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The measurement process uncertainty is propagated through the use of a calibration curve. The magnitude 

and direction of this uncertainty depends on the choice of the controllable variable in producing the calibration 

curve; in other words, the design of the calibration experiment. In this paper this design is discussed in the con

text of Scheffe's approach to the uncertainties of a calibration curve and in particular for the case in .which the 

calibration curve is a linear spline. A class of appropriate designs is given, which depend on the location of the 

knots and the slopes of the segments. One of these designs is quickly calculable and can be found without a com· 

puter. Based on these results, a design approach is suggested for the case in which the knots are not known 

exactly. 
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1. Introduction 

This paper considers some design aspects of the calibration problem within the uncertainty formulation 

given by Scheffe [1973]. A mathematical and statistical relationship is assumed to exist between two quanti

ties U and v where v is generally more expensive or difficult to measure than U. For a given value of v, obser

vations on U are assumed to be random with a mean value 

m(v) = m(v,(J) = I.{3ig.{V) (1.1) 

and variance 0 2 independent of v. Of course the functions gi' i= 0,1, ... ,k + 1 form the basis for the regres

sion function m, and the scalars (Ji, i= 0, .. . ,k + 1 and 0 are unknown. For given values U I *, U2 *, ... , one is 

interested in finding the corresponding VI*' V2*," •• To do this the system is "calibrated." That is, exact 

values Vi' v'" ... ,Vn are chosen for v, and corresponding readings U" U", .. . ,Un are taken. The regression 

coefficients (J are then estimated by the least squares estimates, fi. For given values Ui" = Ui" the corre· 

sponding estimates of Vi *, Vi' are found by solving Ui * = m(~i'~)' 
Scheffe [1973] shows how a "calibration chart" can be constructed which results in a band around the 

curve u = m(v,(J). (Throughout we shall view U and v as plotted in the vertical and horizontal directions 

respectively, and thus differ from Scheffe by using the conventional axes.) These bands are used to construct 

an interval estimate /(u) for the unknown value of v. The bands are constructed for a given a and d so that 

"for every possible sequence of constants Vi * the probability is at least I-d that the proportion of intervals 

containing the corresponding Vi" is in the long run at least I-a." The reader is referred to Scheffe [1973] 
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and Scheffe, Rosenblatt, and Spiegelman [1980] for further discussion and interpretation of the bands. 

Alternative approaches to the uncertainty of the calibration problem can also be found in Lieberman, 

Miller, and Hamilton (1967) and the National Bureau of Standards Special Publication 300 on Precision 

Measurement and Calibration, Ku (1967). 

In order to prevent the diversion (theft) of nuclear material it is important to be able to determine, within 

the context of statistical uncertainties, the amount of radioactive material in the tank when a pressure 

measurement is taken. It is clear that the larger the uncertainty limits on the volume estimates, the more 

likely it is that the diversion of some material will go undetected. For this reason designs which result in 

large statistical uncertainties for volume estimates are to be avoided. Therefore, the designs for calibration 

experiments given here seek to minimize the maximum uncertainty limits that result from the use of a cali· 

bration curve. 

In order to obtain the shape of the calibration curve, m, the basic relationships of physics between pres

sure and volume are given. For a homogeneous liquid the pressure reading is proportional to the height of 

the liquid in the tank, h. Since volume = v = lA(x)dx, where A(x) is the cross sectional area at height x, and 

pressure = P = gdh, where g is the acceleration due to gravity, and d is the density of the liquid, the 

Pld 
volume-pressure relationship may be written as v = oA(x)dx. Thus the pressure-volume relationship of a 

constant density liquid is a straight line if the cross sectional areaA(x) is constant 

However often there are significant obstructions in the tank. In these cases the cross sectional area is not 

constant and the calibration relationship is not well-approximated by a straight line. These obstructions are 

of the nature of cooling coils, mechanisms to agitate the liquid or supporting metal to strengthen the tank. 

An abrupt obstruction would cause a sharp change in slope of the pressure volume relationship. When all 

obstructions are abrupt, relative to the size of the tank, it can be seen that a linear spline (given below) is 

appropriate. (In some cases obstructions would change the cross sectional area in a significantly more 

gradual manner, in these cases nonlinear splines might be appropriate.) 

In this case the pressure volume relationship can be usefully represented as a linear spline 

k 

m(v) = a + bv +'~I (b.)(v-t) (1.2) 

where z+ = max {O,z}. The quantities ~ 1 < ~2 < . . . < ~k are called "knots" and these will occur wherever the 

cross-sectional area changes. In eq (1.2) the function is a + bv for v below ~ I ' The curve is continuous and 

changes to slope b + blat the point ~ I, etc. 

When calculating the estimates of the calibration curve from the data it is often convenient to work with a 

more complicated but also more numerically stable basis than that used in (1.2). We use ~o and ~k+1 for the 

smallest and largest volume readings respectively. Then define 

~ ~O~V<~I 
~I-~O 

No{v) = 
0 ~I ~ V 

V-~'_I 
t-I ~ v<t 

t-t-I 
N.{v) = 

~i+l-V 

t+1-t t ~ v <~'+I 

0 elsewhere 

for i = 1,2, . . . ,k 
V-~k I ( ... -(. ~k ~ v < ~k+1 

Nk+,(v) = 0 

v >~k+1 

These are called B-splines. They are simply triangular type functions over successive pairs of intervals. With 

this basis the value (3, in 
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>+1 

m(v) = i~{3iN.{v) (1.3) 

is given by the value of m(v) at ~i' i.e. (3i = m(t), i = 0,1, ... ,k+ 1. An excellent discussion of splines is 

given in de Boor [1978]. 

The Scheffe calibration bands around the function (1.3) produce various width inverse intervals J(u) for 

the corresponding unknown value v. It is clear that the wider the band is in the vertical u direction the wider 

are the horizontal intervals J(u). In addition, however, low slope values of the curve m(v) in(1.3) will produce 

much larger intervals J(u) than large slopes will. 

For the reason explained earlier we would like to have the maximum (over the range of u values) of the 

lengths of the intervals J(u) as small as possible. This will also be useful when one wishes to make a single 

quantitive statement about the overall accuracy of the calibration. It is possible to keep the maximum of J(u) 

small if higher precision can be obtained in estimating the true curve t\v) in regions where it has lower 

slope. This precision is measured through the variance or standard deviation of our estimate of the response 

curve m(v). More observations are needed where the knots OCCl,H and where the slopes are low. The design 

problem is to see what quantative statements can be made about where the values v" Vb ..• ,V" should be 

chosen to obtain corresponding readings U" Ub .•• ,U" in the calibration experiment 

Typically the first few values of V are taken nearly evenly spaced so that a judgment as to whether the 

calibration experiment is in control or not can be made. If the calibration experiment is under control then 

the experimenter can choose the rest of his "v" values to minimize, to the extent possible, the uncertainty 

limits that result from using the calibration curve. 

In section 2 some consideration is given to the selection of v" V2, • • • ,v"' and a procedure is proposed. An 

illustrative example is described in section 3. Some discussion is given in section 4. 

2. Choosing the volume values 

As mentioned in the previous section it is desirable to keep the maximum width of the intervals J(u) at a 

minimum. In order to do this we consider a general curve (see fig. 1) of the form 

>+ 1 

m = m(v,{3) =2 (3iN,{V) 
1:::0 

(2.1) 

where the {3i are all posi tive and increasing. (The range of v is from ~o to ~k+1 where generally ~o > O. At the 

bottom of the tank the volume and pressure should both be zero. However tanks do not have flat bottoms but 

rather are bowed so that the validity of(2.1) is questionable near the bottom. We take ~o > 0.) 

Q) ... 
~ 
en 
en 
f!! 
a. 
11 
~ 

v=volume 

FIGURE 1. 
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In order to minimize ma;: J(u) we draw a band of constant horizontal width 2d about the curve. The 

Scheffe bands are produced by considering 

(2.2) 

The notation will be explained carefully below. Our intent is to choose d so that the constant width curve 

just contains (2.2). The values v" ... ,Vn will then be chosen so as to minimize d, these values enter mainly 

through the quantity S(v). 

To explain the notation, the quantity a is an estimate of the standard deviation a in our pressure readings. 

We . will assume for simplicity that a is known and therefore take a = a. Some discussion in section 4 will be 

given to this matter. The quantities c, and Cz are constants depending on the values of a and d mentioned in 

the introduction. The function S(v) is, except for a factor of a, the standard deviation of the estimate of 

m( v,{3) for a fixed value v of the volume. If we let 

1 
SZ(v) = -N(v)M-'{JA)N(v) 

n 
(2.3) 

where the matrix M{JA) is given by M{JA) = J N(v) N( v) ~ (v). The measure /A is called the design measure [see 

V. V. Federov (1972)] and simply has mass lin at each observation point Vi' i = 1,2, ... ,n (n = number of 

observations). The observations on U are assumed to be uncorrelated and in general some of the Vi values 

could be equal. The elements of M = M{JA) are simply 

, 
mab = ~Na( v.) Nb(Vi), ° < a,b < k+ 1 (2.4) 

The goal is to consider the maximum of the horizontal widths of J(u) of the Scheffe bands and minimize 

this maximum wi th respect to the values v" Vb ••• ,vn • This seems to be extremely difficult We shall proceed 

by trying to minimize d. 

To hold down the maximum width of J(u) we require that the Scheffe bands (2.2) lie inside the bands 

shown in figure 1. Since the upper and lower bands in figure 1 are m(v+ d) and m(v-d) respectively we thus 

require that, for all v, 

m(v+ d) - m(v) ~ arc, + czS(v)] (2.5) 

m(v) - m(v-d) ~ arc, + czS(v)] (2.6) 

It will be shown at the end of this section that arc, + czS(v)] is convex in v on each segment [~i' t+,], i = 0, 

1, . . . ,k. The right hand side of (2.5) then consists of convex segments, while the left hand side consists of 

linear segments. Equations (2.5) and (2.6) will then hold provided they hold at the knots of the left hand side. 

Thus we require (2.5) to hold for 

L i = 0,1, ... ,k+ 1 and t-d, i = 1,2, ... ,k (2.7) 

and (2.6) should hold at the points. 

~ i' i = 0, 1, . . . ,k+l andt+d, i = 1,2, ... ,k (2.8) 

Only points in the interval (~o, ~ .. ,) are considered. We assume that 

t .. - t ~ d, i = 0,1, ... ,k (2.9) 

then (2.5) and (2.6) will hold if 
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O[CI + C2S(~0)] ~ ho 

O[CI + C2S(U] ~ hi and hi-I i = 1, ... ,k 

O[CI + c2S(~k+,)]~hH' 
(2.10) 

where hi = m(t + d) - m(U = m(t+l) - m(t+1 - d). Let Si denote the slope of m(v) on (L t+I)' i = 0, 

1, ... ,k. Then since hi = dsi, the requirements (2.10) become 

O[C I + c2 S(U] ~ dri i = 0,1, ... ,k+ 1 (2.11) 

where Yo = So, Yi = min {Si,Si-I}, i = 1, ... ,k and Yk+1 = Sk' 

Now the design measure or the choice of v" v" . .. ,Vn enters these equations in S(v). The general problem 

is still to choose the design so that the value of d can be made as small as possible. 

To reduce S(v), observations should be chosen at the known points ~o, ~I' ••• '~k+l' (The case of estimate 

knots t is considered in section 3.) If we note the dependence of S(v) on Jl by S(v,Jl) then it is known [see 

W. J. Studden and D. J. Arman (1969)] that for a fixed set of knots and any J.lo there is another design Jl" con

cen tra ting on t, such that S( V,J.lI) ~ S( v,J.lo) for all v. 

Suppose, then, that we had observations only at the endpoints and knots. The matrix M() in (2.3) and (2.4) 

can be seen to be a diagonal matrix with diagonal elements po, Ph ' .. ,PHI where npi = ni = the number of 

observations at t. The value of S(U is then 

The conditions (2.11) then reduce to 

1 
S(U = --:r-

v n i 

a[ C2 
CI + --:r- ] ~ dYi i = 0,1, ... ,k+ 1 

v ni 

(2.12) 

(2.13) 

The values of no> n" . .. ,nHI (lni = n) and d which give equality in(2.13) should give a minimal value for d 

for fixed n. Solving for n, in (2.13) we get 

ni = [ C20 Y 
dYi-OCI 

(2.14) 

The solution given by eq 2.14 is a nonlinear equation in d. In cases where the sample size n is large we 

give an approximate solution which requires solving no nonlinear equations. Equation (2.13) gives 

d =~+~ . 01 k .r- £= , , ..• , +1 
Yi Yi V ni 

(2.15) 

N · h h . . OC2 I' . I' h . otlce t at t e quantLhes ----:-r-- = Ji vary inverse y Wlt Yi' 
YiV ni 

As an approximate solution we can min max j; by setting 
("O . .... "k+l) i 

n 
n i =-----

k+1 1 

Y/ 1(-) 2 
o YJ 

(2.16) 

Since by eq (2.15) d ~ ~ this approximate solution increases the "optimum" width d by no more 
mmYi 

HI 

than C20 ~ Cy Ivn. 
For the special form of response considered in this paper it is possible to modify the Scheffe solution to 

shrink d further. Since the resulting solution is complicated and the design can be found only by using a 

computer, this solution is presented in the appendix. 
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3. A way to implement the procedure when the knots are estimated 

It is often the case that the exact knot locations are not known precisely. However, in many situations a 

priori information is available about knot locations. In other situations there is data available so that the 

knot locations can be estimated. 

In both of the above situations the Scheffe theory does not exactly apply. However, it is reasonable to 

expect that if the estimates of the knots are good then the Scheffe theory is a reasonable description of the 

actual uncertainties involved. The exact theory for these situations is difficult and beyond the scope of this 

paper. Below we give a procedure that can be used to implement the designs derived in this paper, when the 

knots are estimated. 

The preceeding development assumes that 0, ~i' fJi' and Yi are all known. Since in practice this is usually 

not the case, we suggest the following design plan, which incorporates a two phase procedure for collecting 

observa tions. 

The general design plan would then be as follows: 

(1) Take a preliminary set of mo observations (these may be spaced equally or wherever they appear to give 

a good overall robust design). 

(2) With the observations from (1), estimate ~i' fJi' Yi and 0, insert these in (2.14) or (2.16) and solve for d so 

that ~ni = m, > mo. 

(3) The values for ni in(2) are roughly the numbers of observations that are required at ~i' Recall we already 

have mo observations from (1). The remaining m,-mo in (2) should then be chosen to make the com

bined set have roughly ni observations near, and uniformly distributed about, t. This scattering about 

t will help to reduce potential bias caused by imperfect estimation of the knots. 

(4) Repeat steps (1), (2) and (3) if more stages are used to m2 observations, etc. 

(5) To help implement step (3) we may proceed as follows. For a given set of observations assign each obser

vation to the nearest t value. The new set of m,-mo observations are then chosen as in (3). The com

bined set m, are then redistributed by taking those supposedly at t to be roughly uniform from (t-, + 
0/2 to (~i + t .. )/2. 

The remainder of this section consists of a proof of the convexity of o[c, + C2S(V)]. Consider the function 

SZ{v) defined in (2.3) and take vEli = (L t .. ) for a fixed i. The only basis functions ~{v) which are nonzero 

on Ii and N,(v) and Ni+,(v). Therefore 

ns2 (v) = a Nl(v) + 2bNi(v)N, .. (v) + cNf+,(v) (3.1) 

where a, band c are elements of the inverse of the matrix M{J.l) defined in (2.4). The matrix M{J.l) is tridiago

nal, i.e. has nonzero elements mij only for I i= Jl ~ 1, and has only nonnegative elements. The elements a and 

c in the inverse can be seen to be positive while b is nonpositive. Equation (2.15) and some simple algebra 

then shows that (2.15) is a quadratic in v with a minimum on the interior. The convexity of o[c, + C2S(V)] is 

then equivalent to the convexity of 

g(v) = c + d(1 + (V-W)2)1I2 
T 

where c;;?; 0, d;;?; 0, wdi andT;;?; 0. However itcan readily be shown thatl(v);;?; O. 

4. An illustration 

To illustrate the effect of the procedure we considered a tank which was carefully studied. The tank 

volume was approximately 13,500 L. The equation of the pressure = U versus the volume = v was thought 

to be 
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u = -271 + 2340 v + 1l(v-1.9)+ 

-27(v-4.6)+ - 146(v-5.5)+ 

-12(v-5.9)+ -16(v-6.5)+ 

+2.2(v-7.2)+ + 20(v-1O.0)+ 

-20(v-l0.3)+ + 2.5(v-12.5)+ 

(4.1) 

The equation was assumed to be valid over the range ~o = 1700 L to ~ '0 = 13,500 L. Throughout the exam

ple we assume that the knot position, the slopes and the standard error a are known. In this case the effect of 

the design in the simplest case will be isolated. Some discussion of this will be given in the next section. The 

knots and slopes are then taken as in the above equation. The standard error a was taken to be a = 1.6 Pa. 

Using Scheffe, we then chose c, = 2 and C2 = 5 in the equation [see (2.14)] 

(4.2) 

Using a trial and error method we solved (3.2) for d so that 2 ni = 86. (Three runs of measurements of 30 

observations each were to be taken, however 86 was more convenient than 90). The solution for d was d = 
1.03 L and the corresponding ni values were 6.2, 6.2, 6.4, 8.2, 8.6, 8.7, 8.7, 8.4, 8.7,8.7,8.7. Since these were 

roughly equal it was proposed that the number of observations around each knot should be taken to be 

equal. The following two designs were then compared. 

Design 1. Take n = 86 observations equally spaced over the entire range ~o = 1700 to ~ 10 = 13,500. 

Design 2. Take n = 30 observations equally spaced over ~o to ~ '0' The remaining are chosen to make an 

approximately equal number around each knot(see part[5] in the design). 

Using the above two designs, we simulated using normally distributed error on the pressure readings with 

standard deviation 1.6 pascals for the corresponding volume readings, using eq (4.1) and ran a calibration 

chart for each design. The graphs in figure 2 show the width of the confidence intervals versus the volume 

Design 1 - equally spaced - • 

UJ 
Design 2 - proposed near optimal - • 

... 
.!! 
:.:i 
'0 
c:: 
IQ 

5 al 

c:: 
.2 
-; ... 
:e 
ii 
() - 4 0 

..c:: 
:c 
~ 

3 

2 3 4 5 6 7 8 9 10 11 12 13 

Volume - Thousand Liters 

FIGURE 2. 
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for the two designs. It seems clear that in the area where the knots are concentrated, between 40000 and 

8000 L, the proposed design is superior to the equally spaced design, and that the maximum for design 2 is 

significantly less than the maximum for design 1. 

5. Discussion 

The Scheffe calibration procedure involves the consideration of two bands m(v) ± a[c, + C2S(V)] around 

the curve u = m(v). The bands are used in a simple inversion process, where for a given reading U = u we 

solve u = m(v) for v and find an intervall(u) of possible v-values. It is required that the lengths of these 

intervals be short. A simple procedure is proposed whereby the two bands are bounded by .. parallel" bands 

of uniform horizontal width and an attempt was made at minimizing the width of the outer bands. It would 

seem that a direct minimization of rna: l(u) would present considerable difficulty. The procedure pro

posed certainly needs further testing in that estimated values of ~i' (3i and a should be used in step 2 of the 

procedure. It seems, however, that the procedure will generally give lower overall width than the evenly 

spread design. 

The Scheffe procedure gives bands, which in our case are" square root parabolic" on segments between 

knots. In that procedure, the form of the regression function is assumed known and probabilistic statements 

are made concerning statements that the true volume v, corresponding to a given reading U = u, is con

tained in an interval J(u). In our situation the unknown knots t prevent us from assuming that our regres

sion functions g.{v) are known. Any attempt at making exact confidence statements is then in question. 

Since blueprints of the tanks are usually available, and n is often large, the uncertainties added by 

estimating the ~i with the aid of blueprints is often not serious. However techniques such as cross validation 

(the use of half of the observations to estimate the knots and the other half to test whether these knots are 

properly located) ought to be used to assure that this is the case. 

6. Appendix 

In this appendix we take advantage of the form of the unknown function m to produce bounds which are 

shorter than Scheffe's when 02 is based on a large number of degrees of freedom. In order to facilitate the 

explanation we assume that a is known. 

For the curve in figure 1 the implicit bounds on mare 

- 00 ~ m(~) - m(~o) < ho - c,a 

- hi-, + c,a ~ m(0 - ~t) ~ hi - c,a i= 1, ... ,k (A.I) 

hk+' + c,a ~ m(~k+') - ~~k+I) ~ 00. 

For the Scheffe formulation of uncertainty for the calibration to hold, m must lie in the region described 

by (A.I) with probability (1-0). 

Recall that hi = dsi, and that S(O = 1/V ni. 

In addition define 

i=O, .. . ,k+ 1 

Then the probability of m lying in the region described by (A. 1 ) is greater than or equal to 

1 k ~ 
(2n) (k + 2)/2 "! (-f. e-x2 f2dx) 

(j"e-x2/2dx) (j e-x2/2) 

(A.2) 

-00 Bk+l 

The correct theoretical choices of ni i = 0, . .. ,k + 1 can be obtained by setting expression (A.2) equal to 

(1-0) and solving for the design which gives minimum width as in(2.I4). 
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For many purposes this solution might be difficult to obtain. Therefore it may be useful to approximate 

o 2e-0212 

J e-x2 Pdx by (1- --) 
a a 

Thus we choose ni , and d as small as possible so as to produce equality of 

(A.3) 

with I-d. 

Since the equation to be solved is nonlinear we produce an algorithm which should converge to an 

acceptable approximate solution. 

THE ALGORITHM. 

f(d,n) = 
Define 

log(A.3) if each term in the product is > 0 

-co otherwise 

Step 1. Start with the solution (2.16) denoted by n., and 

Step 2. Produce equality off(d,n,,) with 10g(l-d) by changing d if necessary, call it do. 

Step 3. Maximizef(do,n) with respect to n and denote by n, the maximizing n, i.e. Supf(do,n) = f(do,n,), 

where the supremum is taken over the region n > 0, }:n i = n. 

Step 4. Iterate steps 2 and 3 generating di and n i at the ith iteration until no significant improvement is 

possible. Round to the nearest integers ~ 1 to obtain a reasonable choice of ni • 

PROOF OF CONVERGENCE [for non·rounded solution]: 

Since f(d,n) is monotonically increasing in d it is clear that the sequence of d's {d i }, obtained from the 

algorithm are monotonically decreasing. This implies that the sequence {d.} has a limit which is denoted by 

d*. 
k+' 

Since the set of nonnegative n,'s such that ~ ni = n is compact it follows that every subsequent of {ni} 

has a convergent subsequence. Let {nJ, jEj, be a convergent subsequence having a limit which is denoted 

byn*. 

By constructionf(di,n,) = I-d. Since (dj,nj) -+ (d*,n*) asj-+co it follows thatf(dj_"nJ -+ f(d*,n*) = 
I-d. 

Let n" denote the maximizing value off at d*. It follows thatf(d*,n.,) ~ f(d*,n*) = I-d. However since 

f(dj_hnJ ~ f(dj_hnO ) ~ f(d*,Do) it follows that f(d*,Do) = f(d *,n*). Now since f(d*, .) is strictly concave it 

follows that Do = n*. 

Denote the optimal solution to our problem by doP', nop'. 

It is clear that 

I-d = f(d*,n*) = f(doP',n oP'). 

The strict monotonicity offin d implies that 
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with equality only if d * = doP '. From eq (A.4) we have d * = doP', and hence n * = nOp ' . 

The authors thank a referee, Keith Eberhardt, for careful reading of the manuscript and his helpful com

ments. They also thank the Washington Editorial Review Board member Walter Liggett for his comments 

and suggestion that the contents of section 3 be expanded to a separate section. 
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