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Abstract: Massive multiple-input multiple-output (mMIMO) is a wireless access technique that has
been studied and investigated in response to the worldwide bandwidth demand in the wireless
communication sector (MIMO). Massive MIMO, which brings together antennas at the transmitter
and receiver to deliver excellent spectral and energy efficiency with comparatively simple processing,
is one of the main enabling technologies for the upcoming generation of networks. To actualize
diverse applications of the intelligent sensing system, it is essential for the successful deployment
of 5G—and beyond—networks to gain a better understanding of the massive MIMO system and
address its underlying problems. The recent huge MIMO systems are highlighted in this paper’s
thorough analysis of the essential enabling technologies needed for sub-6 GHz 5G networks. This
article covers most of the critical issues with mMIMO antenna systems including pilot realized gain,
isolation, ECC, efficiency, and bandwidth. In this study, two types of massive 5G MIMO antennas
are presented. These types are used depending on the applications at sub-6 GHz bands. The first
type of massive MIMO antennas is designed for base station applications, whereas the most recent
structures of 5G base station antennas that support massive MIMO are introduced. The second type
is constructed for smartphone applications, where several compact antennas designed in literature
that can support massive MIMO technology are studied and summarized. As a result, mMIMO
antennas are considered as good candidates for 5G systems.

Keywords: 5G systems; massive MIMO; base station; smartphone; 5G antennas; 5G applications;
sub-6 GHz

1. Introduction

As the need for faster data speeds grows every day, Fifth Generation (5G) is set to
become the cutting edge of wireless communications. The data rate (as high as 20 Gbit/s)
and capacity, high reliability, low latency (1 ms), enhanced device-to-device communication,
and increased flexibility are the primary objectives of 5G communication systems [1].

Massive multiple-input multiple-output (mMIMO), a key-enabling technology for
next-generation and beyond networks, was created as a reaction to the global bandwidth
bottleneck in the wireless communications sector. In order to offer power efficiency and a
great spectrum with fairly simple processing, mMIMO uses arrays of antennas at both the
receiver and transmitter [2].
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mMIMO technology has achieved a major breakthrough in meeting the demand for
high-quality mobile communication services that provide better coverage with lower power
consumption without additional radio resources, reducing the bandwidth and transmission
power. It can remarkably increase data throughput without adding more [3]. Several
reviews have summarized the 5G requirements above-mentioned as meeting the benefits
and properties of mMIMO, which can be concluded as shown in Figure 1 [2,4,5].
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A key component of the design of the 5G communication system is the massive
MIMO antenna. Massive MIMO represents an evolution of the MIMO technology that
increases spectral efficiency and throughput by employing a significant number of active
communication antennas [5].

In order to design a 5G mMIMO system, the type of element (antenna) and the
application for which it is used must be determined. Therefore, the design can be defined as:

5G mMIMO = 5G antennas + Application

5G antennas make it possible to have multiple-input and multiple-output (MIMO).
They consist of a large number of antenna elements in order to send and receive a large
amount of data simultaneously. 5G antennas for base stations and smartphone applications
have to be able to cover many frequencies. In this way, it becomes possible to achieve faster
download speeds. Furthermore, it creates more capacity and connectivity for different
devices. More bandwidth makes more data able to get through. For base stations, mobile
phones, and other mobile devices such as connected cars, health monitoring equipment,
and even industrial equipment, these antennas are vital for beamforming, steering, and
reception [1,6].

The fundamental elements of wireless communication networks are base station (BS)
antennas. At least one directional RF antenna, which might send and receive radio signals,
may be part of it. These antennas are BSs that are tower-mounted and give consumers
cellular access. Multiband base station mMIMO antennas are frequently contained within
a single radome. In this instance, each antenna has a distinct port that can be attached to
many BSs or parts of a single BS [7]. This is the main communication point for a single user
or multiuser devices. 5G base stations are equipped with beamforming mMIMO antennas.
Furthermore, an array of antennas can simultaneously focus and direct multiple beams to
different targets on the ground [3].
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The base station antenna defines an antenna that is used to send out a signal to more
receivers and is suitable for indoor and outdoor applications. This type of antenna serves
in satellite, GPS, GSM, WIMAX, WAN, LAN communications, . . . etc., and can be used to
both receive and transmit a signal [8–12]. Mobile antennas have multiple advantages and
are best suited for moving devices, from which you need to be able to communicate while
moving around. These will need MIMO antennas for high-level performance antennas
located on the edges and corners of the phones that support beamforming. A typical
smartphone has approximately six antennas for high and low frequencies. MIMO, on
the other hand, is a must for 5G, which needs two for the lower band and one for the
upper band, of which 4 × 2 (or 4T2R) is one common combination. This indicates that the
majority of new 5G phones, if not all of them, feature four antennas for cellular coverage.
These antennas almost definitely will include automatic antenna adjusting capabilities [13].
To avoid interference, each individual antenna in a mobile phone should be placed as
far away from the other antennas as possible. On a small phone, this is quite difficult.
Fortunately, the operating frequency is high, as are the wavelength and antenna length.
Here, it increases the number of antennas that must be integrated into a phone, especially
since the majority of these standards support large-scale multi (MIMO) antennas [14].

Deploying 5G networks below 6 GHz requires a wide range of up to 20 Gbps and
higher data rates. The 5G bands released are 3.3–4.2 GHz and 4.4–5 GHz, increasing the
bandwidth to 100 MHz. In addition, to cover large areas, the base station has a mMIMO or
3D configuration that covers both the azimuth and vertical planes. Both the smartphone
and the base station must increase the number of antenna elements below 6 GHz. At
the higher frequencies of 5G, mMIMO arrays with significantly more radiating antenna
elements will significantly minimize the network congestion and increase its capacity and
throughput [15]. ITU-R has designated the mid-band of the sub-6 GHz (FR1) spectrum
for the deployment of 5G communications, which comprises LTE n71 (470–698 MHz),
n81–n83, n91–n94 (698–960 MHz), n74–n76(1.427–1.518 GHz), n65, n66(2.11–2.2 GHz),
n30, n40, n38, n41, n 90 (2.3–2.69 GHz), n 77, n78, n79 (3.3–5 GHz), and LTE42/43/46/47
(3.3–5.925 GHz). Most of the conventional cellular mobile communication traffic is expected
to be carried by FR1 bands. The large-scale sub-6 GHz MIMO antenna array is anticipated
to be deployed inside the radiation aperture of the original 3G, 2G, and 4G antennas [15,16].
In the specified use scenarios, the 5G specification enables a maximum downlink data rate
that is twice as fast as the uplink data rate. 5G requires at least a 4 × 4 downlink MIMO and
at least a 2 × 2 uplink MIMO is recommended in the current deployment phases below
2.6 GHz [17,18].

2. 5G Massive MIMO at Sub-6 GHz

High data speeds and minimal latency are anticipated from fifth-generation mobile
networks (5G), which will also boost the power efficiency and spectrum of wireless com-
munication systems. For use in 5G systems, many technologies are being investigated.
The mMIMO system is one of the most significant technologies anticipated to guide the
development of 5G. One of the technologies that will support fifth-generation (5G) wireless
systems is mMIMO [19]. A massive MIMO system is defined as an arrangement of an MU-
MIMO system in which a base station and a terminal dispose of many antenna elements.
Simultaneous communication with multiple users using the same resource is possible with
multiple antennas, which provide higher spectral and power efficiency. In the case of a base
station with multiple active antennas, it will be possible to communicate with a terminal
(UE) on the same time–frequency resource through spatial multiplexing [20]. Additionally,
the beamforming enhancement technology developed for these mMIMO systems can be
used to reduce the transmit energy required by upgrading the base station equipment with
a huge number of antennas, instead of deploying a new base station site [19,21].

Massive MIMO in (sub-6 GHz) 5G NR networks is an advanced antenna technology
that improves spectral efficiency, network capacity, coverage, and feasible data rates. Mas-
sive MIMO uses multi-antenna elements to support multiple users simultaneously [22,23].



Nanomaterials 2023, 13, 520 4 of 40

The essential parameters of mMIMO antennas can be considered as frequency bands, gain,
isolation, radiation pattern, polarization, and beamwidth. One possible way to increase
throughput and data transfer rates in current and future generations of mobile and wireless
devices is to extend the bandwidth, as a higher bandwidth provides a higher data rate [24].

Reducing the mutual coupling effects between antenna elements in large-scale arrays
with limited space requires several techniques suitable for such a crowded capacity of
antenna elements without increasing the space between antennas. The low mutual coupling
will offer high isolation and low correlations for the system without limiting the system’s
performance. Several decoupling techniques have been put forth such as inserting a
metamaterial wall to create a spatial band-stop filter or a spatial polarization-rotated wall,
or utilizing metal structures between the parts of the antenna to add an additional coupling
path [25]. It is challenging to implement such decoupling structures in a large-scale MIMO
antenna since they all need to be fairly substantial in size. For BSs and less than −10 dB
or lower for smartphone applications, the mutual coupling regarding a mMIMO array
should ideally be less than −25 dB or even lower. Using beamforming methods could boost
the gain and efficiency of a mMIMO system. To enhance the overall system performance
and capacity, beamforming can be defined as a signal processing approach that is utilized
with multiple antenna arrays on the receiver side and/or transmitter side for sending or
detecting multiple signals from multiple desired terminals at once [26].

In order to investigate the types of applications, in this study, the types of 5G antenna
can be divided into two kinds that support massive MIMO, base station, and smartphone
antenna techniques. Figure 2 explains the application techniques used for 5G massive
MIMO at sub-6 GHz.
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Figure 2. Techniques of applications for 5G massive MIMO at sub 6 GHz.

2.1. 5G Massive MIMO Antennas for BS Applications

Many techniques are used in the architecture and configuration of antennas to design
mMIMO systems for 5G sub-6 GHz applications. Many base station antenna designs
attempt to cover dual band/multiband in compact volume and support mMIMO systems
in base station applications.

2.1.1. 2D Massive MIMO

A rectangular planar lattice array technology is the most straightforward planar
mMIMO configuration. For instance, an array of N×M is an arrangement of the planar
array [27]. The 2D model element is one of the most popular used for the design of mMIMO.
For use in 5G base stations, dual-band antenna arrays with dual polarization and common
aperture have been introduced. The created antenna array includes a (4 × 4) planar MIMO
array that operates at the 3.3–5 GHz band (upper band-UB), in addition to one antenna
element that works at the 0.69–0.96 GHz band (lower band-LB). The UB antenna array can
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be defined as a large rectangular grid array that has 16 antenna elements that are designed
for use in practical applications of MIMO. Figure 3a illustrates how in-band and cross-band
mutual coupling amongst the UB and LB antennas are suppressed using three decoupling
methods: a ferrite chock ring, a rectangular ring resonator, and a unique baffle design. The
UB and LB antenna arrays are efficiently integrated with a small size of (0.93 × 0.93 × 0.17)
λL, employing decoupling technology. In HB and LB antennas, a dual-band antenna array
achieves a bandwidth of 41% and 32.7%, respectively. High cross-band port isolation (more
than 30 dB) is provided. With average gains of 7.3 dBi and 8.6 dBi, respectively, the UB
and LB antennas also produce stable radiation patterns. All operational ranges have better
than 90% radiation efficiency. Compact volumes were used as GSM antenna elements for
the first time in large-scale MIMO antenna arrays up to 6 GHz with a shared aperture.
Additionally, the antenna array’s overall height is 0.17 L, which is considerably shorter
than the present dual-band BS antennas. For low-profile, wide-band common-aperture 5G
mMIMO BS arrays, the decoupling technique thus offers an effective option [28,29].
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Figure 3. The fabricated prototypes: (a) (4 × 4) mMIMO of dual-band, dual-polarized shared
aperture rectangular antenna array, top view; with side view, (b) (4 × 4) transformable dual polarized
ME-dipole antenna for 5G array/mMIMO of dual-polarized differential feeding lines [30].

Low cross-polarization (X pol), high gain, and isolation properties could be accom-
plished with the antenna by combining a dual-polarized differential feeding arrangement
with a complementary magneto electric (M.E.) dipole antenna. A modified H-shaped (1–16)
differential feed network was created to feed the 16-antenna array to utilize these array
properties, as illustrated in Figure 3b. In this case, the vertical cross-sections with dotted
slots are positioned between adjacent dipole units to further improve the array isolation.
A system of high-capacity MIMO antennas could be created through the removal of an
H-shaped differential power feeding network and the underlying substrate. Measurement
findings show that an antenna element in the 5G frequency band can achieve a low X-pol
of −35.7 dB and a high gain of over 8.1 dBi (i.e., 3.3 to 5.1 GHz). The antenna array can be
used to create a 32-channel capacity MIMO antenna technology, thanks to its high gain of
17.3 dBi and low envelope correlation coefficient (ECC) value of 0.004 [30,31].

For 5G BS applications, dual polarization (D.P.) mMIMO (32T/32R) wideband tightly
spaced big antenna arrays have a whole distinct structure and interconnect (mutual cou-
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pling) analysis. By aligning two chamfered aerial bowtie dipole antennas in the orthogonal
directions and employing 2-coaxial cables for feeding, dual polarization is made possible.
The model includes chamfering, which increases the port isolation to port, and 2-arms
of the bowtie aerials. Uni-directional radiation is produced through the placement of
a metal ground plate at a λ/4 distance. The radiating component’s expected operating
range is between 3.5 and 4.0 GHz. Simulation tests show that the anticipated dual po-
larization 2-chamfered aerial bowtie dipole antenna has a SWR of 1.5 and bandwidths
between 2.8 and 4.0 GHz, a −27 dB isolation between the two ports, a 9.1 dBi gain for both
polarizations, and a mutual coupling of roughly −25 dB. The antenna features a simple,
easily-manufacturable design with an overall height of 0.25λ0 [32,33].

Based on patch antennas, a mMIMO antenna system design is described. Each port in
the array has a (2 × 2) patch antenna sub-array with a distinct phase excitation at every
one of the elements to tilt the beam into a different direction and produce lower correlation
coefficient values. The array has 16 ports (64 elements) in total. To deliver the beam-tilts, a
fixed progressive phase feed network has been designed [34]. The antenna system uses
a three-layer FR-4 substrate with a total size of 33.33 cm × 33.33 cm × 0.16 cm and is
designed to operate at 3.6 GHz with a 230 MHz bandwidth, good isolation between the
neighboring ports at a minimum of 25 dB, and achieved gains of 5.4 dB for each port [34].

For a sizable indoor MIMO base station, a portable ultra-wideband MEA was in-
vestigated. The antenna’s design was based upon the simultaneous activation of several
characteristic modes in every MEA element. Therefore, an (11 × 11) mMIMO array with a
size of 70 cm by 70 cm and 121 physical antenna elements could be used to construct an ef-
fective 484-port antenna, as can be seen in Figure 4. Compared to the standard cross-dipole
MEA, this resulted in a 54% size decrease. The antenna has a reflection coefficient of <−10,
an intra-element and inter-element interconnection of ≤−20 at the antenna port, and oper-
ates over a very broad frequency range of 6 to 8.5 GHz. It uses the 3D radiation patterns to
calculate the total antenna efficiency, which is around 70% for all four ports [35,36].
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Wider carrier bandwidth, native mMIMO, and minimal latency are features of a
sample 5G air interface. It has been shown that all physical channels could be designed
to function with small beams. Eight streams of 64 QAM can be sent simultaneously for
a single UE with eight antennas, and 5 Gbps throughput is possible at 200 MHz. It is
possible to obtain a 10 Gbps throughput for multiple UE through evenly distributing such
UEs in an outdoor setting. Additionally, this system was created using a commercial LTE
hardware and software platform, and our top priorities regarding engineering were size,
cost, and the power consumption limits. mMIMO may thus be a workable solution for the
5G wireless system. Future tests will examine increased multiple UE throughputs, multiple
cell handover, velocity robustness, and collaboration [37].

As BS antennas consist of mMIMO systems, new broadband partial ground plane
microstrip antennas and microstrip planar arrays are being developed. For upcoming 5G
networks, broadband antennas and planar arrays are being designed for sub-6 GHz bands.
Compared with the millimeter frequency band, this band has better coverage. Line-of-sight
issues and losses due to atmospheric attenuation affect this mm frequency. The Roger 3003
substrate was used to build the antenna. The substrate was 50 mm × 50 mm × 1.5 mm in
size, whereas 16.3 mm was the partial ground plane length, and 0.035 mm was the thickness
of the PCB’s metal layer substrate. However, the size of the microstrip feed line had a
length of 17 mm and width of 2.5 mm, respectively. The patch size was length 19.5 mm
× width 17 mm, and this design had inset 1 and inset 2, which had the same dimensions
(length 3 mm × width 0.5 mm) [38].

2.1.2. 3D Massive MIMO

The varying channel characteristics (circular, planar, and cylindrical) resulting from
various antenna array designs substantially impact the entire system’s performance. Gen-
erally, array dimension designs that are circular or planar show a considerable reduction,
with the beam only being horizontally adjustable. These configurations also fall short of
the escalating capacity demands. To address this shortage, it is suggested that 3D massive
array configurations are adopted such as hexagons, cylinders, triangles, etc. [39].

Two types of 3D techniques are listed. The first type depends on the arrangements
of elements in a three-dimensional array. A compact mMIMO antenna system with 1 × 4
(sector) sub-array configurations operating in the sub-6 GHz band for 5G base stations was
designed and decomposed into various configurations from numerous array topologies,
and cubic and stacked polyhedral arrays (rectangular, triangular, and hexagonal) for array
design, as shown in Figure 5. A mMIMO process can enhance a system limit by more
than ten times while increasing its energy efficiency by a hundred times. Each sector
contains components for a 1 × 4 sub-array and can have up to five sectors. The single
sector has three layers, with the top layer containing (1 × 4) patches, while the bottom and
center layers contain a separate ground plane and are responsible for the organization. The
complete system could operate in either a massive MIMO show mode with beam steering
capability or a single port mode. The frame’s 140 MHz intentional data transmission spans
the sub-6 GHz spectrum at frequencies between 3.36 GHz and 3.50 GHz. The size of a
unit sub-array in terms of its length, width, and height was 280.5 mm × 56.1 mm × 2 mm,
respectively. The gain of a single port was realized at 12.95 dBi, and a single panel with
five sectors arranged in a rectangular configuration had a total addition of 19.73 dBi. All of
the ports had a mutual coupling of about −16 dB. The operational frequency of the radio
antenna array system was set between 3.3 GHz and 3.8 GHz. This is because the sub-6 GHz
spectrum was set aside and concentrated internationally to support 5G [40].
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To make it easier to analyze mutual coupling, the 24 antenna units were designated
consecutively from 1 to 24 and arranged in three stacked stages with the letters A, B, and C.
The mMIMO of the dual-polarized antenna array provides a maximum mutual coupling
of <−35 dB between each pair of ports in this array. The created array was compensated
by 18 low-profile sub-arrays. There were four single units in each sub-array. Every one
of the antenna units comprised a single port that was vertically polarized, and a single
horizontally polarized port connected to the power splitters served as the feeding network.
For a dual port convertible patch antenna of the same size, a stacked patch design that
incorporates a feed network offers higher gain and less mutual coupling. The three stacked
stages of regular hexagonal walls in the array layout, which depend on the Turning Torso
building model, had increasing twist angles of 20 degrees between the adjacent levels.
Every stage had six sub-arrays. As a result, 18 sub-arrays were dispersed throughout an
area with a 324 mm radius. This arrangement decreased the array’s radial size by increasing
the longitudinal vertical stack size. The array’s overall volume was 648 mm by 648 mm by
258 mm and included 288 patches and 144 ports, three stacked stages, A, B, and C, with a
total of 24 antenna units, which were successively designated (1–24) for the facilitation of
a mutual coupling study that followed. The mMIMO of a dual-polarized antenna array
decreased the maximum mutual coupling between every two array ports to <−35 dB [41].

For a future 5G base station with a measured bandwidth of 250 MHz, a relatively
high isolation mMIMO antenna with 32 elements is investigated in [42]. This antenna
can span the frequency range of 3400–3650 MHz. The epsilon negative and almost zero
refractive index characteristics of the suggested design’s operational working principle
are intended to concurrently enhance the isolation and overall performance of the MIMO
antenna system. To back up this assertion, a specific ENG/NZRI/DNG metamaterial
unit cell is also examined. The proposed MTM consists of four small, square-shaped
splatted components as shown in Figure 6. The proposed MTM-based technique permits
significant decoupling of up to 32 dB between the small array elements with ECC 0.0001
and the proposed radiating MIMO antenna elements, in contrast to conventional isolation
solutions [42].
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A nature-inspired MIMO antenna configuration that can provide lower-bound wireless
channels in the lower 5G band (3–4.2 GHz) has been achieved, as shown in Figure 7. In
principle, the cross-correlation between antenna elements is decreased by applying the
golden angle (137.5◦) concept to the cylindrical configuration of tapered slot antenna arrays.
The configuration of a cylindrical array offers high directivity and narrow beam pointing
in all spatial directions. The golden angle helps in positioning end-fire radiating tapered
slot antennas (TSAs) to prevent spatial overlapping of the radiated individual antenna
element fields. TSA elements arranged in 24 cylinders were used to test this theory. The
ECC value was <0.01 at 3 GHz–4.25 GHz. According to the simulations and measurements,
the above frequency range exhibited extremely excellent impedance matching and mutual
coupling between the antenna elements. It is thought that using the golden angle concept
with MIMO antennas will enable it to use dense massive MIMO [43].

A 72-port/288-antennas triangular-shaped massive multiple-input/multiple-output
(mMIMO) antenna system was achieved for 5G base stations, as shown in Figure 8. Each
side of the antenna system contains three layers and 24 ports with an overall size of
44.4 cm × 29.6 cm × 0.1524 cm. A single-port (sub-array) is composed of a ground plane
in the middle, a main with pre-computed phases on the bottom, and a (2 × 2) patch on the
top layer. Each sub-array (one port) is fed by tilting the beam direction relative to the other
to obtain unrelated patterns. For the moment, the antenna system supports two operating
modes. The operation uses multiple ports simultaneously (72-port MIMO) and a mMIMO
array simultaneously (using beam-switching). All characteristics were measured, and the
attained bandwidth was 100 MHz, which covered the band at 3.45–3.55 GHz. The gain
of a single port was 9.41 dBi, the envelope correlation coefficient (ECC) was ≤0.1198, and
the efficiency was 64%. Beam steering techniques were introduced and used to direct the
beams on each side with 24 ports to various locations in space based on non-uniform port
configurations, in contrast to most conventional methods that use identical array elements.
The received 13-switchable beams had a center coverage angle of up to 34◦ at a gain and
height of up to 19.5 dBi [44].
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Other types of 3-dimensions depend on the full dimension of the beamforming pattern
in (3D) space by using active antenna elements with a multi-beam system. With beam-
forming technology, a MIMO base station massive antenna focuses radio signals directly
on the user and their device, as opposed to broadcasting them in all directions, which
causes an increase in the efficiency as it reduces interference. Beamforming antenna arrays
that improve the throughput of mMIMO systems reduce intra- and inter-cell interference.
In a beamforming antenna array, the signal received by each antenna element is adap-
tively shaped to increase the wireless communication system’s overall efficiency and gain.
Complex weights are multiplied when signals are detected from various BS antennas.
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Active antenna systems (AAS) with two-dimensional (2D) planar array structures are
used in FD-MIMO. This permits adaptive electron beamforming and fitting numerous an-
tenna elements into a functional base station compact design in three-dimensions (3D) [45].
The array of active transceivers is integrated into an array of passive antenna elements
using the advanced BS technology known as AAS. This technology enables adaptive control
of the gain, beamwidth, and transmit beam tilt using active electronics that are directly
connected to each element. To enable adaptive beamforming for elevation and traditional
azimuth measurements, active and functional antenna elements must be positioned in both
the vertical and horizontal orientations [27].

On the other hand, a suggested and characterized meta surface lens antenna was
fed through a dual polarization plane (8 × 8) antenna array for sub-6 GHz full-size array
MIMO and multi-beam systems, as demonstrated in Figure 9. A lightweight multilayer
meta-surface structure built of Jerusalem transverse elements was used to build the planar
lens. An (8 × 8) dual-polarized stacked patch array fed a lens antenna with dimensions of
(560 mm × 560 mm × 266 mm) to operate at the range of 5.17–6.10 GHz. With a maximal
gain of 22.4 dBi and a 3.3 dB at 5.6 GHz gain variation, the scanning range of ±25◦ was
attained. The beam coverage characteristics, pattern envelope correlation coefficient (ECC),
and port-to-port isolation properties indicate that it can provide full-dimensional access.
Additionally, while isolated beams can achieve frequency division multiplexing, beams
operating at the same frequency offer a high-gain multi-beam antenna system [46].
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A highly integrated active multi-beam antenna system was developed and imple-
mented at 5.8 GHz with 64 RF channels and 256 antenna elements for high-volume 5G
MIMO wireless communication applications. The 64-channel highly integrated active multi-
beam antenna system provides a testing ground for the digital beamforming algorithms
and the mMIMO channel estimation for 5G wireless communication. Eight PCB boards
with six layers make up the 64-channel multi-beam antenna system. The 256-element
antenna arrays of the 64-channel multibeam antenna system could be assessed with an
array gain of 18 dB. Each PCB measures 320 mm in length and 215 mm in width. The beam
sweep of 64 × 4 antenna arrays is between −30◦ and 30◦ with 10◦ intervals [47].

The authors in [48] provided a 3D coverage optimization approach after analyzing
the structure of a 128 elements/64-channel active mMIMO antenna array. There were
64 dual-polarized elements (8 × 8) in the antenna array, with every one of the elements
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ending in a +45◦ and a −45◦ polarized antenna. The total 3D beamforming and coverage
optimization regarding the array were realized by integrating and optimizing two major
plane patterns of the desired 3D radiation pattern. Additionally, the simulation verified
and validated the 3D beamforming optimization approach, demonstrating its effectiveness.

2.1.3. Combined (Sub-6 GHz/MM Wave) mMIMO

There are three scenarios for 5G, where enhanced mobile broadband (eMBB) is one of
them. eMBB employs mMIMO with multiple antennas. 5G uses frequency candidates below
6 GHz and below 28 GHz. The principal objective is to model large-scale MIMO antenna
systems operating at 3.5 GHz and 26 GHz. The antenna in [49] included a rectangular
patch shaped like an array, with 12 patches for 3.5 GHz and 96 patches for 26 GHz, for
108 patches on the antenna. The constructed antenna will be utilized as an internal transmit
antenna. This antenna has a 2.2 dielectric constant proximity-coupled feed and a connection.
The designed antenna has an s-parameter result of <−10.8199 dB, a mutual coupling of
<−32.6201 dB, and a 7.3 dB gain [49].

In the mMIMO system, increasing the number of elements increases the channel
capacity. Various research has explored the effect of the number of antennas while assuming
uniform antenna gain across very large arrays, relying mostly on channel properties to
investigate the influence of edge effects and mutual coupling on the variation in the gain
illustration in a 32-element large-scale MIMO array. The impact analysis focused on
contrasting patch and dipole antennas, which are typical of the antennas frequently used
in the high-volume MIMO experiments performed today. Compared to a dipole array,
the finite patch array has a lower gain pattern variation. The massive MIMO system is
affected by a large gain pattern variation in that not all antennas contribute equally to
all users, and the number of effective antennas seen for a single user is decreased. As a
result, as seen at the system level, the zero-force MIMO detector for all users is reduced in
speed by 20% for patch arrays and 35% for dipole arrays. On the other hand, combining
maximum ratios creates inequality and injustice in users. Antenna measurements depend
on measuring 32 active elements in the array, which can be achieved using a large MIMO
test bench installed in an anechoic chamber. In terms of system throughput, patch arrays
have proven to be the best option. The 31 mm square patch on the microstrip model had
two combined U-slots that were each 1.4 mm wide. Next, the 2.4–2.62 GHz and 3.4–3.6 GHz
frequency bands were covered. At 2.6 GHz, the main comparison was performed. It has
been demonstrated experimentally that the gain patterns of the various antenna elements
in a finite array exhibited significant variation. The edge effect and mutual coupling are
both responsible for this beamforming, which is highly dependent on the angle of arrival.
The gain variation is greater in a dipole array because the system has more powerful
mutual coupling. As a result, the array composed of omni-directional elements is more
angle-sensitive than a patch array comprised of directional elements [50].

The two-user MU-MIMO (multi-user MIMO) capacity based on a zero-forcing block
diagonalized (ZFBD) scheme, and the distribution of eigenvalues were examined in a
viable urban macro (UMa) environment at 3.5 GHz. It covered the topic of expanding
the amount of Tx items from 8 to 256. For Tx numbers up to 64 and 128, respectively,
ratios of over 63% and 73% were attained in comparison to independent channels with
the same distribution (i. i. d), with only a slight improvement seen when the numbers
rose quickly. Additionally, when the number of Tx rose, there was a very slight tendency
toward a uniform distribution of eigenvalues. Compared to traditional MIMO, mMIMO
produces more ordered sub-channels and de-correlated user channels, but (i. i. d.) channel
gaps still exist in the measuring environment under consideration. As shown, capacity
grows with the number of antennas installed per user, and the performance is influenced
by the antenna layout on both the receive and transmit sides. As a result, in a measurement
scenario, orthogonal user channel representation is not used [51,52].

Massive MIMO is a leading technology contender for the 5G mobile communication
system because it can fully utilize the existing space resources, significantly increase the
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spectrum efficiency, and lessen the current spectrum resource crisis. It is required to record
various radio channel characteristics from the current MIMO system to study mMIMO
technology. Thus, a 3.33 GHz measurement campaign was carried out outdoors, utilizing
a sizable virtual antenna array that included 64 components. According to the measured
data, common channel parameters including the azimuth power delay spectrum (PADS),
power delay profile (PDP), azimuth power spectrum (PAS), power delay spectrum (PDS),
azimuth spread (AS), and delay spread (OS) behaved as expected. In both the latency
and spatial domains, the acquired data demonstrate that channels are not static for large
array sizes. The outcomes can be used to create mMIMO channel models and construct 5G
communication systems [53,54].

For upcoming 5G applications, a 16-port, low-cost MIMO non-planar antenna sys-
tem was constructed on a 3D octagonal polystyrene block. The bottom and top of the
polystyrene block were visible due to the arrangement of the MIMO elements on the
eight sides of the octagonal block. One of the antenna’s components was a slotted mi-
crostrip patch with a broken ground plane and a step-biased feed line. The frequency
range (3.35–3.65 GHz) for every one of the MIMO elements was constructed on an FR4
substrate with dimensions of 22 mm × 20 mm for 5G applications. A meander line-based,
exponential, near-zero, negative (NZI-ENG) metamaterial decoupling structure was used
to increase the isolation between array members. Ground planes and isolation structures
for common connections were positioned in the bottom layer, whereas array elements were
positioned in the top layer [55].

The antenna elements were isolated by >28 dB in side-by-side configurations thanks
to the metamaterial-based decoupling structure. The envelope correlation coefficient
(ECC) < 0.10, total active reflection coefficient (TARC) < −18 dB, and channel capacity
loss (CCL) < 0.30 were all within adequate bounds. The suggested non-planar 3D-MIMO
antenna system could be utilized for wireless personal area network applications and
indoor positioning systems in the case when different 5G devices are connected by wireless
means to a central server [56]. The spatial multiplexing feature of a typical 5G MIMO
system was realized by combining several antennas at the receiver and transmitter. The 3.3–
6.0 GHz band-capable proposed broadband 16-element indoor BS antenna array was made
for 5G applications. In order to cover the lower and upper bands (LTE bands 42/43/46-
N77-N78-N79), a monopole antenna in the shape of a was used. A printed hexa-kaidecagon
polygon, which was close by on a substrate, provided the antenna element. When the
antenna elements were in a position that provided good polarization diversity and good
isolation, the planned BS array was designed, constructed, and tested by examining the
overall outcomes, antenna performance, S-parameters, and radiation patterns. For MIMO
performance testing, it also achieved a high antenna efficiency of roughly 82–93.2% and a
very low ECC (envelope correlation coefficient) of <0.02. The (16 × 16) MIMO system’s
expected ergodic channel capacity was 85 bps/Hz [57]. In this study, all designs were used
in the fabrications, and the values were in measurements. Table 1 shows the enhancement
and support of mMIMO techniques for base station applications. Table 2 compares the 5G
sub-6 GHz mMIMO antenna techniques.

Table 1. Massive MIMO techniques: enhancement and support for base station applications.

Ref. Antenna Schemes Topology MIMO
Model

Supported
Massive Tech.

Enhancements

Compact B.W Isolation Gain Eff.

[28] UB-FSS-LB Rectangular 4 × 4 Yes
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Table 1. Cont.

Ref. Antenna Schemes Topology MIMO
Model

Supported
Massive Tech.

Enhancements

Compact B.W Isolation Gain Eff.

[34] Patch sub-array Rectangular 8 × 8 Yes
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structure Rectangular 11 × 11 Yes
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[65] Planar inverted-F 
antennas (PIFAS) 

18 × 18 
16 × 16 
14 × 14 
12 × 12 
10 × 10 

8 × 8 

No         

[69] 
Two open-end 

slots—QMSIW an-
tenna 

12 × 12 No         

[71] 
Inverted-F anten-

nas (IFAs) 
10 × 10 

 
No          

[74] Inverted L-shaped 
monopole  No          

[76] 
Balanced open slot 

antenna  8 × 8 No         

[77] 

Orthogonal-mode 
dual-antenna 

pairs-shared radia-
tor 

8 × 8 No          

LB: lower band; HB: higher band. 

  

[40] Patch sub-array
Rectangular,
Triangular,
Hexagonal

5 × 4 Yes
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[41]
Multimode square

patch-stacked
polyhedron ring

Ortho-
hexagonal Yes
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[43]
Tapered slot

antenna
(TSA)

Cylindrical Yes
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antenna  8 × 8 No         

[77] 

Orthogonal-mode 
dual-antenna 

pairs-shared radia-
tor 
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LB: lower band; HB: higher band. 

  

[50]
Square patch with

two merged
u-slots-dipole

Rectangular Yes
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[55] Microstrip patch Rectangular 4 × 4 No
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[56]

Slotted microstrip
patch antenna-

(NZI-ENG)
metamaterial
decoupling

structure

Cylindrical No
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Table 2. Comparison of sub-6 GHz mMIMO antenna techniques.

Ref.
No. of

Elements/
Ports

Size (mm) B.W (GHz) Isolation
(dB) ECC Gain (dBi) Eff. (%)

[28] 16/32 344 × 344 × 63 3.3–5.0 (UB)
0.69–0.96 (LB) >30 < 0.1 7.3 (UB)

8.6 (LB) >90

[30] 16/32 90 × 90 × 19.5
(single element) 3.25–5.35 - 0.004 - -

[32] 16/32 200 × 200 × 32 2.8–4.0 27 - 9.1 -

[34] 64/16 333.3 × 333.3 × 1.6 3.45–3.68 25 - 5.4
(one-port)

30.887
(one-port)

[40] 20/5 280.5 × 56.1 × 2
(single sector) 3.36–3.5

12.3
14.2
13.9

-

19.73
(rectangular)

13.45
(triangular)

14.37
(Hexagonal)

-

[41] 288/144 648 × 648 × 258 3.65–3.81 >31 -
16.7

Sub-array
(1×4 ant. units)

-

[43] 24/24 280 × 194.4 × 1.6 3.0–4.2 >20 <0.01 - -

[50] 32/32 440 × 440 × 1.6 2.4–2.62
3.4–3.6 - - 6

(Single Patch) -

UB: upper band; LB: lower band.

Many parameters characterize the pattern of large-scale MIMO antenna systems such
as MEG, DG, TARC, and ergodic channel capacity. This study focused on the critical
performance-enhancing parameters that reflect the performance of the antenna system.
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2.2. 5G Smartphone mMIMO Array Antenna Techniques

Many techniques support massive MIMO systems in smartphone applications working
in the sub-6 GHz bands, which are classified depending on the number of elements.

2.2.1. 18-Port 5G Massive MIMO

The mMIMO/diversity (4G/5G) model of the 18-element antenna system was created
at sub-6 GHz long-term evolution (LTE-42/43) bands of 3.4–3.6 GHz and 3.6–3.8 GHz,
respectively. By using a straightforward slotted antenna with an open slot as the radiator, a
small design could be achieved. Additionally, this slot serves as a decoupling component
to enhance isolation between other elements. The antenna array elements were constructed
on a low-cost FR4 substrate with dimensions of 150 mm × 80 mm × 1.6 mm, frequently
utilized for 6-inch smartphones, as shown in Figure 10. Antenna gain of >5.3 dBi, impedance
matching (coefficient of reflection >20 dB), total efficiency (>87%), port isolation (>20 dB),
and envelope correlation coefficient (<0.010) over operating frequency were demonstrated
by the simulation and measurement results. The performance metric of the MIMO antenna
was verified by computing the capacity of the ergodic channel using the Kronecker channel
model [58].
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Figure 10. 18-element antenna system of the slot antenna with decoupling open-ended slots [58].

2.2.2. 12-port 5G Massive MIMO

A 12-port LTE antenna array (42/43/46) for 5G high-capacity networks up to 6 GHz,
3400–3600 MHz, 3600 MHz–3800 MHz, and 5150 MHz–5925 MHz was used. The three
different antenna element types that make up a MIMO smartphone application are: an
inverted -shaped antenna, a shorter inverted L-shaped open slot antenna, and a longer
inverted open slot L-shaped antenna. Figure 11 illustrates eight antenna elements for MIMO
in LTE 42/43 band and six antenna elements for MIMO in LTE 46 band (12). According
to the actual measurement results, the LTE frequency band (42/43/46) had a reflection
coefficient that was better than −6 dB, an isolation of <−12 dB, and an overall efficiency of
>40%. Additionally, the suggested antenna array displayed good MIMO performance in
LTE bands 42/43 and 46, with envelope correlation coefficients of 0.15 and ergodic channel
capacity of over 34 b/s/Hz and 26.5 b/s/Hz, respectively [59].
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Figure 11. Fabricated prototype of 12-port, (a) Front view. (b) Back view [59].

2.2.3. 10-Element 5G Massive MIMO

Wide impedance bandwidth (IBW) (5G), multi-antenna, 10-element, sub-6 GHz, and
mMIMO terminals are advised. The hybrid loop antenna element’s inverted-F stub is fed
by a grounded coplanar waveguide. To generate wider IBWs, multiple resonant modes
are merged by tuning. As illustrated in Figure 12, we selected an antenna element location
around the edge of a standard smartphone backplane (120 mm × 70 mm). Two elements
were positioned along the horizontal edge and orthogonal to the other elements; however,
they were positioned along the vertical edge to enhance the variety performance. An
experimental antenna with a large impedance bandwidth (−6 dB) centered at 63% at
4.68 GHz was constructed and measured. The isolation between measurements was at
least 18 dB. The simulated envelope’s most significant correlation coefficient was 0.21,
and its minimum antenna effectiveness was 78.4%. Each component was printed on a
Rogers 4003 substrate that was 1.52 mm thick and measured 17.2 mm × 3.8 mm in size.
The suggested multi-antenna terminal is suited for LTE bands (42, 43, and 46) and 5G
sub-6 GHz (3.2–6.1 GHz) communications [60].
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A future 5G smartphone will feature a multi-band, 10-antenna array to support
mMIMO applications in the sub-6 GHz spectrum (LTE bands 42–43–46), as shown in
Figure 13. To implement the (10 × 10) MIMO in all three bands of the LTE applications,
10 T-shaped, coupled fed-slot antenna elements with the capacity to excite dual resonant
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modes were incorporated on the system board. These parts were equipped with spatial
and polarization diversity approaches to enhance isolation and reduce the coupling effects.
The performance of the suggested antenna array prototype was assessed in the lab. In
the high and low bands, the antenna efficiency was evaluated as desirable above 62% and
42%, respectively. For a LTE band (42/43/46) and a 10 × 10 MIMO system, the maximum
ergodic channel capacities were found to be 48 bps/Hz and 51.4 bps/Hz, respectively [61].
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2.2.4. 8-Element 5G Massive MIMO

For 5G mMIMO systems, a multi-band antenna array has been studied in the literature
as a potential solution. The antenna discussed here is suited for use in multi-mode opera-
tions since it creates the feature of polarization diversity and operates on multiple bands.
Eight modified planar-inverted F antenna (PIFA) elements make up its configuration, and
each one is placed in a distinct location on the smartphone’s main board. To simplify the
integration process and design, both the ground plane and antenna elements were etched
on the same layer. For the S11 ≤−10 dB performance, the PIFA elements of the MIMO
design operated at frequencies of 2.50–2.7 GHz, 3.40–3.8 GHz, and 5.60–6 GHz, spanning
the LTE (2600, 42/43/47) operation bands, respectively. The proposed design can support
vertical or horizontal polarization thanks to the positioning of the antenna elements. The
investigation focused on the fundamental characteristics of the design that was proposed,
which possessed sufficient efficiency, good S-parameters, acceptable isolation, and pro-
vided coverage for dual-polarized radiation. In addition, the results of the modified PIFAs’
TARC and ECC calculations showed that they had a low value across all of the operation
bands [62].

In order to provide coverage for two bands of frequency—an LB for LTE2500 and an
HB for the next 3.5 GHz standard with the diversity of the polarization—a multi-band
re-configurable structure of the (8 × 8) MIMO frame antenna is presented. LTE2500 might
make use of the low band. The coming standard would take advantage of the high band.
For forthcoming (4G/5G) mMIMO smartphone applications, a switchable antenna array
is described. Two antenna array modules were used to create the prototype: a switchable
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(6 × 6) MIMO 5G antenna module with pattern diversity and a (2 × 2) MIMO 4G antenna
module with frequency and circular polarization diversities. These two modules together
make up the antenna array. A micro-strip line with a tuning slot on the ground plane
supplies each element in the 5G and 4G modules. This line is a parasitic element on a
non-metal frame that includes a spiral patch as well as a short-ended, C-shape stab. This
slot is utilized to change the line’s frequency. Each element occupies a space on the ground
plane that is 22 mm × 9.3 mm in size, as illustrated in Figure 14. These antenna elements
employ spatial variety and polarization approaches to decrease the coupling effects and
improve isolation. The intention behind doing this is to obtain the desired outcomes. By
incorporating the PIN diode into the antenna element’s structure, the module regarding a
4G antenna may operate and switch between the two 5G bands and LTE-2500 operating
bands. The module of a 5G antenna can operate in a frequency range of 3.4 GHz–3.6 GHz
and might be able to meet the needs of a future 5G application. The suggested antenna has
an isolation level higher than 15.2 dB in both the OFF and ON states of the PIN diodes,
which can be accomplished without the use of decoupling structures [63].
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2.2.5. 4-Element/8-Port 5G Massive MIMO

Massive MIMO systems for 5G have one proposed design for an antenna array for
mobile phones that uses diamond-ring slot elements. Four double-fed (eight ports/four
elements) diamond-ring slot antenna elements make up the design configuration, and they
are each placed in a separate corner of the printed circuit board for the mobile phone (PCB).
A cheap FR4 dielectric with overall dimensions of 75 mm × 150 mm was utilized as the
design substrate. The elements of the antenna were fed by L-shaped micro-strip wires with
a resistance of 50 ohms. Because of the orthogonal positioning of the micro-strip feedlines,
the diamond-ring slot elements were able to display the radiation and polarization pattern
diversity characteristics. For each antenna radiator, we were successful in achieving a good
impedance bandwidth with a range of 3.2–4 GHz (S11 ≤ −10 dB).

Nevertheless, this value was 3–4.2 GHz when S11 is ≤−6 dB. The design that was pro-
posed offers the necessary radiation coverage for 5G mobile phones. The proposed MIMO
smartphone antenna has achieved high levels of isolation and efficiency. Additionally, for
the entire band of interest, the TARC and ECC of the antenna elements are incredibly low,
which guarantees that multi-antenna systems under consideration could be applied to large
MIMO and diversity applications [64].

Even though the number of elements of massive MIMO in smartphones should be
equal to or greater than eight elements, many technologies do not support the mMIMO
system in smartphones, despite having the same number of mMIMO elements. However,
these technologies can be considered as good candidates for the massive MIMO system.
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The performance varies depending on how many antenna elements (AEs) are com-
bined into a single MIMO mobile terminal. This is carried out in free space when a user
is holding the mobile terminal in their hand while in data mode. The performance of
the MIMO terminal was evaluated with regard to efficiency, ECC, multiplexing efficiency,
capacity, and maximal ratio combined with two additional AEs each (as many as 18 AEs).
The investigation began with a minimum of two AEs and progressed to 18 AEs (MRC). For
use with 5G technology, the integrated MIMO antennas were identical and had a frequency
range of between 5 and 6 GHz. According to the findings, the ECC rose along with the
total number of adverse events. In spite of this, the ECC for the case of 18 AEs was still
lower than 0.32 in both free space and when a user’s hand was present. In the meantime, it
was observed that the free space efficiency, which was approximately 90% for the two AEs,
decreased with the increasing number of AEs, reaching approximately 50% with 18 AEs.
However, the effectiveness of the elements shifts depending on the user’s hand because
each element interacts with the hand. The efficiency of some AEs dropped as low as 5%
when the hand was used to block them directly, while the efficiency of other AEs remained
at up to 75% throughout the experiment. When a center frequency was 5.5 GHz, the free
space capacity became 11.10, 49.50, and 83.2 bit/s/Hz with 2, 10, and 18 AEs, respectively.
These levels decreased by 11% (two adverse events), 35% (10 adverse events), and 31%,
respectively (18 AEs), when a mobile terminal was held close to the user’s hand. The
influence of poor AE correlation was shown to be a negligible component, and multiplex-
ing efficiency demonstrated that a decline in the efficiency of the AEs mostly drove the
deterioration of the capacity. This was discovered to be the case after it was established that
the effect of the AEs’ poor correlation was a negligible factor. Additionally, the maximal
ratio combining the method’s gain, capacity, and diversity gain was examined [65].

A mMIMO array with 10-ports or 14-ports is one of the designs that has been proposed
for use in 5G mobile phone applications. The LTE band 42 (3.4–3.6 GHz) antenna, a LTE
band 43 (3.6–3.8 GHz) antenna, and a LTE band 46 antennae are to be covered by a dual-
band ring loop antenna (5.15–5.925 GHz). The proposed arrays are designed to change the
battery position and exploit the space to add more antennas. To achieve higher isolation, the
substrate is formed as the loop antenna elements are printed on a separate dodecagon FR4
substrate with different orientation angles. The proposed designs can achieve an isolation
better than −26 dB. The envelope correlation coefficient (ECC) based on S-parameters was
found to be better than 0.005 in LTE band 42/43 and 0.006 in LTE band 46. Additionally, the
ECC was evaluated based on far-field radiation patterns and was found to be less than 0.2
in LTE band 42/43 and less than 0.12 in LTE band 46. The channel capacities were attained,
the 10 × 10 MIMO achieved 57.6 bps/Hz, and the (14 × 14) MIMO achieved 72 bps/Hz.
Additionally, the specific absorption rate (SAR), diversity gain (DG), and the effect of frame
insertion on the proposed array were also discussed [66,67].

The next-generation 5G smartphone offers a small broadband and dual-band antenna
array that forms a 12-element MIMO array. Each antenna uses a coupling feed to im-
prove isolation from other antenna elements nearby and impedance matching. With a
hybrid loop antenna/IFA, six 5G MIMO antennas were designed to cover the 3.3~4.2 GHz
frequency range. To span 2.4~2.5 and 5.1~5.9 GHz, six WiFi MIMO antennas work as a
coupled-fed dual-loop antenna. With very little ground clearance, the simulated results
showed excellent isolation, impedance matching, and antenna efficiency capabilities [68].
Future MIMO operations in smartphones for 5G will use a tri-polarized 12-antenna ar-
ray that operates in the 3.5 GHz band (3.40–3.60 GHz). The mutual couplings will be
reduced, and the design procedure is made simpler by using the orthogonal polarization
technique. A QMSIW antenna and two open-end slots could be combined to create a small
(17 mm × 17 mm × 6 mm) three-antenna tri-polarization block that operates in a 3.5 GHz
band. The antenna has an incorporated quarter ode substrate waveguide as a result of this
configuration. The three antennas in the block might have low mutual coupling and strong
impedance matching due to the presence of orthogonal polarization properties. Next, com-
bining such types of tri-polarization blocks into four different arrays, a 12-antenna MIMO
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array was designed for smartphone applications. With just two additional decoupling
structures, the presented array might achieve low correlations and good isolation between
antennas.

Additionally, a tri-polarization feature incorporated into the design is to blame for
this. Good antenna performance is conceivable including a return loss of more than 10 dB,
isolation of more than 12.5 dB, and antenna efficiencies of over 50%. The channel capacity
of the 12-antenna array has been determined to be around 57 bps/Hz in a (12 × 12) MIMO
system with a 20 dB SNR, showing that the suggested array using the tri-polarization
approach is a solid candidate for potential future 5G terminals [69].

In order to facilitate multi-input multi-output (MIMO) functionality in a mobile device,
a 10-antenna array that operates in the 3.6 GHz band (3.4–3.8 GHz) has been structured.
The proposed antenna array will consist of microstrip line-fed open-slot antennas, each of
which will have the same modest dimensions of 3 mm × 8 mm. The proposed array is made
up of two sets of five antennas, each of which is arranged symmetrically along one of the
smartphone’s long side edges of the system ground plane. The suggested array is predicted
to be positioned in the constrained space between the display screen and longitudinal side
borders of a smartphone, as seen in Figure 15. Any two antennas in the suggested array
were found to be capable of achieving a satisfactory ECC of 0.1 and an adequate level of
isolation (more than 10 dB). The proposed array’s maximum channel capacity in a (10 × 10)
MIMO system has been estimated to be around 47 bps/Hz at a SNR of 20 dB. This exceeds
the upper limit of the ideal (2 × 2) MIMO system, which is 11.5 bps/Hz, has 100% antenna
efficiency, and has no ECC between the antennas [70].
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Two radiators were etched on the outer and inner surfaces of the side-edge frame
device to form a dual-band 10-element MIMO array based on dual-mode inverted-F
antennas (IFAs). This array was designed for use in 5G terminal applications. An additional
one-quarter wavelength mode was radiated by the inner part of the antenna at 4.9 GHz,
while the outer part of the antenna was responsible for generating the low-order mode at
3.5 GHz. The IFA can accomplish dual-band operation in this manner despite its compact
size of 10.6 mm × 5.3 mm × 0.8 mm. In order to support 5G terminal applications, a
dual-band, ten-element multiple-input multiple-output (MIMO) array was developed. The
foundation of this array is the suggested antenna. Combining decoupling branch structures
with neutralization line structures helps improve isolations between the elements. The
idea for a prototype of a 10-element MIMO array was developed, built, and tested to
confirm the practicality of the design concept. The 3.30–3.6 GHz and 4.80–5 GHz frequency
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bands can both be covered by the suggested antenna with high efficiency and strong
isolation, according to the experimental results. To evaluate the effectiveness of MIMO for
5G applications that operate below 6 GHz, the ECC and the channel capacity were also
evaluated [71].

The quad-antenna linear (QAL) array can be used as a building block for smartphone
16-antenna and 8-antenna arrays for 3.5 GHz MIMO operation. The QAL array has the
dimensions of 50 mm × 3 mm. Two QAL arrays are positioned on the system circuit board
of the smartphone, either on two different sides or on the same side, to produce an 8-antenna
array. The analysis of the 16-antenna array made up of four QAL arrays arranged along
two opposing side edges is shown in Figure 16. With a 20-dB SNR, the calculated channel
capacity for use in a (16 × 16) MIMO system can reach approximately 66–70 bps/Hz. The
achieved channel capacity is about 5.70–6.10 times more than the maximum achievable
in an ideal (2 × 2) MIMO system with antennas operating at 11.5 bps/Hz (100% antenna
efficiency) [72].
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For applications on triple-band 5G metal-frame smartphones, the author in [73] pro-
posed a MIMO antenna array with good performance whereas the structure use an L-
shaped radiation strip and an S-shaped feeding strip (Figure 17). The achieved bandwidth
increased for lower frequency band while minimizing size by employing an S-shaped
feeding strip. The novel aspect of this investigation is the antenna element’s small size
with 6.5 mm 7 mm construction. The suggested eight-antenna array’s 6 dB impedance
bandwidth may completely cover the 3.3–3.8 GHz, 4.8–5 GHz, and 5.15–5.925 GHz fre-
quency bands.

A 0.8 mm thick, low-cost, FR-4-substrate with dimensions of 136 mm × 68 mm and an
inverted L-shaped, eight-element MIMO antenna system was developed. This resonates at
3.50 GHz with a measured bandwidth of 450 MHz, inter-element isolation of over 15 dB,
and gain of 4 dBi. The system was developed on an inexpensive FR4 substrate. A total
of eight elements in the shape of an inverted L and parasitic L-shaped strips extending
from the ground plane make up the proposed design. These short stripes served as
tuning stubs for four inverted L-shaped monopole elements on the side of the chassis. To
achieve the objective of reaching the necessary frequency range, the electrical length of
antennas was increased. The decision was made to create a prototype, and the findings of
the investigations showed that there was adequate impedance matching and reasonable
measured isolation within the intended frequency range. MIMO performances such as the
ECC and MEG were also determined. Because of how straightforward its form is and how
thin it is, it has the potential to serve as the chassis for future handsets. As a result, different
user hand scenarios such as single-handed and dual-handed use have been investigated.
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Along with the SAR, a discussion was held regarding the effects of various hand scenarios
on various MIMO parameters. The fact that the proposed system worked well in different
situations shows that the proposed structure has a good chance of being used in the next
generation of radio smartphones [74].
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For 5G applications operating at sub-6 GHz, a new smartphone array antenna design
that utilizes new double-fed CPW-fed resonators was comprised of two modified, T-ring
radiators that were closely spaced and operated in a frequency band that ranged from 3.3 to
4.4 GHz. An (8 × 8) MIMO antenna was formed by placing four pairs of CPW-fed diversity
antennas in each of the board’s four corners that make up the smartphone. Without needing
an additional decoupling structure, it offers excellent isolation of greater than −16 dB. The
design of the CPW-fed smart phone antenna array occupies only a very small portion of the
board, which is partly due to the fact that the array itself is quite small, and partly because
the elements that comprise the array are placed in very particular locations. The proposed
MIMO design not only has enough radiation coverage to support all of the main board’s
sides, but it also has different polarizations [75].

Future smartphones will have a MIMO array with eight unique, balanced, open-slot
antennas that operate in the 3.50 GHz band (3.40–3.60 GHz). With less ground design,
this antenna’s balanced slot mode could improve the isolation between two neighboring
input ports. The 3.5 GHz band is where the array operates. By carefully planning the
positions related to the eight antenna elements that further reduce the coupling between
the elements of the antenna, it is also possible to efficiently reach the desired polarization
variety. The positions of antenna elements could be carefully arranged to achieve this.
There was good impedance matching (return loss > 10 dB), high total efficiency (>62%),
high isolation (>17.5 dB), and a low envelope correlation coefficient (ECC0.05) across
the necessary operation bandwidth, according to the tests. To verify the effectiveness of
MIMO, calculations regarding the ergodic channel capacity were made with the use of
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the Kronecker channel model. Investigations into the hand phantom’s effects were also
conducted [76].

For 5G MIMO metal-rimmed smart phones, the combination of the orthogonal mono-
pole/dipole modes in a lower band and orthogonal slot/open-slot modes in a higher
band was reported. This led to a wideband, orthogonal mode, decoupling property of a
dual antenna pair with a shared radiator. For 5G MIMO smartphones, this property was
realized. The dual-antenna pair can show a large impedance band width of 3.30–5 GHz, in
addition to a strong isolation of >21.0 dB across the whole band thanks to the orthogonal-
mode design method without the need for any additional external decoupling devices.
Without the need for any directional couplers, this is accomplished. The simulation and
measurement results showed that an 8 × 8 MIMO system can fulfill the proposed edges of
the smartphone if four of these dual-antenna pairs are arranged on each of the two sides
of the smartphone. Both 8 × 8 MIMO systems have the potential to provide greater than
12.0 decibels of isolation between all ports and an envelope correlation coefficient of <0.11.
The two antenna elements that make up the dual-antenna pair have average efficiencies of
74.7% and 57.8%, respectively, according to the measurements taken. The proposed design
has the benefits of a shared radiator, a wide bandwidth, and the ability to work with metal
rims and so could be used in 5G phones in the future [77,78].

A dual-band (8 × 8) MIMO array antenna that operates in the 3.5 GHz band (3.4–3.6 GHz)
and the 5.5 GHz band (5.150–5.925 GHz) for 5G mobile handsets was made up of a comb-
shaped monopole and an L-shaped open slot antenna that were symmetrically positioned
on the inner surface of the side-edge frame of the smartphone. It is feasible to achieve
pattern diversity, which could lower the ECCs and enhance the functionality of MIMO
systems. The results show that the isolation of 15 dB and 10 dB in the high and low
bands, respectively, could be accomplished without introducing any additional decoupling
element and that the desired bands could be satisfied with an impedance matching of 6 dB.
According to the findings, the suggested MIMO antenna will be a fantastic option for 5G
services in the near future [79].

MIMO schemes with 4-antennas/8-dual polarized ports were developed on a printed
circuit board (PCB) side (67 mm × 139 mm), side by side, using an epsilon 4.4, FR-4 dielectric
substrate, and the thermal conductivity was 0.025. To improve the radiation characteristics,
circular slot radiators were etched into the substrate. In addition, to reduce mutual coupling,
two rectangular open-fin parasitic radiators were included into a single square-slotted
radiator in the suggested MIMO architecture. The proposed single-antenna model had an
impedance bandwidth of −10 dB and covered the frequency band 5.81–6.66 GHz. However,
at −6 dB, the bandwidth rose to 1.47 MHz (5.48–6.95 GHz). According to the data, a return
loss of −20 dB is feasible, and the isolation of the dual micro-strip lines could reach −45 dB.
The suggested antenna could be included in new smart mobile devices for upcoming 5G
wireless communications [80].

Table 3 presents the massive MIMO technique enhancement and supposition for
smartphone applications. Table 4 compares the previous references for massive MIMO for
smartphone applications.

Table 3. Massive MIMO technique enhancement and supposition for smartphone applications.

Ref. Antenna Schemes MIMO Model Supported
Massive Tech.

Enhancements

Compact B.W Isolation Gain Eff.

[58]
Slot antenna-open
ended decoupling

slots
18 × 18 Yes
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Table 3. Cont.

Ref. Antenna Schemes MIMO Model Supported
Massive Tech.

Enhancements

Compact B.W Isolation Gain Eff.

[60]
Inverted-F stub fed

-hybrid
loop antenna

10 × 10 Yes
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Table 4. Comparison of the previous references for massive MIMO for smartphone applications.

Ref.
No. of

Elements/
Ports

Size (mm) B.W (GHz) Isolation
(dB) ECC Gain (dBi) Eff. (%) PLL

(bps/Hz)

[58] 18/18 150 × 80 × 1.6 (42/43)
3.4–3.8 >20 <0.01 >5.3 87–93 81

[59] 12/12 150 × 80 × 0.8
(42/43/46)

3.4–3.8
5.15–5.925

>12 <0.15
0.1 - 41–82

47–79
37

29.5

[60] 10/10 120 × 70 × 1.52
(42/43/46)

3.4–3.8
5.15–5.925

≥16
≥15

≤0.21
≤0.15 - 82–95

78–96
52.5–53.4
52.8–53.9

[61] 10/10 150 × 80 × 0.8
(42/43/46)

3.4–3.8
5.15–5.925

>11 0.15
0.05 - 42–65

62–82
48

51.4

[62] 8/8 150×75×1.6

(42/43/47)
2.5–2.7
3.4–3.8
5.6–6

>10 <0.01 3–4.5 40–80 -

[63] 8/8 150 × 75 × 0.8 2.49–2.69
3.38–3.6 >15.2 <0.15 N.A <68 <37

PLL: peak channel capacity.
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Higher antenna efficiency is needed for mobile devices using mMIMO systems. This
entails adding additional antennas to the same physical area or increasing the bandwidth
of already installed antennas. The suggested system’s effectiveness was examined by
adjusting critical operating parameters including ECC, MEG, scattering parameters, and
channel capacity, and carrying out research such as user hand analysis. The technology is
safe to use close to the human body, according to a SAR analysis that was conducted to
understand how it interacts with the body.

3. 5G Antennas as a Candidate for Massive MIMO Technique at Sub-6 GHz

An essential component of wireless communication systems is the antenna. Wireless
systems that use a large number of antenna elements/arrays at both the transmitter and
receiver are called massive MIMO. 5G antennas enable multiple-input multiple-output
(MIMO). Various 5G antennas at sub-6 GHz designs are considered as candidates for
developing massive MIMO antenna arrays. Figure 18 shows several structures of 5G
antennas can be summarized in the block diagram below.
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3.1. Single Elements

Single-element antennas are easy to design, implement, and manufacture. There are
two types of 5G designs to reduce the size of antennas: three-dimensional designs and
two-dimensional crossed dipole and patch antenna designs, as discussed below.

3.1.1. 3D-Model Antennas

An experimental study was created on a dual-polarized broadband BS antenna with
a new feed structure. The suggested antenna includes two crossed pairs of dipoles, two
specifically designed feed connectors, a carrier (also known as a balun), two dielectric
pads, and a reflector. We created a prototype and evaluated it to ensure the designed
antenna worked as intended. The antenna achieved a port-to-port isolation of over 32.5 dB
from 3.14 GHz to 5.04 GHz, a bandwidth of roughly 46.5%, and a reflection coefficient
of <−15 dB. With half power beam width values of 71.8◦ ± 2.5◦ in the horizontal as well
as the vertical planes and a gain of roughly 8 dBi in the operating band, it also offers a
remarkably stable radiation pattern. The suggested antenna is also appropriate for BS in
the sub-6 GHz frequency band of 5G cells, thanks to its properties [81].

For BS applications, a low-profile, differentially fed, dual-polarization slot antenna
was suggested. Its radiator is an octagonal patch that has 2-conventional H-shaped slots
etched into it. A folded feed line was introduced, as seen in Figure 19, to make room
for the differential feeding scheme and to match the impedance. High isolation and a
consistent radiation pattern could both be attained by using differential feeding technology.
According to the measurement data, the impedance bandwidths for the two polarizations
(VSWR 1.5) were 19.3% (3.14–3.81 GHz) and 20.3% (3.10–3.80 GHz), respectively. Over the
whole operating band, the suggested antenna had a high isolation of over 43 dB. Within
the operating frequencies, the measured gain was more remarkable than 8.1 dBi [82–85].
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Figure 19. Fabrication of dual-polarized slot antennas with octagonal patches and folded feed-
lines [82].

Two rectangular patches and a connected feeding arrangement were combined to
create a small BS antenna. The antenna dimensions were 80 mm × 75 mm × 19 mm. The
suggested antenna covered the 5G n78-band with a broad bandwidth of 3.15–3.67 GHz for
the VSWR < 1.50. Within the whole operating band, the half power beam width (HPBW)
was roughly 67◦, the FBR was above 20 dB, and the maximal gain was approximately
8.20 dBi [86].

A cross dipole antenna for dual-band sub-6 GHz 5G applications, 8-parasitic patches,
8-radiating patches, and a reflector made up the majority of the suggested antenna pre-
sented. The polarization characteristic of the proposed antenna was ±45◦. The overlapping
bandwidth range was 2.77–5.31 GHz, and the gain fluctuated between 7.60 and 8.40 dBi.
With higher operating frequencies, the gain rose. The port isolation was greater than 26 dB,
while the cross-polarization level was less than −28 dB [54]. A brand new dual-polarized
base station antenna element has been suggested for LTE, 3G, and 5G mobile communica-
tion systems where the structure consists of two orthogonal diamond dipoles, one of which
has two circular slots carved into it, while the other is a real diamond. A cross pair of two
dipoles could produce polarized radiation at a ±45◦ angle. Every one of the dipoles had
two pairs of branches in its diamond patch. Due to its high cross-polarization discrimina-
tion (>13 dB), consistent gains of roughly 8.5 dBi in 1.40–2.7 GHz and 5 dBi in 3.80–4.2 GHz,
and high front-to-back ratio (>22 dB), the dual-polarized antenna element of the base
station has enough bandwidth and very good radiation properties. The designed aspect of
the antenna is commonly utilized in the BS antenna array because of its straightforward
structure and outstanding performance [87]. A dual-polarized loop-shaped dipole antenna
was designed where the suggested antenna had a small enough structure to be used in a 5G
BS. It comprised two feeding baluns and a radiator shaped like a cross. To further reduce
the size, the antenna’s radiating arms were folded downward. The simulation results
demonstrated that the suggested antenna’s radiation pattern is stable. In the operating
bandwidth of 3.68 to 4.05 GHz, the peak gain was greater than 6.7 dBi. The antenna is only
0.145λ0 in height, while the radiator is roughly a quarter wavelength in size [88].

For BS applications, a dual-polarized broadband antenna with interference-canceling
features is offered. The three parts of the suggested antenna are the feed structure, the
main radiator, and the reflector. To achieve ±45◦ polarization, the central radiator, for
instance, contains two crossed dipoles. Between the primary radiator and the feed’s
reflectors are two vertical boards with Γ-shaped feeders on the front and rectangular
patches on the back. A reflector was used underneath the antenna to produce high gain and
unidirectional radiation. A C-shaped stub was further positioned next to the lead to filter
undesirable frequency ranges. A prototype antenna was built and tested, as illustrated
in Figure 20. The findings from the measurements showed that a notched band with a
52.6% bandwidth existed between 2.27 and 2.53 GHz (VSWR 1.5). The HPBW was roughly
60 degrees, the observed isolation was over 25.4 dB, and the overall operating band average
gain was 7.57 dBi. The suggested antenna has the following benefits: small size, dual-
polarization operation, band suppression properties, excellent impedance matching, sturdy
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structure, perfect PCB design, and straightforward process, making it appropriate for next-
generation wireless and making it possible for it to be widely utilized in communication
systems [89,90].
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The new dual-loop array antenna has four rectangular loops and four trapezoidal
loops printed on the front and back of the substrate. These loops are each positioned
over a flat square reflector and are intended for use in current and future applications
involving base stations. In order to achieve polarization states of less than 45 degrees, all
eight loop radiators were energized at the same time by a feed network that had been
thoughtfully designed. The behavior of a trapezoidal loop is analogous to that of a folded
(electric) dipole. Magnetic dipoles are the primary effect that rectangular loops possess. The
combination of these two loop arrays resulted in a magnetoelectric (ME) loop antenna that
demonstrated a consistent directional pattern with high cross-polarization discrimination
(XPD) values over an operating fractional bandwidth of 45.5% from 1.7 to 2.7 GHz. This
magnetoelectric (ME) loop antenna covered the frequency range from 1.7 to 2.7 GHz and it
was possible to acquire it. The results of the simulation were confirmed by the fabrication
and measurement of a prototype, which showed that the horizontal full width at half
maximum (HPBW) varied between 63◦ and 70◦ and that the XPD values were greater than
20 dB on the central axis and greater than 10 dB on the axis. The total angular range covered
by cellular service was −60◦ ≤ θ ≤ 60◦ [91].

The main radiator, feeding balun, reflector, and two parasitic loops are the four compo-
nents that comprise the dual-polarization filter wideband dipole-antenna for base station
application. This antenna has a compact size of 50 mm × 50 mm × 31.8 mm. In order
to achieve adequate filter performance while simultaneously expanding its bandwidth,
a dual-polarized dipole antenna requires only two parasitic loops instead of more com-
plicated filter circuits. Consequently, two distinct radiation zeros are produced, each of
which is controlled independently by two parasitic loops. Simple stubs with open ends
can be added to the arms of the dipole so that the selectivity of the upper stopband can be
improved even further, as can the bandwidth of the band.

Therefore, the bandwidth can be changed from 7.4% to 47.6%, and the gain that can
be accomplished can range from 8.6 dBi at 2.7 GHz (in-band) to −10 dBi at 2.9 GHz (out-
of-band). For the demonstration, a wideband dipole antenna with dual polarization was
implemented. According to the findings of the measurements, the proposed antenna was
48.7% (1.66–2) [92].

A radiating and feeding patch created a new low-profile dual-polarized patch antenna
for 5G base stations. The radiation field is excited into dual polarization when a coupled
feed field is present. In order to achieve more accurate impedance matching, the edges
and corners of these two patches are routinely cut. The processing cost is reduced, and
the structure is greatly simplified because only one substrate stands between the two
patches. The patch antenna is only 8.7 mm in thickness and measures 32 mm on each
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side. Its operating frequency range is from 3.3 to 3.7 GHz. In the operating band, the
connection isolation coefficients |S11| and |S22| are less than 15 dB, the connection
isolation coefficients |S21| are less than 19 dB, and the cross polarization discrimination
(XPD) is greater than 27 dB. In addition, a (1 × 3) antenna array was designed using this
antenna element as the basis for the design. The antenna array could attain the reflection
coefficients of |S11| and |S22|. In the frequency range of 3.3 to 3.7 GHz, the S11 return loss
was below −10 dB and port isolation was less than −20 dB. The radiation pattern was both
symmetrical and stable, and the H-plane had a half width that ranged from 65 degrees to
76 degrees. The use of this antenna in 5G massive multiple-input multiple-output (MIMO)
applications has been evaluated and found to have promising potential [93].

3.1.2. 2D-Model Antennas

A dual-band, dual-polarization BS antenna was designed for 5G mobile communi-
cation. This was made up of two bowtie-shaped cross dipoles that were bent to create
two linear polarizations (±45◦), as seen in Figure 21. The dual operating frequency values
of 700 MHz and 1800 MHz were provided by the bowtie and bent strip-line dipole. At
775 MHz and 1850 MHz, the antenna exhibited an impedance property of approximately
15.80% and 12.0% for S22 ≤ −10 dB (−45◦ polarization), and S11 less than or equal to
−10 dB (+45◦ polarization), respectively. In addition, the operational band was given the
isolation between the two polarizations, with |S12| being approximately −33 dB and
−30 dB at 775 MHz and 1850 MHz, respectively. At 775 MHz and 1850 MHz, the an-
tenna’s measured peak gain was between 1.26 and 4.76 dBi. Additionally, dual-polarization
over the two operating bands as well as the omni-directional radiation patterns were
obtained. The antenna was designed proportionally for BS applications for 5G mobile
communication [87].
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For 5G WLAN applications, a rectangular microstrip patch antenna with an H-shaped
slot operating at 4.8 GHz is suggested. The H-shaped slot has been utilized in a rectangular
patch of the microstrip patch antenna in order to improve the VSWR, gain, reflection coeffi-
cient, and bandwidth of the antenna. The suggested antenna was designed in order to meet
the requirements of the 5G WLAN applications. The thin planner profile of the microstrip
patch antenna is helping it become more popular as they are easily mountable on the
planner surface of space-born applications such as aircraft and missiles. For the frequency
of 4.8 GHz, the reflection coefficient and VSWR for this antenna design were −25.44 dB
and 1.11, respectively. This work developed the suggested antenna with microstrip line
feeding [94].

Using a slot feedline and a touch-coupled feeding scheme, a lightweight slotted
rectangular microstrip patch antenna for use in 5G wireless applications was proposed,
would have high gain and minimal cross-polarization characteristics. The model that has
been suggested operates in the sub-6 GHz band and has a frequency span of 3.5 GHz
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in addition to a bandwidth of 206 MHz. The top layer of the low-k PCB has a compact
slotted patch that measures 32 by 25.7 mm2, and the backside of the second layer has a full
ground applied to it. In addition, the middle layer contains several rectangular slots, which
are there to improve the impedance bandwidth, gain, and efficiency as well as lower the
reflection coefficient. The overall measurements are 43.36 mm by 35 mm by 1.575 mm3 in
volume. In addition, utilizing the slotted tape that was previously mentioned raised the
radiative efficiency to 83% with a gain that could reach up to 6.58 dBi, which improved the
overall performance. This particular antenna configuration has a reflection coefficient (S11)
of 28.774 dB and a cross-polarization of only 70.6 dBi, which is considered low. The design
that was proposed is a strong contender for use in 5G massive MIMO applications [95,96].

For 5G applications, elliptical microstrip patch antennas with and without slots oper-
ating at 3.5 GHz have been designed, and their performance examined. For the 3.5 GHz
wireless 5G spectrum, three potential designs of small, affordable, wide-band microstrip
patch antennas employing FR4 substrate were examined. The suggested antennas have
bandwidth values of 1.13363 GHz, 1.0265 GHz, and 2.1562 GHz at −10 dB return loss with
−41.31 dB, −43.95 dB, and 20.44 dB, respectively. The resulting gain was 4.45, 4.36, and
4.42 dBi, whereas the obtained directivity was 4.577, 4.906, and 5.0 dBi. The proposed
antennas also appear to have the potential to be included in mobile devices [97].

Low-profile multi-slot patch antennas for long-term evolution (LTE) and 5th genera-
tion (5G) communication applications consist of a step patch and a ground plane. Three
slots were inserted into the patch to achieve the required operating bandwidth. The inser-
tion slot enhanced the capacity effect, whereas the prototype antenna covered the operating
frequency band (S11 ≤−10 dB) ranging from 3.15 to 5.55 GHz, supporting (N77/N78/N79)
for the 5G wireless communication sub-6 GHz and LTE (22/42/43/46) bands. The broad-
band antenna offers an omni-directional and stable radiation pattern, excellent gain, and
compact size, making this design suitable for wireless fidelity (Wi-Fi), wireless local area
networks (WLAN), LTE, and sub-6 GHz 5G communication applications [98].

A T-slot on a rectangular microstrip patch with defective ground structure (DGS)
makes up a slotted ground plane microstrip patch antenna for 5G wireless communications
below 6 GHz. The suggested antenna’s ground plane is a modified C-shaped slot. To
further enhance the performance of the antenna, the modified C-slot has specific cuts on
the bottom and top of the modified C-shape. The suggested antenna’s gain is increased by
integrating a reflector into the design to focus the side lobes and strengthen the main lobe
of the radiated signal. The presented antenna uses insertion feeding and is constructed
on a FR-4 epoxy substrate. The antenna has a size of 28.03 mm × 23.45 mm × 5.35 mm
and dimensions of 5.49 dB in gain and 7.12 dB in the directivity at their maximums. The
bandwidth of the suggested antenna was between 4.775 GHz and 5.049 GHz [99]. With
dimensions of 35 mm × 40 mm × 1.6 mm and a dielectric constant of 2.55, the compact 5G
sub-6 GHz wireless patch antenna was placed on a Taconic TLX-8 substrate. The antenna’s
peak gain was 6.83 dBi, and its frequency of oscillation was 5.6 GHz. With gains of 6.97 dBi
and 5.97 dBi, respectively, the addition of a parasitic ring resonator close to the feed-line
resulted in a double resonance at 5.6 GHz and 6.6 GHz. Through inserting a ring-shaped
resonator in the ground, antenna miniaturization is also possible. As a result, the resonant
frequency changed from 5.6 GHz to 3.8 GHz [100].

3.2. Sub-Arrays

High gain, a stable radiation pattern, and a wider frequency band are three of the most
critical requirements for 5G antennas. Due to the fact that a single-element antenna cannot
fulfill these requirements, a multi-element array antenna has been designed to fulfill them.
The following is a discussion of the two types of sub-array configurations, both of which
were considered by the MIMO technique (multi-ports).
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3.2.1. Symmetric Array

A dual-polarized antenna that occupied one-half the volume of the traditional crossed
dipole antenna was developed. It serves as the basic array element and comprises two
back-to-back folded dipoles (2 × 2 sub-array). For each dipole, a portion of its feeding line
and one dipole arm are set along the vertical direction. In contrast, the remainder portion of
the feeding line and other dipole arms are formed along the horizontal direction, as shown
in Figure 22. The dimensions of the antenna size were 38.4 mm × 19 mm × 21.7 mm. The
orthogonal currents on the two arms of the dipole could synthesize the slant currents, thus
generating ±45◦ polarization. The proposed antenna element was designed to work at
3.4 to 3.6 GHz band with VSWR < 1.5. Its longitudinal dimension was only 19 mm at
3.5 GHz, about half of the traditional crossed dipole. Then, a sub-array that adopted four
sequentially rotated elements and appropriate phase assignment was investigated. The
performance of the proposed array was better than that of the regular array. Therefore, the
sub-array can be a good candidate for 5G massive MIMO antenna applications [101].
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A 4-port wideband cavity-backed antenna for use in indoor BSs is presented. The
antenna consists of an X-shaped isolating block and four feeding monopoles that are
orthogonally and symmetrically positioned in the cavity’s aperture. The cavity has a square
aperture. The modes contributing to the coupling were found using a unique technique
depending on characteristic modes analysis (CMA). This investigation led to the suggestion
of an X-shaped isolating block put in the cavity’s center to improve the port isolation. With
measured impedance bandwidth (S11 < −10 dB) spanning from 1.55 GHz to 6 GHz (118%),
a wide-band 4-port antenna with unidirectional radiation patterns was created, covering
the majority of sub-6 GHz 5G bands. With 16 dB of minimal measured isolation between
ports and an efficiency of more than 84%, the suggested antenna offers four independent
radiation patterns. A (4 × 4) MIMO simulated system with an ECC of less than 0.5 was
used to demonstrate the compatibility of MIMO in various propagation scenarios. The
antenna, which has dimensions of 129.5 mm × 129.5 mm × 28.2 mm and operates at a
frequency of 1.55 GHz, is simple to construct. The antenna also has the benefit of avoiding
complicated feeding mechanisms with directional couplers or baluns [102].

For 5G wireless communication applications, a brand new dual-polarized dual-band
shared-aperture antenna array has been suggested. A LB antenna and four high-band
antennas were combined to form this new antenna array. An antenna operating in the
low band (0.68–0.99 GHz) and four 5G MIMO antennas operating in the high band (from
3.3 to 5.1 GHz) made up the suggested antenna array. Antennas operating in the low band
(from 0.68 to 0.99 GHz) and high band (between 3.30 and 5.10 GHz) were both loop-shape
radiators supplied by the Y-shape feed, which simplified the design model while achieving
broadband. Incorporating four HB antenna elements into the LB antenna allowed for the
resolution of coplanar, dual-band, and shared-aperture issues. According to the simulations,
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the suggested coplanar antenna array achieved an impedance bandwidth of 43% in the LB
(between 0.68 GHz and 0.99 GHz) and 37% in the high band (3.30–5.1 GHz) [103,104].

A sub-6 GHz uni-planar MIMO antenna system for 5G-capable smartphones was
designed. Following the idea of pattern diversity, a MIMO antenna was made up of four
symmetric loop-shaped radiators that were positioned at every corner of a mobile phone
board. A single-antenna element had an impedance bandwidth of 1.28 GHz (3–4.28 GHz)
for S11 ≤ −6 and equaled 720 MHz (3.18–3.9 GHz) for S11 ≤ −10 dB. Its resonance
frequency was 3.5 GHz. With an antenna efficiency greater than 90%, a peak gain of
3.64 dBi for a single antenna element was noted. For the MIMO configuration, isolating of
>10 dB between the characteristics of the antenna was attained. Additionally, the MIMO
antenna design offered sufficient radiation coverage to support several mobile phone board
sides, which is a crucial characteristic for upcoming 5G-capable devices [105].

A low-profile planar four-element MIMO antenna for wireless handheld devices has
also been proposed. Simple planar L-shaped monopoles in the shape of each unit antenna
are mounted over etched non-ground areas measuring 10 mm × 5 mm. The improved
antenna elements provided an isolation of more than 18.8 dB without any need for an
extra decoupling structure for the three 5G New Radio bands that fall inside the C-band:
the n-77 band (3.30–4.20 GHz), n78 band (3.30–3.80 GHz), and n79 band (4.4–5 GHz).
As illustrated in Figure 23, the designed antenna was constructed on an FR-4 substrate
with dimensions of 120 mm × 65 mm × 1.6 mm. The measured and discussed antenna
properties included reflection coefficient, radiation pattern, mutual coupling, and gain. The
estimated envelope correlation coefficient was less than 0.018 for the considered frequency
range. The suggested MIMO antenna’s simplicity and compactness leave enough room
inside the handheld mobile terminal to integrate other circuits. Investigation into the
integration with lower generation antennas was further conducted, and the findings show
that mounting the suggested antenna system on both of the long arms of the ground plane
provides enough room for the integration of a lower generation antenna without negatively
impacting the performance of either [106,107].
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3.2.2. Non-Symmetric Array

A non-symmetric array was considered as a (1 × n) sub-array in the arrangement. A
wideband dual polarization antenna was suggested for 4G/5G communications applica-
tions. The antenna element was made up of two open-loop, bipolar dipoles with three
different resonant modes pushed closer to one another to create a wide bandwidth. An
extra “U”-shaped slot that was etched around the feed point made the antenna element’s
input impedance equal to 50 ohms. The constructed antenna element had high port-to-port
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isolation (higher than 25 dB), a 75.90% impedance bandwidth (VSWR ≤ 2), and operated
in the 1.8 to 4.0 GHz frequency range. It also offered a beamwidth of 67◦ ± 1◦ in the H
plane and 68.7◦ ± 3.3◦ in the V plane, with a gain of 8.5 ± 1 dBi in the supported bands. A
6-element (1 × 6) dual-polarized array with an electrically down-tilt was also created and
measured; this array is preferred for communication applications because it achieves a peak
gain of 16.8 dBi, a beam width in the H-plane that was comparable to one antenna element,
and an electrically down tilt in the V-plane that ranged between 0◦ and 12◦. Six antenna
elements were used to obtain such results, and an RF phase shifting module was created.
In the near future, this antenna array might be utilized for future 5G communications as
well as other applications [108,109].

An innovative linearly dual-polarized antenna array with triple elements (1 × 3) has
been suggested for beam width reconfigurable base station communications. A single, dual-
polarized antenna unit has the ability to obtain a wide bandwidth of 78.40% for SWR ≤ 2,
which ranges between (1.63 GHz and 3.73 GHz) for 2G/3G/LTE and 3.5 GHz of C-band
(3.40–3.60 GHz) applications if arc-shaped corners on the radiated patches are removed.
This can be conducted by cutting off the corners of the radiated patches. Additionally,
because of the box-shaped reflector and intrinsic performance of the ME dipole antenna,
the dual-polarized antenna element has an approximate gain of 11.5 dBi on average. In the
final result, a 3-element antenna array with a widely adjustable beam width in the E-plane
as well as the H-plane was investigated. This antenna array could meet the needs of smart
applications in the future and was made with a two-stage circuit and numerous power
dividers [110].

Four arrays with more than 60 dB isolation in the 5.15–5.925 GHz band were used to
illustrate the process of designing a dual-polarized linear antenna array with enhanced
port-to-port isolation. The single antenna adopts a dual-polarized electromagnetic coupling
microstrip antenna, and the isolation between ports did not exceed 25 dB. Array isolation
can be significantly improved by using a dedicated feed network. A mathematical model
was established based on theoretical analysis to describe the isolation between ports. Circuit
and full-wave simulations were performed to show the effect of electromagnetic coupling
between the antennas and/or microstrip lines in the feed network and the effect of the
phase shifter/power divider selection on isolation. The manufactured prototype featured a
gain of approximately 14 dBi, a minimum polarization purity of −27 dB within the main
lobe, and was close to the expected isolation of >57 dB over the entire operating range [111].

A compact, highly isolated MIMO antenna system for wireless applications in 5G-
connected devices has been considered with the size of 92 mm × 88 mm and consisting
of two elliptical antennas symmetrically arranged next to one another. To provide the
various MIMO antennas proposed, two decoupling methods were applied: neutralization
and DGS. The single and MIMO antennas were modeled and analyzed, then built and
measured. A good agreement was obtained between the measurements and simulations.
These configurations were designed to cover the frequency range of 3.4 GHz to 3.8 GHz
and showed a highly satisfactory performance exceeding −30 dB, while reducing the
mutual coupling between the antennas that make up the system. The MIMO parameters of
diversity such as ECC, diversity gain (DG), and overall performance were also investigated
for every one of the proposed MIMO systems. Therefore, the results showed that the
proposed two antenna configurations are quite suitable for 5G MIMO applications [112].

The triple band MIMO antenna for the 5G mobile terminal applications consists of
4-ports/2-resonators, each with a ground plane that is (50 mm × 50 mm) in size and two
concentric circular slot ring radiators engraved into it. A 50 Ω microstrip line perpendicular
feeds the antenna to the top layer. Decoupling methods have been utilized in order to
suppress mutual coupling between two resonators. The vertical arrangement of leads
and terminals reduces the mutual coupling between the two terminals and increases
isolation. The antennas operate in multiple frequency bands (3.35–3.69 GHz, 24–28 GHz,
and 37–40 GHz) and frequency ranges, with a focus on 3.5 GHz, 26 GHz, and 38 GHz-
like assignments for 5G. The antenna provided a 2.7–7.8 dB gain and 0.49–0.85 radiation
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efficiency in the operating frequency band and the diversity performance in terms of ECC,
diversity gain (DG), and TARC were checked. These were found to be <0.01, >9.99 dB,
and less than −10 dB, respectively. The suggested antenna has excellent S-parameters,
a low ECC, a decent VSWR, a TARC, a good radiation pattern, and a high gain. The
production and testing of antennas. Results from the simulation and measurements were
in good agreement. Applications for 5G mobile terminals and smart wearables have a lot
of potential [113]. A novel dual-polarized, printed-dipole antenna design was proposed for
base station antennas for 5G mobile communication systems operating in the 3.30–5.90 GHz
band. Each crossed dipole was excited by a micro-tip wire stub fed from a standard 50 Ω
of coaxial cable. A configuration of synthetic dipole arms using third-order Bezier curves.
This method provides precise tuning of the mutual coupling of the crossed dipoles and
extension of the antenna’s operating frequency band. The significant improvement in
antenna performance compared to known prototypes was achieved after numerical full-
wave optimization of the dipole profile. The characteristics of the proposed 8-element
antenna array with improved planar dipoles were investigated. In the 3.30–5.90 GHz (57%)
frequency band, the reflection coefficient was −15 dB, the isolation was −28, −30 dB, and
the beam width of the −10 dB level corresponded to 120◦−4◦/+10◦ [114].

4G/5G and combined (sub-6 GHz/mm-Wave) multi-band mMIMO can assist in
solving more problems of 5G system structure such as bandwidth shortage and complex
hardware requirements. The quality of the 5G antenna performance depends on the
parameter chosen, the results of antenna work such as gain, power consumption, efficiency,
bandwidth, and the surrounding environments of the antennas for the base station and
smartphones. For instance, enhancement in the impedance bandwidth and gain in mMIMO
will provide the maximum coverage area for the base station and smartphones. High
channel capacity will offer high throughput and spectral efficiency. The diversity of pattern
characteristics (gain, polarization) makes massive MIMO a good choice for 5G applications.

Table 5 summarizes the types of 5G antennas (single and sub-array elements) as
candidates for massive MIMO applications.

Table 5. Comparison between the reference works.

Ref.
No. of

Elements/
Ports

Type of 5G
Antenna Size (mm) B.W (GHz) Return Loss

(S11/dB)
Isolation

(dB)
Gain
(dBi) Eff. (%)

[82] 1/2 3D-model 82 × 82 × 11.8 3.14–3.81 - >43 >8.1 83
[86] 1/1 3D-model 75 × 80 × 19 3.15–3.67 33 - 8.2 -
[95] 1/1 2D-model 43.36 × 35 × 1.575 3.392–3.598 28.774 - 6.58 83

[97] 1/1 2D-model
55 × 40 × 1.6
44 × 30 × 1.6
46 × 26 × 1.6

3–4.136
3.14–4.167
3.154–5.31

41.31
43.95
20.44

-
4.45
4.36
4.42

>88

[102] 4/4 Symmetric
sub-array 129.5 × 129.5 × 28.2 1.55–6 - 16 - 84

[106] 4/4 Symmetric
sub-array 120 × 65 × 1.6 3.3–5 - 18.8 4.71 -

[110] 3/6
Non-

symmetric
sub-array

160 × 16 × 35
(Single ant.)

1.63 to 3.73
3.4–3.6 - 25 12.9

17.3 -

[114] 8/16
Non-

symmetric
sub-array

95 × 455 × 11 3.3–5.9 15 28–30 - -

These models are used depending on which is the most suitable for design in base
station or smartphone applications. Many smartphone techniques use 2D model single and
symmetric subarray elements. The size and requirements of the smartphone to design it
do not allow for the use of 3D models or non-symmetric subarrays in contrast to the base
station, which can be used in one or many designs. Base station technique requirements
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permit the use of these types of 5G antennas in 2D and 3D models, and symmetric or
non-symmetric sub-arrays for small and large sizes.

4. Challenges and Future Directions

Massive MIMO is clearly superior to conventional multiple antenna systems. Massive
MIMO and the most recent 5G technology could work wonders for wireless networking.
However, a number of problems continue to prevent mMIMO from being used practi-
cally [115]. Several issues for hardware components such as choosing the material, size,
cost, and characteristic features (bandwidth, gain, efficiency, mutual coupling, etc.) can be
faced for both types of applications.

The almost unlimited variety of devices will cause various design issues, which in turn
will be exacerbated by the variety of frequencies in 5G. To support the devices operating
on diverse spectral bands, the spectrum must be flexible [116]. The sub-6 GHz frequency
band is becoming the band of interest for 5G communication to solve these issues. In 5G
sub-6 GHz, base station techniques use single and multiband designs through different
frequency ranges, which still face some challenges. With multi shapes for single and
arrays such as ME dipole-cross patches, patch sub-array, multimode-slotted structures, and
other designs, high gain and efficiency can be realized. For smartphone designs with LTE
(42/43/46 and 47) frequency bands, the inverted-F stub fed hybrid-loop antenna, T-shaped
coupled-fed slot antenna, and planar inverted F-antenna (PIFA) can be used with high
performance.

Frequencies do not present a wide variety of challenges as the current questions are
where to put the antenna, how many are needed, and how to keep them from interfering
with each other, especially after the recent demand for a 5G network [117]. In the design
of a symmetrical and asymmetrical array, the placement of the antennas is arranged with
a specified number of elements. Symmetrical and non-symmetrical planar rectangular
arrays such as (4 × 4) and (4 × 1) models of elements, as an example of base station
techniques, arranged the antennas and studied the effect of the single element and arrays
on the radiation pattern directivity, gain, and efficiency. The arrangement of antennas in
smartphone design is to put them at the edges as symmetrical or non-symmetrical for two
sides or one side such as the (8 × 8) model of elements, with each four arranged at each
edge. These can obtain high results with the specified dimensions between elements and
perfect isolation.

The effects of mutual coupling due to the close spacing of the MIMO antenna elements
and their impact on the correlation, which ECC determines, are challenging [118]. However,
the compact size and decoupling techniques for the enhancement of isolation between the
antennas has relatively resolved the problem, and the effect on the characteristics’ results
was positive. The geometry of the antennas was installed in a compact size, which could
contribute to the low mutual coupling and high spectral efficiency. It can be noted that
the 2D and 3D placement of antenna elements have become the support for mMIMO
base stations. Nevertheless, implementing antenna arrays in 2D or 3D can dramatically
decrease energy efficiency and enhance coupling effects. In order to dramatically improve
the spectral efficiency, it is possible to increase the spacing of the array element by using
decoupling techniques. The 3D-model element rectangular planar lattice array uses three
decoupling methods: a ferrite chock ring, a rectangular ring resonator, and a unique baffle
design [28]. A 3D array massive MIMO antenna with a compact size can be used with
decoupling and without decoupling methods such as cylindrical, triangular, and hexagonal
models for enhancement results. The size of the smartphone and the requirements for
design in the massive technique need decoupling methods, which remains one of the key
features of 5G MIMO antennas. Thus, the slot method affects the decoupling component
positively to enhance isolation between other elements [58]. Spatial diversity and polariza-
tion techniques are used with a mMIMO switchable frame antenna array as a decoupling
technique to reduce the coupling effects and enhance isolation [63]. Inverted-F, T-shaped
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decoupling stub, self-decoupling, defective ground structure, and other techniques are also
used as decoupling methods.

As a future direction, to face the challenges of the hardware, the characteristics of
the components, and their modification and enhancement, a metamaterial technique with
unique properties will used as isolation, which is attributed effectively to the enhancement
in the size, gain, efficiency, bandwidth, and other aspects.

In smartphones, maintaining the SAR within the predetermined limits is difficult since
MIMO systems have an increasing number of antennas [119]. Several techniques in design
antennas are used to reduce the SAR results to <2, which is very safe for user applications.
Furthermore, increasing the bandwidth is a much more important goal to decrease the SAR
and high efficiency to ensure safe user handling of the mobile device.

Low-cost hardware is considered as the upcoming demand for 5G systems since it
requires an economy of scale in manufacturing. Despite the fact that the BS has numerous
antennas deployed, a high array gain can still be attained due to hardware shortcomings,
which might result in channel estimate error and a capacity ceiling. The user side will
experience severe hardware impairments compared to the BS side [120]. The high cost
of mMIMO in smartphones also faces a challenge that affects the price of the devices on
the market. Therefore, a reasonable cost and effective technical equipment can achieve
perfect results.

Finally, the selection type of the application is relative to the environment surround-
ing the application and the ways to use it. The environment must provide the optimal
propagation conditions for mMIMO systems to function well. As a future direction, a
three-dimensional massive MIMO array of the base station for maximum coverage and
low SAR for a smartphone with a flexible spectrum band ensures good implementation for
mixture (5G/6G) and 6G networks, whereas a metamaterial is a good choice to improve
the overall performance [121].

5. Conclusions

Massive MIMO is a crucial part of the 5G infrastructure. 5G massive MIMO uses
a large number of antennas for both base stations and mobile devices. Increasing the
number of antennas at the base station in relation to the number of users and smartphones
enhances the performance of a massive MIMO system. Both the mutual coupling and
spatial correlation between antennas play a role. For massive MIMO to work in either
scenario, 5G antennas will need to have exceptional characteristics. As a result, many
5G antennas meet the criteria for the expansion characteristics of massive MIMO systems
applicable to both methods. For sub-6 GHz frequencies, massive MIMO antenna systems
in 5G mid-band base stations have been extended to support a maximum of 256 antenna
elements, while for smartphones, the maximum is 20.
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