
Design Choices when Architecting Visualizations

Diane Tang∗

Stanford University

Chris Stolte†

Stanford University

Robert Bosch‡

Stanford University

Abstract

In this paper, we focus on some of the key design decisions we faced
during the process of architecting a visualization system and present
some possible choices, with their associated advantages and disad-
vantages. We frame this discussion within the context of Rivet,
our general visualization environment designed for rapidly proto-
typing interactive, exploratory visualization tools for analysis. As
we designed increasingly sophisticated visualizations, we needed
to refine Rivet in order to be able to create these richer displays for
larger and more complex data sets.

The design decisions we discuss in this paper include: the in-
ternal data model, data access, semantic meta-data information the
visualization can use to create effective visual encodings, the need
for data transformations in a visualization tool, modular objects for
flexibility, and the tradeoff between simplicity and expressiveness
when providing methods for creating visualizations.

1 Introduction

Over the past five years, we have tackled many real-world analy-
sis problems using visualizations built within the Rivet visualiza-
tion environment [Bosch et al. 2000], including mobile network vi-
sualizations [Bosch et al. 2000], the Polaris user interface [Stolte
et al. 2002b][Stolte et al. 2002c] and several multiscale visualiza-
tions [Stolte et al. 2002a]. Over this period, as we have gained ex-
perience and tackled successively more complex and difficult prob-
lems, we have needed to revisit certain design issues.

The design choices we faced as we refined Rivet ran the gamut
from architecture refinements for handling more sophisticated data
sets and visualizations to implementation issues. This paper dis-
cusses the following major design issues:

1. Data Model: a data model can simplify the user’s task by pro-
viding an easily understood abstraction and flexibility in the
analyses that can be performed on the data.

2. Data Access: the visualization tool should adapt to the user
and make data access easy, rather than making the user adapt
to the tool.

3. Data Transformations: because users want to be able to trans-
form data during the process of analysis, visualizations need
to provide transformation capabilities.

4. Sophisticated Meta-data: to create effective visualizations and
support the analysis process, a visualization tool can take ad-
vantage of more semantic information than is usually pro-
vided.

5. Modularization of Data, Visualization, and Interaction Ob-
jects: finding the right granularity and API of objects allows
us to combinatorially interchange and combine objects for
maximal flexibility and extensibility.

6. Specification and Scripting: rather than providing only a pro-
grammatic or only a descriptive interface, we gain power and
simplicity by using specification and scripting together.

∗Now at Google Inc., e-mail:diane@google.com
†e-mail:cstolte@cs.stanford.edu
‡Now at VMware, Inc., e-mail:rbosch@vmware.com

In addressing these issues, we had to balance performance, flexi-
bility and expressibility, and the amount of user expertise required.
We discuss the tradeoffs involved throughout the paper.

These design issues fall within a larger context: the process of
building a visualization. One way this process can proceed is via
four basic steps:

1. Design: the designers must decide how to visually represent
the data and which interactions are needed.

2. Build: given this design, they then need to actually build the
tool.

3. Use: the tool is given to end users to analyze their data.

4. Iterate: with use, various refinements are usually needed, such
as collecting different data, changing the visual representa-
tion, or adding additional user interaction capabilities.

While there are other ways of describing the process of building
a visualization, we use these four steps to help frame the discus-
sion in this paper. Specifically, given that the design decisions we
discuss in this paper primarily deal with underlying infrastructure
issues, such as data management, rather than the visual design, our
primary focus is on steps (2) and (4) above. Specifically, all of the
data choices (choosing a data model, importing data, supporting
data transformations, and adding meta-data information) need to be
addressed when building a visualization. In contrast, choosing the
granularity of objects (data, visual, and interaction) and deciding
between specification and scripting also occur in the build step but
mainly impact how easy it is to iterate through the design process.

These steps apply in the design of both highly customized tools,
such as comparing trees, as well as in the design of much more gen-
eral tools. Thus, the same design issues are faced regardless of the
type of tool being built. The main difference will be that different
choices may apply depending on the specific tool being built. Our
goal in this paper is primarily to explain these issues and some of
the tradeoffs involved in possible design choices. We also explain
our own decisions and discuss alternative choices, thus reducing the
duplication of effort and the time needed to create visualizations.

The layout of the rest of this paper is as follows. We first present
a review of the original architecture of Rivet [Bosch et al. 2000]. We
then visit each design decision in turn, presenting the problems we
faced, the possible choices and their ramifications, and the decision
we made and the associated advantages and disadvantages. Related
work will be presented throughout these sections, focusing on the
aspects that are relevant to the issue being discussed; note that many
of the systems being discussed are quite large and complex and
also address many issues that are beyond the scope of this paper.
We conclude and present directions for future work in Sections 9
and 10.

2 Background: Rivet
The original architecture for Rivet consisted of four basic portions:
the data model, the visual objects, the mapping from data values to
visual representations, and the user interaction components [Bosch
et al. 2000][Bosch 2001]. The key design decisions in Rivet focused
on modularity: choosing the right granularity for objects in order to
maximize flexibility.

Originally, Rivet used only basic meta-data consisting of field
names and types and a simple relational data model (i.e., tuples and



tables). Because of the focus on computer systems data, which of-
ten lives in log files, the only data import functionality was regular
expression parsing of flat text files. Rivet also provided internal
transformations, which, because they took tables as input and out-
put, could be composed into an arbitrary transformation network,
with every intermediate result visualizable.

Visually, Rivet used the notion of metaphors and primitives:
Metaphors draw tables by laying out tuples spatially within the dis-
play, and primitives generate a visual mark for each individual tu-
ple. Selectors identify data subsets and can be used to determine
which tuples to highlight or elide.

Some of the issues we discuss in this paper describe how and
why we modified the Rivet architecture. Other portions of Rivet
remained stable. Rivet still uses encodings to map data values to
visual representations, with metaphors using spatial encodings to
determine the position and bounding box of tuples, and primitives
using retinal encodings [Bertin 1983] to determine the visual prop-
erties, such as color and size, when rendering a particular tuple.

Rivet uses an event model, with objects raising events in re-
sponse to user actions such as mouse clicks. To build visualizations,
users write scripts that determine how data is imported, link data to
visual objects, and bind actions to these events to create the effects
of the user interaction. These actions can consist of an arbitrary
sequence of operations, as created by the script-writer. For exam-
ple, the script-writer chooses whether a mouse event that leads to
a zoom corresponds to a semantic or optical zoom. Rivet also uses
the listener model to propagate updates, so that if the user changes
a filter, all associated data transformations are updated, which then
updates the associated visual representations.

This architecture allowed us to create many interactive visualiza-
tions for exploratory data analysis. However, as our visualizations
became more sophisticated, we needed to revisit our design deci-
sions in order to provide increased functionality and generate more
effective visualizations. The rest of the paper discusses these design
decisions both in general and within the context of Rivet.

3 Data Model and Representation
The first design decision is what data model to use internally within
the visualization system. This decision impacts almost every other
design decision, in large part because the data model is the concep-
tual model of the data presented to the user. It also impacts other
choices, such as:

• Data access: can this model accomodate different types of
data and different types of data sources?

• Data transformations: what types of data transformations can
be done within this data model?

• Meta-data: what meta-data information goes along with this
type of data model?

• Moduralizing data, visual, and interaction objects: How eas-
ily can this data model be mapped to a visual representation?
Different visual representations?

One common data model used in visualization systems, espe-
cially general visualization tools, is the relational model (essen-
tially, a tuple- and table-based model). Before we delve into a
detailed discussion of some nuances of the relational model, we
discuss its overall advantages and disadvantages.

The relational model has several advantages. It provides an easy-
to-understand conceptual model for the user. It is also easy to
implement in its basic form. Another major advantage is that it
provides access to many existing datasets, from computer systems
logs to biological data to corporate data warehouses, that are al-
ready stored in relational databases without needing any additional
translation. Another related advantage is that because the relational
model is so prevalent, transferring data between tools also becomes
easier. It is flexible and can be easily mapped to many different
visual representations (bar charts, scatterplots, line charts, Gantt

charts, etc.). Additionally, it provides a general abstraction layer so
that all data sources look equivalent (see Section 4: once the data
is in the visualization model, it does not matter to the user whether
the data comes from a flat file or a data warehouse), and it provides
a general interface to data transformations: the input and output of
data transformations look equivalent, so that data transformations
can be composed regardless of their actual implementation.

Conversely, one disadvantage to this model is that it assumes
some homogeneity to the data. Some types of data, such as graphs
or ragged trees, are difficult to represent using the relational model.
Furthermore, even given such a representation, some data transfor-
mations, such as a prefix tree traversal, can be non-trivial. This
limitation is especially problematic since this type of data is some
of the richest and most interesting data to visualize. For these data
structures, having a custom data model may be a solution that is
both easier to design and likely to yield better performance than the
more general relational model.

Another disadvantage that we discuss here is that certain data
analyses are difficult to perform using the relational model. While
some queries, such as spatial queries or dynamic queries (e.g., fast
computation of filters), can be done using specialized indices or
data structures, one type of query that is inherently difficult to per-
form in the relational model is data reshaping, such as transposing
a relation representing a correlation matrix [Wilkinson 1999]. For
example, consider a data set containing microarray data, with each
microarray having an expression level for a set of genes. One way
to structure the data is to have each tuple (row) represent a microar-
ray and each column represent a gene, so that each tuple contains
all the expression levels for the genes. This structuring of the data is
compact, but limits the set of possible analyses; for example, while
we can group and filter by the microarrays, we can only filter the
genes. We cannot group by the genes since they are in the columns
rather than the rows. Another way to structure the data is to have
three columns in each tuple, with one column for the gene name,
another column for the microarray data, and a third column for the
expression level. This structuring is less compact but more flexible.
This example illustrates that the data organization impacts which
analyses can be performed, therefore impacting the flexibility of
the visualization tool as well.

Given these advantages and disadvantages, we now discuss some
nuances to the relational model, especially in comparing the needs
of a visualization tool to the more general database implementa-
tions.

In the database community, the term “relational model” encom-
passes several concepts: the actual data structure (tuples and re-
lations), the data organization (normalized versus de-normalized
schemas1), and the relational algebra and query language for data
manipulation. In this section, we focus on the first two aspects of
the relational model and the associated advantages and disadvan-
tages, as well as other possible data model choices. Data query and
analysis are discussed further in Section 5.

In the database community, the standard relational model has a
data structure consisting of unordered sets of tuples (e.g., facts or
rows in a table), and tables consisting of homogeneous tuples. The
unordered and homogeneous nature of tuples in a relational table
is insufficient for visualizations because orderings are often needed
both for analytical (discussed more in Section 5) and for drawing
purposes: tuples are drawn in back-to-front order, and nominal do-
mains, which are traditionally un-ordered, must sometimes be or-
dered for display, such as when drawing axis labels. Thus, in Rivet,
we enhance the relational model with these orderings.

The organization of the data, i.e., the data schema, also impacts
the effectiveness of the relational model for visualization. In ad-
dressing this issue, lessons from the database community are appli-

1A normalized schema divides the data into multiple tables to minimize

duplication of data, both within a single table and between tables.



cable. Transaction processing (OLTP) was one of the first database
applications. Because OLTP requires quick update capabilities,
normalized data schemas are optimal: usually only one table needs
to be updated. In contrast, analytical processing (OLAP) often
consists of retrieving many tuples across many relations, which
requires many expensive joins when using a normalized schema.
Thus, using a de-normalized organization is often more optimal.

Alternative Data Models: The relational data model is not the only
model commonly used in the database community. Other data mod-
els are the object-relational data model [obj n. d.] as well as a
hierarchical XML data model [Bourret n. d.].

The object-relational data model essentially tries to have each
table correspond to a table in a database (e.g., for an employee in-
frastructure, there might be an employee object and an address ob-
ject, each with corresponding database tables). This type of model
can be easily mapped to object-oriented code (e.g., Java, C++) us-
ing tools such as JDO (Java Data Objects). This type of model
yields higher performance when traversing an object hierarchy is
the common operation, and could therefore be used in some of the
situations where the relational data model does not perform well,
such as ragged hierarchies. While the object-relational model may
handle complex cases where a great deal of flexibility is needed, in
the general case, the object-relational model is most similar to the
fully normalized OLTP model above and is designed more for quick
updates and reads about specific items by traversing the hierarchy
rather than large reads as is common in a lot of analytics.

The XML model may also be an alternative when the relational
model is not flexible enough. In this model, XML is used to spec-
ify both the data and the meta-data, and is becoming the standard
in some fields, such as biology. However, even XML proponents
recognize that the XML as a database is still in its infancy. For ex-
ample, the current XML query languages (XPath, XQuery) do not
support basic operations such as sorting, joins, grouping, etc. that
are needed for most analytical purposes.

Related Work: In existing general-purpose visualization tools, the
most common data model choice is indeed the relational model.
This model is used in Snap-Together Visualizations [North et al.
2002], DEVise [Livny et al. 1997][Livny et al. 1996], Tioga-2 /
DataSplash [Aiken et al. 1996][Woodruff et al. 2001], Sage / Vis-
age [Roth et al. 1997], and VisDB [Keim and Kriegel 1994]. These
tools focus primarily on normalized relational data, since they focus
significant effort on how to let the user easily perform joins (a non-
trivial problem that Rivet does not tackle). However, with regards
to the data model itself, there is no discussion of the pros and cons
of the relational model, or other choices, in these papers. With re-
gards to data models, Wilkinson [Wilkinson 1999] discusses many
of the disadvantages of the OLAP model with regards to needing
access to the raw data in order to properly compute common statis-
tical measures.

4 Generalized Interface for Data Access

Data access is a key issue in visualization since users often want to
simultaneously visualize data from many sources and the data from
each source may change. The cycle of data exploration is one of
hypothesis, experiment, and analysis, with each analysis either pro-
ducing a result or suggesting a new hypothesis. With every iteration
through the analysis cycle, new data may be collected, the format
of the data being collected may change, and so on. Users do not
care about tradeoffs or where their data or meta-data is stored; they
only want to be able to import all of the data into the visualization
system and then proceed with their exploration and analysis. Thus,
making data access easy is important for making a visualization a
commonly used analysis tool.

One might think that providing access to a database would be
sufficient. Often, however, users need to combine data from multi-
ple sources. Hierarchical relationships may be stored in a flat file,

historical data may be stored in a SQL database, commonly used
aggregates of the historical data may be in a datacube, while other
data may be stored in a text log file.

One advantage of using a relational model is that we can decou-
ple the actual data source from the visualization tool and provide a
general, easy-to-use interface for importing data. Users can easily
specify the different data sources, and once in the visualization tool
all data sources should appear equivalent. To achieve this decou-
pling, Rivet uses three concepts:

• The “ordered” relational data model (Section 3): all data
sources are represented using this abstraction, and thus appear
equivalent to the user.

• Named data sources and a “data repository”: data access is
easy for users since they can use the name to query the repos-
itory to retrieve the data.

• An easy to read, and therefore easy to change, XML file spec-
ifying the provenance information about a data source. Thus,
rather than writing a script to connect to a database or to parse
a CSV file, the information can be quickly specified in this
file. Note that more work, such as writing a script or writing a
specialized translation module, is required to parse more com-
plex text files using regular expressions or to transform other
types of data to the relational model.

Because having easy data access is so important, we put the time
into implementing a regular expression parser, CSV parser, and
OLE DB drivers to connect to SQL databases and MDX datacubes
to ensure that Rivet users could easily import their data. We initially
provided only a regular expression parser for users; this function-
ality is quite flexible but requires a fair amount of expertise and
work to import data correctly. In contrast, directly allowing rela-
tional data to be imported, whether from a CSV file or a database,
is more restrictive but far easier, again showing a tradeoff between
flexibility and ease of use.

Note that in order to achieve a full decoupling of the data sources
from the visualization tool, users must also be able to perform anal-
yses on the data without caring about the implementation of the
transformations and whether they are done within the visualization
tool itself or pushed to the data source (e.g., a SQL query performed
on the database). In other words, the visualization tool must make
all data sources appear equally expressive to users (see Section 5).
One drawback to this approach is that it can be misleading to the
user if the latency of the different data sources varies widely.
Related Work: Many existing visualization systems focus on the
issues that arise after the data is already in the system and do not dis-
cuss data access extensively. Snap-Together Visualizations [North
et al. 2002], and Tioga-2 / DataSplash [Aiken et al. 1996][Woodruff
et al. 2001] mention their reliance on data stored in databases. DE-
Vise [Livny et al. 1997][Livny et al. 1996] is one exception: they
discuss how to support accessing large data sets that do not fit in
memory and how to connect to both databases and alternative data
sources. Specifically, they provide an API so that the user can pro-
gram a converter / extractor for any data source. This approach is
more flexible and extensible but requires more expertise. Note that
this expertise is needed only once per additional type of data source,
however.

5 Data Transformations
During the course of analysis, users will want to see different views
and transformations of the data, such as aggregates, drill downs and
roll ups, filters, and so on. In this section, we discuss several of the
design decisions involved in providing this functionality within the
context of a visualization tool, specifically:

1. Do visualizations need to provide transformation capabilities?

2. Which transformations are needed?

3. Where should these transformations be implemented?

4. How do users call these transformations?



Figure 1: Data analysis tools are often separate from data visualiza-
tion tools, thus requiring that users perform queries in one tool, and
then visualize the results in a separate tool. To perform analysis,
users need to context switch back and forth between two tools. We
advocate a tighter integration to minimize the context-switch time
for effective visualization and analysis.

5. What issues are involved in implementing these transforma-
tions?

Do visualizations need to provide transformation capabilities
(independent of implementation)?

The cycle of analysis involves the user asking a question, choos-
ing a view that will hopefully answer the question, creating the
view, examining it, drawing conclusions, and then iterating.

Having as tight of a loop as possible between performing these
analyses and seeing the resulting visualizations will encourage
more analysts to use visualization (Figure 1) for analysis and not
just presentation. There is a quite a spectrum of options in creat-
ing this loop for visualization designers. One extreme is to require
users to leave the visualization environment to do data transforma-
tions, followed by either re-importing the data or creating a new vi-
sualization; this option creates a high barrier between analysis and
visualization that hampers many users. A middle choice is to have
a single tool with methods for analyzing the data and methods for
displaying the data; Excel is an example of this type of tool. At the
other end of the spectrum is a tool like Polaris [Stolte et al. 2002b],
in which users create specifications (Section 8) that the system uses
to generate both the requisite transformations and the visual display.

We believe that users want to focus on the data and its analysis,
rather than on the details of data manipulation. Thus, to create as
tight of a loop between analysis and visualization as possible, the
user needs to be able to perform analyses within the context of the
visualization tool.

Which transformations should a visualization provide?

Performing analyses within the context of the visualization tool
means that users need to be able to execute data transformations
within the tool. Note that this is still independent of where the
transformations are actually implemented: they could be translated
into database queries, internal transformations, some combination,
etc.

Given this need, the next question is which data transformations
are necessary? For general analyses, we have found several trans-
formations that are commonly used in the analysis process:

• Count and Aggregate: In general, analysis is about counting
or aggregating how many things are in various buckets. Ag-
gregation enables the user to abstract large data sets into un-
derstandable and manageable sizes. For example, how many
oranges come from the states California and Florida? What’s
the average profit per state? This high-level analysis idea
translates into queries of the form group by and aggregate.
Common statistical aggregation operations that are needed are
count, average, sum, min, max, median, etc.

• Sort: Tuples need to be drawn in some order, so that “more
important” tuples are drawn on top; this visual ordering of
tuples is often very useful when analyzing data, since it can

reveal patterns that would be hidden using a different order-
ing [Bertin 1983]. Sorting is one way to get this order. Sort-
ing can also be used to order tuples when drawing non-point
primitives such as lines or polygons. Also, sorting followed
by filtering is one way (not necessarily the fastest) of comput-
ing ranking transformations, e.g., the top ten tuples according
to a particular metric.

• Filter: Especially for large data sets, filtering to display only
the “interesting” range of the data, e.g., only the Western
states or only the top ten percent, is one of the most useful
transformations for reducing clutter in the display.

This list contains the transformations we have needed consistently
in the many visualizations we have built using Rivet. This list is not
complete, because more specialized transformations are sometimes
needed, either for performance reasons or for unique analyses, such
as specialized normalization routines or the k-means clustering al-
gorithm. Also note that if the visualization is a custom rather than
general tool, custom transformations are often needed. Other trans-
formations, such as taking the logarithm of a value, can either be
a data transformation or merely a visual transformation (e.g., just
drawing the data on a log scale).

Another transformation that is commonly needed, especially
when dealing with databases, is the ability to join two (or more)
tables together using a common key or set of keys. For example,
users might want to join a dimension table to a fact table in or-
der to aggregate by some property of a dimension, such as by the
country of the data rather than by state. Joins, however, are not a
transformation that is intrinsic to the data, but rather something that
is necessary given the organization of the data into multiple tables.
Joins are also very expensive to compute. Later in this section, we
discuss whether it is necessary to expose this transformation explic-
itly to the user or whether we can infer which joins are needed using
additional meta-data information.
How and where does the visualization perform the analysis?

Given the query specified by the user (directly or indirectly),
the next question is how and where the visualization performs the
query. Custom transformations likely need custom implementa-
tions. However, for more general transformations such as the ones
listed above, the question is whether the visualization tool needs
to implement its own transformations or whether it can use exter-
nal implementations (such as in a database). For example, while
databases incur a latency for transferring data to the visualization
tool, they are optimized for performing such transformations and
can provide the capability to scale to very large data sets. This
latency can be overcome through various techniques, including
having the visualization tool cache query results and implement
prefetching or other visualization-specific performance optimiza-
tions. Another technique for mitigating latency issues is to do as
much analysis as possible within the database to minimize the size
of the data set that needs to be transferred.

Although pushing data transformations to the database can pro-
vide significant gains, even general visualizations often need their
own internal data transformations for two reasons. First, not all data
sources provide data transformation capabilities; flat files, for ex-
ample, cannot transform their contents. Thus, internal data transfor-
mations are needed in order for users to see an equivalent abstrac-
tion for all data sources (e.g., the data model and transformation
capabilities). By providing this abstraction, relational data transfor-
mations are compositional (their input and output are functionally
equivalent). Thus, transformations can be composed to create more
sophisticated visualizations regardless of their implementation.

Second, visualizations need internal transformations for drawing
purposes. Polaris, for example, has multiple panes in its table-based
visualizations. Rather than performing a query for every pane, we
perform the minimal set of queries to minimize latency and then
use an internal grouping and sorting network to send data to the
appropriate panes for drawing in the needed sorted order.



How do users specify which analyses they want to see?

If a visualization provides transformation capabilities, the next
question is: how do users specify which analyses they want to see?
The basic tradeoff is between flexibility and ease of use, i.e., a pro-
grammatic, explicit interface versus an inferred, implicit interface.
A highly flexible choice is to have the user learn a query language
such as SQL or MDX. This option requires a great deal of user ex-
pertise and limits the user to the associated data sources. Another
similar option is to create an abstraction layer and provide transfor-
mation primitives that the user can link together, or compose, to get
the desired result; this can be done by visual programming (Tioga-
2 [Aiken et al. 1996] or VQE [Derthick et al. 1997]), writing scripts
(Rivet) or macros (Excel), or some other method.

In contrast, the inferred, implicit approach is to generate the
needed transformations (or series of transformations) automatically
from some description, as is done in Polaris [Stolte et al. 2002b].
However, in order for this approach to work, the visualization tool
must provide abstractions and capabilities to make all data sources
look equivalent and appear equally expressive. Further, there needs
to be enough meta-data information to be able to generate the cor-
rect transformations. We discuss this meta-data more in Section 6
below.

Note that these options illustrate a tradeoff between expressibil-
ity and the level of user expertise needed: Of the systems mentioned
above, Polaris is perhaps the most intuitive, but is also the most lim-
ited. While query languages provide the most general set of analy-
sis operations, both query languages and transformation primitives
require more sophistication than Polaris, since the user must deter-
mine not only how to express the analysis to perform but also how
to specify the data display. We consider this latter question in more
detail in Section 8.

What issues are involved when implementing data transforma-
tions?

Finally, if the choice is indeed to implement transformations in-
ternally within the visualization, some of the issues encountered
are:

• Multiple quick passes versus a single pass: Within a trans-
formation, there is the question of whether it is faster to have
multiple quick passes over the data or a single, potentially
much slower, pass through the data.

• Transformation and data granularity: Another question is
whether it is faster to have each transformation perform a sin-
gle operation or a combination of operations. For example, we
have found that group by and aggregate are often performed
in conjunction. One optimization is to combine these opera-
tions into a single transformation that the user can customize
by choosing which fields to group by and then how to aggre-
gate each group. In some sense, rather than looking at trans-
formation granularity, we are looking at data granularity since
the customization is being done at the tuple level rather than
the table level. Some transformations, such as sorting and
ranking, are more easily calculated at the table level.

• Flexibility: Once the decision to implement data transforma-
tions internally is made, the temptation is to make them as
flexible as possible. There are several degrees of flexibility
that can be achieved, some of which are both unnecessary
and expensive, performance-wise. The first choice is whether
to have composable transformations, where any transforma-
tion output can be the input to any other transformation, thus
allowing a wide range of analyses to be performed. While
composability has several benefits, designers often take the
next step that, while independent, takes advantage of com-
posability by providing the capability to form a general net-
work of transformations, in which every intermediate result
is kept and is visualizable. Rivet, like other systems such as

Figure 2: This figure shows a series of successive semantic zooms
(on the left) that an analyst might see while exploring a data set
(the semantic hierarchy is shown on the right). Each visualization
corresponds to a drill down to a more detailed level in the data.
This example illustrates one example of how meta-data informa-
tion might be used in a visualization tool to determine the different
aggregations needed when doing semantic zooming.

Tioga-2 [Aiken et al. 1996] and VTK [Lucas et al. 1992], pro-
vides this capability. While we originally thought this flex-
ibility would be a great advantage, not only is there a large
performance cost, but we also never needed this level of gen-
erality and flexibility — we never visualized the intermediate
results. This performance penalty can be mitigated by using
customizable transformations such as the group by and aggre-
gate example discussed above.

Related Work: Many existing visualization systems recognize the
need for some data transformation capabilities, but they rarely dis-
cuss all the questions discussed above. Instead, they focus on some
subset.

For example, both VQE [Derthick et al. 1997] and Snap-
Together Visualizations [North et al. 2002] focus primarily on how
the user can easily specify which transformations to perform, espe-
cially on the difficult problem of specifying which join(s) to per-
form. In terms of actually performing the transformations, they
choose to push the actual transformations to the database.

In contrast, both Sage [Roth et al. 1997] and Tioga-2 / DataS-
plash [Aiken et al. 1996][Woodruff et al. 2001] focus more on how
flexible the data transformations need to be, and, specifically, that
data transformations need to be composable. This composability
is needed for providing the maximal flexibility to the analyst, es-
pecially with the integration with visualization, so that the every
intermediate result can be seen visually. Tioga-2 uses this function-
ality quite effectively for debugging purposes.

DEVise [Livny et al. 1997][Livny et al. 1996] focuses more on
implementating queries, both in terms of specialized queries and
performance optimizations. For example, like with the data access
in Section 4, they provide an interface that allows expert users to
implement data-source specific queries, such as queries for search-
ing for particular company stock information. As before, this pro-
vides great flexibility and extensibility, but does require substantial
user expertise to set up. They also discuss several interesting per-
formance optimizations, particularly with regards to whether cer-
tain transformations, such as filters, should be performed on tuple
(TData) or graphical primitives (GData).

6 Sophisticated Meta-Data

Meta-data information, the data about the data, is just as important
as the data itself. This meta-data is needed for two main reasons:
to expose semantically meaningful data transformations to the user



Figure 3: Knowing whether fields are ordinal or quantitative helps
in determining which chart types will be most effective visually.
For example, a simple table / matrix view is really the only possible
view if both axes are ordinal (although the display within each cell
can be anything from a simple text field showing the value of a par-
ticular metric to a color-encoded glyph). For ordinal-quantitative
axes, some possible chart types are a Gantt chart or a dot-plot. In
these cases, the ordering of the ordinal field can greatly vary the
efficacy of the chart. Finally, for quantitative-quantitative charts,
possible chart types include line charts, scatterplots, and map (lati-
tude vs. longitude).

Figure 4: Knowing whether fields are ordinal or quantitative helps
in determining which encodings are most effective visually. For
each type of encoding, this table gives some examples of how the
encoding might be used given the mark type (0-dim points, 1-dim
lines, and 2-dim areas), and whether the data being encoded is nom-
inal (unordered) or ordinal/quantitative (ordered). For example,
there is no possible shape encoding given an ordered field since
what is the canonical ordering of shapes?

and to drive design decisions when generating the visual represen-
tation.

Given a visualization tool, in order to expose semantically mean-
ingful data transformations to the user, we need the appropriate
meta-data information. For example, to know which aggregations
are related for drilling down or rolling up data, we need to know the
hierarchy describing the semantic levels of detail (Figure 2 shows a
series of successive semantic zooms that an analyst might see while
exploring a dataset; each visualization corresponds to a drill down
to a more detailed level in the data). Another example is that we
need to know the type of a field to determine which aggregation
functions are appropriate: it does not make sense to apply an aver-
age funtion to nominal field, such as the country.

In addition to exposing meaningful data transformations to the
user, additional meta-data information is useful when automati-
cally inferring the needed transformations, especially when joins
are needed. Joins may be the main reason that query languages are
needed and are the main way to misuse data (e.g., doing inappropri-
ate joins because of a misunderstanding about the keys). However,
given the appropriate meta-data information and constraints on the
data, joins can automatically be inferred. Specifically, we need in-
formation on which fields are in which tables, which fields are pri-
mary keys and foreign keys, and which fields are dimensions (inde-
pendent variables) and measures (dependent variables). In addition
to having this meta-data information, we also need to know which
fields are unique or equivalent across tables (e.g., that a measure
in multiple tables is equivalent), so that we can choose appropriate
sources for output fields.

Having this meta-data information allows us to determine which
transformations are legal (for example, applying an average to a cat-
egorical field makes no sense) as well as which joins are possible,
and then to actually construct the right database queries.

In addition to needing meta-data information in order to in-
fer data transformations, meta-data information is also needed to
make design decisions when generating visualizations. For exam-
ple, knowing whether fields are ordinal or quantitative (discrete or
continuous) helps in determining which chart types are most ef-
fective, or even possible: a bar chart is one option given an ordinal
x-axis and a quantitative y-axis; if both axes were quantitative, how-
ever, either a line chart or a histogram would be needed. Figure 3
shows some possible chart types given the field types. Knowing
whether fields are nominal or ordinal/quantitative (unordered or or-
dered) also helps in determining which encodings are effective (see
Figure 4). For example, using shape for ordered data does not make
sense: what is the canonical ordering of shapes?

Meta-data information is needed for a whole host of other rea-
sons, including providing context (e.g., axis labels) and determining
the range of values to be displayed. The range is especially impor-
tant since its choice (e.g., the spatial encoding on an axis) affects
the user’s perception of the data display. For percentages, not in-
cluding zero can greatly distort the user’s perception of the graph;
similarly, reducing the range may emphasize the slope, leading the
user to perceive a greater change than might actually exist. Another
example is that knowing the absolute domain of a field is essential:
knowing which values are missing is just as important as knowing
which values have data.

Given all of these different ways of using meta-data informa-
tion within a visualization tool, the next question is what specific
meta-data information is needed? While one customary goal when
designing systems is to generalize as much as possible to find the
minimal set of information common to most data sets (typically the
name and storage type of the field), visualizations can take advan-
tage of additional details to create effective displays. To continue
the example above, it is not enough to know that the data field is a
quantitative field since not all quantitative fields should include zero
on their axes. For example, geographical fields (e.g., latitude and



longitude) would be greatly distorted if zero were always included.
Given this insight, what meta-data information can a visualiza-

tion use? First, visualizations can take advantage of type informa-
tion for a field, consisting of several characteristics:

• The canonical “storage” type: real, integer, string, date / time,
and so on. This information is used to determine type-specific
transformations (e.g., Year for a time field), as well as in vi-
sualizations since there are clearly known and expected ways
to draw, for example, time axes.

• Discrete versus continuous: real data is continuous, integer
and nominal data are discrete. This type information can be
used to determine chart type; for example, line charts should
not be used with discrete data since interpolation does not
make sense. This type information can also be used to de-
termine which aggregation functions make sense.

• Ordered versus unordered: real and integer data are ordered,
nominal data is unordered. When choosing retinal encodings,
shape encodings are effective for unordered data while size
encodings would be more effective for ordered data [Cleve-
land 1985].

• Scales [Stevens 1946]: continuous data may be intervals, ra-
tios, geographic data, etc. Ratios should include zero when
displayed spatially, while intervals and geographic fields may
not. The aspect ratio for geographic data depends on the map
projection.

• Units: most measures have units, such as currency, associated
with them. Units are useful for determining which fields can
share an axis. A good example is the Gantt chart: knowing
that the beginning time and the event duration use the same
units allows the visualization to use the duration to encode
the length of the bar on an axis displaying time.

Exposing semantically meaningful data transformations and choos-
ing effective visual encodings depends on having all of this type
information.

Other meta-data information that is useful to know are which
data fields are related. For example, knowing that the (city, state,
country) fields are a semantic hierarchy help for exposing drill
downs and roll ups. Knowing that the “Profit” field in one table
is equivalent to the “Profit” field in another table is useful when in-
ferring joins. When doing joins, we need to know more than just
which data fields are related, we need all of the table meta-data
as well: names of tables, which fields are in which tables, which
field(s) are the keys, as well as which fields are equivalent.

Another useful type of meta-data is domain information. Having
both the absolute domain (range of all possible values) as well as
the actual domain (range of values actually present in a table) is
useful for determining the range on an axis, for example.

Given the usefulness of meta-data, the final question is how to
import and model the information within a visualization. Note that
a database does not typically contain all of this meta-data informa-
tion, so querying a database will not provide a complete solution.
While there are many possible solutions to this problem, we briefly
outline the approach we chose for Rivet.

To import the meta-data, we augment the same XML file used
for specifying the provenance information for a data source (Sec-
tion 4) with the additional meta-data information, such as the type
information, absolute domains, hierarchies, derived field informa-
tion, ad hoc groupings, and so on.

When this meta-data is brought into the visualization environ-
ment, it is treated as a first-class citizen rather than as an add-on to
the data object. For example, not only are fields separate objects
with type information, but domains and hierarchies are also sep-
arate objects, since some domains are static while other domains
change depending on the data or user interaction (e.g., a domain
containing a user-specified filter); domains may also be shared by
different tables. Similarly, some hierarchies are known in advance,

Figure 5: A pipeline showing the flow through a visualization.

while other hierarchies, such as ad hoc groupings, may change as
the user interacts with the visualization.

One additional nuance is that meta-data is not always imported:
if data transformations are supported within the context of a visu-
alization tool, then there are now derived fields, e.g., Sum(Profit)
is derived from the Profit field. The meta-data also needs to be de-
rived. However, there are some subtle complexities: depending on
the transformation, the type of the field may change. For example,
COUNT(DISTINCT(Country)) is an ordered, integral field while
the source field, Country, is an unordered, nominal field.
Related Work: Many existing systems, such as Snap-Together Vi-
sualizations [North et al. 2002], DEVise [Livny et al. 1997][Livny
et al. 1996], and Tioga-2 / DataSplash [Aiken et al. 1996][Woodruff
et al. 2001], use the meta-data information provided in the database
schema, which typically consists of the field name, storage type, ac-
tual domains, and hierarchical relationships. Exbase [Lee and Grin-
stein 1995] discusses the need for additional meta-data information,
but focuses on information that can be automatically inferred from
the database or the query.

Both APT [Mackinlay 1986] and Sage [Roth and Mattis 1990]
discuss how meta-data information can be used to generate appro-
priate visual encodings automatically, with the extended type in-
formation being the primary overlap. Sage discusses how to use
additional meta-data describing the relationships between database
tables in order to support joins.

7 Modularizing Data, Visualization, and
Interaction Objects

The previous sections have focused on using the relational data
model, generalized API for data access, and data transformations
to abstract the raw data. We have also discussed how we can use
meta-data information to choose which visual mappings might be
most effective. In this section, we discuss the other portions of the
visualization pipeline and some issues with modular architectures.

The high-level architecture of a visualization system is often
drawn as a pipeline (Figure 5). One of the fundamental design deci-
sions in Rivet was to modularize each box in the pipeline and then
define the objects and API’s for the arrows connecting the boxes.
By performing this encapsulation, we gain flexibility, since we can
combinatorially compose objects to create a wide variety of visual-
izations and analyses. We also gain extensibility, since new func-
tionality can be incorporated by implementing additional box and
arrow instances within the existing sytem.

This modularization also impacts how quickly one can change
the design of a visualization tool: if all components are tightly
tied together, then changing one requires changing everything. By
choosing the right granularity, one can iterate through design re-
finements more quickly. However, there are many issues that arise
in the modularization that we discuss in this section.

7.1 Visual Encodings

In Rivet, we initially created an architecture for the visual mappings
and the visual display with four basic types of objects:

• Mappings that map values from one type to another, e.g., from
quantitative values to size or from a nominal value to color.



• Encodings that use mappings to explicitly map a particular
data field to a particular visual variable (e.g., Profit to the x-
axis or Product Type to color).

• Metaphors that lay out tuples spatially (using spatial encod-
ings).

• Primitives that use retinal encodings (e.g., shape, color) to
render a tuple in the space allocated by the metaphor.

This architecture has several advantages, as we have discussed
above: it maximizes code re-use, is easily extensible since only the
new mapping or layout algorithm needs to be added, and is highly
flexible since multiple visual representations can be applied to the
same data set, and conversely, the same visual representation can
be used by many different data sets.

However, there are also several disadvantages. One issue that
we have mentioned before is that while increased generalization
may lead to increased flexibility, we cannot hide too many of the
details since visualization is about displaying data in context, and
that context is needed even in the code. One example of where our
generalization led to difficulties is in the separation of the visual
into spatial layout and retinal encodings. Because we need to han-
dle both line and polygon primitives, those primitives need some
spatial knowledge in addition to needing the data to be sorted and
drawn in a certain order (connected lines). Additionally, retinal en-
codings have slightly different meanings depending on the primitive
type [Stolte 2003].

The other primary disadvantage is that this architecture is some-
times over-generalized, thus requiring additional work to generate
the proper mappings and encodings. For example, to find the proper
range in a stacked bar chart, we need to determine the maximum
value for any particular stack. However, in order to determine this
value, needed by the mapping, we need to know not only the nu-
meric field being stacked (known by the encoding), but also which
ordinal/nominal field is used for creating the stacks (known by the
metaphor).

One area for future work is to examine whether our initial
choices in determining the set of object primitives and interfaces
led to these difficulties, as well as whether different modulariza-
tions solve these problems (and with what tradeoffs): a different
choice may lead to a different set of issues.
Related Work: Many systems, including Sage [Roth et al. 1997],
DEVise [Livny et al. 1997][Livny et al. 1996], and Tioga-2 / DataS-
plash [Aiken et al. 1996][Woodruff et al. 2001], use the idea of vi-
sual encodings to create an abstraction between the data and the
corresponding visual representations.

7.2 Interaction

While we would like to encapsulate interaction much as we en-
capsulate the data to visual mappings in order to realize the same
benefits, it is more difficult since there are at least three different
axes along which to encapsulate interactions:

1. Outputs: The first axis to look at is the end effects of the inter-
action. For example, an interaction can affect the raw data, the
data transformations, the visual mappings, or the view itself
(e.g., rotation).

2. Inputs: The second axis to look at is the inputs. For example,
some interactions require the mapping between data and vi-
sual so that when given a selected area in visual space, which
data tuples correspond to the selected area can be determined,
such as is needed for brushing or tooltips.

3. Triggers: The final axis to look at is how the interactions are
triggered. For example, panning can be triggered by a track-
ball interface, a scrollbar, arrow keys, etc.

Looking at the visualization pipeline, what we chose to do is pro-
vide interfaces on the boxes (the data and visual objects), which
correspond to the outputs axis. These interfaces correspond to high-
level actions, such as pan and zoom. Note that with Rivet scripting

(Section 2), we can build even higher-level actions in the script. Al-
ternatively, the script-writer can choose whether an action (however
triggered) corresponds to an optical zoom on the visual object or a
semantic zoom on the data object.

To abstract the triggers axis, Rivet takes advantage of its event
callback methodology to build interactions (Section 2): the objects
themselves do not care who calls their interfaces or how. Like Java,
the interfaces can be triggered by any mouse interaction, any key
press, etc., all depending on how the script is built.

The inputs axis only needs to be abstracted when the user actions
need additional translation to determine other inputs to the object
interfaces. For example, in the simple panning case, the object just
needs to know whether to move up or down (or left or right). A
more complex interface would need to know how far to move — an
additional input is needed, based on translating the actual triggers,
such as amount of mouse movement or speed of key presses. To ab-
stract the inputs axis, Rivet uses the notion of a transparent overlay
to translate mouse events into higher-level interaction events. Dif-
ferent overlays implement different translations; one overlay trans-
lates mouse events according to a trackball interface for panning
and rotation, while another overlay translates mouse events into in-
put for selection (e.g., rubberbanding). Essentially, these overlays
use the triggers to aid in translation when the interactions need to
know about spatial encodings.

Because selection is such a prevalent and complex operation, we
use two additional abstractions. The first abstraction takes advan-
tage of our modular (and inheritance-based) model for visual ob-
jects. Specifically, we have a base metaphor class that implements
techniques common to all metaphors, including whether tuples are
being rendered or just laid out for selection (picking) purposes.
Thus, individual metaphor classes only need to implement the ac-
tual layout. The second abstraction is to modularize the notion of
selection itself. Selection may mean choosing a single range of
values, choosing multiple ranges (e.g., selection on multiple axes),
choosing distinct values, choosing distinct tuples, etc. Thus, we
also have a general selection API, with individual selection classes
implementing the specific type of selection desired.

Related Work: Snap-Together Visualizations [North et al. 2002]
focus on how to layer user interaction on top of visualizations for
coordination. While they focus on interaction rather than visual-
ization (leaving that to the individual visualization tools snapped
together using their interface), they have a very different model in
which every visualization that is snapped together is done so via the
equivalent of a database join. This model leads to easily achieving
some powerful interaction capabilities such as brushing and linking.

Chi et al. [Chi and Riedl 1998] and Chuah et al. [Chuah and
Roth 1996] present frameworks for organizing the different types
of interactions within a visualization. They both organize the in-
teractions by their end effects (e.g., whether the value (data), view
(graphics), or some combination is affected). Chi discusses imple-
mentation only briefly, pointing out that where the operator would
be optimally placed (within the visualization, the database, or in a
specialized tool) depends on where in the visualization pipeline the
interaction falls.

7.3 Modularity Issues

While we have mentioned the many advantages of modularity, there
are several issues that arise with a modular architecture as well.

One issue with modularity is that if the objects and API’s are
not designed with all cases in mind from the beginning, making
changes later on can be very difficult. We pointed out one example
above with the point primitives, but meta-data information is an-
other even more important example. We originally designed Rivet
using the pipeline model and focused on modularizing data and its
display. As we realized the importance of meta-data and its display
and interaction, we created separate meta-data objects for use in



Figure 6: An XML specification and the generated visualization.

creating effective visualizations of data, as discussed in Section 6.
However, rather than modularizing meta-data displays (e.g., axes,
label, legends) and interaction separately, a more accurate pipeline
would recognize that meta-data should be treated like data and be
designed accordingly.

Another issue is the listener model commonly used in modular
code. In this model, objects “listen” to one another, and when an
object changes, it notifies all of its listeners so that they can update
themselves. For example, if the user changes the color mapping,
the mapping informs the encoding, which then notifies all of the
objects that use that encoding for drawing, so that they then will re-
draw. While the listener model simplifies the implementation for
the designer since the coder does not need to determine exactly
what needs to be updated on every change, getting the implementa-
tion of the listener model correct is tricky, since the propagation of
change events may easily lead to over-updating of objects, resulting
in a performance loss. The key is that each event needs to say not
just that something changed, but to say what changed so that only
the minimal set of updates and propagations happen.

8 Specification and Scripting

The final design decision we discuss is how to create visualizations
given the infrastructure discussed in the previous sections. The
method chosen here impacts how quickly a visualization tool’s de-
sign can iterate. There is a spectrum of choices here as well, again
with a tradeoff between simplicity and expressibility.

One extreme is to use scripting (a procedural approach) to create
the visualization. Scripting requires the most expertise and takes
the most time, but has the most expressibility and flexibility: users
can explicitly create the views of the data they want, the layout of
those views, the exact interactions and results of those interactions,

and so on.
The other is to use a tool like the Polaris user interface2, where

the user interactively drags-and-drops field names to create a visu-
alization. While this interface is intuitive to use, the user is con-
strained to table-based visualizations and to the interactions and
data analysis capabilities exposed by the user interface.

As we created more interactive exploratory visualization tools,
such as the Polaris user interface and tools for exploring com-
puter systems data, we found that table-based visualizations were
predominant and highly useful. We created the Polaris formal-
ism [Stolte et al. 2002b] describing this class of visualizations,
which then formed the basis for our specification language. Writing
a specification (a declarative approach) is like filling out a template
containing the specific fields the user wants to visualize, and the
specification can be used to generate both the data queries needed to
retrieve the data being visualized and the visual encodings needed
to create the display itself.

This specification language is a middle ground, in that the user
can create static table-based visualizations simply by filling out a
template (implemented using XML). In fact, the user can create
more sophisticated visualizations using the specification language
than is possible in the Polaris user interface3, since creating intu-
itive affordances corresponding to some more advanced features,
such as the nest operator, is quite difficult [Stolte 2003]. When
comparing filling out specifications to writing scripts, specifications
are easier but more restrictive. In this case, the user can only create
table-based visualizations without interaction, while scripts require
more expertise but are much more powerful.

Rather than choosing either specification or scripting, yet an-
other option is to combine the two to gain expressibility without
requiring too much more expertise. The specifications define both
the visual and the data abstraction (i.e., the visual representation
and the data transformations) [Stolte et al. 2002a]; a sample speci-
fication is shown in Figure 6. By pushing the repetitive definitions
to the specifications, the scripts are simpler, since they only need
to define the interaction and the transitions between specifications.
The scripts are simplified even further since we have XML files for
specifying the data (including the data import). We retain all the
power of Rivet, since scripts can be used to create any visualiza-
tions beyond the scope of the specification language.

While specifications can be used to create static visualizations,
one area of future work is to explore how to specify interactive visu-
alizations. One approach is to research transitions and interactions
further to see if we can find a parameterization or formal structure
to use in a specification.
Related Work: Several systems address this debate between spec-
ification and scripting.

Snap-together Visualizations [North et al. 2002] falls on the
specification side while addressing a very different problem of try-
ing to define the interactions rather than the visualizations. How-
ever, they do make the point that scripting is too difficult for users.

Sage and Visage [Roth et al. 1997] provide several different in-
terfaces. While they also use scripting for interaction, designing
the visualization itself is done automatically using Sage, by visual
specification using SageBrush, or by searching for similar exam-
ples using SageBook. Thus, while they recognize the usefulness of
both scripting and specification, the two are not used in concert.

Tioga-2 and DataSplash [Aiken et al. 1996][Woodruff et al.
2001] use another approach, similar to visual programming, where
the user can link together icons representing actions and both data
and graphical transformations.

2The Polaris user interface is built using Rivet scripting and illustrates a

third option, which is to bootstrap one extreme to reach the other.
3Creating visualizations using the Polaris user interface is equivalent to

creating a specification visually. However, there are valid specifications that

cannot be created using the Polaris user interface.



Wilkinson [Wilkinson 1999] also has a concise language for
specifying visualizations that is quite powerful and descriptive.
However, this language is used only for creating static displays.

9 Future Work

While we have pointed out various directions for future work within
the various sections, graphics and database performance are a spe-
cific area of concern for visualization that bears further exploration.

9.1 Graphics Performance

Graphics hardware is getting faster at the pace suggested by
Moore’s law, yet most visualizations do not take advantage of the
graphics hardware, even when displaying large data sets. One issue
is that graphics hardware designers are optimizing for 3D graphics,
partly because of the high performance demands from the lucra-
tive gaming industry, but also because visualization designers have
not pushed the limits of graphics hardware and come up with a list
of needs. For example, while we initially chose OpenGL for its
portability, it is designed for monolithic 3D graphics applications
such as games. As a result, Rivet, with its modular architecture and
2D graphics, needs to do additional work for performance, such as
maintaining its own state and using different contexts for different
windows (different frames within the same window share the same
context) to minimize context-switching, an expensive operation in
OpenGL. Other interfaces such as DirectDraw may be a better fit
for this type of visualization system.

Thus, one area for future work is to examine the limits of cur-
rent graphics APIs and hardware for visualization. A few visual-
ization applications do push the limits of graphics hardware, such
as Fekete et al.’s work on large data sets [Fekete and Plaisant 2002]
and Solomon’s work on CAD layout [Solomon 2002].

9.2 Database Performance

Visualization can be seen as the intersection of user interface de-
sign, graphics, and databases, and therefore database performance
is another area for optimizations.

While database researchers have done a lot of work on optimiz-
ing databases, these optimizations are for typical database usage:
multiple users, each submitting unrelated queries simultaneously,
with subsequent queries likely unrelated. In other words, there is
little locality to exploit. Database researchers have also recognized
the difference between OLAP and OLTP databases and created dif-
ferent database organizations and optimizations for each.

However, visualization systems require both more information
and different optimizations than existing databases provide. One
issue is to determine whether these optimizations belong in the
database or in the visualization tool. For example, if the visual-
ization wants to display sampled data or streamed data from a large
database, that sampling or streaming functionality belongs in the
database. On the other hand, prefetching belongs in the visual-
ization, since the visualization tool has two advantages a general
database does not. First, a single analysis session within a visu-
alization is likely to have more locality. Second, visualizations
can exploit this locality by providing interaction paths that make
traversing the likely course of analysis easier, e.g., drill downs and
roll ups, changing the filter, etc. While predicting the likely course
of analysis is more difficult in tool like the Polaris user interface,
it is significantly easier to predict the user’s path in the multiscale
visualizations [Stolte et al. 2002a] and prefetch accordingly. Other
display-specific choices that affect the data abstraction, such as im-
portance ordering, also belong in the visualization tool.

Finally, latency is the big issue with regards to integrating visu-
alization tools with databases. Prefetching can help alleviate this
problem, but the latency of bringing data into the visualization is

still a fundamental bottleneck. Some other ways to address the la-
tency issue include sampling the data set and estimating and bound-
ing the uncertainty of the data [Hellerstein et al. 1999].

10 Conclusion

In this paper, we discuss the design decisions we needed to revisit as
we refined Rivet to create more sophisticated interactive visualiza-
tions for exploration and analysis of large data sets. Specifically, for
each design choice, we discuss its importance, implications, some
possible approaches and the associated advantages and disadvan-
tages, as well as some implementation challenges. The issues we
discuss include:

• Data Model: the ordered relational model provides flexibility
and a layer of abstraction that makes the generalized data in-
terface, data transformations, and separation of data, visual,
and interaction objects possible.

• Simplification of Data Access: users will not use visualization
tools regularly unless it is easy to import their data.

• Data Transformations: a tight loop between analysis and vi-
sualization allows the user to perform analyses more quickly
and easily.

• Sophisticated Meta-data: with additional meta-data, visual-
izations can choose encodings more effectively.

• Modularization of Data, Visual, and Interaction Objects:
while modularization gains flexibility and extensibility, there
can be dangers to over-generalization.

• Specification and Scripting: choosing how to create visualiza-
tions involves a tradeoff between expertise and expressibility.

These issues arise whether the designer is building a custom
visualization or a more general tool; the main differences are the
choices made. This paper has presented a discussion of the differ-
ent trade-offs and options so that designers need not go through the
same discovery process that we went through and can thus architect
visualizations quickly and effectively.

11 Acknowledgments

This work was supported by the US Department of Energy through
the ASCI Level 1 Alliance with Stanford University.

References

AIKEN, A., CHEN, J., LIN, M., SPALDING, M., STONEBRAKER,
M., AND WOODRUFF, A. 1996. The Tioga-2 database visualiza-
tion environment. Lecture Notes in Computer Science: Database
Issues for Data Visualization 1183.

BERTIN, J. 1983. Semiology of Graphics: Diagrams, Networks,
Maps. Univ. of Wisconsin Press.

BOSCH, R., STOLTE, C., TANG, D., GERTH, J., ROSENBLUM,
M., AND HANRAHAN, P. 2000. Rivet: A flexible environment
for computer systems visualization. Computer Graphics 34, 1.

BOSCH, R. 2001. Using Visualization to Understand the Behavior
of Computer Systems. PhD thesis, Stanford University.

BOURRET, R. Xml and databases
(http://www.rpbourret.com/xml/xmlanddatabases.htm).

CARD, S., MACKINLAY, J., AND SHNEIDERMAN, B. 1999. Read-
ings in Information Visualization. Morgan Kaufmann.

CHI, E., AND RIEDL, J. 1998. An operator interaction frame-
work for visualization systems. In Proc. of IEEE Symposium on
Information Visualization.



CHUAH, M., AND ROTH, S. 1996. On the semantics of interac-
tive visualizations. In Proc. of IEEE Symposium on Information
Visualization.

CLEVELAND, W. 1985. Elements of Graphing Data. Wadsworth
Advanced Books and Software.

DERTHICK, M., KOLOJEJCHICK, J., AND ROTH, S. 1997. An
interactive visual query environment for exploring data. In Proc.
of ACM SIGKDD, 2–9.

FEKETE, J., AND PLAISANT, C. 2002. Interactive information
visualization of a million items. In Proc. of IEEE Symposium on
Information Visualization.

HELLERSTEIN, J., AVNUR, R., CHOU, A., OLSTON, C., RA-
MAN, V., ROTH, T., HIDBER, C., AND HAAS, P. 1999. Inter-
active data analysis: The control project. IEEE Computer.

HUFF, D. 1954. How to Lie with Statistics. WW Norton.

KEIM, D., AND KRIEGEL, H. 1994. VisDB: Database exploration
using multidimensional visualization. IEEE Computer Graphics
and Applications 14, 5, 40–49.

LEE, J., AND GRINSTEIN, G. 1995. An architecture for retaining
and analyzing visual explorations of databases. In Proc. of IEEE
Visualization, 101–108.

LIVNY, M., RAMAKRISHNAN, R., AND MYLLYMAKI, J. 1996.
Visual exploration of large data sets. In Proc. of SPIE, vol. 2657.

LIVNY, M., RAMAKRISHNAN, R., BEYER, K., CHEN, G.,
DONJERKOVIC, D., LAWANDE, S., MYLLYMAKI, J., AND

WENGER, K. 1997. DEVise: Integrated querying and visual
exploration of large datasets. In Proc. of ACM SIGMOD.

LUCAS, B., ABRAM, G., COLLINS, N., EPSTEIN, D., GREESH,
D., AND MCAULIFFE, K. 1992. An architecture for a scientific
visualization system. In Proc. of IEEE Symposium on Informa-
tion Visualization.

MACKINLAY, J. 1986. Automating the design of graphical presen-
tations of relational information. ACM Transactions on Graph-
ics, 110–141.

NORTH, C., CONKLIN, N., INDUKURI, K., AND SAINI, V. 2002.
Visualization schemas and a web-based architecture for custom
multiple-view visualization of multiple-table databases. Infor-
mation Visualization.

Web services and service-oriented architectures
(http://www.service-architecture.com).

ROTH, S., AND MATTIS, J. 1990. Data characterization for intel-
ligent graphics presentation. In Proc. of SIGCHI.

ROTH, S., CHUAH, M., KERPEDIJIEV, S., KOLOJEJCHICK, J.,
AND LUCAS, P. 1997. Towards an information visualization
workspace: Combining multiple means of expression. Human-
Computer Interaction Journal 12, 1 and 2, 131–185.

SOLOMON, J. 2002. The ChipMap: Visualizing Large VLSI Phys-
ical Design Datasets. PhD thesis, Stanford University.

STEVENS, S. S. 1946. On the theory of scales of measurement.
Science 103, 2684, 677–680.

STOLTE, C., TANG, D., AND HANRAHAN, P. 2002. Multiscale
visualization using data cubes. In Proc. of IEEE Symposium on
Information Visualization.

STOLTE, C., TANG, D., AND HANRAHAN, P. 2002. Po-
laris: A system for query, analysis, and visualization of multi-
dimensional relational databases. IEEE Transactions on Visual-
ization and Computer Graphics 8, 1, 52–65.

STOLTE, C., TANG, D., AND HANRAHAN, P. 2002. Query, analy-
sis, and visualization of hierarchically structured data using Po-
laris. In Proc. of ACM SIGKDD.

STOLTE, C. 2003. Query, Analysis, and Visualization of Multidi-
mensional Databases. PhD thesis, Stanford University.

THOMSEN, E. 1997. OLAP Solutions: Building Multidimensional
Information Systems. Wiley Computer Publishing.

WILKINSON, L. 1999. The Grammar of Graphics. Springer.

WOODRUFF, A., OLSTON, C., AIKEN, A., CHU, M., ERCEGO-
VAC, V., LIN, M., SPALDING, M., AND STONEBRAKER, M.
2001. Datasplash: A direct manipulation environment for pro-
gramming semantic zoom visualizations of tabular data. Journal
of Visual Languages and Computing 12, 5, 551–571.


