc in MSC |

∃o sc ∈ MSC. o sc(ρi
m()) 6= {ǫ} } = ∅}

In the previous definition, αSC
o is only tracing the

initial states of a simulation cycle. For instance, the third
condition ensures that the list of process ready to run is
empty. Similarly, we define an observation function αAS

o
for an AsmL program.

Definition 4.18: (AsmL observation function: αAS
o )

Let AS Pg= 〈LAS C, INIT〉 be an AsmL program, the
observation function αAS

o ∈ P(AS Env×AS Store) →
P(T (AS Env× AS Store)) is

αAS
o [[AS Pg]](R0) =

lfp ⊆
∅

λX. (R0) ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×
AS Store) ∃ {ρi

0 → . . . ρi
m} ∈ X ∧

ρi
m → ρ̃i ∧ { m as in CAS | ∃o as ∈ CAS.
o as(ρi

m()) 6= {ǫ} } = ∅ }
Next, we define the notion of equivalence between the

two observations. Although, SystemC and AsmL have
different environment and store structures, it is possible
to ensure that they contain the same information.

Definition 4.19: (Equivalence w.r.t. αo: ≡αo )
Let SC Pg be a SystemC program, V sc a set of its
variables, AS Pg be an AsmL program and Dout as a
set of its output variables.
prog sc ≡αo prog as if

∀RSC
0 set of initial states of SC Pg.

∀RAS
0 set of initial states of AS Pg.

∀ρ̃ ∈ {ρ̃0 → . . . → ρ̃n} ∈ αSC
o [[SC Pg]](RSC

0 ).
∃ρ̂ ∈ {ρ̂0 → . . . → ρ̂n} ∈ αAS

o [[AS Pg]](RAS
0 )

| ∀ vsc ∈ V sc. ∃ vas ∈ V as such that
if vsc ∈ SC Sig then (ρ̃(vsc) = (vl1,vl2)) ∧

(ρ̂(vas) = (vl1,vl2))
if vsc ∈ AS DMem then (ρ̃(vsc) = vl1) ∧

(ρ̂(vas) =(vl1,vl1))
The observation function ensures that the AsmL pro-

gram is mimicking the evaluate and update phases (same
length n of the ρ sets). The first if condition takes care
of the SystemC signals while the second one concerns
basic C++ variables.

Theorem 4.7: (Existence of transformed AsmL program
w.r.t. αSC

o ) Let SC Pg be a whole SystemC program,
SC Din a set of inputs and SC Dout a set of outputs.
Then ∃ AS Pg, an AsmL program, such that SC Pg ≡αo

AS Pg.
Proof: (Sketch) The proof is done by constructing the

AsmL program. For instance, for every SystemC module
we affect an AsmL class having the same data members
and methods. We set the pre-conditions, AS Ctr, for the
AsmL methods as a conjunction of the state of the events
present in the sensitivity list, SC SL, of the SystemC
program processes. The tricky point in the construction
is when to make the updates in the AsmL program.
We have two possibilities: (1) C++ variables update:
whenever a C++ variable is involved in an instruction,
a partial update can be applied using the notion of
binders in AsmL; and (2) SystemC signals: all signals are
updated when all methods pre-conditions are false. Once
the set of AsmL classes defined, Theorem 4.6 ensures the
existent of the AsmL program.
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Theorem 4.8: (Existence of transformed SystemC pro-
gram w.r.t. αA

o ) Let AS Pg be a whole AsmL program,
AS Din a set of inputs and AS Dout a set of outputs.
Then, ∃ SC Pg, a SystemC program, such that AS Pg ≡αo

SC Pg.
Proof: (Sketch) Similar to Theorem 4.7, the proof

is done by constructing the transformed program (in
SystemC for this case). For instance, for every AsmL
class we affect a SystemC module having the same data
members and methods. In the SystemC module, we for
every method, we affect a process method having as
sensitivity list SC SL the list of pre-conditions, AS Ctr,
of the corresponding AsmL method. Updates are set
whenever a Step is found in the AsmL program. Once
the set of SystemC classes defined, Theorem 4.3 ensures
the existent of the transformed SystemC program.

Theorem 4.9: (Soundness of the transformations) Let
SC Pg be a whole SystemC program and let AS Pg be
a whole AsmL program. Then
SC Pg ≡αo AS Pg :

∀ Prop(V sc,ρ̃) | ρ̃ ∈ αSC
o [[SC Pg]].

SC Pg ⊢ Prop(V sc,ρ̃) :
AS Pg ⊢ Prop(V as,ρ̂) | ρ̂ ∈ αAS

o [[AS Pg]].
where Prop is a program’s property, V sc is a set
of variables of the SystemC program, V as are their
corresponding variables in the AsmL program.

Proof: The proof is straightforward from the con-
struction of equivalence relation ≡αo in Definition 4.19.

V. EXPERIMENTAL RESULTS

In order to illustrate the proposed design and verifi-
cation methodology, we considered two models: (1) PCI
(Peripheral Component Interconnect) [9] local bus stan-
dard; and (2) an extension of the Master/Slave Bus struc-
ture provided by the SystemC distribution [27]. Both
models include ceratin properties, such as liveness, that
cannot be verified using simulation which requires using
formal verification techniques such as model checking.
Moreover, we aim evaluating the performance of the
overall approach according to the system’s size, which
can be performed by varying the number of masters and
slaves. The experiments were conducted on a Pentium
IV processor (2.4 GHz) with 512 MB.

Additional case studies can be found in [12], [28],
[19] and [11]. In particular in [11], we compared the
performances of our approach to the RuleBase [21]
model checker on a look-aside interface [26]. Exper-
iments showed the performance of our approach to
handle cases that classical HDL model checkers cannot
support (due to state explosion problem).

A. Models Description

PCI boasts a 32-bit data path, 33MHz clock speed
and a maximum data transfer rate of 132MB/sec. Each
PCI master has a pair of arbitration lines that connect it
directly to the PCI bus arbiter. In the PCI environment,

bus arbitration can take place while another master is
still in control of the bus. Data is transferred between an
initiator which is the bus master, and a target, which is
the bus slave. PCI supports several masters and slaves
and allows stopping transactions.

The SystemC Master/Slave bus represents a more
generic bus structure including a set of Masters, a set
of slaves an arbiter and a shared bus. The arbiter is
responsible for choosing the appropriate master (if more
than one are connected to the bus). Two modes are
supported by the bus: (1) Blocking Mode: data is moved
through the bus in a burst–mode; and (2) Non-Blocking
Mode: the master reads or writes a single data word.

B. Model Checking

For model checking we consider, for both models, a
set of properties describing all the possible scenarios of
transactions over the bus (reading, writing, arbitration,
etc.). The machine time (user time) needed for verifying
the properties depends on the complexity of the original
model as well as the property parameters. The CPU time
required for the model checking of the properties of the
PCI bus for different numbers of masters and slaves is
given in Table I. We note that the numbers of states
and transitions increase exponentially as a function of
the number of masters and slaves connected to the bus
which explains the need for a sharp definition of the
exploration domains and active actions. Similar results
for the generic Master/Slave case study are given in
Table II, where, for Masters, “B” refers to Blocking and
“NB” to Non-Blocking.

TABLE I

PCI BUS: MODEL CHECKING AND SIMULATION RESULTS.

Number Model Checking Simul.

of CPU Num. of FSM δ (10−9s)

Mast. Slav. Time (s) Nod. Tran.

1 1 2.31 20 25 24.31

1 2 2.93 39 53 29.32

3 1 26.01 236 341 29.76

2 2 26.84 293 449 30.89

2 3 101.37 658 1117 32.74

3 2 574.18 1881 3153 34.03

3 3 6836.01 6346 12097 36.82

C. Assertion Based Verification

The last column in Table I shows a simulation eval-
uation of the PCI bus when implemented in SystemC
including the assertions monitors. We display the aver-
age execution time per clock cycle (δ given in ns) as a
function of the number of masters and slaves connected
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TABLE II

MASTER/SLAVE BUS: MODEL CHECKING AND SIMULATION RESULTS.

Num. of Model Checking Simul.

Slv. Mast. CPU Num. of FSM δ (10−9s)

B NB Time(s) Nod. Tran.

2 1 1 3.54 14 22 27.04

2 3 3 142.32 146 531 31.44

2 3 4 402.32 276 1174 33.02

2 4 4 1192.57 530 2584 35.41

3 1 1 4.32 15 27 28.01

3 3 3 186.64 147 723 36.85

3 3 4 518.73 278 1622 38.82

3 4 4 1541.32 535 3606 40.08

4 1 1 5.21 17 31 29.92

4 3 3 214.46 148 915 39.41

4 3 4 630.48 280 2070 41.11

4 4 4 2002.54 538 4630 43.25

to the bus. This shows a very short time (few seconds)
to simulate million of cycles which offers good coverage
for the assertions. In this case also, we obtained similar
results for the generic Master/Slave model as shown in
the last column of the Table II.

D. Assertions Coverage Enhancement

In order to evaluate the proposed genetic algorithm,
we considered the Master/Slave bus structure model
and a set of 10 assertions1. Table III compares the
assertion coverage results obtained: (a) with a blind
random generation; (b) in the initialization phase of the
genetic algorithm (GA), i.e., just after the first DNA
was generated from the static analysis phase; and (c)
after 35 generations of the GA. We used 109 simulation
cycles for every generation. The coverage is measuring
the percentage of test vectors that updated at least one
of the variables of the assertion. We clearly notice that
the static analysis phase already offers a better initial
state than starting with totally random generation. The
last column in Table III illustrates the average execution
time per iteration of the genetic algorithm. For assertion
A6, for example, the execution time required to raise the
coverage from 16% for the random generation to 91% is
1722.7s.

Figure 8 gives more details about the evolution of
the algorithm for the three assertions (A1, A2 and A3).
Typically, a genetic algorithm makes relatively quick
progress in the beginning stages of evolution. We noted
that there exist some phases, where the algorithm hits

1For more details, we refer the reader to
http://hvg.ece.concordia.ca/Research/SoC/GeneticAlgo/.

TABLE III

ASSERTIONS’ COVERAGE ANALYSIS

Rand. Genetic Algorithm

Assert. Simul. GA after 35 Avg. Exec

(%) (%) iter. per iter. (s)

A1 10 34 92 46.60

A2 8 42 93 55.18

A3 12 32 85 37.19

A4 11 37 89 52.08

A5 14 41 87 31.07

A6 16 46 91 49.22

A7 10 41 94 43.91

A8 17 33 83 39.88

A9 16 31 82 25.91

A10 14 45 97 35.00
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Fig. 8. Assertion coverage evolution as function of the Population
Generation.

local maxima before mutating further, which improves
its performance. We even noticed that the coverage
sometimes decreases slowly from generation to genera-
tion (for e.g., generation 20 for A3). This is due to the fact
that the evaluation of the assertion is based on weighted
random generation. In other terms, since the number
of tests is finite, a generator may have two different
coverage results for two different test trials.

VI. RELATED WORK

Related work to ours concerns mainly: (1) defining
system level design methodologies using SystemC; (2)
writing the formal semantics of PSL, SystemC and
AsmL; (3) using genetic algorithms to enhance assertions
coverage; and (4) performing program transformation
from SystemC to AsmL and vice-versa.

Several proposals for system level design, in particular
[31], used a combination of UML and SystemC for
SoC design in general (TLM in particular). We are not
aware of any other work that considered ASM as an
intermediate layer between UML and SystemC to enable
model checking. Besides, we focused into extracting and
defining the system properties at the early design stages
(from the UML sequence diagram) which makes our
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work complementary to existent approaches by offering
an in-design verification solution.

Genetic algorithms have already been used for a broad
range of applications. The most related work to ours is
the one of Godefroid et al. [6], which in contrast to other
approaches, addressed in particular the exploration of
large state spaces of concurrent reactive systems as de-
fined for model checking. Nevertheless, this work was
restricted to simple Boolean assertions and was based on
BDDs which is not suitable for high level languages like
SystemC. We added to [6] a static analysis phase before
applying the genetic algorithm. We also considered a
chromosome-encoding based on weighted probability
over the space of the possible values of the program
variables. We are not aware of any other work where
genetic algorithms have been combined with static code
analysis to optimize test vector generators in order to
improve assertions coverage for SystemC.

In [7], Gordon used the semi–formal semantics in the
PSL/Sugar documentation to create a deep embedding
of the whole language in the HOL theorem prover
[8]. The author described how to ‘execute’ the formal
semantics of PSL using HOL to see if it is feasible
to implement useful tools that work directly from the
formal semantics by mechanized proof. However, he did
not provide any framework for the verification of PSL for
any implementation language. Besides, he does not offer
any approach to re-use the PSL properties as assertion
(a very important feature in PSL).

Several approaches have been used to write the Sys-
temC semantics (e.g., using ASM is [24]). Denotational
semantics [25] is found to be most effective since objects
can be expressed as fixpoints on suitable domains. Salem
in [30] proposed a denotational semantics for SystemC;
but, his proposal was very shallow, missing to relate
the semantics of the whole SystemC program to the
semantics of its classes. Therefore, in order to construct
a transformation relation between SystemC and AsmL
and to prove its soundness, we defined, in this paper,
our own SystemC denotational semantics.

Regarding, the program transformation, the work of
Patrick and Radhia Cousot in [4] is the essence for any
program transformation using abstract interpretation.
We used a projection of that generic approach, described
in Section 3.9 of [4] on a SystemC subject program and
an AsmL transformed program can be used to perform
the soundness of a transformation and also to construct
it. In both cases, we defined the syntax, semantics and
observation functions for both AsmL and SystemC.

VII. CONCLUSION

In this paper, we presented a methodology to design
and verify SystemC transactional models starting from
a UML system specification and integrating an interme-
diate layer using the AsmL language. We proposed to
upgrade the UML sequence diagram in order to capture
transaction related system properties. Then, both the

design and its properties are modeled in AsmL to enable
performing model checking. On the other hand, to cover
for the state explosion problem that may result due to
the system’s complexity, we completed our approach by
offering a methodology to apply assertion based verifi-
cation re-using the already defined PSL properties. To
do so, we defined a set of translation rules to transform
the design’s model in AsmL to its implementation in
SystemC.

In order to efficiently verify assertions in SystemC,
we further apply a static code analysis technique based
on abstract interpretation. This phase generates an ab-
stracted version of the initial design modeled as a hy-
pergraph that helps defining the dependency between
the system inputs and the assertion’s variables, as well
as restricting the possible values of the inputs to certain
ranges that may update the assertion. Although exper-
iments showed that this approach improves the asser-
tion’s coverage, we proposed to use a genetic algorithm
that optimizes the probability distribution of the inputs
over the space of their possible values.

We also presented the fixpoint semantics of the Sys-
temC library including, in particular, the semantics of
a SystemC Module that we proved to be sound and
complete w.r.t. a trace semantics of a SystemC program.
We provided also the semantics of a subset of AsmL
and we proved the soundness and completeness of an
AsmL class w.r.t. to a trace semantics of the AsmL pro-
gram. Then, we proved the existence, for every SystemC
program, of an AsmL program having similar behavior
w.r.t. an observation function that we set to consider
the traces of the system just after the update phase
of the SystemC simulator. We have used this SystemC
to AsmL transformation to reduce the complexity of
SystemC models and enabled their formal verification
using model checking and theorem proving approaches
used with AsmL and ASM languages in general.

Experimental results showed good model checking
results even for complex systems such as the PCI bus
standard. The final SystemC models also were running
a quite fast simulation enabling to offer better coverage
for the whole system state space. Our genetic algorithm
showed an improvement of the assertions coverage by
a factor of eight in comparison to the random case. As
future work in this direction, we target to optimize the
genetic algorithm to improve various coverage metrics.
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