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Design Automation of Cyber-Physical Systems:
Challenges, Advances, and Opportunities

Sanjit A. Seshia, Shiyan Hu, Wenchao Li, Qi Zhu

Abstract—A cyber-physical system (CPS) is an integration of
computation with physical processes whose behavior is defined
by both computational and physical parts of the system. In this
paper, we present a view of the challenges and opportunities
for design automation of CPS. We identify a combination of
characteristics that define the challenges unique to the design
automation of CPS. We then present selected promising advances
in depth, focusing on four foundational directions: combining
model-based and data-driven design methods; design for human-
in-the-loop systems; component-based design with contracts, and
design for security and privacy. These directions are illustrated
with examples from two application domains: smart energy
systems and next-generation automotive systems.

I. INTRODUCTION

A cyber-physical system (CPS) is an integration of com-

putation with physical processes whose behavior is defined

by both computational and physical parts of the system [1].

Embedded computers and networks monitor and control the

physical processes, usually with feedback loops where phys-

ical processes affect computations and vice versa. Depending

on the characteristics of CPS that are emphasized, they are

also variously termed as embedded systems, the Internet of

Things (IoT), the Internet of Everything (IoE), the Industrial

Internet, etc. Examples of CPS include today’s automobiles,

fly-by-wire aircraft, medical devices, power generation and

distribution systems, building control systems, robots, and

many other systems. As an intellectual challenge, CPS is about

the intersection, not the union, of the physical and the cyber

worlds. It is not sufficient to separately design, analyze, and

understand the physical components and the computational

components, and then to connect them together. To enable

the integration of different components including computation,

networking, and physical processes, we must understand and

design for their interaction.

Cyber-physical systems have been around for a long time,

but it is only recently that the area has come together as

an intellectual discipline. As a result, even though tools and

techniques for the design automation of CPS exist in certain

categories, there is not yet a widely-used design methodology,

supported by tools, for CPS as there is, for example, for digital

circuit design. Additionally, CPS are more complex than inte-

grated circuits along several dimensions. Indeed, there is not

a single “design space” for CPS as there is for digital circuits;

in fact, the commonalities in the design problems for different

CPS applications arise from the combination of the following

features. Today’s CPS are heterogeneous entities that span the

cyber and physical worlds, hardware and software, sensors and

actuators, etc. They are also increasingly distributed systems,

often of a large scale. They must operate in highly dynamic

environments and for dynamically-changing objectives, and

therefore, must be adaptive. Finally, many CPS operate in

concert with human operators, and the human aspect of the

design of such systems must be carefully considered. We detail

this combination of characteristics in Section II and make the

case that, taken together, this combination of characteristics

needs significant advances in the theory, techniques, and tools

for design automation of CPS.

This need is a significant opportunity for the design au-

tomation community. The opportunity extends across the entire

design process including specification, modeling, language

design, programming, simulation, verification and validation,

synthesis equivalence and refinement checking, mapping, per-

formance analysis and optimization, interface design, network

design, testing, debugging, diagnosis and repair, etc. We

contend that each of these categories needs more advances

in fundamental theory, techniques, and tools in order to make

the design of CPS as routine and their behavior as predictable

as the design and operation of digital systems is today.

We need new design methodologies for CPS with impact

comparable to that of the register transfer level (RTL) design

flow for digital circuits. Moreover, the opportunity to create

new design methodologies for CPS is amplified by the growing

availability of data, both on the design of systems and on their

operation in the field. In this paper, rather than enumerating

the many specific opportunities for design automation of CPS,

we focus on an exposition of selected foundational directions

(see Section III). We illustrate these directions with examples

from two application domains: smart energy systems, and

next-generation automotive systems (Section IV). The paper

concludes in Section V with an outlook to the future for design

automation for CPS.

This paper is not intended to be an exhaustive survey of

work on design automation of CPS. We focus on selected top-

ics that we believe hold much promise for future work. Certain

important recent efforts that fall outside these topics are not

covered. The reader is referred to other excellent articles for a

broader view of the landscape for design automation of CPS

(e.g., [2], [3], [4], [5]).

II. CHALLENGES

The unique design challenges for cyber-physical systems

emerge from the following combination of characteristics:

• Hybrid: As mentioned earlier, CPS is about the intersection

of the computational and physical worlds. For this reason,

the modeling, design, and analysis of CPS requires effec-

tive theory and tools to reason about hybrid systems that

combine discrete and continuous dynamics.

• Heterogeneous: The components of a cyber-physical system

are of various types, requiring interfacing and interoper-
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ability across multiple platforms and different models of

computation.

• Distributed: In today’s cyber-physical systems, components

are typically networked, and can be separated physically

and/or temporally.

• Large-scale: The size of cyber-physical systems, measured

in terms of the number of primitive components a system

is made up of, is growing rapidly, leading to a “swarm”

of sensors, actuators, computation, and communication de-

vices interconnected and generating vasts amount of data.

• Dynamic: The environment of the CPS evolves continually,

and thus the design and operaton of the system must

account for such dynamic changes in the environment.

Moreover, the environment can behave adversarially, ac-

tively trying to violate desired system properties.

• Adaptive: Given a dynamic environment, the CPS must

adapt to it, possibly online. The system may employ ma-

chine learning to adapt to a changing environment. The

distinction between “design-time” and “run-time” is thus

blurred.

• Human-in-the-loop: Several CPS operate in concert with

humans: they involve human operators or interact with hu-

mans and human-controlled systems in their environment.

Examples include semi-autonomous vehicles (where “self-

driving” autonomous controllers must interact with human

drivers and pedestrians) and robotic surgical devices (where

a doctor or nurse must cooperate with an autonomous

controller to achieve their objective). The design of such

systems must necessarily consider as a central aspect the

role of and interface to the human(s) in the loop.

These characteristics may seem very different from each other.

However, in our opinion, the major design challenges for

CPS stem from how these characteristics come together in

real systems. For example, in order to verify advanced driver

assistance systems (ADAS) in automobiles, one must consider

that these are hybrid systems operating in a dynamic envi-

ronment that interact with humans and use machine learning

components. The design tools must be capable of handling

this combination and the resulting concerns.

Thus, the overarching challenge for the design automation

community is to develop theory, techniques, and tools for the

design of CPS with the above combination of characteristics

in order to ensure that the designed systems are dependable,

secure, and high performance. In turn, we believe that this

challenge needs a design automation methodology with the

following blend of features:

• Cross-domain: The hybrid and heterogeneous nature of CPS

means that the tools for their design must necessarily be

cross-domain. For example, there is a need for techniques

for co-simulating different components of a CPS, such

as the mechanical aspects of a robot’s motion with the

electronic and software processes that control its actions.

• Component-based: The increasing large scale of CPS im-

plies that the only way to deal with growing complexity

is to perform design in a modular fashion. Specifically,

there is a need for establishing libraries of reusable, verified

components with clearly specified interface contracts. Tools

for enabling such component-based, contract-based design

are essential.

• Learning-based: The growing amount of data on CPS,

coupled with the need for systems to be adaptive and handle

dynamic environments points to the need for CPS design

based on data-driven learning. However, such learning must

be coupled with principled model-based design and formal

methods that can give guarantees on correct operation.

The development of such learning-based design automation

techniques is an important need going forward.

• Time-aware: One of the key aspects connecting the cyber

and physical worlds is time. In particular, in order to

understand the joint dynamics of the cyber and physical

components of a CPS, one must come up with a suitable

abstraction of time that accurately captures their joint

evolution. The distributed nature of many CPS adds another

level of complexity, potentially varying the notion of time

across different components of the system. CPS design tools

must be time-aware and encapsulate suitable abstractions in

order to ease the design process.

• Trust-aware: The design of distributed CPS that operate in

dynamic, adversarial environments must address fundamen-

tal issues of trust. Security and privacy, which previously

were secondary concerns, have now become top design

concerns for CPS. Moreover, the cyber-physical nature of

systems is bringing new security and privacy concerns to

the fore. Tools for design automation must be able to

model threats, design for them, and analyze systems for

vulnerabilities.

• Human-centric: It is becoming increasingly clear that de-

sign automation tools for CPS must both address the

human aspect of design and of the systems being designed.

Tools must complement human ingenuity by automating

the tedious aspects of design while allowing humans to

express their creativity as well. Similarly, given the growing

importance of human-in-the-loop CPS in everyday life, it is

critical to develop tools to help model, design, and verify

such systems.

In the following sections, we explore the opportunities for

CPS design automation in more depth.

III. FOUNDATIONAL DIRECTIONS

We list four directions that, in our opinion, highlight the

foundational aspects of design automation for CPS. Each of

these directions involves developing a unique set of features

that we described in the previous section. Moreover, each

direction represents a significant shift from the traditional

paradigms in design automation. These directions, however,

are not orthogonal to each other and should be viewed as

addressing different but cross-cutting aspects of automating

CPS designs. For example, the combination of model-based

and data-driven approaches (Sec. III-A) may very well be

applied to the analysis and synthesis of human-in-the-loop

systems (Sec. III-B).

A. Model-Based Design meets Data-Driven Design

Model-based design (MBD) is a paradigm for system design

in which the design process begins with the creation of high-

level models which are then used to guide further development,
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simulation, verification, and testing of the system. MBD

has found industrial use in the field of embedded systems,

particularly in automotive and avionics applications [6], [7].

The MBD approach seeks to place an emphasis on abstract,

mathematical modeling as a first step before getting into low-

level details of the implementation. The availability of such

models, with associated formal (mathematical) specification

of desired/undesired behaviors, can aid in simulation and

verification early in the design process, thus weeding out bugs

in the logic of the system at a point where the cost of finding

and fixing them is still relatively low, and improving overall

system dependability.

In certain settings, however, the model-based approach falls

short. Consider, for example, a system operating in a highly

variable, uncertain environment, such as a self-driving vehicle.

In this case, constructing a good model of the environment

a priori can be very difficult. Instead, one might rely on

extensive field testing to collect data about the environment

of the vehicle, and then employ algorithms that learn from

the data in order to compute the optimal control strategy.

Moreover, the genesis of such an approach goes back several

years, to ideas such as adaptive control [8], [9]. At the present

time, a prominent example of this data-driven, learning-based

approach are Google’s (mostly) self-driving cars [10]. The

seeming success of this approach, paired with the availability

of increasing amounts of data, leads one to ask: is the data-

driven approach the right one?

We argue instead that one needs a combination of model-

based and data-driven approaches. Today’s cyber-physical sys-

tems need to be both dependable and adaptive. A model-

based approach facilitates the use of formal methods —

computational proof techniques — to improve dependability.

A data-driven approach facilitates adaptation by learning from

the data. For cyber-physical systems that operate in safety-

critical or mission-critical settings and dynamic, uncertain

environments, both approaches are essential.

The confluence of model-based design with data-driven de-

sign has produced several exciting directions for future work.

We elaborate on two particularly compelling and foundational

directions.

1) Formal Inductive Synthesis: How can we employ data-

driven learning to improve model-based design?

In order to answer this question, let us examine the process

of model-based design. The first step is to create models,

including requirements on the system to be designed, and

assumptions on its operating environment. One must gain

assurance, through the use of systematic simulation and proof

methods, that the model of the system, when composed

with the model of its environment, satisfies the desired re-

quirements. Next, one must generate implementations from

the models in a systematic manner that guarantees that the

behavior of the implementation conforms to the model. Such

conformance checking requires additional verification. The

implementations also need to be mapped to a physical platform

and various platform-specific requirements must be verified,

such as conformance to timing requirements.

It is clear from the above description that synthesis is a

central and recurring component of the MBD process. Models

and specifications must be synthesized. Implementations must

be synthesized. Platform-specific features must be synthesized.

Perhaps more surprisingly, the verification steps also involve

synthesis (albeit a different form): the synthesis of “verification

artifacts” such as inductive invariants, pre-conditions and post-

conditions, assume-guarantee contracts, ranking functions, etc.

In summary, in order to automate the MBD process effectively,

one must devise efficient procedures for the synthesis of a

variety of formal artifacts.

How best can this synthesis be done? One approach is

deductive, to formulate and systematically apply rules that

transform a high-level specification into the artifact to be

synthesized. However, it can be difficult, a priori, to specify all

the needed transformation rules, and the combinatorial search

does not usually scale to industrial problems. Can one instead

leverage data available from past design experience as well as

data generated during the MBD process (e.g., from simulations

of models) to automate the tedious aspects of synthesis?

A particularly effective approach that has emerged in recent

years is based on the combination of induction and deduction.

We use the term induction in its classic sense as the process of

inferring a general law or principle from observation of par-

ticular instances.1 Machine learning algorithms are typically

inductive, generalizing from (labeled) examples to obtain a

learned concept or classifier [11], [12]. Inductive synthesis is

the process of synthesis from examples (sample data). Formal

inductive synthesis [13] (FIS) is the process of synthesizing

from examples with formal guarantees, and it is this flavor of

inductive synthesis that is relevant in the MBD context.

An effective approach to solve an FIS problem combines

three elements: a structure hypothesis, induction, and deduc-

tion. The structure hypothesis is an encapsulation of designer

insight in a syntactic form. It can take the form of a template,

a component library, a partial program, etc. We refer to this

approach as the SID methodology, where the three letters stand

for the three elements: structure, induction, and deduction.

Fig. 1 depicts the the above three elements where an inductive

engine I makes queries to a deductive oracle D and receives

responses in turn. A mathematical framework implementing

the SID methodology is the oracle-guided inductive synthesis

(OGIS) approach [13]. The SID methodology has been ef-

Structure 
Hypothesis

Inductive 
Engine

(LEARNER)

Deductive 
Engine 

(TEACHER)

Queries

Responses

Fig. 1. Three Main Elements of the SID Approach

fectively applied to several practical problems in the design

automation of cyber-physical systems, including requirement

generation [14], assumption generation [15], controller syn-

thesis [16], switching logic synthesis [17], timing analysis

1The term “induction” is often used in the EDA/verification community
to refer to mathematical induction, which is actually a deductive proof rule.
Here we are employing “induction” in its more classic usage arising from the
field of Philosophy.
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of embedded software [18], [19], and Lyapunov analysis for

control [20]. We have just begun to scratch the surface of what

is possible with an approach that integrates induction from

data with deduction from models, and many exciting future

directions beckon. For further details, we refer the interested

readers to the papers on SID [21], [22], and OGIS [13].

2) Trustworthy Machine Learning: Cyber-physical systems

that include components based on machine learning have cer-

tain distinctive characteristics. First, the mainstream machine

learning techniques of today do not perform exact learning

— i.e., they may have a (hopefully) small mis-classification

error. Second, they are only as accurate as the data used to

train them with. Thus, if machine learning methods are to be

used within safety-critical CPS, we must develop techniques

to verify system correctness whilst considering their potential

inaccuracies. In other words, we need to develop techniques

for trustworthy machine learning.

What are the general principles for trustworthy machine

learning? This is a nascent topic, and a few proposals are

just emerging [23], [24]. Here we highlight some important

directions (see [24] for more details):

• From Predictions to Explanations: The nature of such

machine learning algorithms must not just be predictive

but also explanatory. In other words, when the machine

learning algorithm makes a prediction (e.g., classifies an

object in front of a vehicle as a person), it should be

able to support that prediction with a suitable “explanation”

encoded in a form amenable to formal analysis. Such ex-

planations can then be checked against sufficient conditions

for safe operation that have been derived at design time.

• Systematic Training: Training and test data for machine

learning algorithms must be systematically generated. In

the ideal case, they must be generated in a manner so

as to give formal guarantees about convergence to the

target concept to be learned. In many cases, this will

require sampling points from a constrained space subject

to requirements on the output distribution. This is roughly

similar to constrained random verification in electronic

design automation, although there are some key differences

as well.

• Specifications for Learning Components: One challenge for

verifying the correctness of a machine learning component

is to formulate its specification, i.e., to make precise what

“correctness” means. Since machine learning is often used

to perform tasks otherwise done by humans, and given

that many of these tasks are versions of the Turing test,

it is in general impossible to formalize the specification.

Even so, it may be possible to employ instead an end-to-

end specification for the overall system that uses machine

learning, and to combine that with specification mining to

analyze the macine learning component systematically.

The design of trustworthy machine learning components

thus points to another rich domain for the integration of

machine learning with formal methods. It is thus fertile ground

for future work.

B. Human-in-the-Loop Systems

Several cyber-physical systems are interactive, i.e., they

interact with one or more human beings, and the human role

is central to the correct working of the system. Examples

of such systems include fly-by-wire aircraft control systems

(interacting with a pilot), automobiles with “self-driving”

features (interacting with a driver), remote-controlled drones

(interacting with a ground operator), and medical devices

(interacting with a doctor, nurse, or patient). We refer to the

control in such systems as human-in-the-loop control systems

and the overall system as a human cyber-physical system

(h-CPS). The costs of incorrect operation in the application

domains served by these systems can be very severe. Human

factors are often the reason for failures or “near failures”, as

noted by several studies (e.g., [25], [26]). Correct operation

of these systems depends crucially on two design aspects:

(i) interfaces between human operator(s) and autonomous

components, and (ii) control strategies for such human-in-the-

loop systems.

At the present time, some of the most compelling h-CPS

problems arise from the automotive domain. In particular,

over the past decade, automobiles with “self-driving” fea-

tures (otherwise also termed as “advanced driver assistance

systems” or ADAS) have made their way from research

prototypes to commercially-available vehicles. Such systems,

already capable of automating tasks such as lane keeping,

navigating in stop-and-go traffic, and parallel parking, are be-

ing integrated into medium-to-high end automobiles. However,

these emerging technologies also give rise to concerns over

the safety and performance of an ultimately driverless car. For

various engineering, legal and policy reasons, a car that is

self-driving at all times may not be a reality for a few more

decades. However, semi-autonomous driving is already here,

and a myriad of scientific and engineering challenges exist

in the design of shared human and autonomous control. For

these reasons, the field of semi-autonomous driving is a fertile

application area for CPS design automation. Section IV-B2 has

a deeper exploration of this application domain.

In this section, we give an overview of the main challenges

associated with the principled design of h-CPS, including:

• Modeling: What distinguishes a model of a h-CPS from a

typical CPS?

• Specification: How do the requirements change for a h-

CPS?

• Verification: What new verification problems arise from the

human aspect?

• Synthesis: How can we co-synthesize control and interfaces

for h-CPS?

The reader may find a slightly longer exposition of this topic,

with a particular focus on semi-autonomous driving, in a recent

paper [27].

1) Modeling: The key difference between an h-CPS and a

fully-autonomous system is that, in an h-CPS, we additionally

have the human operator(s) with whom control must be shared.

Therefore, the h-CPS model must contain a representation of

the human operator(s) as well as a sub-system that mediates

between the human operator(s) and the autonomous controller.

We refer to this sub-system as the advisory controller (since
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it guides the human operator) or the mixed-initative controller

(since it blends human and autonomous control), and denote

it by ADVISOR. The design of the human-machine interface,

thus, is also of great importance.
Additionally, in order to give guarantees about an h-CPS

system, one must have a reasonable model of the human

operator. Modeling humans can be tricky. While there is a

large literature on human cognitive modeling, this is usually

informal and performed by experts for specialized domains

with highly-trained operators (e.g., cockpit flight control). In

this context, it is useful to recall the statement by George Box:

“all models are wrong, but some are useful.” The principled

design of h-CPS requires the judicious use of human models.

Our position is to use formal models of human operators that

are grounded in empirical data. In other words, we propose

that, while the structural form of a model can be informed by

expert guidance, the precise model used for design be inferred

from observations of human behavior.
To summarize, the key points of differentiation between

modeling a h-CPS and modeling a fully-autonomous CPS

are:

• The use of data-driven human modeling;

• The inclusion of relevant aspects of the human-machine

interface, and

• The presence of the advisory controller.

2) Specification: Human CPS have certain unique require-

ments which need to be formalized as formal specifications

for verification and control. In addition to traditional forms of

specification, captured through formalisms such as temporal

logic, one must also write down specifications relating to the

human operator(s) and the human-machine interface. Some

initial steps have been taken in this regard [28], [27], formal-

izing the following meta-specifications:

• Safe and Correct Autonomy: The h-CPS must preserve

certain key safety properties at all times, and must guar-

antee overall correct operation (as captured by a formal

specification) at all times when the autonomous agent is in

control.

• Effective Monitoring: The advisory controller should be

able to monitor all information about the h-CPS and its

environment needed to determine which agents (human or

autonomous) must be in control. This is a requirement

on the types of sensors required and their quality and

performance.

• Minimally Intervening: A primary purpose of including an

autonomous controller in the system is for human operators

not to have to be in control at all times. Therefore, we add

an optimality requirement: the advisory controller should

minimize interventions by the human operator(s) to take

back control, where minimality is defined by a suitable cost

function.

• Prescient: Time is a central parameter in the design of h-

CPS. The advisory controller must be able to predict in

advance conditions that may require switching control from

human or autonomous and vice-versa, or other interventions

by the human (e.g., asking to change the navigation goal).

These meta-properties are just a start. Formalizing and

specializing these meta-requirements for specific application

domains (e.g., semi-autonomous driving) and for other human-

machine interaction models is a problem that remains to be

fully solved, and an important direction for future work.

3) Verification and Synthesis: The verification and control

problems for h-CPS depend heavily on the formalisms for

modeling and specification. Thus, one needs to define the latter

formalisms before the verification and control problems can be

effectively tackled. Even so, some general principles are worth

stating:

• Verification must operate on models inferred from data. It

is clear that h-CPS models will include substantial parts

that are learned from data that may be incomplete and

with learning algorithms that have intrinsic inaccuracies.

The models must represent this uncertainty and inaccuracies

as first-class entities, and verification algorithms must be

adapted to operate on such models. Although some initial

results are available [29], [30], much more remains to be

done.

• Verification must provide quantitative output. The bulk of

verification techniques target Boolean questions, such as

whether a model satisfies a property or not. However,

with humans in the loop, there is a lot of uncertainty in

the modeling process, and hence Boolean answers may

lose substantial information about risk. Better quantitative

verification methods must be developed.

• Controller synthesis must yield both the autonomous con-

troller and the advisory controller. Traditional controller

synthesis simply solves for the former. However, the re-

quirements on the advisory controller can be very different,

such as those that involve human reaction time and features

of the human-machine interface. Thus, controller synthesis

must involve a co-design of controllers and human-machine

interfaces.

In summary, the field of human-cyber-physical systems

is a fertile ground for the CPS design automation commu-

nity. There are several exciting directions for future work

including human modeling, novel specification languages to

capture requirements unique to h-CPS, data-driven verification

and synthesis, quantitative verification and synthesis, and co-

design of interfaces and control.

C. Component-Based Design with Contracts

The register-transfer-level (RTL) design flow for digital

circuits is one of the major success stories in electronic

design automation. An important aspect of the RTL flow is

its emphasis on component-based design. This methodology is

applied at various levels of abstraction: high-level RTL source

modules, a library of logic gates and state-holding elements,

a technology library, etc. Component-based design has many

benefits: reuse, clean interfaces, separation of concerns, etc.

Naturally, the question arises: is there a similar component-

based design approach for cyber-physical systems?

At present, the answer is a qualified “yes.”. The starting

point is to construct the right component library for each ap-

plication domain. Such a library must capture the the heteroge-

neous, cyber-physical, dynamic nature of that domain. While

model-based design languages such as Simulink/Stateflow and

NI LabVIEW do offer component libraries, these are often too
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low-level and without cleanly-specified interfaces with precise

semantics. Moreover, such libraries do not always accurately

abstract relevant features of the underlying platform, such as

timing behaviors.

Fortunately there are some emerging design methodologies

that one can build upon. Platform-based design (PBD) [31],

[32], [33], [34] maps a top-down mapping of application-

level constraints with a bottom-up propagation of platform

constraints to find the right composition of platform compo-

nents that meets an application’s requirements. Contract-based

design [2] complements the PBD methodology by adding a

rigorous notion of formal contracts to ensure that composition

of components maintains desired properties. These methodolo-

gies provide a framework for component-based design, pro-

vided one can come up with the right library of components,

rules of composition, and interface contracts.

The challenge is thus shifted to finding the three Cs —

components, composition, and contracts — for a given ap-

plication. As of today, the process of finding these is very

domain-specific. As an illustrative example, we discuss how

component-based design has been successfully demonstrated

for programming teams of robots to achieve coordinated tasks

in a laboratory setting [35]. The tasks are specified in a variant

of temporal logic [36].

In Robotics, the traditional motion planning problem is

to move a robot from Point A to Point B while avoiding

obstacles. However, more recently, there is growing interest

in extending this problem along two dimensions. The first ex-

tension is to impose more complex requirements on the robot,

such as visiting certain locations “infinitely often.” Such re-

quirements can be conveniently specified in a formal notation

such as linear temporal logic (LTL). The second extension is

to handle swarms of many robots executing coordinated plans.

Such problems arise in many application settings, including

persistent surveillance, search and rescue, formation control,

and aerial imaging. More complex requirements require more

sophisticated methods to ensure that the synthesized plans are

provably correct. Scaling planning algorithms to larger swarms

requires more efficient algorithms and design methodologies.

Recent work [35] addresses these challenges with a two-

pronged approach. First, a compositional approach is em-

ployed, where pre-characterized motion primitives, based on

well-known control algorithms, are used as a component

library. Each motion primitive is specified in a suitable

combination of logical theories. Second, using an encoding

similar to the one used for bounded model checking [38],

a satisfiability modulo theories (SMT) solver [39] is used

to find a composition of motion primitives that achieves the

desired LTL objectives. Figure 2 depicts a sample result of

this approach, showing the top view of four nano quadrotor

robots achieving a desired LTL specification.

These results are only a first step. There are many more

problems that remain to be solved, including inferring effective

logical characterizations of motion primitives, handling dy-

namic, uncertain, and adversarial environments, dealing with

non-linear dynamics, incremental planning, and scaling up to

an order of magnitude more robots. Even so, it is important to

note that the initial demonstration is a successful realization

of the platform-based design vision, where high-level robotics

applications are mapped to compositions of motion primitives

which are implemented in terms of platform-specific control

algorithms. Exploring the full potential of component-based

design for CPS remains an important challenge for the future.

D. Design for Security and Privacy

Security and privacy have become two of the foremost

design concerns for cyber-physical systems today. Security,

broadly speaking, is the state of being protected from harm.

Privacy is the state of being kept away from observation.

With embedded and cyber-physical systems being increasingly

networked with each other and with the Internet, security

and privacy concerns are now front and center for system

designers.

There are two primary aspects that differentiate security and

privacy from other design criteria for CPS. First, the operating

environment is considered to be significantly more adversarial

in nature than in typical system design. We refer to this aspect

as the threat model. Second, the kinds of properties, specify-

ing desired and undesired behavior, are also different from

traditional system specifications (and often impose additional

requirements on top of the traditional ones). We refer to this

aspect as the security/privacy goals.

These two aspects are also the dimensions along with we

can distinguish the research in CPS security and privacy from

the more traditional field of cyber-security. We outline these

dimensions below:

• Threat Models with Physical Characteristics: CPS provides

new attack surfaces that lead to new threat models that have

not arisen in traditional cyber-security. One such class of

threat models come under the category of physical attacks.

These are attacks that observe or modify the physical

processes in the system or its environment. Pure cyber-

security approaches fail to model these physical processes

and therefore miss these attacks.

One example of physical attacks are those on sensors.

Recent work has focused on investigating both threat mod-

els and countermeasures for attacks on analog sensors. A

main mode of attack has been to employ electromagnetic

interference (EMI) to modify the sensed signal. Two recent

projects have studied EMI attacks in different applications.

Foo Kune et al. [40] investigate EMI attacks at varying

power and distances on implantable medical devices and

consumer electronics. Shoukry et al. [41] study the possi-

bility of EMI attacks that spoof sensor values for certain

types of automotive sensors. Countermeasures have also

been developed for these attacks [40], [42], [43]. One

of these countermeasures involves secure state estimation

using a blend of SMT solving and convex optimization [43],

pointing to the form of design automation engines that

might be applicable.

Another example involves side channels attacks, including,

e.g., attacks that reveal secrets by observing physical prop-

erties of a system such as timing or power consumption.

For a more detailed introductory exposition of this topic,

see [1].

• CPS Security/Privacy Goals: The classes of properties

considered for CPS security and privacy are similar to
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(a) (b)

Fig. 2. Compositional SMT-Driven Multi-Robot Motion Planning: (a) Top view of sample execution and associated simulation, and (b) Nano-quadrotor
platform from KMel Robotics [37] (reproduced from [35]).

those in traditional cyber-security: they involve integrity,

confidentiality, anonymity, and availability. However, spe-

cific forms of these properties vary. For instance, in CPS

security, one cares about ensuring control-theoretic prop-

erties such as stability under attacks. Similarly, one may

consider differential privacy, but operating over data streams

from reactive systems rather than tables of data stored in

databases [44].

Another important aspect relates to the trade off between

different properties. For instance, in automotive networks,

one is concerned both with authentication of messages sent

between ECUs on the CAN bus (a security concern) and

with real-time requirements (a timing concern). Traditional

cryptographic protocols for authentication do not apply

“as is”, and one must design customized solutions that

provide an appropriate trade-off between those competing

concerns [45].

We discuss in Section IV several specific instances of

security and privacy problems in CPS. It is important to note

that security and privacy have become cross-cutting concerns

throughout the design process that must be considered from

the very beginning of the design process; they cannot just be

bolted on as an after-thought.

IV. APPLICATIONS

We now discuss in more detail two application domains:

smart energy systems and next-generation automotive systems.

These domains are excellent representatives of CPS as they

have a combination of all characteristics identified in Sec. II.

For each domain, we first give a high-level motivation for

the design problems in that domain, followed by a survey of

some of the important problems along with proposed solution

methods.

A. Smart Energy Systems

The design of smart energy systems spans across multiple

layers, from developing power grids with intelligent energy

generation, transmission and distribution, to constructing com-

mercial buildings and residential homes with smart energy

management schemes. It is an extremely challenging task,

given the scale and heterogeneity of such systems and the strin-

gent requirements on their performance, reliability, security

and cost. Design automation methodologies and tools, such as

the ones discussed in Section III, will be critical for addressing

these challenges and achieving truly smart energy systems.

Below we discuss some of those approaches, in particular for

the design of smart buildings and homes.

1) Modeling and Design Automation: The traditional de-

sign methodology for large buildings is a top-down approach.

Different building sub-systems are designed in isolation by

domain experts, following design documents flown down after

the bid process [46]. Such methodology, however, is not

suitable for designing energy-efficient buildings, where the

adoption of low energy solutions such as natural ventilation,

active facade and advanced cooling control require a close

interaction among architects, mechanical engineers, control

engineers, and electrical and computer engineers. A new set

of methodologies and tools is greatly needed to address the

heterogeneous building sub-systems in a holistic fashion and

provide an automated design flow.

Model-based design flow and co-design: Yang et al [46], [47]

propose an automated design flow for building automation

and control systems. The flow leverages model-based design

tools such as Simulink [48] and Modelica [49] for modeling

the heterogeneous sub-systems, and then converts the models

into a unified intermediate format (IF) and explore the design

implementation.

Maasoumy et al [50] present an approach to co-design

HVAC (heating, ventilation, and air conditioning) control algo-

rithms and embedded sensing platforms through the concept of

interface variables, as illustrated in Figure 3 to reduce build-

ing energy consumption while meeting cost and occupancy

comfort requirements. The work shows that the selection of

HVAC control schemes significantly depends on the number,

location and accuracy of the temperature sensors, and therefore

necessitates the need for a co-design approach.

Wei et al [51], [52] show how to co-schedule heteroge-

neous energy demand types, including HVAC control and

EV charging with heterogeneous energy supplies such as

grid electricity and battery storage in a holistic MPC (model

predictive control) based formulation, as shown in Figure 4.

The results show that such co-scheduling approach can effec-

tively leverage the flexibility in building energy scheduling and

significantly reduce energy consumption and peak demand. In

these approaches, simplified RC network models are used to



IEEE TRANS. CAD, VOL. XXX, NO. YYY, DATE 8

Control	algorithm	design		

(controller	type,	parameters)	

Embedded	pla8orm	design		

(number	of	sensors,	loca;ons)	

Pla8orm	library	

(available	sensors)		

Pla8orm	constrains	and	

objec;ves		

(monetary	cost)	

Control	constraints	and	

objec;ves		

(energy,	user	comfort)	

Design space exploration 

Interface variables 

(sensing accuracy) 
Physical	Plant	

2000

3000

4000

5000

6000

7000

8000

70 140 210 280 350 420

E
n

e
rg

y
 C

o
st

 (
k

W
h

)

Sensor Monetary Budget ($)

UKF-RMPC

EKF-MPC

discomfort bound = 0.2

discomfort bound = 0.3

discomfort bound = 0.1

Pareto front of optimal designs 

Fig. 3. Co-design of control algorithm and sensing platform for buildings.

capture the thermal dynamics of building rooms and walls.

Compared to more detailed models such as the ones used in

the EnergyPlus tool from the Department of Energy [53], these

simplified models provide the efficiency needed for design

space exploration and runtime management.
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Fig. 4. Co-scheduling of energy supplies and demands for buildings.

Recently, the paradigm of contract-based design has been

applied for smart buildings and their integration into the smart

grid [54], [55]. In particular, assume-guarantee contracts are

formalized between the buildings and the grid to leverage the

HVAC scheduling flexibility and optimize the ancillary service

power flow from buildings.

Leveraging measurement data: There have been a number

of approaches for calibrating building energy models based

on real-time measurement data [56], [57], [58], [59], [60].

However, for detailed models (e.g., those in EnergyPlus or

TRNSYS [61]), the calibration procedures could be quite

labor-intensive and time-consuming [62]. In [63], [64], a meta-

model based approach is proposed to reduce the complexity

of building energy models, which may then enable fast model

calibration and efficient optimization of building design and

operation.

Real-time sensor data has also been used with machine

learning approaches for recognizing and predicting human ac-

tivities in buildings [65], [66], [67]. Such information may then

be leveraged for improving building energy efficiency [68],

[69], [70], occupancy comfort, and safety and security.

2) Security and Privacy: For smart energy systems from

individual buildings and homes to the entire grid, security

and privacy have become a pressing concern. In below, we

will discuss some of those challenges and proposed design

automation solutions, in particular regarding pricing attacks

and energy thefts.

Pricing attacks: The prevailing U.S. electricity market em-

ploys the dynamic electricity pricing scheme to guide the

energy scheduling techniques. The basic idea is to set different

electricity prices during different time intervals, with high

prices at peak energy usage hours to discourage significant

energy consumption at those times. Precisely, the predictive

guideline pricing and the real-time pricing for billing cus-

tomers are jointed deployed. The predictive guideline pricing

provides an estimated price per time interval within the next 24

hours, while the real-time pricing computes the bill based on

the recent actual energy consumption. The predictive guideline

pricing is expected to match the real-time pricing, although this

is often not the case in practice. Based on these pricing models,

there are many automatic scheduling techniques developed in

the literature. These include techniques based on dynamic

programming [71], linear programming [72], mixed-integer

linear programming [73], and game theoretic scheduling [74],

[75].

A pricing guided scheduling framework may be vulnerable

to security threats. Modern smart meters installed at homes

and buildings are not merely measurement devices but also

equipped with advanced operating systems that enable auto-

matic scheduling of various appliances and devices. If the pre-

dictive guideline pricing seen at a smart meter is manipulated

in a pricing attack, the smart home schedulers could make

wrong scheduling decisions causing detrimental impacts. For

instance, peak energy usage increase in the local community

may potentially lead to blackouts [76]. Such negative impacts

become quite significant when a wide range of smart meters

are attacked, e.g., through malware propagation [77].

Energy thefts: The pricing attack hacks the inputs of smart

meters. On the other hand, the outputs of smart meters, which

are the measurements of energy consumption during a past

time window, can also be manipulated. For example, if a smart

meter only reports 10KWh to the utility while it actually

measures 100KWh, the 90KWh difference can be viewed

as being stolen [78].

Detection methods using POMDP: The system level impacts

of pricing attack and energy theft have been analyzed in several

works such as [76], [78]. The detections of those attacks

are built upon the POMDP (partially observable Markov

decision process) models. The simulation results in [76] in-

dicate that POMDP based detection can reduce the energy

bill and peak-to-average ratio (which is a ratio indicating

energy balance) by 59.3% and 62.3%, respectively, compared

to a natural heuristic approach for pricing attack. Similarly,

POMDP based detection can reduce the bill increase by 78.3%

while successfully detecting more than 90% energy theft [78].

Alternatively, sensors such as Feeder Remote Terminal Units

can be inserted into the local power distribution network to

improve the detection rate of energy theft [79], [80] when
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smart meters are assumed to be hacked independently. For

the more general case, it would be interesting to investigate

how sensor deployment can benefit the POMDP model if

they are deployed in an interleaving fashion. It would be also

interesting to analyze the attacks jointly performing pricing

attack and energy theft.

New pricing frameworks: Furthermore, new pricing frame-

works have been proposed to better leverage the scheduling

flexibility at buildings and homes and increase the penetration

of demand response. For instance, in [81], a proactive de-

mand participation scheme calculates the building scheduling

flexibility based on guideline pricing, and then captures such

flexibility as demand-bid curves for grid-level optimization.

As observed in [81], [82], such scheme faces potential pricing

attack on the guideline pricing and also possible manipulation

on the demand-bid curves.

Cross-layer detection: Finally, it is worth noting that at least

part of detection code for pricing attack or energy theft needs

to be implemented on the smart meter, while the smart meter

itself is hacked. Thus, to ensure the reliable execution of

the detection code, cross-layer detection techniques would be

desirable, as illustrated in Figure 5. There has been little

research in this domain, but this is certainly an interesting

future research direction.
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Fig. 5. Cross-layer protection against attacks.

B. Next-Generation Automotive Systems

The design and implementation of automotive electronic

systems have become increasingly challenging, with grow-

ing functional complexity in scale and features, as well as

the adoption of more distributed and networked architectural

platforms. From year 2000 to 2010, the automotive software

development cost increased from 2% to 13% of a vehicle’s

total value [83], and the number of lines of code increased

from 1 million to more than 10 million [33], [84], [85]. The

number of ECUs (electronic control units) in a standard car has

gone from 20 to over 50 in the past decade [84]. The traditional

federated architecture, where each function is deployed to one

dedicated ECU, is shifting to the integrated architecture, in

which one function can be distributed over multiple ECUs and

multiple functions can be supported by one ECU [86]. There

is also the trend to deploy multicore ECUs to support growing

functionality and reduce system cost (by reducing the number

of ECUs in the system and their connection wires) [83]. These

trends lead to significantly more sharing and contention among

software functions over the architectural platform.

Moving forward, software and electronics will play a dom-

inant role in vehicle innovation. Approximately 90% of auto-

motive innovations in 2012 featured software and electronics,

especially in active safety and infotainment systems [87],

and it is predicted that this will continue to be the trend in

the future given the rapid advances in autonomous driving

technology. With this trend, the complexity of automotive

electronic systems will continue to rise rapidly. This presents

tremendous design and implementation challenges, and calls

for a new set of design automation methods and tools.

1) Model-based Design and Synthesis: Model-based design

is today widely accepted as a key enabler to cope with

complex system design due to its capabilities to support early

design verification/validation through formal functional mod-

els [2], [88], [89]. Using these models, designers can capture

complex control systems and the plant models they interact

with, and conduct simulations to analyze system behavior

and validate functional properties. Among many functional

modeling tools, the Simulink/Stateflow toolset [90] is popular

in the design of automotive electronic systems, and is based

on the synchronous reactive (SR) semantics. There are other

languages/tools based on SR models, such as Signal, Lustre

and Esterel [91].

One important aspect of model-based development is the

capability to synthesize correct and optimal implementations

from high-level functional models. As observed from the

circuit design domain, a robust and efficient synthesis flow

will greatly motivate the adoption of high-level models. For

instance, the quality of of logic synthesis tools propelled the

adoption of RTL models while recently the advancement of

high-level synthesis tools have raised the design abstraction to

C/C++ in many cases.

However, synthesizing cyber-physical functional models to

software and hardware implementations remains hindered by

many challenges, in particular those related to system tim-

ing behavior. First, the complexity of timing analysis arises

with the growing complexity and heterogeneity of automo-

tive system functionality and architectural platform. Second,

there is significant uncertainty of timing behavior resulting

from dynamic physical environment, data input and embedded

platform conditions, especially for active safety applications.

Third, there are diverse timing constraints from different

design metrics such as schedulability, control performance,

extensibility and fault tolerance, some of which lead to con-

flicting requirements. For instance, shorter sampling periods

and end-to-end latencies of control loops usually lead to better

sensing and control performance [92], [93], but may be detri-

mental to schedulability, extensibility and security (as there is

less timing slack for adding strong security techniques [45],

[94]).

Current synthesis solutions and practices do not adequately

address these timing challenges. Timing constraints are often

set in an ad-hoc fashion without quantitative analysis of their

impacts on multiple related metrics. Furthermore, the synthesis
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process is often conducted without continuous and holistic

consideration of timing. For software implementation, while

timing is usually considered during the mapping of software

tasks onto hardware platforms, it is rarely addressed during the

generation of software tasks from the initial functional models,

and thereby leaving a significant gap in the synthesis process.

Such issues may lead to infeasible solutions, long design cy-

cles, and ultimately inferior and error-prone implementations.

To cope with these challenges, it is critical to develop

new design automation methods and tools that address timing

holistically throughout the synthesis process, consider tim-

ing uncertainty in computation and communication, analyze

timing impact on various design metrics and leverage such

analysis for design space exploration. In [95], algorithms are

proposed for multi-task generation of finite state machines

(FSMs) with consideration of timing extensibility and ro-

bustness. In [96], a holistic synthesis flow is proposed for

automotive software development with respect to schedulabil-

ity, reusability, modularity and memory usage. The synthesis

flow explores the multi-task generation of dataflow functional

models and the mapping of generated tasks onto multicore

platforms, with explicit timing consideration throughout the

synthesis process based on a formulation of Firing and Execu-

tion Timing Automata (FETA). Novel execution time analysis

techniques based on combining machine learning and formal

symbolic analysis show significant promise and have been

successfully demonstrated on automotive software [19], [97].

This collection of work demonstrates promise in addressing

the timing challenges, and further motivate the development

of new synthesis methodologies and algorithms for next-

generation automotive systems.

2) Human-in-the-Loop Automotive Systems: One of the

outstanding problems in vehicle automation is the car-to-

driver handoff problem. This is the problem where the car

has to disengage from an autonomous mode and the driver is

required to regain control of the vehicle. According to the De-

partment of Motor Vehicles (DMV)2, such disengagements are

defined as deactivations of the autonomous mode in a situation

where “a failure of the autonomous technology is detected and

requires the driver to take immediate manual control of the

vehicle.” A recent report published by Google indicates that

during the operation of its self-driving cars in the period from

September 24, 2014 through November 30, 2015, there were

272 “immediate manual control” disengagements” [98]. These

correspond to situations where the autonomous technology

failed to maintain safe operation of the vehicle and needed

to immediately hand over the control to the driver. These

situations are particularly dangerous because the driver is out

of the control loop and might be performing other tasks when

a handoff is required. In fact, according to a recent study,

drivers usually need 5 to 8 seconds in order to safely and

comfortably perform takeover [99]. This stipulates that the

design of a human-in-the-loop control system must take into

account of human factors such as delays in response time.

A foundational challenge for design automation in address-

ing this problem is to find appropriate mathematical models

that also incorporate human factors. Li et al. [28] formulate

2DMV’s Final Statement of Reasons

a human-in-the-loop controller as a composition of three

agents – an autonomous controller, a human operator, and

an advisory controller which determines whether the human

or autonomous controller should be in control of the plant.

Figure 6 illustrates the structure of such a human-in-the-

loop controller. In a situation when disengagement from the

autonomous mode is necessary, the advisory controller will

send the corresponding advisory a to some user interface

(e.g., audio or video interface). Upon noticing this signal,

the driver can take over control and her control inputs are

passed to the vehicle. When the handoff is successful, the

advisory controller notifies the autonomous part of the system

by sending n that it is no longer controlling the plant. Between

the time when the advisory is issued and the completion of

the handoff, the autonomous controller is responsible for the

safe operation of the vehicle.
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Fig. 6. Structure of a Human-in-the-Loop Controller. ES denotes environment
sensing. HS denotes human sensing. HP denotes human perception. u is the
control input to the plant. a is the advisory issued by the advisory controller
to the human operator. n is a notification signal from the advisory controller
to the autonomous controller.

Motivated by the definition of “limited self-driving au-

tomation” by the National Highway Traffic Safety Admin-

istration (NHTSA) [100], four criteria are defined for this

human-in-the-loop controller model corresponding to the

meta-requirements described in Section III-B2. The design

automation problem is then to synthesize such controllers

satisfying these meta-requirements. Instead of modeling the

driver explicitly, the synthesis algorithm considers specific

human factors that are critical to the problem, i.e. driver

response time. Li et al. [28] present correct-by-construction

approach to controller synthesis that follows the general theme

of “temporal logic motion planning” [101]. The main idea

is to use temporal logic to specify motion objectives and

constraints, such as the vehicle should reach certain goal

regions, and then derive a motion planner that satisfies these

specifications using automata theory. A novel aspect of the

synthesis algorithm [28] is that it identifies conditions when a

car-to-driver handoff is necessary, uses these conditions to syn-

thesize an advisory controller, and synthesizes an autonomous

controller that ensures safe operation assuming the driver takes

over within a certain response time.
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Human actions can also be captured using probabilistic

models. For example, Feng et al. [102] use Markov Decision

Processes (MDPs) to represent human operators. Two abstrac-

tions are considered: (1) human behaviors are assumed to be

known probability distributions a priori; and (2) human actions

are non-deterministic. The human operator model is then

composed with another MDP model of an unmanned aerial

vehicle. Depending on the abstraction, operator-dependent

optimal control protocols can be derived by casting the control

synthesis problem into a stochastic two-player game. While

the MDP formalism is a reasonable choice, assuming a pri-

ori knowledge of the probability distributions is unrealistic.

Sadigh et al. [30], [103], [104] take a more data-driven

approach to modeling human behavior. In early work [30],

they show how experimental data collected from a driving

simulator can be used to construct a Discrete-Time Markov

Chain (DTMC). Uncertainties intrinsic to the estimation of

transition probabilities during the construction of the DTMC

is captured by allowing the transition probabilities to lie in

certain convex sets. Using an algorithm that efficiently checks

properties expressed in Probabilistic Computation Tree Logic

over these convex Markov models [29], the effects of different

attention levels on the quality of driving are formally analyzed.

In more recent work [103], [104], they model human drivers as

rational agents optimizing their reward functions, learn those

reward functions from data, and use the learned functions in

synthesizing control for autonomous vehicles.

Dual to car-to-driver handoff is to have the autonomous

controller intervene when the vehicle driven by a human driver

is in trouble. An example framework is given by Vasudevan

et al. [105], which divides this problem into two components.

The first component predicts the vehicle’s behaviors based on

observations about the driver’s pose and environment, and the

second component uses this information to determine when

the autonomous controller should intervene. Experimental

evaluation using a car simulator shows that by incorporating

information about driver pose in the construction, the semi-

autonomous controller outperforms one that merely treats the

driver as a disturbance, including better accident prevention

and not taking over control of the vehicle more often than

necessary.

An important piece in the co-design with human in-the-loop

is an effective communication interface between the human

and the machine. Schirner et al. [106] outline various kinds of

interfaces and sensor technologies that can be used to augment

a human’s interaction with the physical world. Among these,

context-aware sensing of human intent (HS in Figure 6) and the

design of an interface for shared governance are particularly

relevant to semi-autonomous systems. We envision a holistic

framework that integrates human modeling, sensor technolo-

gies, human-machine interface, embedded system design and

formal reasoning for future design automation of human CPS.

3) Design for Security and Privacy: With increasing ve-

hicle intelligence and connectivity, security and privacy have

become pressing concerns for automotive systems. In [107],

[108], the authors successfully compromised a production

vehicle by hacking into its engine control system, brake control

system, and other electronic components. The attacks are

conducted through internal Controller Area Network (CAN)

buses using packet sniffing, targeted probing, fuzzing and

reverse engineering. CAN is currently the most used proto-

col and, unfortunately, also the most attractive protocol for

attackers [109], [110].

Several approaches have been proposed to add Message

Authentication Codes (MACs) in CAN data frames to pro-

vide message authentication [111], [112], [113], [114], [115].

However, the limitations on CAN bus bandwidths and mes-

sage lengths make it very challenging to embed security

mechanisms without hindering safety and control applications,

especially when the initial designs did not consider secu-

rity [111]. Recently, time-triggered communication protocols

such as FlexRay and TTEthernet are proposed to provide more

predictable timing and higher bandwidth than CAN for auto-

motive systems. In [116], [117], low cost and flexible multicast

authentication methods are proposed for time-triggered sys-

tems. In [118], authentication methods are proposed for time-

triggered systems using time-delayed release of keys, based

on a variant of the TESLA protocol [119], [120]. In [121],

algorithms are proposed to optimize task allocation, priority

assignment and network scheduling for time-triggered systems

with time-delayed release of keys authentication. While these

new protocols have more bandwidth and higher speed, adding

security updates into existing designs still remains challenging

and has complex impacts on various design metrics.

To cope with these challenges, it is critical to quantitively

address security from the beginning of design process and

together with other design objectives. In [45], a set of algo-

rithms is presented to address automotive security from the

level of software tasks, i.e., by assuming a task graph is given

and optimizing task allocation and scheduling with respect to

security and schedulability. The results demonstrate the impor-

tance of considering security during the design process rather

than trying to add security measurement as an afterthought.

However, as stated before in Section IV-B1, the task graph

abstraction does not contain important functional information

that directly affect system security, control performance and

other metrics. To effectively address the automotive security

issue, the consideration has to start at the functional level.

Zheng et al. [94], a cross-layer design framework is pro-

posed to combine control-theoretic methods at the functional

layer and cybersecurity techniques at the embedded platform

layer, and addresses security together with other design metrics

such as control performance under resource and real-time

constraints. As shown in Figure 7, control performance and

system security level are measured at the functional layer,

while schedulability is analyzed at the embedded platform

layer. To bridge these metrics, a set of interface variables are

introduced, specifically the sampling period of every control

task and the selection of messages to be encrypted. Intuitively,

when the sampling period of a control task increases, its

control performance decreases while platform schedulability

increases with less frequent activation of the control task. On

the other hand, when the number of messages being encrypted

increases, the system security level increases while platform

schedulability decreases because of the increased overhead.

Furthermore, the sampling periods may have to increase for

schedulability concern thereby worsening the control per-

formance. These relations are quantitatively modeled in the
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Fig. 7. Control and platform codesign for secure cyber-physical systems.

codesign formulation in [94].

V. OUTLOOK

This paper has presented a view of the challenges and

opportunities for design automation of cyber-physical systems.

We repeat some of the key points here. In our opinion, the

design challenges for today’s CPS stem from the following

combination of characteristics: hybrid, heterogeneous, dis-

tributed, large-scale, dynamic, adaptive, and human-in-the-

loop. To design dependable and secure systems with these

characteristics, we believe that we need design automation

tools to have the following combination of features: cross-

domain, component-based, learning-based, time-aware, trust-

aware, and human-centric. We presented a sampling of recent

efforts and opportunities, including combining model-based

design with data-driven learning, design automation for human

CPS, component-based design methodologies, and design for

CPS security and privacy. Motivating applications from the

automotive, smart grid, and smart buildings domains illustrate

these topics.
Will a durable design methodology, such as the RTL design

flow, emerge for cyber-physical systems? It is hard to tell

for sure, given the heterogeneity of CPS. However, the surest

trend, at the moment, is the confluence of data-driven and

model-based design methods. It is our opinion that this trend

holds the beginnings of an exciting future for the design

automation of CPS.
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