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Several design–concepts are presented for so–called efficiency achromatized diffractive optical elements (EA–DOEs) possessing a diffraction
efficiency larger than 97% over a broad spectral range. We start with tracing two different methods for surface relief profiles well known
from the literature: common depth and multilayer EA–DOEs. Successively we present the following new approaches together with design
parameters and performance properties: 1) gradient–index EA–DOEs, 2) sub–wavelength EA–DOEs, and 3) a so–called cut–and–paste strategy.
All designs are based on scalar assumptions and certain necessary dispersion relations of two different materials. The scalar assumption
is no real limitation as the minimum zone width of our main application, the correction of chromatic aberrations, is 50 . . . 100 times the
wavelength. From aforementioned relations, design parameters as profile heights are derived and the resulting diffraction efficiency can be
deduced. Moreover, for the multilayer and for the GRIN EA–DOEs we are able to show that if the dispersion relations of the materials can
be accurately described by second order Cauchy series, the efficiency becomes generic and will be the same regardless of which materials
are chosen. [DOI: 10.2971/jeos.2008.08015]
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1 INTRODUCTION

By achromatization one mainly understands the correction of
longitudinal chromatic aberrations in optical systems, which
is due to the fact that at different wavelengths the glass mate-
rials possess different refractive indices, a phenomenon called
dispersion. The longitudinal achromatization condition for
two lenses 1 and 2 of different materials relates focal lengths
f1, f2 and the corresponding Abbe numbers ν1, ν2:

1
f1ν1

+
1

f2ν2
= 0. (1)

Since the Abbe numbers of glasses always have positive val-
ues between 20 and 90, in purely refractive optical systems
longitudinal chromatic aberrations can only be corrected by
using lenses with positive and negative focal lengths. This has
been done in optical systems called dichromats, achromats,
trichromats, or apochromats, where for two or three wave-
lengths, longitudinal chromatic aberrations have been elimi-
nated. Between these wavelengths only a small secondary or
tertiary spectrum remains.

It is possible to define a dispersion relation for diffractive op-
tical elements as well. In what follows, the term DOE is used
for diffractive lenses, gratings, holographic optical elements,
computer generated holograms, and other kinds of diffractive
optical elements with blazing phase. A DOE has a negative
Abbe number νDOE ≈ −3.45 (cf. e.g. [1]) if it is used for chro-
matic aberration correction in the visible spectrum. Because
of the negative sign, the modified achromatization condition

in Eq. (1) with ν2 replaced by νDOE can even be fulfilled in case
that focal lengths of both refractive and diffractive lenses have
the same algebraic sign, which offers new design possibilities
[1].

Optical lens systems with DOEs are often called hybrid opti-
cal systems. A lens with a DOE on one of its sides is called a
hybrid lens. Some examples of hybrid optical systems can be
found in [1]-[5]. The chromatic correction capability of DOEs
can in principle be easily exploited to correct large chromatic
errors occuring in broadband optical systems by an adapted
zone width polynomial. Unfortunately, the diffraction effi-
ciency decreases for wavelengths λ deviating from the design
wavelength λ0, which prevents from frequent use of DOEs
in broadband optical systems. Consequently, DOE usage is
mostly limited to applications with small spectral bandwidth.
This well known drawback holds for all conventional DOEs
made of a single material. However, high broadband effi-
ciency can e.g. also be achieved with a single material using
the dispersion properties generated by sub–wavelength struc-
tures [6] or, for the reflection case, by appropriately designing
the band gaps of photonic crystal rod gratings [7].

The above deficiency of conventional DOEs has been over-
come for surface relief DOEs with common depth [8] consist-
ing of two different materials, which are combined in such
a way that the dispersion of both materials compensate the
wavelength dependency of the optical phase in a broader
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wavelength interval. This approach can be further improved
by allowing the profiles of the two material to have different
depths [9]-[12]. These approaches are presented in [13, 14] and
are nicely explained in more detail in [15] together with a dis-
cussion of their different fabrication tolerances and the accu-
racy of the applied theoretical models. All these diffractive
elements show high diffraction efficiencies above 97%, some
even exceeding 99% over a broad spectral range from λshort to
λlong.

In the previous literature [14, 15], these DOEs for broadband
use have been referred to as achromatized DOEs (A–DOEs).
However, the term “achromatization” of optical elements is
already assigned to the correction of longitudinal and other
chromatic aberrations as we have discussed above. Hence,
to make the new broadband property of DOEs more distin-
guishable from the well known focal length correction we pre-
fer to call these diffractive elements “efficiency achromatized
DOEs” (EA–DOEs).

EA–DOEs have a broad application range since they can be
applied in all optical systems where conventional DOEs for
the correction of longitudinal chromatic aberrations as well as
of the chromatic difference of magnification are already used.
These can be photo lenses [11], Head Mounted Displays as
e.g. the so–called Cinemizer [16], eyepieces [17], telescopes,
binoculars, glasses, and so on. For several years, photographic
lenses with embedded broadband high–efficiency DOE are
commercially available from Canon [11] (“EF 70-300/4.5-6.7
DO IS USM” and “EF 400/4.0 DO IS USM”).

Within this paper, we present several new design concepts for
EA–DOEs using gradient–index materials, sub–wavelength
structures, and a so–called cut–and–paste strategy. Generally,
these EA–DOEs are appropriate to substitute for all conven-
tional DOEs schematically shown in Figure 1 with local zone
width d. However, for the proposed concepts it does not mat-
ter whether zone width d varies over a radial position or is
constant which would be the case for the DOE being an axi-
con. Of course, the DOE could also be a simple linear grating.

The paper is arranged as follows. In Section 2, properties of
conventional surface relief DOEs and EA–DOEs are briefly re-
viewed as an introduction to this topic. In Section 2.3 condi-
tions are given resulting in a generic fully material indepen-
dent efficiency behaviour. In Section 3, gradient–index EA–
DOEs together with their properties are introduced and some
ideas for their fabrication are given. Section 4 presents sub–
wavelength EA–DOEs together with several embodiments
and properties. The cut–and–paste design in Section 5 is a
further generalisation of surface relief EA–DOEs.

2 STATE OF THE ART DOEs

2.1 Conventional DOEs

Generally, all DOEs like conventional rotationally symmetri-
cal DOEs (cf. Figure 1) or linear diffraction gratings diffract
light into several orders. It is, however, possible to choose a
profile such that nearly all of the incoming light with design

h

d

0

FIG. 1 Schematic representation of a cross section through a conventional DOE with

sawtooth profiles of local zone width d and profile depth h.

wavelength λ0 is diffracted into a single diffraction order —
the blaze profile, which is a sawtooth profile of appropriate
depth. If the DOE consists of a dielectric material with refrac-
tive index nDOE and the superstrate material is air, then the
optimum profile depth h1 can be found from condition

h1 =
λ0

nDOE − nair
=

λ0

nDOE − 1
. (2)

Then the first order diffraction efficiency η(λ0) for normal in-
cidence at the design wavelength λ0 is 100% in scalar diffrac-
tion theory neglecting Fresnel reflection and all rigorous ef-
fects coming from finite thickness and profile edges of the
DOE. For 100% efficiency in the m-th diffraction order the op-
timum profile depth h1 has to be multiplied by m. However,
without any loss of generality the present paper is restricted
to the first diffraction order, i. e. m = 1 which is most often
used in practice. Oblique incidence is not considered here as it
would go beyond the scope of this publication. For a detailed
investigation concerning conventional blaze gratings, we refer
to [18].

Deviations from the design wavelength λ0 decrease the
diffraction efficiency η in the design order and may result
in unwanted stray light (flare) and coloured double images
coming from adjacent diffraction orders, if this light cannot be
blocked by apertures or other constructive means. Generally,
within scalar diffraction theory, the efficiency η of the first
diffraction order can be calculated from the phase function
Φ(λ) according to the following relation [19], which is
repeatedly required in the following:

η(λ) = sinc2

(
Φ(λ)

2π
− 1

)
with sinc(x) :=

sin(πx)
πx

. (3)

In the specific case of a surface relief blaze structure of a di-
electric material adjacent to air, the diffraction efficiency of the
design order as function of wavelength λ and under consider-
ation of the material dispersion can be calculated from Eq. (3)
and the phase function

Φ(λ) =
2πλ0

λ

n(λ)− 1
n(λ0)− 1

. (4)

Assuming the design wavelength to be λ0 = 550 nm for a
DOE made of PMMA, the efficiency is only 55% at the lower
limit of the visual spectrum at λshort = 400 nm and about 85%
at the upper limit of the visual spectrum at λlong = 700 nm.
Calculations using rigorous diffraction theory [20, 21] show
a convergent behaviour as given in Figure 2 for grating peri-
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ods d = 10 µm, d = 30 µm, and d = 100 µm at normal inci-
dence for PMMA. Obviously, the differences between rigor-
ous values for d = 100 µm and scalar ones are hardly notice-
able. The optimum depth h1 = 1.11 µm according to Eq. (2)
is determined for the refractive index n = 1.4936 correspond-
ing to PMMA at λ0. Since scalar and rigorous efficiencies for
large local zone widths d agree so well, it is sufficient to use
scalar efficiency in the following. Moreover, the minimum
zone width of a DOE used for chromatic aberration correction
is often as large as d > 50 µm which justifies this decision.
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FIG. 2 Rigorous 1st order diffraction efficiency of a surface relief blaze grating made of

PMMA adjacent to air with grating periods d = 100 µm, d = 30 µm, and d = 10 µm

at normal incidence, design wavelength λ0 = 550 nm and with optimum depth h1 =

1.11 µm. For comparison, scalar diffraction efficiency calculated from Eqs. (3), (4) is

also given.

In order to reach 100% diffraction efficiency, the argument of
the sinc–function has to be 0, which leads to the condition

λ0

λ

n(λ)− 1
n(λ0)− 1

= 1 ⇐⇒ n(λ) =
λ

λ0

(
n(λ0)− 1

)
+ 1 . (5)

The above condition can only be fulfilled if n(λ) is lin-
early increasing with increasing wavelength λ. However,
all known real materials having normal dispersion show a
monotonously decreasing dependence of the refractive index
n(λ) and are therefore not able to fulfill the above condition.
This is the reason why the conventional DOE shown in Fig-
ure 1 cannot be an EA–DOE with a high broadband efficiency
η(λ).

2.2 Common depth EA–DOEs

Substituting the air between the sawtooths of the surface re-
lief DOE profile in Figure 1 by a second material with another
dispersion n2(λ) introduces an additional degree of freedom
[8] and allows for dispersion compensation of the wave-
length dependent optical phase in a specific wavelength in-
terval. Schematically, so–called “common depth DOEs” look
as shown in Figure 3. Without any restriction and throughout
this paper, n1(λ) > n2(λ) is assumed. Because of the disper-
sion of the second material, Eq. (4) for the phase function has
now to be replaced by

Φ(λ) =
2πλ0

λ

n1(λ)− n2(λ)
n1(λ0)− n2(λ0)

, (6)

FIG. 3 Schematic representation of a DOE with common depth h, where the air between

the sawtooths of a conventional blaze profile is substituted by a second material with

another dispersion n2(λ).

with corresponding efficiency given by Eq. (3). Thus, condi-
tion in Eq. (5) becomes:

λ0

λ

n1(λ)− n2(λ)
n1(λ0)− n2(λ0)

= 1 , (7)

which is equivalent to

∆n(λ) =
λ

λ0
∆n(λ0) with ∆n(λ) = n1(λ)− n2(λ) . (8)

Now, for high broadband efficiency, only the difference ∆n(λ)
of the two refractive indices has to be linearly increasing with
increasing wavelength λ. Although this condition is hardly
fulfilled exactly, it is possible to find materials fulfilling Eq. (8)
sufficiently well, resulting in high efficiency over a quite broad
specific spectral range from λshort to λlong. An example for
a common depth EA–DOEs consisting of polycarbonate and
glass BaF52 is given in [14, 15], where dispersion curves and
efficiency behaviour are given. Figures 12 and 13 show more
examples of dispersion relations and efficiency curves for sev-
eral material pairs suited to build common depth EA–DOEs.

2.3 Mult i layer EA–DOEs

Compared to common depth EA–DOEs, multilayer EA–DOEs
[10, 11] allow for much more freedom in the choice of optical
materials. As mentioned in the introduction, first examples
of optical systems with built-in multilayer EA–DOE are com-
mercially available which emphasizes the importance of this
concept. This kind of EA–DOE is schematically represented in
Figure 4. Here, introducing a second profile depth by dividing
the two materials by an air gap generates an additional degree
of freedom.

a b

FIG. 4 Schematic representation of a multilayer DOE consisting of two sawtooth profiles

of different materials together with paths in ra and rb at the boundaries of a local

zone width d = |ra − rb| to determine optical path difference. ra and rb denote

positions located near both sides of the discontinuities of the sawtooth profiles.

In the following, we work out interesting properties of mul-
tilayer EA–DOEs, which apparently have not been published
yet. We will show 1) that in principle any pair of different
materials is suited to build a multilayer EA–DOE and 2) that
efficiency is even independent of the materials if the refractive
indices of both materials obey second order Cauchy relations.
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Simultaneously, these considerations correct misleading ex-
planations of the functionality of a multilayer EA–DOE in [11]
where it is regarded as a stack of two independent multi order
DOEs.

The separation of both materials can, in principle, be arbitrary,
as long as they are not too far apart from each other. The
optical effect of all three embodiments of a multilayer DOE
shown in Figure 5 is therefore the same. If, however, the gap
becomes too large, the validity of the scalar diffraction the-
ory is no longer guaranteed, and the multilayer DOE can no
longer be considered as a single DOE, but rather as two in-
dependent ones, hence losing the assumed properties. In the
following, the air gap is assumed to be small enough. As in
the right embodiment of Figure 5, the second material can also
be directly brought onto the first material [12]. This embodi-
ment exhibits less critical fabrication tolerances. A discussion
on how tolerances are affecting efficiency and on the applica-
bility of different efficiency calculation methods can be found
in [14, 15].

FIG. 5 Three optically equivalent embodiments of a multilayer EA–DOE.

Now, let us show the first characteristic that in principle, any
pair of different materials with refractive indices given by
n1(λ) and n2(λ) is suited to build a multilayer EA–DOE. Ac-
cording to Figure 4, the depths of the two profiles are denoted
by h1 and h2; the symbols ra and rb denote the left and right
position of a local zone. Then, high diffraction efficiency η of
the first diffraction order requires that the optical path length
difference is 2π leading to [14, 15]

Φ(λ) =
2πh1

λ

(
n1(λ)− 1

)
− 2πh2

λ

(
n2(λ)− 1

)
!= 2π . (9)

Here, the−1 in the parentheses reflects the fact that within the
considered spectral range, the refractive index of air is con-
stantly one. The above condition is equivalent to

h1

(
n1(λ)− 1

)
− h2

(
n2(λ)− 1

)
= λ , (10)

which holds for any given pair of different materials and ap-
propriate values h1, h2 at least at two different wavelengths λ1
and λ2, which can be chosen arbitrarily. Defining

nij = ni(λj)− 1 for i, j ∈ {1, 2} , (11)

we obtain the two conditions

h1n11 − h2n21 = λ1 , (12)

h1n12 − h2n22 = λ2 , (13)

which can be readily solved for h1 and h2, if the denominator
is different from zero:

h1 =
λ1n22 − λ2n21

n11n22 − n12n21
, (14)

h2 =
λ1n12 − λ2n11

n11n22 − n12n21
. (15)

For real materials, the denominator is non–zero if the mate-
rials are different. Hence, any pair of different materials is
suited to build a multilayer EA–DOE with efficiency η(λ1) =
η(λ2) = 100%. However, the efficiency at other wavelengths
still depends on dispersion relations of chosen materials.

Next, we show the second noteworthy characteristic that effi-
ciency is to a certain approximation even independent of the
materials. To this end let us suppose that within the wave-
length range of interest, we can describe the dispersion of the
refractive indices ni by the second order Cauchy series

ni(λ) = ai +
bi
λ2 , i = 1, 2 . (16)

Then we define

nij := ai +
bi

λ2
j
− 1 , i, j ∈ {1, 2} . (17)

Using these relations and Eqs. (14) and (15) for the profile
depths h1 and h2, the phase given by Eq. (9) can be written
as

Φ(λ) = 2π× (18)

(λ1n22 − λ2n21)
(

n1(λ)− 1
)
− (λ1n12 − λ2n11)

(
n2(λ)− 1

)
λ (n11n22 − n12n21)

.

After inserting Eqs. (16) and (17) into Eq. (18) and a somewhat
lengthy, but straightforward calculation, which has been de-
ferred to Appendix A, it turns out that Φ (λ) can be simplified
to

Φ(λ) = 2π
λ2λ1 (λ1 + λ2) + λ2

2
(
λ2 − λ2

1
)

λ3 (λ1 + λ2)

= 2π
λ2λ2 (λ1 + λ2) + λ2

1
(
λ2 − λ2

2
)

λ3 (λ1 + λ2)
. (19)

Obviously, all material coefficients ai and bi have dropped out,
which means that Φ(λ) is completely independent of mate-
rial’s refractive indices within the validity of the second order
Cauchy series of Eq. (16). Again, the materials as well as the
wavelengths have to be different to ensure a non–zero denom-
inator in Eq. (18) and hence, the existence of Eq. (19). Insert-
ing Eq. (19) in Eq. (3), an efficiency is obtained which we call
generic diffraction efficiency of a multilayer EA–DOE. This
term was chosen since within the approximation of Cauchy’s
series to the second order and under the above conditions, the
generic diffraction efficiency is independent of any material
parameter which is a quite remarkable result. By inspection,
we see that Φ(λ1) = Φ(λ2) = 2π, which means that for the
two values λ1 and λ2 the diffraction efficiency is indeed 100 %,
which was to be expected since for these two wavelenghts, we
required the blazing condition to hold. For other wavelengths
the efficiency is, of course, less than 100%, but still relatively
high, as can be seen from Figure 6.

It should be noted that even if the air gap between the two
materials is filled with a third material with a different dis-
persion obeying a second order Cauchy relation, the result
Eq. (19) would still be identical. Although the use of a third
material would alter the profile depths hi, it would, however,
not improve the generic diffraction efficiencies, as one might
be tempted to expect.
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FIG. 6 Scalar diffraction efficiency of surface relief multilayer EA–DOEs with λ1 =

425 nm, λ2 = 625 nm. Red: Generic diffraction efficiency calculated by Eqs. (3) and

(19) under the assumption of refractive indices given by a second order Cauchy series.

Blue: Diffraction efficiency of material pair polycarbonate/PMMA calculated by Eqs. (3)

and (9). Black: Diffraction efficiency of the conventional DOE made from PMMA and

air calculated by Eqs. (3) and (4), for comparison as already mentioned in Figure 2.

For the above derivation of a material independent efficiency,
we truncated the Cauchy series after the second term. Un-
der this assumption the first and second order of the Cauchy
series can be related to the refractive index nd and the Abbe
number νd, respectively. For common depth DOEs, which
do not have the air gap, the efficiency curves do depend on
nd as well as on the Abbe numbers, whereas for multilayer
EA–DOEs the generic diffraction efficiency becomes material-
independent. However generally, the diffraction efficiency
and also the Abbe number depend on the higher order terms
of Cauchy’s series Eq. (16), which can mainly be related to
the relative partial dispersion θg,F. By appropriately choosing
materials with specific values of θg,F, it is possible to further
enhance the generic diffraction efficiency within the consid-
ered wavelength spectrum [22]. For a more detailed discus-
sion of the relations between Abbe number, relative partial
dispersion and Cauchy series coefficients, we refer the inter-
ested reader to Appendix A.

Now, at the end of this subsection, an example is consid-
ered for a multilayer EA–DOE made from the common plas-
tic materials polycarbonate and PMMA. Using λ1 = 425 nm,
λ2 = 625 nm, according to Eqs. (14) and (15), yields depths
h1 = 16.77 µm for polycarbonate and h2 = 13.05 µm for
PMMA resulting in a total depth of h = 29.82 µm. Fig-
ure 6 shows the diffraction efficiency for this pair of materials,
which is quite similar to the generic diffraction efficiency but
has a larger amplitude. This deviation is expected since the re-
fractive indices deviate slightly from the second order Cauchy
series Eq. (16).

2.4 Sub–wavelength DOEs

Another approach to implement blazed gratings is depicted
in [23] using artificial sub–wavelength structures, which have
been investigated [24] and found to be advantageous espe-
cially for imaging applications with high numerical aper-
ture [25, 26]. Another type of binary–blazed DOE, so–called
ACES, having higher mechanical stability, was added later

[27]. Nowadays we can compare several possibilities to gen-
erate DOEs with blazing phase as given in Figure 7 where the
bottom diagram shows above mentioned binary–blazed struc-
tures. The structures may consist of ridges or pillars. All parts
of the structures including the air gaps must have dimensions
smaller than the smallest wavelength λshort the DOE is de-
signed for. Then, incident light of wavelengths λ ≥ λshort
cannot resolve them and therefore averages the permittivities
of the ridge material and the air gap. The averaging process
is wavelength dependent and accounts for a dispersion. It has
been found in [6] that, using this dispersion property, by prop-
erly arranging sub–wavelength pillars and holes, EA–DOEs
of only one material can be designed. In case of ridges and
rings, the averaged effective refractive index is polarization
dependent, and hence, some efficiency deterioration must be
accepted. However, investigation of these effects is beyond
the scope of this publication and are mentioned only for the
sake of completeness.

FIG. 7 Similarity between surface relief profiles (top), gradient–index materials (mid-

dle), and sub–wavelength structures (bottom) all realising a blazing phase if the effec-

tive refractive index and thickness of the DOE are chosen properly as given in Figure 8

for a GRIN–DOE.

3 GRADIENT–INDEX EA–DOEs

3.1 Function

Let us start with gradient–index materials [29, 30], as a first
novel design concept for EA–DOEs. Figure 7 shows the cor-
respondence between surface relief profiles, gradient–index
(GRIN) materials and sub–wavelength structures, which all
serve to implement a blazing phase if the effective refractive
index and the thickness h of the DOE are chosen properly.
Here, thickness is the proper name of quantity h which corre-
sponds to the depth of surface relief structures. The darker the
grey of the GRIN–material in the middle of Figure 7 the higher
is the refractive index and the larger is the optical phase delay
of the light ray passing through the material at that position
(cf. Figure 8). In a conventional blazing DOE with constant re-
fractive index along the zones, the linearly increasing profile
within a zone width is responsible for the blazing effect. In a
GRIN element there is no profile variation, instead the refrac-
tive index has to linearly increase from the lowest value nL at
the one end of a zone ra towards the highest value nH at the
other end of the zone rb (cf. Figure 8).

08015- 5
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0
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a b

FIG. 8 Schematic representation of a GRIN–DOE (bottom) together with its phase Φ(λ0)

(top). Over a zone width between radial positions ra and rb, a linear increasing path

difference of 2π has to be accumulated in the GRIN–material of thickness h. This is

equivalent to a linear increase of refractive index from the minimum to the maximum

value. At ra, the refractive index has a minimum while at rb, the refractive index

has a maximum. The darker the grey of the GRIN–material the higher is the refractive

index.

EA–DOEs using GRIN–materials consist of two separate
GRIN–DOEs 1 and 2, of thicknesses h1, h2 made of different
materials, but with same groove function polynomial (cf.
Figure 9). It is important to align the two DOEs in a way that
the position of maximum refractive index in each zone of the
first material is at the position of minimum refractive index in
the appropriate zone of the second material.

1

2

a b

FIG. 9 Schematic representation of two layers of GRIN–DOEs from different materials

to form an EA–DOE. The optical path difference is determined along paths at radial

positions ra and rb.

Now we consider two light paths over a zone width along
the two lines in ra and rb (cf. Figure 9) with n1,L, n1,H be-
ing low and high refractive index of material 1, respectively,
and n2,L, n2,H being low and high refractive index of a differ-
ent material 2, respectively. For constructive interference, the
phase Φ(λ) being the path difference of light paths in ra and
rb has to be 2π:

Φ(λ) =
2π

λ
(n1,Hh1 + n2,Lh2 − n1,Lh1 − n2,Hh2)

!= 2π , (20)

and it follows the condition

∆n1(λ)h1 − ∆n2(λ)h2 = λ (21)

with

∆n1(λ) = n1,H(λ)− n1,L(λ) and ∆n2(λ) = n2,H(λ)− n2,L(λ).
(22)

Again, as known from Eqs. (9) to (15) for multilayer EA–
DOEs, the above condition can be fulfilled for two different

materials at two different wavelengths λ1, λ2 resulting in two
values for thicknesses h1, h2 with scalar efficiency η(λ1) =
η(λ2) = 100% and very high efficiency over a broad spec-
tral range, by inserting Eq. (20) into Eq. (3). The difference
in materials ensures that thicknesses h1, h2 can be determined.
Hence, any pair of different GRIN–materials is suited to build
a GRIN EA–DOE with such an efficiency property. As the re-
fractive index difference for GRIN–materials is smaller than
for surface relief structures, the resulting thicknesses are much
larger. In Table 1 two material pairs are given for ion exchange
glasses from SCHOTT AG and GRINTECH AG together with
the resulting thicknesses using condition in Eq. (21). The
following remarks give some additional information on the
choice of parameters of the considered GRIN–glasses from Ta-
ble 1:

• A maximum refractive index increase of 0.1 from nd =
1.47381 to nd = 1.57381 can be achieved by a thermal
ion exchange process for glass BGG 31 from SCHOTT AG
with νd = 63.47 which is assumed to be a constant for this
GRIN–glass.

• An Ag–Na ion exchange process is applied to GRIN-
TECH glass GT Ag, exchanging Na–ions by Ag–ions.
The refractive index can be increased by 0.14 from 1.51
to 1.65 at λref = 670 nm. Using a Li–Na ion exchange
process for GRINTECH glass GT Li, the refractive index
can only be increased by 0.013 from 1.511 to 1.524 at λref.

The dispersion of SCHOTT glass BGG 31 is fully described by
the parameters nd, νd given above. On the other hand, the dis-
persion relations of GRINTECH glasses use an expansion of
Sellmeier’s formula with nref at λref = 670 nm and constants
K11, K13 [28] according to

n2(λ) = n2(λref) + K1

(
n(λref)

)
·
(λ2 − λ2

ref)
λ2 , (23)

where the function K1 is described by the expression

K1

(
n(λref)

)
= K11 + K13 n2(λref) . (24)

Constants K11, K13 are included in Table 1 for the considered
two glasses.

Figure 10 shows the resulting efficiency behaviour for the first
material pair of Table 1. Obviously very high efficiency over
a broad spectral range can be achieved, which is comparable
to that obtained for a surface relief multilayer EA–DOE in Fig-
ure 6 at the end of Section 2.3. Clearly, the thickness of GRIN
EA–DOE with about 90 µm is much larger than the resulting
30 µm of the surface relief example. This fact can only be im-
proved with materials allowing a larger refractive index dif-
ference to be generated. Some new developments in this di-
rection are cited in the next subsection. Although the second
material combination in Table 1 has nearly the same efficiency
behaviour, due to the small refractive index difference of the
first material, the resulting thickness of more than 700 µm is
too large for a real application.

At the end of this subsection we show an equivalent rela-
tion as was proven for multilayer EA–DOEs in Section 2.3,
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Material 1 with λ1 [nm] h1 [µm] Material 2 with λ2 [nm] h2 [µm]
dispersion constants dispersion constants

GT Ag (GRINTECH AG), 425 33.9 BGG 31 (SCHOTT AG), 625 56.4
n1,L(λref = 670 nm) = 1.51 n2,L(λd) = 1.47381, νd = 63.47
n1,H(λref = 670 nm) = 1.65 n2,H(λd) = 1.57381, νd = 63.47
K11 = 0.11098
K13 = -0.06172

GT Li (GRINTECH AG), 425 669.5 GT Ag (GRINTECH AG), 625 57.54
n1,L(λref = 670 nm) = 1.511 n1,L(λref = 670 nm) = 1.51
n1,H(λref = 670 nm) = 1.524 n1,H(λref = 670 nm) = 1.65
K11 = 0.05735 K11 = 0.11098
K13 = -0.03843 K13 = -0.06172

TABLE 1 Two pairs of materials for GRIN EA–DOEs.
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FIG. 10 Scalar diffraction efficiency of GRIN EA–DOE from materials SCHOTT BGG 31 and

GRINTECH glass GT_Ag (first material pair of Table 1 calculated by Eqs. (3) and (20).

namely an efficiency which is independent of the dispersion
relations if material properties can be described by second or-
der Cauchy series:

ni,H(λ) = ai,H +
bi,H

λ2 , ni,L(λ) = ai,L +
bi,L

λ2 , i = 1, 2 . (25)

Using a similar notation as in Section 2.3 by defining

∆nij := ni,H(λj)− ni,L(λj) for i, j ∈ {1, 2} , (26)

according to Eq. (22), we obtain the two following expressions

h1∆n11 − h2∆n21 = λ1 , (27)

h1∆n12 − h2∆n22 = λ2 , (28)

for two arbitrary but different wavelengths λ1, λ2. The equa-
tions can be readily solved for h1 and h2, if the materials are
different. Inserting the results for h1, h2 and the Cauchy rela-
tions Eq. (25) into Eq. (20), after some lengthy simplifications,
it yields the result being identical the same expression Eq. (19)
as for the multilayer EA–DOE. Again, all material coefficients
ai and bi have dropped out, which means that Φ(λ) is com-
pletely independent of material’s refractive indices within the
validity of the second order Cauchy series. Therefore, also the
generic GRIN efficiency is identical to the generic efficiency of
the multilayer EA–DOE. So, we may refer to Figure 6 for an
example of this really generic efficiency behaviour.

3.2 Fabricat ion

For fabrication of GRIN EA–DOEs we are only able to give
some rough hints. GRIN glasses given in Table 1 use thermal
ion exchange processes for refractive index modifications, in
some cases assisted by electric fields [29, 30]. Other materi-
als suitable to generate GRIN–DOEs are e.g. photopolymers
and chalcogenide glasses [31]. For writing a GRIN–profile into
chalcogenide glass, a wavelength must be used which is be-
low the critical wavelength where the glass is photosensitive.
After writing, the glass behaves like a conventional GRIN–
glass for wavelengths above the critical wavelength. Corre-
sponding writing techniques are e.g. holography, grey–tone
mask exposure, and direct laser writing. In a similar way
also in photopolymers refractive index profiles can be gen-
erated. Such techniques and applications of photopolymers
can e.g. be found in [32]-[35]. In [32] a novel photopoly-
mer is proposed, in which a refractive index difference up to
∆n = 0.45 has been generated at λ = 633 nm. Another novel
photopolymer with refractive index difference up to ∆n > 0.5
was proposed in [33], where wavelengths λ = 633 nm and
λ = 670 nm were used. These values exceed by far the re-
fractive index differences of ∆n = 0.1 . . . 0.14 in the examples
of Table 1. However, these large refractive index differences
proposed in [32, 33], were possible to fabricate only by gen-
erating a polarization dependent birefringence in the mate-
rial. Hence, these materials cannot directly be used in our
concepts. Nevertheless, materials having a similar large re-
fractive index differences without birefringence would lead to
significant smaller thicknesses, of e.g. one third of the values
given in Table 1 which is equal to about 30 µm. This value
is already in the magnitude of the thickness for surface relief
EA–DOEs.

4 SUB–WAVELENGTH EA–DOEs

4.1 Function

Within this section we now consider sub–wavelength struc-
tures to create EA–DOEs. The correspondence between
surface relief profiles, gradient–index materials, and sub–
wavelengths structures (cf. Figure 7) allows us to do this.
EA–DOEs using sub–λ–structures consist of a single layer
made from two media: 1 and 2. This layer can be on top
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of any transparent substrate. v1(~r) and v2(~r) designate the
volume fractions of the first and second medium, respectively,
at position~r in a cube with volume well below λ3

short. As will
be seen later, their refractive indices n1(λ) and n2(λ) have to
be related to each other. The EA–DOE is assumed to work in
the wavelength band between λshort and λlong.

Since light of wavelength λshort ≤ λ ≤ λlong only resolves
structures with dimensions larger than λ, the interaction of
light with sub–λ–structures smaller than λshort can be de-
scribed by effective medium theory (EMT) [36]. As already
mentioned in Section 2.4, light averages the permittivities ε1
and ε2 of the two materials. These relations are polarization
dependent and we have to consider that n2 = ε. Then, for
TE-polarization, the nonlinear relation

neff(λ,~r) =
√

v1(~r)n2
1(λ) + v2(~r)n2

2(λ) (29)

with v1(~r) + v2(~r) = 1

holds for the refractive index of an effective medium. On the
other hand, for TM-polarization, the effective refractive index
can be calculated by the nonlinear relation

neff(λ,~r) =
1√

v1(~r)
n2

1(λ)
+ v2(~r)

n2
2(λ)

with v1(~r) + v2(~r) = 1 .

(30)
A small calculation given in Appendix B shows that both func-
tional expressions Eq. (29), Eq. (30) can be approximated with
sufficient accuracy by the the same linear relation

neff(λ,~r) = v1(~r)n1(λ) + v2(~r)n2(λ) (31)

with v1(~r) + v2(~r) = 1 .

In the following and for simplicity, we restrict ourselves to
rotationally symmetrical functions of v1(~r) and v2(~r), i. e.
v1(~r) = v1(r) and v2(~r) = v2(r) where r = |~r| is the distance
from the optical axis. This simplifies the notation and it is the
most typical application in connection with lenses. Moreover,
the utilisation for linear gratings is straightforward.

By proper choice of volume fraction v1(r), such a layer forms
clearly a DOE. As an example, imagine a rotationally sum-
metrical layer where the volume fraction v1(r) varies like a
sawtooth as shown in Figure 11. Thickness h of the layer is
chosen according to

h ≡ λ0

neff(λ0, rb)− neff(λ0, ra)

=
λ0(

v1(rb)− v1(ra)
)(

n1(λ0)− n2(λ0)
) (32)

where again, points with radial distance ra and rb are located
near both sides of the discontinuity of v1(r). The distance
between adjacent discontinuities of v1(r) corresponds to the
zone width d. Light passing through this layer undergoes a
periodic phase shift which is discontinuous at discontinuities
of v1(r); the discontinuity in phase shift between positions ra

and rb is given by

Φ(λ) =
2π

λ

(
neff(λ, rb)h− neff(λ, ra)h

)
=

2πλ0

λ

neff(λ, rb)− neff(λ, ra)
neff(λ0, rb)− neff(λ0, ra)

. (33)

1 (r)

1

0

eff (λ  , r)0

1 (λ  )0

eff (λ  , r  )0  b

eff (λ  , r  )0  a

2 (λ  )0

a b

FIG. 11 Visualization of Eq. (31) exemplified for a sub–wavelength EA–DOE with constant

zone width d = |ra − rb|. Upper diagram: Volume fraction v1(r) of the first material

as a function of distance r from the center of the DOE. Middle: Effective refractive index

neff(λ0, r) at design wavelength λ0 as a function of r. Lower diagram: Cross section

of a binary sub–wavelength EA–DOE layer with thickness h and its two planar surfaces.

Black and light grey correspond to the two materials the EA–DOE consists of, generating

an effective index of refraction between neff(λ0, ra) and neff(λ0, rb) respectively

where ra and rb denote positions located near both sides of the discontinuities of

v1(r).

Obviously, it follows Φ(λ0) = 2π; i. e. light with design wave-
length λ0 is diffracted to the first order with a scalar diffraction
efficiency of η(λ0) = 100 %. However, this DOE is not yet an
EA–DOE since Φ(λ) still depends on λ.

To ensure that above layer is a truly EA–DOE with scalar
diffraction efficiency η(λ) = 100 % for all wavelengths λ be-
tween λshort and λlong, the refractive indices n1(λ) and n2(λ)
of media 1 and 2 must be related. As will be shown, from the
relation

n1(λ) =n2(λ) +
λ

λ0

(
n1(λ0)− n2(λ0)

)
(34)

for λshort ≤ λ ≤ λlong ,

which is the same as Eq. (8), it follows that Φ(λ) = 2π and
η(λ) = 100 % in scalar approximation for the wavelength
band under consideration. This can be proven as follows.
From Eqs. (31) and (34) one obtains

neff(λ, r) = v1(r)n1(λ) + v2(r)n2(λ)

= v1(r)
[

n2(λ) +
λ

λ0
(n1(λ0)− n2(λ0))

]
+ v2(r)n2(λ)

=
(

v1(r) + v2(r)
)

n2(λ) + v1(r)
λ

λ0

(
n1(λ0)− n2(λ0)

)
.

(35)

Abbreviation ∆n(λ0) ≡ n1(λ0) − n2(λ0) together with rela-
tion v1(r) + v2(r) = 1 leads to

neff(λ, r) = n2(λ) + v1(r)
λ

λ0
∆n(λ0) . (36)
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Thus, we may write

neff(λ, ra)− neff(λ, rb) =

n2(λ) + v1(ra)
λ

λ0
∆n(λ0)− n2(λ)− v1(rb)

λ

λ0
∆n(λ0) =

λ

λ0
∆n(λ0)

(
v1(ra)− v1(rb)

)
. (37)

From Eq. (33), the discontinuity of the phase shift obeys

Φ(λ) =
2πλ0

λ

neff(λ, rb)− neff(λ, ra)
neff(λ0, rb)− neff(λ0, ra)

=
2πλ0

λ

λ
λ0

∆n(λ0)
(

v1(rb)− v1(ra)
)

λ0
λ0

∆n(λ0)
(

v1(rb)− v1(ra)
)

=
2πλ0

λ

λ

λ0

= 2π .

Thus, Φ(λ) is actually a constant and the proposed sub–λ–
structure really forms an EA–DOE in the wavelengths band
between λshort and λlong. Remarkably, Φ(λ) does not de-
pend on the volume difference v1(rb) − v1(ra). It is possible
to specify v1(ra), v1(rb) according to e.g. fabrication needs,
which determines the thickness h but leaves the efficiency un-
changed. For fabrication reasons it can be advantageous to
choose a volume difference v1(rb) − v1(ra) smaller than 1.
Clearly, because of Eq. (32), then thickness h becomes larger
as if in the case v1(rb)− v1(ra) = 1.

In reality, one hardly ever finds two media which fulfill
Eq. (34) exactly. However, there are many pairs of materials
with refractive indices fulfilling Eq. (34) approximately. Since
refractive index Eqs. (8) and (34) are identical, material pairs
suited for common depth EA–DOEs are also appropriate for
sub–λ–structure EA–DOEs. Using Eqs. (31), (33) and inserting
it into Eq. (3), it can be shown that the diffraction efficiency of
above sub–λ–structure is given by the phase function Eq. (6)
together with Eq. (3), which is the same as resulted for sur-
face relief EA–DOEs with common depth. This is not really
surprising since already condition in Eq. (34) is the same as
Eq. (8) for surface relief EA–DOEs.

4.2 Pairs of materials for sub–λ–structure
EA–DOEs

In this subsection, examples for pairs of materials forming
sub–λ–structure EA–DOEs are given. Their diffraction ef-
ficiency in the visual band between λshort = 400 nm and
λlong = 700 nm exceeds by far the diffraction efficiency of a
conventional DOE consisting of PMMA and air shown in Fig-
ure 6.

In our examples, we always combine a glass with a plastic
medium. Such material pairs are e.g. N–BaF52 (SCHOTT AG)
and polycarbonate, K–LaFK60 (Sumita) and polycarbonate,
and K–VC81 (Sumita) and Ultem (GE Plastics). The refrac-
tice indices for polycarbonate and optical glass can be taken
from any commercial optical design software. The refractive
indices of Ultem are calculated according to

nUltem(λ) = 1.6034 + 18828 nm2λ−2 .

Using this expression, refractive indices found in the internet
[37] can be reproduced within good approximation. Figure 12
summarizes dispersion curves for the three pairs of materials
given above.
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FIG. 12 Refractive index curves n(λ) corresponding to dispersion relations for mate-

rial pairs N–BaF52 and polycarbonate (upper diagram), K–LaFK60 and polycarbonate

(middle), K–VC81 and Ultem (lower diagram).

Finally, diffraction efficiencies for these pairs of materials ac-
cording to the phase function Eq. (6) together with Eq. (3) are
given in Figure 13. The design wavelength λ0 has been chosen
to be λ0 = 500 nm for the pair N–BaF52 and polycarbonate,
λ0 = 575 nm for the pair K–LaFK60 and polycarbonate and
λ0 = 560 nm for pair K–VC81 and Ultem. Additionaly, Fig-
ure 13 shows the diffraction efficiency of a conventional DOE
for materials PMMA and air in scalar approximation. This fig-
ure clearly demonstrates that the diffraction efficiency of the
proposed sub–λ–structure EA–DOE exceeds the correspond-
ing value of a conventional DOE.
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FIG. 13 Scalar diffraction efficiency of EA–DOEs according to Eqs. (3) and (6) for three

pairs of materials. These curves hold for common depth EA–DOEs as well as for sub–λ–

structure EA–DOEs. For comparison, the scalar diffraction efficiency of a conventional

surface relief DOE made from PMMA and air is also shown.

4.3 Thickness h of sub–λ–structure
EA–DOEs

According to Eq. (32), thickness h of the proposed sub–λ–
structure EA–DOE depends on chosen materials as well as
on the volume fraction v1(r). Figure 14 shows this depen-
dency for three pairs of materials given in the preceding
subsection. Thickness h decreases with increasing values of
v1(rb) − v1(ra) because in this case also the denominator of
Eq. (32) increases.
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FIG. 14 Thickness h of the sub–λ–structure EA–DOE according to Eq. (32) for three pairs

of materials as a function of v1(rb)− v1(ra).

Typically, thickness h is smaller than 100 µm. However, a thin-
ner sub–λ–structure EA–DOE is advantageous since with de-
creasing h the diffraction efficiency depends less on the an-
gle of incidence of the light passing through the DOE. Addi-
tionally, the diffraction efficiency due to rigorous electromag-
netic effects decreases with increasing thickness h. Therefore,
material pairs and volume fractions v1(r) are advantageous
which lead to a thickness h which is as small as possible (e.g.
h < 10 µm . . . 20 µm).

4.4 Embodiments

Figure 15 shows a sub–λ–structure EA–DOE which is build
up from concentric alternating rings of materials 1 and 2 with
refractive indices n1(λ) and n2(λ). Each zone width d is com-
posed of many of these rings. In order to form a sub–λ–
structure, it is necessary that the rings have widths well be-
low λshort. Within a zone width d, the width of the rings dif-
fers in order to implement the desired distribution of the vol-
ume fractions v1(r) and v2(r). Since in azimuthal direction the
rings are of thickness h and not sub–λ–structures, this DOE
will cause some polarization effects. This structure could e.g.
be manufactured by microlithography or Nano-Imprint tech-
nology [38]; the second material could also be a liquid such as
an immersion oil with appropriate refractive index [39].

h

zone width

FIG. 15 Combined vertical and horizontal cross-section of sub–λ–structure EA–DOEs

with concentric rings. Dark and light grey denote the first and second material. Within

a local zone width d, there are several concentric rings with radial dimensions well

below λshort

Another type of sub–λ–structure with pillars made from a first
material in a matrix of a second material is depicted in Fig-
ure 16. The diameter of the pillars as well as the distance be-
tween two pillars must fall well below λshort and must differ
over r to form the desired volume fractions v1(r) and v2(r).
The pillars can be arranged in a regular or stochastic fash-
ion. The cross sectional area of the pillars may be of arbitrary
shape, e.g. circular, triangular or rectangular. In contrast to
the preceding embodiment, this EA–DOE has smaller polar-
ization effects.

A third type of sub–λ–structure is build up from pellets of a
first material in a matrix of a second material, which is shown
in Figure 17. Both, the diameter and the distance of the pellets
are much smaller than λshort. The pellets can be distributed in
a regular or statistical manner and the size of the pellets may
differ. Again, the given form of the volume fractions must be
met. The pellets may be spherules but can also be of different
shape. This type of EA–DOE does not exhibit any polarization
effect.

5 CUT–AND–PASTE EA–DOEs

Another theoretical type of EA–DOE is the so–called cut–and–
paste design. It should be noted that now the dimensions ex-
ceed λshort by far; thus, it is not a sub–λ–structure. This ap-
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zone width

h

FIG. 16 Combined vertical and horizontal cross-section of sub–λ–structure EA–DOEs

with pillars. Dark and light grey denote the first and second material. Within a local

zone width d, there are plenty of pillars with diameter and distance well below λshort

zone width

h

FIG. 17 Combined vertical and horizontal cross-section of sub–λ–structure EA–DOEs

with pellets. Dark and light grey denote the first and second material. Within a local

zone width d, there are a huge amount of pellets with typical dimension and distance

well below λshort.

proach uses the fact that the optical path length of a light ray
traversing a sequence of different materials is independent of
the order of this sequence, in which the different materials
are arranged. Here it is used to modify the structure of the
DOE–profiles by cutting a part of material at one position and
pasting it at another position resulting in several possibilities
of new arrangements of the two materials, which are possi-
bly better suited to some modern manufacturing techniques.
Accepting only vertical shifts and no horizontal ones of the
cutted material parts, fulfils the above condition. Therefore,
it is possible, to arbitrarily cut out parts of the blaze profiles
of multilayer EA–DOEs and put them at different places, as
long as at each position within the zone width, the optical path
length remains the same. Hence, by rearranging the material
composition, it is possible to create grating shapes which do
not look at all like blazed gratings, nevertheless, they are fully
equivalent to the original multilayer EA–DOE.

The simplest rearrangements have already been considered in
Figure 5, where it is clear that the optical effects of each grat-
ing version are fully equivalent, since the optical path lengths
at each lateral position within one zone width are identical.
The difference between the left and the middle embodiment is
only a constant offset in the thickness of the air gap, which, at
least in the scalar approximation, has no impact on the optical

performance. Between the middle and the right embodiment,
only the sequence of materials has been altered, hence light
impinging from above first sees the air and then the two ma-
terials, instead of one material first, the air gap, and then the
other material.

In principle there are infinitely many possibilities to rearrange
the material composition within the modulated region, how-
ever, most of them will not possess any advantage from a
manufacturability point of view and therefore will be only of
academic interest. A collection of various decompositions is
shown in Figure 18. A more interesting structuring from a
practical point of view may be the next approach [40].

FIG. 18 A collection of several equivalent decompositions of the two materials to form

another EA–DOE.

The rearrangements made before with blaze profiles can like-
wise be done with multilevel blaze profiles. Two equiva-
lent rearrangements of a multilayer EA–DOE consisting of
two mulitilevel blaze profiles are shown in Figure 19. The
rearrangements between the red and blue parts are similar
to those, known from the falling–blocks puzzle video game
called Tetris [41], one of the most popular video games ever.
Thus, this special cut–and–paste design has also been called
Tetris–design. However, there are two main differences to the
Tetris game rules: 1) the blocks are not limited to four squares,
and 2) horizontal shifting of the falling–blocks is prohibited.
This leaves the optical path length unchanged and ensures
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working of the designed DOE as an efficiency achromatized
one.

FIG. 19 Multilayer EA–DOE consisting of two mulitilevel blaze profiles (top) and two

equivalent rearrangements of some material parts (middle and bottom). Corresponds

to the so–called Tetris–design.

Finally it should be noted that in the scalar limit, all the shown
embodiments should exactly exhibit the same diffraction effi-
ciency behavior as a function of wavelength. In reality, they
will show some difference due to different electromagnetic ef-
fects at the various boundaries, which might be the stronger,
the smaller the zone width is. The influence of depth vari-
ations on the diffraction efficiency for the left and right ar-
rangements of Figure 5 was already studied in [14, 15], where
it was shown that the right arrangement was less sensitive to
depth errors.

6 DISCUSSION

Hybrid lenses with DOEs are often utilized in lightweight op-
tical systems for the correction of longitudinal axial chromatic
aberrations as well as of the chromatic difference of magnifi-
cation. Due to their excellent chromatic correction capability,
EA–DOEs are well suited to correct large errors occuring in
e.g. broadband optical systems without loss of efficiency. This
has been recognized and applied in photographic lenses with
embedded multilayer EA–DOE which are commercially avail-
able underlining the importance of this concept.

We have presented known and new concepts to design EA–
DOEs which possess diffraction efficiency larger than 97%
over a broad spectral interval, exemplified for the visible
range from 400 nm to 700 nm wavelength. Successively, we
discussed the application of surface relief profiles, gradient–
index materials, sub–wavelength structures, and a so–called
cut–and–paste design. The main idea behind all approaches
(except the one in Section 2.4) to achieve the goal of effi-

ciency achromatization, is to use at least two different mate-
rials which obey certain dispersion relations. From these re-
lations, design parameters as profile heights are derived and
the resulting diffraction efficiency can be deduced. For the
derivation of all these relatively simple expressions we calcu-
lated the phase between two paths near the boundaries of a
zone. Hence, all our approaches are based on scalar assump-
tions. Nevertheless, these are sufficiently fulfilled with zone
widths larger than 50 . . . 100 times the wavelength in the case
of main application, namely for correction of chromatic aber-
rations.

For common depth EA–DOEs the two materials have to sat-
isfy a linear relationship in the difference of their refractive
indices Eq. (8), which reduces the number of possible material
combinations. The multilayer EA–DOEs have another degree
of freedom, since they allow the different materials to have
different profile depths. In this case it is always possible for
any combination of different materials to reach 100% diffrac-
tion efficiency at two distinct wavelengths and high efficiency
in between. Moreover, for multilayer and GRIN EA–DOEs,
we were able to show that if the dispersion relations of the two
different materials can be accurately described by a second or-
der Cauchy series, the efficiency becomes generic in the sense
that it is actually independent of the respective Cauchy coef-
ficients. This means that the efficiency behaviour will be the
same regardless of which materials are chosen. Of course, any
deviation of this Cauchy relation will change the efficiency be-
haviour and make it material dependent. It is therefore possi-
ble to choose material combinations [12] to form a DOE with
broadband efficiency above the generic curve (cf. Figure 6)
generated by Eqs. (3) and (19). For disadvantageous combina-
tions the resulting efficiency can actually be smaller than the
theoretical one; an example combination is the pair PMMA
and polycarbonate which only leads to minimum efficiencies
of about 97%.

Another insight from Section 4 is the fact that the necessary
dispersion relation in Eq. (34) concerning the sub–λ–structure
EA–DOE is the same as for the common depth EA–DOE
Eq. (8). This becomes obvious if one remembers that both
designs have the same degrees of freedom since the sub–λ–
structure EA–DOE is equivalent to the common depth EA–
DOE due to the linear relationship Eq. (31).

One issue that has to be addressed is the thickness of the re-
sulting EA–DOE, which can be considerably larger compared
to conventional DOEs. Whereas a conventional surface re-
lief DOE, due to its large refractive index difference between
the glass or plastic material and air, yields thicknesses of only
about 1 µm, the thicknesses of all EA–DOEs are usually more
than ten times larger. This holds for the state–of–the–art mul-
tilayer DOEs as well as for the novel proposed ones. By proper
choice of the materials the common depth and the multilayer
EA–DOE can e.g. reach thicknesses as small as 10 . . . 30 µm.
The sub–λ–structure EA–DOEs may have larger thicknesses
when the volume fraction difference v1(rb) − v1(ra) is cho-
sen to be smaller than 1, which may be a fabrication advan-
tage. Only GRIN EA–DOEs have significantly larger thick-
nesses with values in the region of 90 . . . 230 µm. And even
this can be exceeded if the refractive index difference is too
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small (cf. second material pair in Table 1). This problem can
only be overcome by materials with larger refractive index dif-
ference as discussed earlier in Section 3.2. Additionally, there
is only a small number of GRIN materials available so that
their applicability is significantly reduced.

Although the scalar diffraction efficiency expressions predict
always the same efficiency for any thickness, in reality, one
can encounter severe losses in the efficiency if the thickness
to zone width ratio becomes too large, since shadowing ef-
fects and other electromagnetic effects become significant. It
is therefore advisable to look for material combinations which
yield thicknesses as small as possible.
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A APPENDIX

A.1 Phase for material dispersion with
second order Cauchy relat ions

In Section 2, the optical phase Φ(λ) of the multilayer DOE was
given by Eq. (18), which is repeated for convenience:

Φ(λ) = 2π× (A.1)

(λ1n22 − λ2n21) (n1(λ)− 1)− (λ1n12 − λ2n11) (n2(λ)− 1)
λ (n11n22 − n12n21)

,

with

nij = ai +
bi

λ2
j
− 1 , i, j ∈ {1, 2} ,

based on second order Cauchy relations. To further simplify
this expression, we will treat the numerator and denominator
separately. The first term of the numerator can be expanded
to give

(λ1n22 − λ2n21) (n1(λ)− 1) =[
λ1

(
a2 +

b2

λ2
2
− 1

)
− λ2

(
a2 +

b2

λ2
1
− 1

)](
a1 +

b1

λ2 − 1
)

=[
(a2 − 1) (λ1 − λ2) + b2

(
λ1

λ2
2
− λ2

λ2
1

)](
a1 − 1 +

b1

λ2

)
=

(λ1 − λ2)
(

(a2 − 1) (a1 − 1) +
(a2 − 1) b1

λ2

)
+

b2

(
a1 − 1 +

b1

λ2

)(
λ1

λ2
2
− λ2

λ2
1

)
. (A.2)

Similarly, the second term can be expanded into

(λ1n12 − λ2n11) (n2(λ)− 1) =

(λ1 − λ2)
(

(a1 − 1) (a2 − 1) +
(a1 − 1) b2

λ2

)
+

b1

(
a2 − 1 +

b2

λ2

)(
λ1

λ2
2
− λ2

λ2
1

)
. (A.3)

Hence, the complete numerator is given by

(λ1n22 − λ2n21) (n1(λ)− 1)− (λ1n12 − λ2n11) (n2(λ)− 1) =

(λ1 − λ2)
(

(a2 − 1) b1

λ2 − (a1 − 1) b2

λ2

)
+ ((a1 − 1) b2 − (a2 − 1) b1)

(
λ1

λ2
2
− λ2

λ2
1

)
=

((a2 − 1) b1 − (a1 − 1) b2)

(
λ1 − λ2

λ2 − λ1

λ2
2

+
λ2

λ2
1

)
. (A.4)

Turning to the denominator, it can be written as

n11n22 − n12n21 =(
a1 +

b1

λ2
1
− 1

)(
a2 +

b2

λ2
2
− 1

)

−
(

a1 +
b1

λ2
2
− 1

)(
a2 +

b2

λ2
1
− 1

)
=

((a2 − 1) b1 − (a1 − 1) b2)

(
1

λ2
1
− 1

λ2
2

)
. (A.5)

Putting things together, we finally obtain for Φ:

Φ(λ) = 2π

(
λ1 − λ2

λ2 − λ1

λ2
2

+
λ2

λ2
1

)

λ

(
1

λ2
1
− 1

λ2
2

) , (A.6)

which can be further cast into the final form Eq. (19) used in
Section 2:

Φ(λ) = 2π
λ2λ1 (λ1 + λ2) + λ2

2
(
λ2 − λ2

1
)

λ3 (λ1 + λ2)

= 2π
λ2λ2 (λ1 + λ2) + λ2

1
(
λ2 − λ2

2
)

λ3 (λ1 + λ2)
.

A.2 Material relat ions with higher order
Cauchy terms

Now let us extend the Cauchy series of the material dispersion
by a fourth order term independent of the number of materials
used:

n(λ) = a +
b

λ2 +
c

λ4 . (A.7)

In the following we represent the coefficients a, b, c by the
more common parameters nd, νd, and θg,F, which are, respec-
tively, refractive index, Abbe number, and relative partial dis-
persion. The latter is defined as

θg,F =
n(λg)− n(λF)
n(λF)− n(λC)

(A.8)

with the wavelengths given by

λg = 422.67 nm , λF = 486.13 nm ,

λd = 587.56 nm , λC = 656.28 nm . (A.9)

Using the Abbe number

νd =
n(λd)− 1

n(λF)− n(λC)
, (A.10)
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we can rewrite the relative partial dispersion as

θg,F =
(

n(λg)− n(λF)
) νd

nd − 1
. (A.11)

Using the Cauchy series (A.7) we obtain for the Abbe number

νd =
nd − 1

b
(

λ−2
F − λ−2

C

)
+ c

(
λ−4

F − λ−4
C

) (A.12)

and for the relative partial dispersion

θg,F =
(

b
(

λ−2
g − λ−2

F

)
+ c

(
λ−4

g − λ−4
F

) ) νd
nd − 1

. (A.13)

Using the notation

λ2
g,F = λ−2

g − λ−2
F , λ4

g,F = λ−4
g − λ−4

F ,

λ2
F,C = λ−2

F − λ−2
C , λ4

F,C = λ−4
F − λ−4

C , (A.14)

we get the following relations between the coefficients of the
Cauchy series and the material parameters:

b λ2
F,C + c λ4

F,C =
νd

nd − 1
, (A.15)

b λ2
g,F + c λ4

g,F = (nd − 1)
θg,F

νd
, (A.16)

which look simpler in matrix notation:

(
λ2

F,C λ4
F,C

λ2
g,F λ4

g,F

)(
b

c

)
=

 νd
nd−1

nd−1
νd

θg,F

 . (A.17)

Solving the linear system by matrix inversion we finally ob-
tain:(

b

c

)
=

1
λ2

F,Cλ4
g,F − λ4

F,Cλ2
g,F

(
λ4

g,F −λ4
F,C

−λ2
g,F λ2

F,C

) νd
nd−1

nd−1
νd

θg,F

 .

(A.18)
Hence, the coefficients b and c can now be calculated for a
given Abbe number νd and relative partial dispersion θg,F. Fi-
nally, the remaining coefficient a results from

a = nd −
b

λ2
d
− c

λ4
d

. (A.19)

These relations can now be used as a starting point for the
representation of the phase Φ(λ) with higher order Cauchy
terms using coefficients a, b, c or relations nd, νd, and θg,F.

B APPENDIX

In this appendix it is shown that the nonlinear Eqs. (29) and
(30) can be approximated by the same linear Eq. (31) used in
Section 4 to sufficient accuracy. Without any loss of generality,
we are assuming n1 > n2 as in the whole publication, so that

n1 = n2 + ∆n, with ∆n = n1 − n2 � 1 . (B.1)

B.1 TE-polarizat ion

In TE-polarization, the effective refractive index neff can be
calculated by the relation [36]

neff =
√

v1n2
1 + (1− v1)n2

2 =
√

v1(n2 + ∆n)2 + (1− v1)n2
2 .

(B.2)
Expanded and simplified one obtains:

neff =

√
n2

2

{
1 + 2v1

∆n
n2

+
( v1∆n

n2

)2}
. (B.3)

Omitting terms of order (∆n)2 and using the first two terms
of the series expansion of the square root, one obtains:

neff ≈ n2

(
1 + v1

∆n
n2

)
. (B.4)

Using ∆n = n1 − n2, this can be rewritten as

neff ≈ v1n1 + (1− v1)n2 , (B.5)

which is the same linear relation Eq. (31) used in Section 4.

Now, it is additionally shown that the difference between the
nonlinear Eqs. (B.2) and the linear Eqs. (B.5) is sufficiently
small. This difference is a function of the volume fraction v1:

∆(v1) =
√

v1n2
1 + (1− v1)n2

2 − v1n1 − (1− v1)n2 . (B.6)

To determine the maximum value of difference ∆(v1), its first
derivative is calculated:

0 =
d

dv1
∆(v1) =

n2
1 − n2

2

2
√

v1n2
1 + (1− v1)n2

2

− n1 + n2 . (B.7)

Solving this equation for v1 yields the value of v1,max where
∆(v1) has its maximum value. One obtains

v1,max =
n1 + 3n2

4 (n1 + n2)
. (B.8)

Inserting in Eq. (B.6), the maximum value for the difference is

∆(v1,max) =
(n1 − n2)

2

4 (n1 + n2)
. (B.9)

Thus, the maximal expected mismatch ∆(v1,max) is propor-
tional to the square of n1 − n2 which is typically smaller than
0.12 = 0.01. The denominator in Eq. (B.9) has a typical value
of 12. Therefore, for the effective refractive index Eq. (B.5) an
error of

∆(v1,max) ≤ 0.001 (B.10)

is expected which is small enough to be neglected. Hence, it
is justified to replace the nonlinear Eq. (29) for the effective
refractive index by the linear Eq. (31).

B.2 TM-polarizat ion

Now, in TM-polarization, the effective refractive index neff can
be calculated by the relation [36]

neff =
1√

v1
n2

1
+ (1−v1)

n2
2

=
1√

v1
(n2+∆n)2 + (1−v1)

n2
2

. (B.11)
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This is equivalent to

neff =
1√

1
n2

2

{ v1(
1+ ∆n

n2

)2 + (1− v1)
} . (B.12)

Using the first two terms of the series expansion of (1 + x)−2

for the denominator of the first term in the brackets under the
square root, this can be approximated by

neff ≈
n2√

1− 2v1∆n
n2

. (B.13)

Again, utilizing only the first two terms of (1 − x)−
1
2 series

expansion, it results in

neff ≈ n2

(
1 + v1

∆n
n2

)
. (B.14)

With ∆n = n1 − n2, this can be rewritten into the linear rela-
tion Eq. (31) used in Section 4:

neff ≈ v1n1 + (1− v1)n2 . (B.15)

Also for TM-polarization, in the following it is shown that
the difference between the nonlinear Eqs. (B.11) and the lin-
ear Eqs. (B.15) is sufficiently small. Again, this difference is a
function of the volume fraction v1:

∆(v1) =
1√

v1
n2

1
+ (1−v1)

n2
2

− v1n1 − (1− v1)n2 . (B.16)

The first derivative of difference ∆(v1) is given by:

0 =
d

dv1
∆(v1) = −1

2
1√(

v1
n2

1
+ (1−v1)

n2
2

)3
·
( 1

n2
1
− 1

n2
2

)
−n1 + n2 .

(B.17)
Solving this equation for v1 yields the value of v1,max where
∆(v1) has its maximum value. The only real zero is

v1,max =
[ 1

2 (1 + n2
n1

) n2
n1

]2/3 − 1
n2

2
n2

1
− 1

. (B.18)

The maximum value for the expected mismatch ∆(v1,max) of
the effective refractive index Eq. (B.15) can be calculated by
inserting this expression into Eq. (B.16). For typical values of
refractive index and refractive index difference with e.g. n1 =
1.5, n1 − n2 = 0.1, respectively, it can be estimated:

|∆(v1,max)| ≤ 0.0025 . (B.19)

This value is small enough to be neglected in the TM-
polarization case.

The final result is, that in both polarization cases, the nonlin-
ear relations Eqs. (29) and (30) can be approximated by the
same linear Eq. (31) to sufficient accuracy.

References

[1] T. Stone, N. George, “Hybrid diffractive–refractive lenses and
achromats” Appl. Optics 27, 2960–2971 (1988).

[2] R. Brunner, R. Steiner, K. Rudolf, and H. J. Dobschal, “Diffractive–
Refractive Hybrid Microscope Objective for 193 nm Inspection Sys-
tems” Proc. SPIE 5177, 9–15 (2003).

[3] R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and
M. Helgert, “New Solution to Realize Complex Optical Systems by
a Combination of Diffractive and Refractive Optical Components”
Proc. SPIE 5183, 47–55 (2003).

[4] R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg,
U. Horn, and A. Zibold, “Immersion Mask Inspection with Hybrid
Microscopic System at 193 nm” Proc. SPIE 5567, 887–893 (2004).

[5] H. J. Dobschal, “Two examples for the effective use of hybrid op-
tics” EOS Top. Meet. Diffractive Optics, 84–85 (2007).

[6] C. Sauvan, P. Lalanne, and M.-Si L. Lee, “Broadband blazing with
artificial dielectrics” Opt. Lett. 29, 1593–1595 (2004).

[7] E. Popov, B. Bozhkov, and M. Neviere, “Almost Perfect Blazing by
Photonic Crystal Rod Gratings” Appl. Optics 40, 2417–2422 (2001).

[8] S. M. Ebstein, “Nearly index–matched optics for aspherical, diffrac-
tive, and achromatic–phase diffractive elements” Opt. Lett. 21,
1454–1456 (1996).

[9] Y. Arieli, S. Ozeri, and N. Eisenberg, “Design of a diffractive op-
tical element for wide spectral bandwidth” Opt. Lett. 23, 823–824
(1998).

[10] T. Nakai, “Diffractive optical element” European Patent Specifica-
tion EP 965 864 B1 (1998).

[11] T. Nakai, and H. Ogawa, “Research on multi–layer diffractive op-
tical elements and their application to camera lenses” OSA Tech.
Dig. of DOMO Conf., Rochester, 5–7 (2002).

[12] T. Nakai, “Diffractive optical element and optical system having
the same” European Patent Specification EP 898 182 B1 (1997).

[13] A. Schilling, K. J. Weible, and H. P. Herzig, “Diffractive
structures with high, wavelength independent efficiency” EOS
Top. Meet. Dig. Ser. 22, 16–17 (1999).

[14] K. J. Weible, A. Schilling, H. P. Herzig, and D. Lobb, “Achromati-
zation of the diffraction efficiency of diffractive optical elements”
Proc. SPIE 3749, 378–379 (1999).

[15] A. Schilling and H. P. Herzig, “Optical System Design Using Mi-
crooptics” in Encyclopedia of Optical Engineering, R. G. Driggers,
ed., 1830–1842 (Marcel Dekker Inc., New York, 2003).

[16] B. Achtner, F. O. Karutz, M. Pollmann, and M. Seeßelberg, “Video-
brille für das Kino unterwegs” Photonik 40, 40–43 (2008).

[17] M. D. Missing and G. Michael Morris, “Diffractive optics applied to
eyepieces design” Appl. Optics 34, 2452–2461 (1995).

[18] O. Sandfuchs, D. Pätz, S. Sinzinger, A. Pesch, and R. Brun-
ner, “Analysis of the influence of the passive facet of blazed
transmission gratings in the intermediate diffraction regime”
J. Opt. Soc. Am. A 25, (2008).

[19] D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance
of holographic kinoforms” Appl. Optics 28, 976–983 (1989).

[20] B. H. Kleemann, A. Mitreiter, and F. Wyrowski, “Integral equation
method with parametrization of grating profile – Theory and ex-
periments” J. Mod. Optic. 43, 1323–1349 (1996).

[21] A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “On a Fast Integral
Equation Method for Diffraction Gratings” Commun. Comput. Phys.

08015- 15



Journal of the European Optical Society - Rapid Publications 3, 08015 (2008) B. H. Kleemann, et. al.

1, 984–1009 (2006).

[22] H. Ukuda, “Optical material, and optical element, optical sys-
tem and laminated diffractive optical element using it”, European
Patent Application EP 1 394 574 (2003).

[23] W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artifi-
cial distributed–index media fabricated by zero–order gratings”
Opt. Lett. 16, 1921–1923 (1991).

[24] P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois,
“Design and fabrication of blazed binary diffractive elements
with sampling periods smaller than the structural cutoff”
J. Opt. Soc. Am. A 16, 1143–1156 (1999).

[25] J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary
subwavelength diffractive lenses by use of zeroth–order effective–
medium theory” J. Opt. Soc. Am. A 16, 1157–1167 (1999).

[26] Mane-Si Laure Lee, P. Lalanne, P. Chavel, and E. Cambril,
“Imaging with blazed–binary diffractive elements” Proc. SPIE on
Physics, Theory, and Applications of Periodic Structures in Optics,
P. Lalanne, ed., 4438, 62–68 (2001).

[27] B. H. Kleemann, J. Ruoff, and R. Arnold, “Area–coded effective
medium structures, a new type of grating design” Opt. Lett. 30,
1617–1619 (2005).

[28] Information from GRINTECH AG in 2004.

[29] R. P. Salmio, J. Saarinen, J. Turunen, and A. Tervonen, “Graded–
index diffractive structures fabricated by thermal ion exchange”
Appl. Optics 36, 2048–2057 (1997).

[30] T. Vahrenkamp, H. Kreitlow, H. Schütte, and C. Thoma, “DOE aus
Glas für den Nd:YAG–Laser” Photonik 3, 6–8 (2002).

[31] J. Teteris, “Holographic recording in amorphous chalcogenide thin

films” Current Opinion in Solid State and Material Science 7, 127–
134 (2003).

[32] T. Buffeteau, F. Lagugnè Labarthet, C. Sourisseau, S. Kostro-
mine, and T. Bieringer, “Biaxial orientation induced in a photoad-
dressable azopolymer thin film as evidenced by polarized UV–
Visible, infrared, and Raman spectra” Macromolecules 37, 2880–
2889 (2004).

[33] R. Hagen and T. Bieringer, “Photoaddressable polymers for data
storage” Advanced Mat. 13 1805–1810 (2001)

[34] J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and
L. B. Glebov, “Coupled–wave analysis of apodized volume grat-
ings” Opt. Express 12, 6642–6653 (2004).

[35] J. Yeh, A. Harton, and K. Wyatt, “Reliability study of holographic
optical elements made with DuPont photopolymer” Appl. Optics
37, 6270–6274 (1998).

[36] S. M. Rytov, “Electromagnetic properties of a finely stratified
medium” Sov. Phys. JETP-USSR 2 466–475, (1956).

[37] http://www.texloc.com/closet/cl_refractiveindex.html

[38] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi,
M. Wedlake, T. Michaelson, S. V. Sreenivasan, C. G. Willson, “Step
and Flash Imprint Lithography: A new approach to high-resolution
patterning” Proc. SPIE on Microlithography 3676, 379–389 (1999).

[39] http://www.cargille.com

[40] D. Mund, K. M. Hammerl, “Building up diffractive optics by
structured glass coatings” Patent Application Publication WO
2005 121 842 A1

[41] http://en.wikipedia.org/wiki/Tetris

08015- 16


	INTRODUCTION
	STATE OF THE ART DOEs
	Conventional DOEs
	Common depth EA--DOEs
	Multilayer EA--DOEs
	Sub--wavelength DOEs

	GRADIENT--INDEX EA--DOEs
	Function
	Fabrication

	SUB--WAVELENGTH EA--DOEs
	Function
	Pairs of materials for sub----structure EA--DOEs
	Thickness h of sub----structure EA--DOEs
	Embodiments

	CUT--AND--PASTE EA--DOEs
	DISCUSSION
	APPENDIX
	Phase for material dispersion with second order Cauchy relations
	Material relations with higher order Cauchy terms

	APPENDIX
	TE-polarization
	TM-polarization


