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Abstract— A new three-axis serial-kinematic nanopositioning
stage developed for high-bandwidth applications such as video-
rate scanning probe microscopy (SPM) is presented. The stage
employs uniquely designed compliant flexures for guiding the
motion of the sample platform and to minimize parasitic
motion (runout) and off-axis effects compared to previous
designs. Finite element analysis (FEA) predicts the dominant
resonances along the fast (x-axis) and slow (y-axis) scanning
axes at 25.9 and 5.96 kHz, respectively. The performance of the
nanopositioning stage is evaluated and the measured dominant
resonances in the fast and slow scanning directions are 24.2
and 6.0 kHz, respectively, which are in good agreement with
the FEA predictions. The lateral and vertical positioning range
of the prototype stage is approximately 9×9 µm2 and 1 µm,
respectively. Experimental atomic force microscope imaging and
tracking results for closed- and open-loop feedforward control
are presented to demonstrate the performance of the stage.

I. INTRODUCTION

Multiaxis nanopositioning stages are critical in applica-

tions such as atomic force microscope (AFM) imaging,

fiber optic alignment, and micro- and nano-machining. Par-

ticularly, video-rate scanning probe microscopy (SPM) [1]

and high-throughput probe-based nanomanufacturing require

nanopositioners capable of fast and accurate movements.

Control methods such as feedforward- [2] and feedback-

based techniques [3] can be employed to improve the op-

erating bandwidth of nanopositioners. On the other hand,

mechanically-stiff stage designs driven by piezo-stack ac-

tuators can provide high-bandwidth positioning in the kHz

range. One of the major limitations in positioning speed

is low mechanical resonances, and fast operation can be

achieved by developing a mechanically-stiff stage.

A wide variety of multiaxis nanopositioning stages have

been designed, and Table I summarizes a small collection

for comparison. The simplest and effective way to achieve

three-axis motion is to employ sectored tube-shaped piezo-

electric actuators [4]. However, the mechanical resonance of

piezoelectric tube scanners is typically less than 1 kHz in the

lateral scan directions, thus limiting the scan speed [5]–[8].

Additionally, the mechanical cross coupling causes undesir-

able AFM-image distortion [8]. In general, the maximum

positioning bandwidth in open-loop without compensation

is 1/100th to 1/10th of the dominant resonance [2]. Shear

piezos because of their geometry have very high mechanical
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resonances [9]. The major drawback of shear-type piezoac-

tuators is they provide limited range, typically less than

1 µm. Tuning forks have been implemented in both sample

scanning [10] and in probe scanning SPMs. The tuning-fork-

based sample scanners are mechanically simple, but the small

dimensions of the quartz tuning fork limits the scan range

and the scanning motion is typically sinusoidal. Flexure-

guided piezoactuated scanning stages [11], both direct drive

serial-kinematic [1], [12] and parallel-kinematic [13] config-

urations, have been developed for high-speed purposes. The

advantages of flexure-guided scanners are high mechanical

resonances and low cross-coupling. Multiple piezoactuators

per degree-of-freedom (DOF) have been used to increase

range and scanning bandwidth, but at the cost of increased

power to drive the piezoactuators at high frequencies [1],

[13]. Designs which involve mechanical amplification have

been studied to increase range without having to increase

the actuator’s length [11], [14]. However, the added mass

of the mechanical amplifier along with the flexible linkages

lowers the mechanical resonance. In general, a tradeoff must

be made between range and speed.

TABLE I

SHORT SUMMARY OF NANOPOSITIONERS.

Configuration Range Dominant Imaging/line

(µm) Res. (kHz) rate (range)

Tube scanner 125 (x/y) 0.71 (x) 122 lines/s

[5] 0.70 (y) (13.5×13.5 µm2)

Tube scanner n/a 6.35 (x/y) 3 lines/s

Dual stage (z) [6] 80 (z) (25 µm)

Tube scanner 100 (x/y) 0.68 (x/y) 6.25 lines/s

Dual stage (z) [7] 10 (z) 23 (z) (25×25 µm2)

Shear piezo 0.3 (x/y) ∼64 80 frames/s

[9] 0.20 (z) >100 (128×128 px2)

Flexure guided 1 (x) 45 33 frames/s

[1] 3 (y) (100×100 px2)

2 (z) 360 (“self”)

Tuning fork (x) <1 (x) 100 1000 frames/s

Flex. guided (y) [10] 2 (y) 40 (100×100 px2)

Flexure guided 13 (x/y) >20 7810 lines/s

[13] 4.3 (z) 33 (n/a)

Flexure guided [14] 25 (x/y) 2.73 n/a
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Motivated by previous work [12], the main contribution

of this article is a new three-axis, serial-kinematic high-

speed nanopositioning stage which offers approximately

9×9×1 µm range of motion and kHz bandwidth. The pro-

posed design employs a novel flexure geometry to increase

the out-of-plane stiffness, thus reducing the effects of cross-

coupling (from x/y to z). The off-axis flexure stiffness is

enhanced by increasing the quantity of flexures n, decreasing

the flexure length L, and thickening each flexure’s center

cross section. Along the vertical axis (z), a novel plate flexure

guides the motion of the sample stage to minimize the effects

of bending modes. Such modes can significantly limit the

vertical positioning speed by causing the sample platform

to rock side-to-side. It is pointed out that for scanning-type

applications, one lateral axis operates much faster than the

other, and thus the serial-kinematic configuration is practical

and cost-effective. This configuration has been shown to

offer one of the fastest scanning speeds [1], [10]. However,

existing serial-kinematic designs offer relatively short range

motion, typically less than a few micrometers. The proposed

design offers improved operating range compared to previous

designs with kHz operating bandwidth.

II. SERIAL-KINEMATIC NANOPOSITIONING STAGES

Serial-kinematic nanopositioning stages have been pro-

posed for high-speed SPM applications [1], [12]. This con-

figuration is suited for scanning motion, where in the lateral

directions one axis moves significantly faster than the other

for raster-type scanning. A first-generation serial-kinematic

two-axis nanopositioner consisting of multiple parts and

assembled using fasteners is shown in Fig. 1 [12]. The high-

bandwidth x-axis is nested within the low-speed y-axis. The

measured first resonances in the x- and y-axes were 29 kHz

and 1.5 kHz, respectively [12]. Piezo-stack actuators were

used to move the sample platform and the motion of the

platform was guided by stiff compliant flexures to minimize

parasitic motion (runout). Since the stage consisted of many

parts assembled together to create the complete system, slight

misalignment during assembly caused incorrect preload on

the flexures and the piezoactuator. And thus, the stage’s

dynamic response was sensitive to the assembly process and

variations in the mounting and boundary conditions.

An improvement to the first-generation design is shown

in Fig. 2. For better repeatability, the stage body was

manufactured from 7075 aluminum using the wire EDM

process to create a monolithic design. Positioning of the

sample in the vertical direction is achieved using a piezo-

stack actuator embedded into the x-positioning stage. The

dominant resonances in the x and y axes were measured at

10 kHz and 2.4 kHz, respectively.

To take advantage of the monolithic design and further

increase the mechanical bandwidth, the proposed third-

generation design incorporates compliant flexures with im-

proved vertical-stiffness to minimize out-of-plane motion.

Also, strategically-placed flexures minimize the sample plat-

form’s tendency to rotate (θx, θy , θz) at high frequencies.

The stage is designed to ensure that the first resonance in

Fig. 1. First-generation two-axis serial-kinematic high-speed scanner,
where the high-speed stage (x) is nested inside of the low-speed stage (y).
Inset: A close-up view of sample platform and x-axis piezo-stack actuator.

Fig. 2. Second-generation three-axis serial-kinematic stage. The monolithic
design was fabricated using wire electric discharge machining.

Fig. 3. Third-generation three-axis serial-kinematic nanopositioner: (a) a
zoomed-in detailed view of the z piezo-stack actuator assembly with
vertically-stiffened x-flexures and (b) the full stage body, x (high-speed)
and y (low-speed) axis piezoactuators and vertically-stiffened flexures.

all three axes are axial (piston) modes, rather than off-axis

modes which can severely limit scan speed. A functioning

prototype is shown in Fig. 3 and the details of the design,

characterization, and control are discussed next.
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Fig. 4. Generic high-speed stage design simplified to one-DOF systems
modeling the dominant resonant modes.

III. MECHANICAL DESIGN

The use of stiff and compact piezoactuators offers high

mechanical resonances, but the cost is reduction in range.

The cross-sectional area of the piezo-stack actuators can be

increased to improve mechanical stiffness, but doing so will

increase the overall capacitance of the piezoactuator, and

thus increase the required power to drive the actuator at

high frequency. A more practical approach is to focus on

improving the design of the flexures which guide the motion

of the sample stage. However, one major difficulty is to

have the first mechanical resonance occur in the actuation

direction. This is particularly challenging since for a rela-

tively long stack piezoactuator, it is much stiffer in actuation

compared to bending (for a fixed-free boundary condition).

For translational motion ui (i = x, y, z), the first mechanical

resonance is fui,0 =
√

ki/mi/2π, where mi and ki are the

effective translational mass and stiffness, respectively. For

rotational motion θi (i = x, y, z), the first resonance is

fθi,0 =
√

kθi/Ji/2π, where Ji and kθi are the effective

mass moment of inertia and rotational stiffness, respectively.

Figure 4 shows the simplification of a high-speed x-stage

into single DOF systems to model four of the dominating

resonance modes. Isometric, top, and side views of the stage

are shown in Fig. 4(a) through (c), respectively. The top

and side views are broken down into single DOF models

showing the effective springs and masses effecting the body

for actuation ux (d), rotational θz , (e), rotational θy (f), and

vertical uz (g) modes (damping is ignored for convenience).

The design objective is to increase the out-of-plane stiffness

to mass ratios (kz/mz , kθy/Jy , kθz/Jz) to be higher than

the actuation stiffness to mass ratio kx/mx.

A. Flexure Design

The vertical stiffness of the flexures for the x- and y-stages

was increased by (1) increasing the number of flexures n, (2)

utilizing shorter (effective length) flexures, and (3) converting

the flexures from constant rectangular cross section beam

flexures to a serial-compliant double-hinged flexure with a

“rigid” center connecting link [see Fig. 5(c1)-(c3)]. The latter

is referred to as a thickened flexure design. The first step

taken to increase the flexure stiffness in the vertical direction

was studying the affect of how the total number of flexures

n used in parallel, flexure thickness t, and length L effect

the vertical stiffness kz for a given actuation stiffness ki.
This comparison was done using both analytical and finite

element analysis (FEA).

Consider a generic fix-free cantilever beam flexure shown

in Fig. 5(a). The stiffness of a flexure is defined as the

ratio of a load F and the resulting displacement u. The

displacements and loads are: translational displacement ui,

rotational displacement θi, translational force Fi acting on a

point in the i direction, and moment Mi (torque T ) acting

about the i axis (θi), where i = x, y, z. The in- and out-of-

plane compliances for a fixed-free beam are derived using

Castigliano’s second theorem [15]–[17]. The compliance

equations are then used to derive equations for the actuation

and vertical stiffness ki of a fixed-roller guided beam shown

in Fig. 5(b1) through (b4). In the second-generation design

(Fig. 2) fillet radius is considerably small compared to the

flexure length and therefore has minimal impact on the flex-

ure stiffness. For this reason, to simplify the flexure stiffness

equations and initial analysis, the compliance equations were

derived for a beam with a constant cross sectional thickness.

For a fixed-free beam of rectangular cross section the total

strain energy is U = Uaxial +Utorsion +Ubending +Ushear,

U =

∫ L

0

F 2ds

2AE
+

∫ L

0

T 2ds

2GIp
+

∫ L

0

M2ds

2EI
+

∫ L

0

αV 2ds

2GA
,

where L is the beam length, A = ht is the cross sectional

area of the beam, h is the height, t is the thickness, E is

Young’s modulus, G = E/[2(1+ν)] is the shear modulus, ν
is Poisson’s ratio, Ip = ht(h2 + t2)/12 is the polar moment

of inertia, I = ht3/12 is the second moment of inertia about

the vertical z axis, and α is a shape factor for the cross

section used in the shear equation (for a rectangular cross

section α = 3/2) [17], [18]. The displacements ui and θi
are found by taking the partial derivatives of U with respect

to the applied load, i.e.,

ui =
∂U

∂Fi

; θi =
∂U

∂Mi

. (1)

From here the compliances are simply found by dividing

both sides of the displacement by the applied load, i.e.,

Cui,Fj
=

ui

Fj

; Cθi,Mj
=

θi
Mj

. (2)

For example, the compliance of the rectangular cross

section fixed-free beam in Fig. 5(a) due to a point load in the

y direction is found by first finding the total strain energy

U =

∫ L

0

M(x)2dx

2EI(x)
+

∫ L

0

αV (x)2ds

2GA(x)
, (3)

where A(x) and I(x) are constants. Substituting in M(x) =
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Fy(L− x) and V (x) = Fy gives

U =
F 2
y

2EI

∫ L

0

L2 − 2Lx+ x2d(x) +
αF 2

y

2GA

∫ l

0

d(x)

=
F 2
yL

2

6EI
+

αLF 2

2GA
. (4)

Therefore, the resultant displacement is

uy =
∂U

∂Fy

=
FL3

3EI
+

αLFy

GA
, (5)

and the compliance is

Cyy = C22 =
uy

Fy

=
L3

3EI
+

αL

GA
. (6)

The compliance equations (or values) are then used to

form the multi dimensional compliance matrix C which is

defined as the ratio of the displacement U = [x y θz z θy]
T

for a given load L = [Fx Fy Mz Fz My]
T

. This equation is

more commonly seen as
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For a constant cross section fixed-free beam the compliance

values are C11 = L/AE, C22 = L3/3EI + αL/GA,

C23 = L2/2EI , C33 = L/EI , C44 = 4L3/Eh3t+αL/GA,

C45 = 6L2/Eh3t, and C55 = 12L/Eh3t, where α = 3/2.

For a long slender beam, shear strain has little effect and

can therefore be ignored in C22. For a short beam with a

significant height-to-length aspect ratio, such as the vertical

displacement of the flexure shown in Fig. 5(b3), much of

the deflection is in shear, and therefore can not be ignored.

The above matrix equation is used to solve for the actuation

stiffness ky and vertical stiffness kz of a fixed-guided flexure

beam, i.e., Fi/ui = ki. Figure 5(b4) shows the applied load

and the expected deflection curve of the flexure in both the

actuation direction (b2) and vertical direction (b3). The active

load being applied to the flexure is the in-plane force Fi. The

resultant moment Mi = −1/2FiL is caused by the roller

guided end constraint. Therefore, the flexure displacement

in the actuation direction uy due to the applied force Fy and

moment Mz = −1/2FyL is

uy = C22Fy + C23Mz = C22Fy − C23FyL/2

= Fy

[

L3

3EI
+

αL

Ght
−

L

2

L2

2EI

]

, (7)

where the compliance values Cij are given above. Taking the

ratio of the applied load to the displacement, the actuation

stiffness (neglecting shear) is

ky =
Fy

y
=

[

L3

12EI
+

αL

Ght

]

−1

∼=
12EI

L3
. (8)

This result matches the fixed-guided Euler-Bernoulli beam

equation in [17]. Using the same method, the displacement
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Fig. 5. Flexure design: (a) a fixed-free cantilever beam with six DOFs
associated with the applied loads and displacements acting on the free end;
(b1)-(b4) is a fixed guided corner filleted beam flexure with corresponding
top view, side view, and loads for fixed guided condition, (c1)-(c3) is a
fixed guided “thickened” corner filleted beam flexure with corresponding
top view and isolated flexure hinge view.

of the flexure in the vertical direction uz is

uz = C44Fz + C45Mz = C44Fz − C451/2FzL

= Fz

[

4L3

Eh3t
+

αL

Ght
−

L

2

6L2

Eh3t

]

. (9)

Similarly, the vertical stiffness is

kz =

[

L3

Eh3t
+

αL

Ght

]

−1

. (10)

Because of the high aspect ratio in the vertical direction,

shear can not be ignored.

Equations (8) and (10) are used to study the effect of

the quantity of flexures n and flexure thickness t on the

effective vertical out of plane stiffness kz eff . To do this,

a given effective actuation stiffness ky eff of 10 N/µm was

divided by the number of flexures n to give the actuation

stiffness for an individual flexure ky i. Equation (8) is then

used to calculate the length L of the individual flexure for a

given thickness (0.3 to 1-mm thick). The individual vertical

stiffness kz i is then calculated using Eq. (10). The individual

vertical stiffness is multiplied by the quantity of flexures
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to give the effective vertical stiffness. By increasing the

number of flexures from 2 to 12 (1-mm thick) the vertical-

to-actuation stiffness ratio is increased from 76 to 226 N/µm

(197% increase). For n = 2, decreasing the flexure thickness

from 1 to 0.3-mm thick (which in effect decreases the flexure

length) increased the vertical stiffness from 76 to 79.5 N/µm

(4.6% increase). Increasing the number of flexures from 2

to 12 and decreasing the flexure thickness from 1 to 0.3-

mm thick produces a vertical stiffness of 260 N/µm (242%

increase). The red circles in Fig. 6 indicate the kz eff values

obtained using FEA. The FEA results follow the trend of the

analytical results with the only variance being an increase

in effective stiffness (average increase = 27%). Increasing

flexure height h will also increase vertical stiffness but at

the cost of a taller stage body, which increases the mass m
and rotational inertia J and reduces the actuation resonance.

The most dramatic increase in vertical stiffness for a beam

flexure is observed by increasing the number of flexures n.

Decreasing the flexure thickness (and as a result the flexure

length) increases the vertical stiffness as well. The limiting

factor of decreasing the flexure thickness is stress. A shorter

thinner beam flexure will have higher stress concentration

than a longer thicker beam flexure of equal stiffness.

When a corner filleted beam flexure, as studied above, is

displaced in the actuation direction, the majority of the strain

is located at the flexure ends near the fillets. Additionally,

when the same flexure is displaced in the vertical direction,

the majority of the vertical displacement is in shear strain

located at the center cross section. An effective way to further

increase the out-of-plane stiffness of a beam flexure is to

increase the thickness of the center section of the flexure,

thus converting the beam flexure into a double-hinged serial

flexure as shown in Fig. 5(c1)-(c3). Both analytical and

FEA methods were used to study the vertical stiffness of

the ‘thickened’ flexures. The cross-sectional area and second

moment of inertia values in Eq. (3) were replaced with

A(x) = ht(x) and I(x) = ht(x)3, respectively. For example,

the thickness of the flexure in Fig. 5(c1) is

t(x) =







































t+ 2(r −
√

x(2r − x)) , x ∈ [0, a]
t , x ∈ [a, b]

t+ 2(r −
√

(l − x)(2r − l + x)) , x ∈ [b, c]
t+ 2r , x ∈ [c, d]

t+ 2(r −
√

(l − g)(2r − l + g)) , x ∈ [d, e]
t , x ∈ [e, f ]

t+ 2(r −
√

(g)(2r − g)) , x ∈ [f, L]

where a = r, b = l − r, c = l, d = L − l, e = e + r,

f = L−r, g = L−x, t and l are thickness and length of the

thin section of the flexure, r is the fillet radius, t+2r = T is

the thickness of the thickened section, and L is the length of

the entire flexure. For this case, compliance is derived by first

solving for the total strain energy [Eq. (3)] while using the

thickness function t(x) in the area A(x) and second moment

of inertia I(x) equations. For instance, the total strain energy
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Fig. 6. FEA and numerical analysis results showing effective vertical
flexure stiffness kz eff with respect to flexure thickness t and quantity of
flexures n. Effective actuation stiffness ky eff is constant at 10 N/µm.

for bending due to a point load is

U =

∫ l

0

M(x)2dx

2E ht(x)3

12

+

∫ l

0

αV (x)2ds

2Ght(x)

=
12F 2

yL
2

6Eh

∫ L

0

1

t(x)3
+

αLF 2
y

2Gh

∫ L

0

1

t(x)
. (11)

Taking the partial derivative with respect to the applied force

Fy gives

uy =
∂U

∂Fy

=
12FyL

3

3Eh

∫ L

0

1

t(x)3
+

αLFy

Gh

∫ L

0

1

t(x)
. (12)

Table II shows how the vertical stiffness of beam flexures

similar to the ones used on the y-stage can be increased

an additional 20% by increasing the thickness of the center

section. To keep the actuation stiffness ky eff constant, the

length L of the thickened flexure is increased from 9.75 mm

to 10.70 mm.

Flexure placement is important in stage design to increase

rotational stiffness. Increasing the length (and width) of a

stage and placing flexures at the corners of the moving

platform increase rotational stiffness of the platform. The

cost of increasing the size of the platform is increased

mass and rotational inertia. The highest resonance values are

achieved with high stiffness to mass/inertia values.

For the z stage, compliant plate flexures shown in Fig. 3(a)

were attached to the ends of the z-piezoactuator shown in

Fig. 3(b) to constrain the bending modes. In this case, the

piston (along z) mode occurred before the bending mode.

In summary, by increasing the number of flexures n,

decreasing the flexure length L, and thickening the cen-

ter section of a beam flexure to create a serial-compliant

double-hinged flexure, the effective vertical stiffness can be

improved to increase the out-of-plane stiffness. By adding a

plate flexure to the free end of the z-piezoactuator, the first

mode shifts from bending to axial (along z axis).

B. Modal Analysis

Modal analysis was done using the Frequency and Lin-

ear Dynamic (Harmonic) FEA tools in COSMOSWorks.
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TABLE II

y-AXIS FLEXURE STIFFNESS COMPARISON.

Type ky eff (N/µm) kz eff (N/µm)

Analytical FEA Analytical FEA

Filleted beam 5.82 6.00 196.6 213.9

Thickened center 5.84 5.32 237.6 238.2

To simplify the analysis, it was assumed that the motion

of the nested stages would not excite resonances of the

outer stages. The boundary faces of each stage were fixed.

All contacting components are bonded to each other with

compatible meshing. The meshing was done at “high quality”

with refined meshing at the flexure fillets and pivot points.

The predicted first mechanical resonance for the y-, x-, and

z-stages are 5.96 kHz, 25.9 kHz, and 113 kHz respectively,

all in the corresponding stage actuation direction as preferred

(see Fig. 7). Simulated frequency response functions with

global damping ratio of 0.025 were obtained and compared to

the measured responses as shown in Figs. 8(a1) and (b1). The

comparison shows good agreement between the predicted

and measured results.

Fig. 7. First mechanical resonance modes for (a) x- (b) y- and (c) z-stages.
(d) is a cut-out view of the z stage.
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IV. DRIVE ELECTRONICS AND DATA ACQUISITION

The drive electronics for the developed stage were de-

signed using off-the-shelf components. The use of off-the-

shelf components was preferred to simplify the design and to

reduce development time. The fast scanning axes, x and z, re-

quire drive electronics capable of supplying sufficient power

to drive the capacitive piezoelectric loads at high frequency.

The nominal capacitances for the x- and z-axis actuators are

Fig. 9. Custom-designed LabView GUI controlling high-speed data acqui-
sition hardware SPM for imaging (available by contacting the corresponding
author).

380 and 50 nF, respectively. The piezo-amplifiers were built

around the Power Amp Design (www.powerampdesign.net)

PAD129 power op-amp, with a gain bandwidth product of

1 MHz. A DC power supply was constructed from two

linear regulated 100 V, 3 A DC power supplies (Acopian

A100HT300). The two 100 V supplies were wired in series

to create a 0 to 200 V supply for the power op-amp. A

33 kHz low-pass filter was cascaded with the power amplifier

to reduce the affects of signal stepping from the DAC system

used to control piezoactuators.

A LabView SPM control program was created to control

the nanopositioning stage for high-speed AFM imaging. The

front-end graphical user interface (GUI) is shown in Fig. 9.

The program is compatible with National Instrument data

acquisition cards that support the NI-DAQmx drivers, for

example the NI PCI-6115 high-speed simultaneous sampling

data acquisition card, with analog-to-digital conversion band-

width of 10 MS/s and digital-to-analog output bandwidth of

2.5 MS/s. At this rate, the user can record up to several

seconds of 160×160 pixels AFM images with line rates at

8 kHz (50 frames per second).

V. PERFORMANCE CHARACTERIZATION

The performance of the positioning stage shown in Fig. 3

was experimentally evaluated. The displacements of the

sample platform were measured using the Kaman inductive

sensor (SMU9000-15N). Application of 180 V peak-to-peak

sine input at 100 Hz to the x and y piezoactuators resulted

in 7.95 µm and 8.44 µm travel, respectively. Over these

ranges, the measured vertical runouts were 27.6 nm peak-to-

peak (0.35% or -49.2 dB) caused by actuating the x piezo

and 81.4 nm peak-to-peak (0.97% or -40.3 dB) caused by

actuating the y piezo. Since the x and y axes can tolerate a

maximum of 200 V, the maximum lateral range of the stage

is approximately 9×9 µm2. Frequency response functions

were measured using a dynamic signal analyzer (Stanford

Research Systems SRT785). Small inputs (<50 mV) were

applied to the piezo amplifiers during the test to minimize

the effect of nonlinearity such as hysteresis. The measured

responses are shown in Fig. 8(a2) and (b2), where the
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dominant resonance peak for the x and y axes are 24.2 kHz

and 6.0 kHz, respectively. The FEA results are also shown for

comparison, with predicted resonances at 25.9 and 5.96 kHz.

It is pointed out that the dominant resonances agree with

the FEA results, and they are piston (actuation) modes as

predicted by FEA.

VI. CONTROLLER DESIGN AND RESULTS

An analog PID control board was designed to control the

positioning along the x and y directions, i.e., to minimize the

hysteresis and creep effect in the piezoactuator. Figure 10

shows the block diagram and fabricated board. For the

low-speed axis (y), integral control was used with a gain

of approximately 30,000. The measured bandwidth of the

controller in the y direction was 300 Hz. For the x axis,

the PID gains were tuned to kp = 1.2, ki = 1 × 105, and

kd = 1 × 10−5. The control bandwidth was 2.5 kHz. For

relatively low-speed positioning, integral and PID control

were adequate. However, as the scanning speed increases,

significant tracking error exists due to dynamic effects. To

improve the tracking precision for scanning applications,

repetitive control (RC) was added to the PID controller for

x-axis positioning. The block diagram of the plug-in RC

is shown in Fig. 11, where a signal generator with period

Tp is created by a positive feedback loop and pure delay

z−N . The positive integer N = Tp/Ts ∈ N is the number of

points per period of the reference trajectory r(t) and Ts is the

sampling period. The plant (i.e., piezoactuator) is assumed

to be linear and represented by G(z), where z = ejωTs ,

ω ∈ (0, π/Ts). The PID controller is represented by Gc(z).
The low-pass filter Q(z) in the RC block provides robustness

by reducing the effects of high gain at high frequencies. The

cut-off frequency of the low pass filter was set to 7 kHz.

The parameters for the RC include the RC gain krc and two

phase lead compensators P1(z) = zm1 and P2(z) = zm2 ,

where m1 and m2 provide a linear phase lead (in units of

radians) of θ1,2(ω) = m1,2Tsω, for ω ∈ (0, π/Ts). The two

phase lead compensators can be adjusted to compensate for

the phase lag in the closed-loop system and to improve the

tracking performance. For the RC system shown in Fig. 11,

stability is achieved by ensuring that [19]

0 < krc <
2 cos[θT (ω) + θ2(ω)]

A(ω)
(13)

and |[θT (ω)+θ2(ω)]| < π/2, where A(ω) > 0 and θT (ω) are

the magnitude and phase, respectively, of the complimentary

sensitive function, i.e., T (ejωTs) = G0(z)/[1 + G0(z)] =
A(ω)ejωTs . The RC was implemented using FPGA hard-

ware, National Instruments cRIO-9002, using N = 100,

m1 = 6, m2 = 0, and closed-loop sampling frequency of

100 kHz. The RC gain was chosen as krc = 0.95 to satisfy

the stability conditions given in Eq. (13). Additional details

of RC design for SPM can be found in [19].

The closed-loop tracking results for the x-axis are shown

in Fig. 12 comparing PID control and RC for scanning at 1

and 2 kHz. Under PID control, the maximum tracking error

are 23.3% and 43.5% at 1 kHz and 2 kHz, respectively. By

applying RC, the tracking error was reduced significantly to

4.1% and 6.5%.

Fig. 10. Custom-designed analog PID feedback controller board.
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Fig. 12. Tracking results comparing PID and RC: (a) 1 kHz scanning and
(b) 2 kHz scanning for x-axis.

To demonstrate the application of the positioning stage,

AFM images of a calibration sample (with 3 µm pitch and

20 nm height features) are shown in Fig. 13 up to a line

rate of 4 kHz. A NanoSurf easyScan 2 AFM was mounted

to the top of the three-axis stage and used to position the

AFM probe tip above the sample. A relatively-stiff AFM

cantilever with a resonance of 335 kHz was used for contact-

mode imaging. The gains for the vertical PI controller were
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Fig. 13. AFM imaging of a calibration sample with 3 µm pitch and 20 nm
height features: (a1)-(a2) open-loop, (b1)-(b3) closed-loop, and (c1)-(c3)
phase-compensated sine-wave feedforward.

tuned to compensate for sample tilt during imaging (i.e., kp ∈
[10, 1000] and ki ∈ [100, 10, 000]), yet enable the cantilever

to deflect in response to changes in surface features. From

the images, it is evident by the appearance of the curved

features and vertical bands that the effects of hysteresis,

creep, and dynamics in the piezo-stacks are significant in the

open-loop uncompensated images (a1)-(a3). Under closed-

loop control (PID), the distortion due to hysteresis and

the vibration effects are minimized as shown in (b1)-(b3).

However, distortions appears along the left and right edge

of the image due to the phase shift between the desired and

actual response at 500 and 1000 Hz line rate. For high-speed

imaging, to avoid exciting the high-order dynamics, a phase-

compensated sine wave feedforward input was applied [2].

The line rate can be improved significantly, see (c1) to (c3),

up to 4 kHz. Compared to the capabilities of the commercial

AFM (scan rate limit is under 10 Hz), the newly developed

stage can image with negligible distortion due to dynamics

at line rates in the kHz range. In summary, the developed

nanopositioning stage offers relatively large range of motion

and high-bandwidth positioning for applications that include

high-throughput SPM imaging.

VII. CONCLUSIONS

A three-axis serial-kinematic nanopositioning stage was

developed with mechanical resonances in the kHz range

for high-speed applications. Double-hinged serial-flexures

were used to guide the motion of the x and y stages and

to enhance the stiffness in the out-of-plane direction, thus

minimizing the effects of out-of-plane modes. The measured

and predicted dynamic responses were in good agreement,

and preliminary AFM images acquired at line rates up to

4 kHz were presented. Future work focuses on combined

dynamic and hysteresis compensation as well as dual-stage

vertical feedback for precision high-speed positioning.
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