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Abstract. MueLu is a library within the Trilinos software project [An overview of Trilinos, Technical Report SAND2003-2927,

Sandia National Laboratories, 2003] and provides a framework for parallel multigrid preconditioning methods for large sparse

linear systems. While providing efficient implementations of modern multigrid methods based on smoothed aggregation and

energy minimization concepts, MueLu is designed to be customized and extended. This article gives an overview of design

considerations for the MueLu package: user interfaces, internal design, data management, usage of modern software constructs,

leveraging Trilinos capabilities, linear algebra operations and advanced application.
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1. Introduction

The repeated solution of sparse linear systems is

often a key computational bottleneck for large-scale

computer simulations, and multigrid techniques [6] are

often employed precisely because of their algorithmic

and parallel scalability. The basic idea of multigrid is

to use the representation of the same problem at dif-

ferent scales to accelerate the resolution of the finest

discretized problem. Multigrid actually involves two

complementary processes, smoothing and coarse grid

correction. The smoothing generally consists of apply-

ing a relaxation method like Jacobi or Gauss–Seidel

to reduce certain errors on the fine grid discretization.

The error that has not been eliminated by the smooth-

ing process must be accurately represented on a coarser

grid. The aim of the coarse grid correction is then to

eliminate this error. This can be done by applying re-

cursively the two-grid algorithm to this new grid. In

geometric multigrid, the knowledge of the problem ge-

ometry is used to create discretization of the problem at

different scales, and the fine and coarse grid errors can
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be interpreted as high and low frequency. In algebraic

multigrid (AMG), the hierarchy of grids is derived di-

rectly from the finest grid by using graph algorithms,

and the fine and coarse grid errors can be characterized

as high and low energy, respectively. In both methods,

a restriction operator is used to transfer the residual to

the next coarser grid, and a prolongation operator in-

terpolates it back to the fine grid after the coarse grid

correction.

Over the years, there have been successful software

efforts to provide open source high performance paral-

lel multigrid libraries:

• The HYPRE project [8,9] provides the Boomer-

AMG package [12] that is a parallel implemen-

tation in C of classic Ruge–Stueben (F/C) alge-

braic multigrid with several coarsening and re-

laxation schemes. HYPRE also provides various

structured multigrid solvers and Maxwell solvers.

Interfaces to Fortran, C++, Python and Java are

available.

• ML [11] is currently the main multigrid precon-

ditioning package of the Trilinos Project [17–

20,24]. ML primarily focuses on smoothed ag-

gregation [26] based preconditioners. ML con-

tains a variety of parallel multigrid schemes like

standard smoothed aggregation, Petrov–Galerkin

for nonsymmetric systems, and two schemes for

Maxwell’s equations. ML is written in C. Addi-

tionally, ML has Python and C++ interfaces [23]
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and can interoperate with some other Trilinos

packages.

As part of the Trilinos project, we are developing a

new object-oriented multigrid solver named MueLu.

MueLu is meant to be a replacement for ML in ex-

isting applications, a research vehicle, as well as the

delivery vehicle for future algorithms. Using multi-

grid as a blackbox is often not enough for challeng-

ing problems arising from multi-physics simulations

that may have boundary layers, mesh stretching, ma-

terial discontinuities, or other features that stress lin-

ear solvers. A highly versatile framework is needed to

deploy customizable MG methods as well as support

future research. Both the software design and the algo-

rithms must be versatile: implementation of problem-

specific improvements directly in the solver has to be

straightforward from a software standpoint, but algo-

rithms should also be easy to reuse and adaptable to

other problems. A specific goal of the MueLu design

is to support recently developed multigrid approaches

based on energy minimization [27]. These methods al-

low more flexibility in the choice of inter-grid trans-

fer operators, which in turn allows better control over

the quality and the application cost of the coarse grid

correction. These methods extend the applicability of

AMG methods to challenging problems like those aris-

ing from systems of PDEs. In addition, such algorithms

can be viewed as a generalization of other successful

multigrid algorithms, like the smoothed aggregation

approach used in ML. MueLu is primarily intended to

make such new multigrid approaches available. While

algorithmic flexibility is attractive, the software frame-

work must make this easily achievable.

Therefore, the primary design goal of our project

is to create a highly configurable multigrid framework

leveraging the flexibility of these new multigrid ap-

proaches. Control over all the parameters of the algo-

rithms must be available via the high-level interface.

We want to enable advanced users to customize deeply

all the components of a multigrid solver in an easy way.

Additionally, special attention was paid to the code de-

sign during development to provide straight-forward

extensibility. In particular, the modularity of MueLu

allows the reuse and reorganization of existing algo-

rithm components to help build other multigrid meth-

ods. The intentional design of MueLu also allows for

a variety of multigrid methods like geometric, classic

and aggregation based methods; MueLu is not limited

to energy-minimization based methods. In particular,

MueLu is designed to support the key algorithms in

ML that are in use today: standard smoothed aggre-

gation, Petrov–Galerkin aggregation for nonsymmetric

systems and Maxwell solvers.

Finally, MueLu must also be robust enough for ev-

eryday use on a variety of platforms. MueLu is writ-

ten in C++ and uses modern programming concepts,

both of which facilitate the development, maintenance

and extension of the code. Performance and scalabil-

ity are also important design requirements of MueLu,

but these objectives are mainly achieved by leverag-

ing some of the newest Trilinos capabilities. The Trili-

nos framework also allows outsourcing of some of

the multigrid algorithm components and also provides

tools to improve the maintainability of our software.

This paper is organized as follows. First, we give

an overview of the user interface in Section 2. In Sec-

tion 3, we describe some details of the internal design.

In Section 4 we explain how we leverage the capabil-

ities of Trilinos packages. In Section 5, we describe

some advanced applications that demonstrate the flex-

ibility of our new framework. Finally, we make some

concluding remarks in Section 6.

2. User interfaces

In this section, we first introduce some design con-

cepts that help to explain the MueLu interfaces. We

then present two types of interfaces: the native inter-

face in which the user interacts fully with MueLu ob-

jects, and simplified interfaces that hide much of the

details but extend naturally to the native interface.

2.1. General design philosophy

A main theme of the MueLu design is to allow ac-

cess to all parts of the multigrid setup and solution

phase, so that existing multigrid methods can be tuned

for optimal performance and so that new algorithms

can be developed and tested without undue burden.

From the point of view of software design, the multi-

grid setup phase mainly consists of the creation of new

objects that will be used during the solution phase.

A hierarchy of coarse grid problems is created that will

later be used during the multigrid solution phase. Ex-

amples of persistent objects produced during the setup

phase are prolongation, restriction and coarse matrices.

Multigrid setup also generally requires many tempo-

rary objects, such as graphs, aggregates and tentative

prolongators. The specifics of how the persistent and

temporary objects are created depends on the particular
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for (int i=1; i<nLevels; i++) {

P = prolongatorFact.Build(...);

R = restrictionFact.Build(...);

Ac = projectionFact.Build(...);

}

Fig. 1. Internal MueLu multigrid setup phase illustrating correlation

of algorithmic components and factories.

multigrid method. Because of this required generality,
we leverage certain software design concepts.

MueLu makes extensive use of the factory design

pattern [10] for the creation of hierarchy objects. Basi-
cally, factories are objects intended to ease the creation
of other objects. For example, a prolongation factory
provides a method allowing repeated creation of pro-
longation matrices. Behavior of factories can be guided
by parameters supplied as input via either factory con-
structors or “set” methods. A factory can also be eas-
ily replaced by another factory implementing the same
interface, thus permitting one mechanism for creating
objects to be replaced by another.

To illustrate the use of factories in MueLu, we show
some excerpted internal code in Fig. 1. We emphasize
that this particular example is internal to MueLu, and
that the user is not required to write such a loop. There
is a strong correlation between factories and algorith-
mic blocks of the multigrid setup phase. The exact def-
inition of Build methods is discussed in Section 3.

We expect that virtually all users will interact with
MueLu through the simplified interface. End users can
choose to ignore the internal design and just specify
the behavior of the solver using a monolithic list of pa-
rameters. In reality, however, a MueLu preconditioner
is not a single object, but rather the end product of the
interplay of many individual objects (factories). These
factories correspond to multigrid algorithmic compo-
nents. So while a user may not think of these objects
as factories, understanding that a variety of objects
are combined together is an important concept. Design
patterns are generally only invoked for internal design
consideration, but in MueLu they are also necessary to
fully understand the interface.

2.2. Native interface

The native interface uses the factories to directly ma-
nipulate the multigrid algorithm components. We have
designed the native interface to facilitate the develop-
ment and implementation of new advanced algorithms.
MueLu provides factories such that all parts of the pre-
conditioner can be explicitly customized. This modu-
larity serves several purposes:

(1) The design is flexible, such that pieces of the al-

gorithm can be swapped in and out.

(2) Advanced preconditioners can be created that are

tailored to specific problems.

(3) The design is extensible, thus allowing for future

algorithm development.

For example, the user has control over coarsening, de-

tection of strength of coupling between unknowns, grid

transfer sparsity patterns, coarse near nullspace repre-

sentation, initial guess of the transfer operator, etc., in

the high-level interface. In addition, new factories can

be implemented and used without modifying any core

components of MueLu.

To use this interface, the user specifies how to build

a level of the hierarchy by defining a set of factories.

During the setup phase, these factories work together

to build the entire multigrid hierarchy. The user per-

spective follows:

(1) The user instantiates the factories that must be

used. This implicitly defines the type of multigrid

method. Each factory’s behavior is guided by op-

tions given to its constructor. These options are

a few local parameters and/or any factories pro-

vided as input. At no point does the user have

to provide a single monolithic parameter list that

describes the entire multigrid preconditioner.

(2) Multigrid levels are automatically built by the

user-provided factories.

(3) Level data are stored in an instance of the class

Hierarchy.

(4) The method Iterate of Hierarchy allows

the application of multiple multigrid cycles. The

Hierarchy object can also be used as a pre-

conditioner of an iterative method.

Hierarchy is the central class of our software. It

implements both the algorithms of the setup phase

(item 2) and of the solution phase (item 4). Hierar-

chy also stores the information needed to apply the

multigrid methods (item 3).

A typical usage of the native interface is presented

in Fig. 2. In this example, the user specifies the use of

a smoothed aggregation factory to build prolongators.

The linear problem is represented by using vector and

matrix classes provided by TPETRA [13], a linear al-

gebra package of Trilinos. The interface of MueLu ac-

cepts either EPETRA [15] or TPETRA matrices. This

is discussed further in Section 4.2. MueLu uses TEU-

CHOS reference counted pointers [3,4,16], or RCPs,

in interfaces. A reference counted pointer is a type of

smart pointer that automatically tracks all the copies of



226 J. Gaidamour et al. / Design considerations for a flexible multigrid preconditioning library

using Teuchos::Comm; // communicator

using Teuchos::RCP; using Teuchos::rcp; // smart pointers

using Tpetra::Map; using Tpetra::Vector; // linear algebra library

using namespace MueLu;

[...] // variable declarations are skipped

// Partition of distributed objects

numElements = 16;

comm = Teuchos::DefaultComm<int>::getComm();

map = Tpetra::createUniformContigMap(numElements, comm);

// Linear problem

A = ...;

// Multigrid hierarchy

Hierarchy H(A);

// Define how to build coarse levels

prolongationFact = rcp(new SaPFactory<double>());

H.Populate(prolongationFact); // build coarse levels

// Setup smoothers

smoother = rcp(new Ifpack2Smoother("point relaxation"));

H.SetSmoother(smoother);

// Solve Ax=b

X = Tpetra::createVector(map); X->randomize();

B = Tpetra::createVector(map);

H.Iterate(*B,30,*X); // 30 iterations

Fig. 2. Example illustrating the native interface of MueLu. This example creates a smoothed aggregation multigrid method.

the object pointer – the memory is freed when it is no

longer referenced by any object. Using such pointers

at the interface level avoids problems of data owner-

ship transfer between applications and libraries. RCPs

are also used internally in MueLu to reduce the danger

of memory leaks (especially in the case of exception

handling).

A more advanced usage is presented in Fig. 3. The

user now fully specifies how to create the multigrid hi-

erarchy by providing a prolongation, a restriction and

a projection factory. Smoothers and coarse solvers are

also defined explicitly. Separately specifying the re-

striction operators is useful for nonsymmetric prob-

lems like convection–diffusion systems. The user is

free to modify the formation of the coarse grid oper-

ator by deriving his own factory from the default pro-

jection factory. In this way, the coarse grid representa-

tion of auxiliary information such as coordinates can

be explicitly controlled. This example also shows how

the smoothed aggregation prolongation factory leans

on the capabilities of two other factories: a tentative

prolongator factory and an aggregation factory. Here,

the user requests a particular aggregation algorithm to

be used for building the tentative prolongator. The flex-

ibility imparted by the use of chains of factories allows

the user to created tailored preconditioners. Multigrid

methods frequently exploit the knowledge of the ma-

trix nullspace to build coarse grid corrections. Such ad-

ditional information can be added directly to the hi-

erarchy data structure. More details on the Hierarchy

Set() method are given in Section 3.

We note that in both examples, there is no overar-

ching parameter list that describes the entire precon-

ditioner construction process. Rather, each factory’s

behavior is entirely specified by a small set of local

parameters and the upstream factories specified at its

construction time.

Defining more complex MG methods is also pos-

sible. Figure 4 demonstrates how hybrid methods can

be potentially created by combining geometric multi-

grid and algebraic multigrid. The multigrid methods

are specified by the choice of prolongator factory. The

calls to Populate() specify the particular levels at

which the two different prolongator types have to be
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// The following header files define Scalar=double and Ordinal=int

// by default and allow us to skip template parameters

#include "MueLu_UseDefaultTypes.hpp"

#include "MueLu_UseShortNames.hpp"

using Teuchos::rcp;

using namespace MueLu;

[...] // variable declarations are skipped

// Multigrid hierarchy (level 0 == fine grid)

Hierarchy H(A);

H.GetLevel(0)->Set("Nullspace", nullspace);

// Configure the multigrid method

// 1- Graph coarsening

aggregationFact = rcp(new UCAggregationFactory());

// 2- Tentative and Smoothed prolongator factories

tentativePFact = rcp(new TentativePFactory(aggregationFact));

prolongationFact = rcp(new SaPFactory(tentativePFact));

// 3- R = P^T and Ac = RAP

restrictionFact = rcp(new TransPFactory());

projectionFact = rcp(new RAPFactory());

projectionFact->setVerbLevel(Teuchos::VERB_HIGH);

// 4- Smoother

smoother = rcp(new Ifpack2Smoother("point relaxation"));

smoother->SetNumIts(2);

smoother->SetBackwardSweep(true);

// 5- Solver used on the coarse grid

coarseSolver = rcp(new Amesos2Smoother());

// Populate Hierarchy

H.SetMaxNumLevel(5);

H.Populate(prolongationFact, restrictionFact, projectionFact);

H.SetSmoother(smoother);

H.SetCoarsestSolver(coarseSolver);

Fig. 3. Example illustrating how the interface allows to configure deeply the smoothed aggregation multigrid method.

used. Smoothers are also set for individual levels in the
same way.

Finally, the flexibility of the framework also option-
ally allows one to preserve data between successive
setup phases. For example, aggregates formed during
coarsening might be restricted to remain the same from
one time step to the next. This type of reuse can help
reduce setup overhead. The native interface allows this
quite easily. Indeed, any hierarchy data can be kept at a
user’s request during the first run. The user can replace
any factory by another that does nothing other than
checking that data are already present in the hierarchy.

In summary, the native interface has the following
benefits:

(1) There is no need to have complex lists of param-
eters. Rather, the multigrid preconditioner con-
struction process is controlled by the types of fac-
tories that the user creates.

(2) Changing any aspect of the multigrid method is
as easy as swapping one object for another.

(3) Adding new algorithms is straightforward. There
is no need to modify any existing code. Instead,
a new class can be derived and used.

2.3. Simplified interfaces

MueLu provides extensions of the native interface
that may be easier to use for end-users. Based on prior
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// Multigrid hierarchy

Hierarchy H(A);

// Level 0

smoother0 = rcp(new Ifpack2Smoother("point relaxation"));

H.SetSmoother(smoother0, 0);

// Level 1

prolongationFact1 = rcp(new myGeoPFactory());

smoother1 = rcp(new Ifpack2Smoother("point relaxation"));

H.Populate(prolongationFact1, 1);

H.SetSmoother(smoother1, 1);

// Level 2

prolongationFact2 = rcp(new SaPFactory());

smoother2 = rcp(new Ifpack2Smoother("ILUT"));

H.Populate(prolongationFact2, 2);

H.SetSmoother(smoother2, 2);

Fig. 4. Example illustrating how factories can be used to create a more advanced multigrid method. A hybrid preconditioner combining geometric

and algebraic multigrid is built and smoothers are specified on individual levels.

experience with the ML package, we anticipate that

such interfaces will see heavy use, especially with new

users.

The first interface makes use of the facade de-

sign pattern [10]. A facade essentially establishes

default values for certain preconditioner options. In

MueLu, there is a single facade for each particu-

lar problem type, and the naming convention is sug-

gestive of that problem. For each problem type, rea-

sonable default parameters have been pre-determined

by the MueLu developers. Problem types includes

recommended settings for Poisson, linear elasticity,

convection–diffusion, and Maxwell (i.e., H(curl))

problems. Others can be added as needed. MueLu fa-

cade classes are derived from the Hierarchy class.

For example, the constructor of the linear elasticity

facade can be called like this: ElasticityHier-

archy(A,nullspace). A user still has access to

the native interface and control over the preconditioner

construction process if wanted. But if such a capability

is not used, default factories will be automatically in-

stantiated during the setup phase according to the prob-

lem type.

The second simplified interface is driven via param-

eter lists. Parameter lists are simply lists of key-value

pairs. Parameters can be added and retrieved with ac-

cessor functions. These parameters can be any data

type which uses value semantics (e.g., double, float,

int, *double, *float, *int, . . .). These parameters can

also be pointers to vectors or functions. Parameters

may also be other parameter lists, allowing for a hierar-

chy of lists. Many Trilinos packages can be configured

using such a list, and many applications use such a ca-

pability to interact with Trilinos packages. Parameter

lists are popular thanks to their dynamic aspect. Param-

eter lists can be loaded from an XML file, and modifi-

cations do not require any recompilation. In addition,

it is easy to give access to all the configuration options

of subpackages in a complex application. An example

of usage for MueLu is shown in Fig. 5. Parameter lists

can fully describe a multigrid method.

Simplified interfaces are both easy to use and fairly

close to the native interface. It is easy to switch

from one of the simplified interfaces to the native

one by looking at the implementation of the facades

or at the parameter list interpreter. In addition, pa-

rameter lists can be used in combination with fa-

cades and vice versa: default parameters from a facade

can be used in a parameter list (using paramList.

set(“problem”, “elasticity”)), and fa-

cades can interpret parameter lists to modify their de-

fault behavior as shown in Fig. 6.

3. Internal design

In this section we discuss the internal design of

MueLu. We begin with a description of the hierarchy

data structure and explain how the hierarchy is pop-

ulated during the setup phase. In a second part, we
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// Parameters

Teuchos::ParameterList paramList;

paramList.set("max levels",2);

paramList.set("aggregation: type", "Uncoupled");

paramList.set("aggregation: damping factor", 0.0);

paramList.set("smoother: type","symmetric Gauss-Seidel");

paramList.set("smoother: sweeps",1);

paramList.set("smoother: damping factor",1.0);

paramList.set("smoother: pre or post", "both");

paramList.set("coarse: type","Amesos-KLU");

paramList.set("coarse: max size",32);

// Multigrid hierarchy

Hierarchy H(A);

// Setup

ParameterListInterpreter mueLuFactory(paramList);

mueLuFactory.SetupHierarchy(H);

// Solve Ax=b

H.Iterate(*B,30,*X);

Fig. 5. Using MueLu with Teuchos::ParameterList.

// Linear problem

RCP< Tpetra::CrsMatrix<double> > A = ...;

RCP< Tpetra::Vector<double> > nullspace = Tpetra::

createVector(map);

nullspace->putScalar(1.0);

// Parameters

Teuchos::ParameterList paramList;

paramList.set("smoother: type", "symmetric Gauss-Seidel");

paramList.set("smoother: sweeps", 4);

paramList.set("smoother: damping factor", 1.0);

// Multigrid hierarchy

ElasticityHierarchy H(A, nullspace, paramList);

// Solve Ax=b

H.Iterate(*B,30,*X);

Fig. 6. Using MueLu with both the facade interface and a parameter list.

describe the modular design of the transfer operator

construction. We explain how prolongator algorithms

can be subdivided and discuss how data transfers be-

tween submodules are managed. Finally, we discuss

some particulars of the smoothing process.

3.1. The multigrid hierarchy

The central class of the MueLu design is the Hier-

archy. It represents the grid hierarchy of the multi-

grid method. Hierarchy objects are manipulated di-

rectly by the user as described in Section 2 for both

configuring multigrid methods (using Populate()

and SetSmoothers()) and applying multigrid cy-

cles (using the method Iterate()). The grid hierar-

chy data are built during the setup phase using the al-

gorithm described in Fig. 1. Basically, this algorithm

consists of calling the Build() methods of a set of

factories for each level of the grid hierarchy. Produced

or constructed data are stored in the Hierarchy ob-



230 J. Gaidamour et al. / Design considerations for a flexible multigrid preconditioning library

ject. After this setup phase, this data can be used in

the solve step for applying multigrid cycles. Internally,

Hierarchy is an array of Level objects, each ob-

ject representing one level of the multigrid hierarchy.

Input and output data of factories involved in the

setup phase depend on the multigrid methods. For in-

stance:

• The prolongator factory of smoothed aggregation

computes both the prolongator matrix and the

nullspace of the coarse grid. The coarse nullspace

has to be stored for the next recursion step be-

cause it is also an input argument of the prolonga-

tor factory.

• The prolongator factory of geometric multigrid

methods needs geometric information as input

and this information must be projected to coarse

levels.

Such input and output arguments do not necessarily ex-

ist for other multigrid methods. To allow flexibility in

how factories operate, the factory Build() methods

take Level objects as input/output arguments. Fac-

tory Build() methods have then the following pro-

totypes: Build(FineLevel, CoarseLevel).

Factories can directly access any data from the levels

and also directly populate them.

The Level class is based on an associative array

design. Through the use of a generic type, the Level

class allows great flexibility in what type of data can

be stored and can thus be used to store the input and

output of the factories involved in the construction of

the multigrid hierarchy.

Thanks to the uniformity of the factory interfaces,

the multigrid setup algorithm is generic. In addition,

the generality of the data structures allows them to be

reused for any multigrid method.

3.2. Coarse grid correction

One of the key family of classes in MueLu is

the transfer class family. These classes in fact deter-

mine the type of multigrid method that the Hier-

archy constructs, e.g., geometric, smoothed aggrega-

tion, Ruge Stueben, etc. The purpose of each transfer

factory is to produce a particular type of grid transfer

matrix. Each transfer factory is highly customizable,

and two transfer factories generally share some com-

mon algorithm parts. To be able to modify factory con-

figuration and also to reuse algorithm parts of trans-

fer factories, transfer classes have been designed to be

highly modular. In particular, each transfer algorithm

has a number of logical components, each of which has

a corresponding factory. Altering a single phase of the

transfer algorithm amounts to supplying a new input

factory. This facilitates algorithm development, as de-

velopers can experiment with individual components.

Additionally, algorithms can be tailored for particular

problems, e.g., problems requiring a detection scheme

for abrupt material jumps. Although the transfer facto-

ries can be customized, the user does not need to know

the implementation details. If required input parame-

ters are not supplied, a transfer factory will invoke de-

fault factories to generate these parameters. The fol-

lowing section introduces the design of the smoothed

aggregation transfer operator as an example.

3.2.1. Example – implementation of the smoothed

aggregation prolongator class

In the smoothed aggregation algebraic multigrid

method, the coarse grid is defined by using an aggre-

gation algorithm that clusters the nodes of the matrix

graph. A first prolongator (called tentative prolongator)

is then built. Its coefficients are chosen in order to pre-

serve the zero energy modes of the initial problem on

the coarse grid. The quality of the interpolation oper-

ator is then improved by using a smoothing procedure

(classically a damped Jacobi) that reduces the energy

of the coarse basis functions while preserving the cor-

rect interpolation of zero energy modes. The steps for

building the prolongator of the smoothed aggregation

multigrid method follow.

• Build the coalesced graph of the matrix (input:

matrix; output: graph).

• Build the aggregates (input: graph; output: aggre-

gates).

• Build the tentative prolongator (input: nullspace,

aggregates, matrix; output: tentative prolongator

matrix, coarse nullspace).

• Smooth the tentative prolongator (input: tentative

prolongator matrix; output: P).

As our goal is to be able to change any part of

the algorithm easily (e.g., changing the aggregation

algorithm), the algorithm is split into four factories:

GraphFactory, AggregationFactory, Ten-

tativePFactory and SaPFactory. This modu-

larity also allows one to reuse parts of this method

within other multigrid methods like energy-minimiza-

tion. Figure 7 shows the dependency graph of the fac-

tories involved in the construction of the prolongator

of smoothed aggregation AMG.

A user who wants to use the SaPFactory does

not have to know the implementation details of the
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Fig. 7. Dependency graph of the factories involved in the construc-

tion of the prolongator of a smoothed aggregation multigrid method.

smoothed aggregation method. In particular, it is not

necessary to know which submodules are involved

in the process. Default submodules are directly in-

voked if they are not specified manually. Default fac-

tories called in this process can always be changed by

advanced users, however. For example, the aggrega-

tion algorithm can be changed using myTentative-

PFact.SetAggregationFactory(myAggre-

gationFact).

3.2.2. Managing data flow between factories

The modular design allows great flexibility but in-

troduces the challenging problems of communication

between modules. The data generation and use patterns

can be quite varied for two different multigrid methods,

and the main challenge is creating a flexible framework

that allows for different data flow patterns. One should

notice that it is not unusual for a factory to require data

produced elsewhere. In fact, the typical case is that the

factory does not actually know where the data was cre-

ated, only that it exists.

Level objects store data needed during the solve

phase (like prolongators, coarse grid matrices and

smoothers) but also allow great flexibility in what

type of data can be stored, as seen in Section 3.1.

Level can thus also act as a “scratch pad” to store

temporary data of the setup phase (graph, aggregates,

tentative prolongator, coarse nullspace). This is con-

venient for communicating data from one factory to

another. For instance, aggregates generated by the

AggregationFactory (used in a smoothed aggre-

gation method) can be stored in the Level data struc-

ture and can be accessed later by any factory. Using

this mechanism, a factory does not have to know which

factories will use its output in the rest of the algorithm.

Each factory is fairly independent and has no infor-

mation on how it will be linked with other factories.

If a sub-module is used twice on the prolongator con-

struction algorithm, the computation will only be done

once.

Inserting and accessing data in the Level is

straightforward:

level.Set(“A”, Adata, someFact): Object Adata is

saved in level with key “A”. The factory

someFact that created the data is also recorded

because several factories may produce data with

the same name. For instance, both TentativeP-

Factory and SaPFactory produce a prolongator

matrix named “P”. The keys of the associative

array Level are thus the pair (“A”, someFact).

level.Get(“A”, Adata, someFact): Object Adata

created by the factory someFact is retrieved.

If this object does not exist, the build method of

someFact has to be called to generate the data.

Temporary data of Level are deallocated as soon

as possible via a counter mechanism that works as fol-

lows:

• Before the setup phase, factories declare their in-

put data (and increment the corresponding coun-

ters). That is, the factories register which data they

expect to find in Level.

• At the end of the execution of a specific factory’s

Build method, the counter is decremented.

• When the counter reaches zero, temporary data

are automatically freed.

Note that if some output of factories is never requested

by any other factory, then this output is never stored.

Figure 8 gives an idea of the implementation of

SaPFactory::Build().

3.3. Smoothing procedure

In MueLu, smoothers are represented by classes that

implement the interface SmootherBase. An exam-

ple of a smoother class is presented Fig. 9. Smoothers

are invoked during the solve step using the Apply()

method.

Even if the same smoothing procedure is applied

on each grid of the hierarchy, a separate instance of

the smoother class is created for each level. Each

smoother object is associated with only one level be-

cause preprocessing is generally required before apply-

ing a smoother. For example incomplete factors have to
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void Build(Level &fineLevel, Level &coarseLevel) const {

// input

RCP<Operator> Ptent = fineLevel.Get(’P’, tentativePFact_);

fineLevel.Release(’P’, tentativePFact_); // free

// prolongator smoothing (pseudo-code)

P = (I - w D^-1 A) Ptent;

// output

fineLevel.Set(’P’, P, this);

}

Fig. 8. Implementation of the SaPFactory::Build() method.

Fig. 9. Class diagram of a smoother object.

be computed for ILU smoothers. The smoother object

stores data that depend on the level of the hierarchy.

In general, the setup phase of a smoother is very lim-

ited, but this phase can be costly for some smoothers

(like ILU). When the same smoother is used for both

pre and post smoothing, the setup phase must be done

only once per level.

Smoother objects of each level can be instantiated

using again the factory design pattern: a smoother fac-

tory can generate smoother objects for each multigrid

level and call the Setup() method of newly created

smoothers to initialize them. Pre- and post-smoothers

are generated at the same time to detect when the sec-

ond setup phase can be avoided. In the following, we

explain that for generating smoothers, we can in fact

use a unique factory for every type of smoother. This is

achieved by basing the factory design on the prototype

design pattern [25].

If we used only the classic factory design pattern for

smoothers, a different factory would have to be devel-

oped for each type of smoother. The main issue is that

smoother objects have different types and different pa-

rameters (number of iterations, relaxation parameters,

threshold of ILU, . . .). The prototype design pattern al-

lows us to use only one generic smoother factory. In

addition, users can manipulate directly smoother ob-

jects rather than factories: the generic factory does not

appear in the interface and is only used internally.

In the prototype design pattern, factories use proto-

types as models to make objects. The prototype gives

the exact type of object to build (e.g., ChebySmoother,

ILUSmoother). Smoother parameters are not held by

factories. Instead, the parameters are stored directly in

the prototypes. A prototype is like an unfinished ob-

ject, as it never stores data relative to a level. To make

a functional smoother, the prototype must be cloned,

and the clone’s Setup() method must be called. The

main advantage of the prototype pattern is that the fac-

tories do not need to know anything about the object

being created, i.e., factories can be generic.

Different smoother prototypes can be defined for

each level, making it possible to use different parame-

ters (or even different smoothers) on each level.

4. Leveraging TRILINOS capabilities

The TRILINOS framework provides a number of ma-

ture numeric and software development capabilities.

Figure 10 illustrates the TRILINOS software stack and

the relationship of MueLu to other libraries. MueLu

has a required dependency on TEUCHOS and a linear

algebra package, currently either EPETRA or TPETRA.

Dependencies on other packages are only optional.

In Section 4.1, we summarize existing numerical

capabilities in TRILINOS that MueLu is designed to

leverage. In Section 4.2 we describe the thin layer that

separates MueLu from the underlying linear algebra li-

brary.

4.1. Multigrid algorithm components from Trilinos

The main MueLu multigrid algorithm component

that depends heavily on other Trilinos packages is the

smoother used on each level. Smoothers can be iter-

ative methods, such as Gauss–Seidel, incomplete fac-
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Fig. 10. Part of the TRILINOS software stack. Arrows denote which packages can use the linear algebra packages.

Table 1

TRILINOS packages implementing solvers that MueLu can use

Package Algorithms EPETRA TPETRA

IFPACK Preconditioners (Gauss–Seidel, Chebyshev, ILU, . . .) x

IFPACK2 Preconditioners (Gauss–Seidel, Chebyshev, ILU, . . .) x

AMESOS Sparse direct solvers (Serial and Parallel) x

AMESOS2 Sparse direct solvers (Serial and Parallel) x x

AZTECOO Smoothers and Krylov methods x

BELOS Krylov methods (CG, GMRES, . . .) x x

torizations, Krylov methods, or even direct solvers.

As TRILINOS already has efficient implementations of

all these smoother types, MueLu is designed to use

these libraries instead of having redundant internal im-

plementations. Table 1 enumerates the smoothers in

TRILINOS that MueLu can use.

MueLu leverages the ANASAZI package to provide

efficient parallel methods for eigenvalue estimates [1,

2]. The needs for such estimates can arise during

smoother setup (e.g., damped Jacobi, Chebyshev). If

the prolongator construction is based on smoothed ag-

gregation principles, then an accurate estimate of the

largest eigenvalue is necessary in the damped Jacobi

iteration that generates the interpolation matrix [26].

MueLu is designed to use ZOLTAN [5,7] during the

multigrid setup phase to load balance coarse level op-

erators based on nonzero metrics. In our experience,

such load balancing is absolutely essential for good

large scale parallel multigrid performance. MueLu is

also designed to use ZOLTAN during smoothed aggre-

gation prolongator construction to create sets of fine

grid unknowns. These sets form the coarse grid un-

knowns. While these groupings are typically generated

by the multigrid package itself, ZOLTAN is much more

efficient at doing this when the groupings are desired to

be much larger than in standard smoothed aggregation.

4.1.1. Parallel linear algebra

Input data to a sparse linear solver are mainly lin-

ear algebra objects like matrices and vectors. Two gen-

erations of a parallel linear algebra library coexist in
TRILINOS: EPETRA and TPETRA. EPETRA is cur-
rently more heavily used, but we anticipate that new
applications will write to the TPETRA interfaces, and
that some existing applications will migrate to TPE-
TRA. As a result, MueLu supports both EPETRA and
TPETRA objects as input arguments to accommodate
as many users as possible.

Both EPETRA and TPETRA support sparse linear
algebra matrix operations that are required by lin-
ear solvers. However, EPETRA is limited to double
scalar type and 32-bit integer ordinal type (for index-
ing). TPETRA is templated on both scalar and ordinal
types. Additionally, TPETRA may use node-optimized
kernels from the KOKKOS package. KOKKOS allows
code, once written, to be run on any parallel node,
regardless of architecture (CPU, GPU, . . .). KOKKOS

provides an abstract notion of compute node and a set
of constructs for parallel computing operations. When
run with TPETRA, MueLu benefits from any pack-
age (e.g., IFPACK2, AMESOS2) that uses KOKKOS

to exploit the performance of new hardware architec-
tures (multicore, GPU, . . .). MueLu algorithms could
also be adapted to new hardware architectures by us-
ing KOKKOS directly, but this would impact only spe-
cific internal algorithms and not the global design of
MueLu.

4.2. The unified linear algebra layer

As explained in Section 4.1.1, MueLu can currently
use either EPETRA or TPETRA as its underlying lin-
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ear algebra package. However, a major design goal was

to create a single extensible linear algebra interface,

subject to several constraints. First, the layer should

not significantly limit performance of the algorithms.

Second, MueLu developers should be able to write al-

gorithms completely in terms of this interface with-

out knowledge of the actual underlying linear algebra

package. Third, the layer should allow access to a lin-

ear algebra object in a fashion other than what its na-

tive storage (point, constant blocked, variable blocked)

dictates. In the following sections, we discuss each of

these constraints.

4.2.1. Lightweight, high performance interface

While C++ supports polymorphism at compile-

time via the Traits technique [21], we decided to inter-

face MueLu and the linear algebra packages by using

runtime polymorphism through inheritance and inter-

faces. Our decision was based on several factors:

• Inheritance is straightforward for new users to un-

derstand. It simplifies the MueLu interface. Sim-

ple (virtual) interfaces are defined whenever pos-

sible, with default derived classes. More compli-

cated interfaces are possible through inheritance.

• Inheritance supports extensibility of storage and

functionality to objects of the linear algebra li-

braries. This capability is used on Level 2 of the

MueLu linear algebra layer (discussed further in

Section 4.2.2).

• The compile time overhead is much lower.

• Tests showed that there was little difference in

performance between compile-time and run-time

polymorphism for common use cases.

For efficiency reasons, we use internally the data for-

mat provided by users. For example, if the application

matrix is stored as a TPETRA compressed row storage

matrix (CRS), then we keep it in this format and cre-

ate all coarse grid matrices as TPETRA CRS matrices.

A thin abstraction layer provides an unified interface to

the linear algebra packages for allowing MueLu devel-

opers to write code only once for both the EPETRA and

TPETRA libraries. While support for both EPETRA and

TPETRA already exists, a user working with a different

data format simply needs to write an adapter allowing

MueLu to work directly with the native format.

For the thin abstraction layer, we decided to create

a new interface similar to that of TPETRA. This was

based on the following considerations:

(1) Although some TRILINOS packages have exist-

ing interfaces for the internal use of linear alge-

bra packages, most of these focus primarily on

vectors and matrix–vector products. In multigrid,

however, there are many linear algebra objects

(maps, graphs, matrices, vectors, multivectors)

that must be accessed in point or row fashion.

Thus, the existing interfaces are not full-featured

enough.

(2) The similarity of the abstract layer to that pro-

vided by TPETRA means that developers do not

need to learn a completely new interface.

(3) As TPETRA and EPETRA have somewhat differ-

ent native interfaces, the work for coding the ab-

straction layer is limited to writing an adapter

from the EPETRA interface to the TPETRA inter-

face.

(4) The TPETRA interface facilitates leveraging ad-

vanced C++ features such as templates and

RCPs.

As this linear algebra layer enables the use of ei-

ther TPETRA or EPETRA, we have named this layer

XPETRA.

4.2.2. Matrix formats and the view mechanism

In addition to separating MueLu from the particu-

lar syntax of the underlying linear algebra constructs,

the XPETRA linear algebra layer is designed to allow

access to a matrix as if it were stored in some format

other than its native storage format. For this purpose,

we have developed a concept called a matrix view.

A view of a matrix consists of the row access method,

matrix–vector multiply, and maps associated with the

matrix.

The view mechanism confers a number of benefits.

It has been our experience that applications often store

logically blocked matrices in a point matrix format.

For example, a compressed row storage (CRS) format

might be used for a PDE system with 5 degrees of free-

dom per node, instead of using a constant block stor-

age format. For both algorithmic and performance rea-

sons, it may still be desirable to treat the matrix as if

it were blocked without making a deep copy of the

data. Due to convergence concerns, it may be advan-

tageous to use a block smoother, access the block di-

agonal, produce blocked grid transfers, or use some

other block algorithm. Blocked formats can also lead

to better performance in linear algebra kernels like the

matrix–matrix multiply because of reduced indirect in-

dexing. Access requirements may also change from

one phase to the next, due to algorithmic reasons.

The view mechanism is embedded in the MueLu-

Operator interface. The Operator class is an in-
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Fig. 11. Interfaces between MueLu and TRILINOS linear algebra libraries.

Fig. 12. Class diagram of the XPETRA linear algebra layer.

terface between the previously described abstraction

layer for linear algebra libraries and MueLu algo-

rithms. Figures 11 and 12 summarize the general de-

sign of the linear algebra layer. It finally consists of

two layers: the low-level layer (layer 1) provides an

abstraction of EPETRA and TPETRA, and the top-level

layer (layer 2) provides an abstraction of the native data

format.

The Operator interface and the view mechanism

allow most algorithms to be written just once, yet sup-

port both point and block matrices. In particular, the

Operator interface design supports:

• Viewing a CrsMatrix as a block matrix with a con-

stant block size of 1 to apply block algorithms to

point matrices.

• Viewing a CrsMatrix as a block matrix with

a compatible blocking scheme, if user data are

stored in CRS format but arise from a system of

PDEs.

• Optionally viewing block matrices with a block

scheme different but compatible to the native

block format.

Using a view different than the native storage for-

mat may incur a significant performance penalty but

may be mandatory to apply some algorithms. In com-

pute intensive kernels, format-specific implementa-
tions may be necessary for good performance. How-
ever, the view can be very convenient in non-intensive
kernels, especially in the multigrid setup phase.

View mechanism details. The default view of an Op-
erator is the native data format of the matrix. Ad-
ditional “virtual” views can be defined to describe the
way we want to access the data of an operator. The
views of an Operator are stored in a View table
which is just a list of view objects. Each view is fully
described by two Map objects (for rows and columns).

It may also be that the multigrid method needs only
a different view of the matrix diagonal, and not the
entire matrix. This could happen, for example, in ei-
ther the smoother or during the prolongator construc-
tion. For this reason, we also have a separate ob-
ject, the Diagonal, to encapsulate just the matrix
diagonal view. Figure 13 illustrates the use of the
view mechanism. The basic idea is that GetRow() or
GetDiagonal() has a different effect, depending
on the view. Note that only the classes Operator

and Diagonal are directly used in the other parts of
MueLu. The concrete implementations of the Opera-
tor interface have to create the temporary block struc-
ture that is needed to convert data from the native for-
mat to a virtual view.



236 J. Gaidamour et al. / Design considerations for a flexible multigrid preconditioning library

// Linear problem

RCP< Tpetra::CrsMatrix<double> > A = ...; // Scalar matrix

// MueLu operator. Default view is ’point’ (1x1 block)

RCP< MueLu::Operator > Op = rcp (new CrsOperator(A));

// Create a 2x2 block representation of the matrix

Op.CreateConstBlkView("2x2", 2, 2);

// The 2x2 can be used everywhere by default by using:

// Op.SetDefaultView(’2x2’);

// Alternatively, it can be done on a case by case basis:

// Multigrid hierarchy

Hierarchy H(Op);

// The 2x2 block view is used during the aggregation and

SaPFactory

aggregationFact = rcp(new UCAggregationFactory());

tentativePFact = rcp(new TentativePFactory(aggregationFact));

prolongationFact = rcp(new SaPFactory(tentativePFact));

prolongationFact->SetDiagonalView("2x2");

prolongationFact->SetView("2x2");

// Smoothers still use the 1x1 view

smootherProto = rcp(new Ifpack2Smoother<double>());

smootherFact = rcp(new SmootherFactory(smootherProto));

Fig. 13. Example of switching views.

Finally, we note that operations between two

Operators (e.g., OpA + OpB) with differing inter-

nal data storage could be performed by using the point

format as the common language between the two. This

is likely to be slow, however. It might be more efficient

to instead find the “greatest common block format”

by comparing blocking schemes. Generally, MueLu

stores matrices natively in the same format, thus avoid-

ing this issue.

5. Application

In this section we describe how our framework can

be easily extended to support multigrid approaches

based on energy minimization. Such algorithms are

very versatile and can be adapted to a variety of prob-

lems. The main implementation challenge is to pre-

serve this intrinsic flexibility and to allow to reuse and

reorganization of software components to help build

methods for other problems.

As the focus of this discussion is not numerical re-

sults, but rather the ease with which such algorithms

can be deployed and the resulting flexibility, we dis-

cuss the algorithm only at a high level. The energy min-

imization algorithm takes as input a desired prolon-

gator sparsity pattern and user-supplied near-nullspace

components. The algorithm generates a prolongator P

that meets the sparsity criterion, interpolates the near-

nullspace components (or a subset thereof), and whose

columns Pi minimize the equation Σi‖Pi‖e, where the

norm is an energy norm defined by the Krylov mini-

mization scheme. The details of the minimization pro-

cess can be found in [22].

From a software design perspective, the energy-

minimization process is fairly simple, and the power of

the method resides in the freedom of choosing its input

arguments. To reflect this freedom of choice, the pro-

longator factory implementing the energy-minimiza-

tion algorithm relies on several auxiliary modules. The

construction of prolongators can be completely con-

trolled by specifying these auxiliary modules. Fig-

ure 14 shows the dependency graph of the factory in-

volved in the construction of an energy minimization

prolongator. Most of the modules are factories, as they
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Fig. 14. Dependency graph showing factories involved in construction of an energy minimization prolongator.

Fig. 15. Example of configuration of the energy-minimization algorithm to solve 3D elasticity problems.

represent algorithms producing inputs for the prolon-

gator factory according to the multigrid level.

• Pattern factory – generates a sparsity pattern that

the prolongator must satisfy.

• Constraint factory – generates a system of con-

straints that ensures certain given near nullspace

vectors are well interpolated.

• Minimization algorithm – Krylov method that

will guide the minimization process.

• Initial guess factory – generates an initial guess

for the prolongator and the minimization process.

The highly modular design of the energy-minimiza-

tion implementation allows experimentation with all of

the parameters. In the following, we focus on the ap-

plication of energy-minimization approach to solve a

matrix system arising from linear elasticity. Figure 15

presents a possible setup configuration of the energy-

minimization algorithm to solve 3D elasticity prob-

lems. Such problems have six near-nullspace compo-

nents, and methods likes smoothed aggregation gener-

ate coarse grids with six degrees of freedom per nodes

(even if the initial problem only has three degrees of

freedom). The solver configuration presented here is

inspired by smoothed aggregation, but the coarse grid

size is reduced by using an energy-minimization algo-

rithm. Our configuration reuses part of the smoothed

aggregation implementation. In particular, the tentative

prolongator factory generates both the sparsity pattern

of P and an initial guess for the minimization process.

The nullspace used by the tentative prolongator factory

is restricted to three vectors (to limit the number of de-
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grees of freedom per node on the coarse grid), but in-

terpolation of all six near-nullspace components is en-

forced by the minimization algorithm.

This solver configuration leverages some of the most

advanced features of our framework. It demonstrates

the modularity of our framework and also justifies

why we carefully defined the management of data flow

between factories. Firstly, it heavily reuses part of ex-

isting multigrid methods and demonstrates the advan-

tages of our modularity approach. The smoothed ag-

gregation components (see Section 3.2.1) were not de-

signed with this use case in mind but can handle it

without any modification. Furthermore, even if a mod-

ule appears several times on the calling tree of the

method, that module is called only once because of the

reference counter mechanism of the Level class. This

is important here for the tentative prolongator factory

that is used both for the sparsity pattern and the ini-

tial guess. Factories requesting outputs of the tentative

prolongator factory do not have to know if these out-

puts will be reused later on. In this particular applica-

tion, pattern and initial guess are generated from the

same factory instance. In other methods, they may also

come from different instances of the same factory (with

different parameters or submodules). This means that

they each will need similar inputs and create similar

output data. In this case, data associated with one in-

stance are kept distinct from the data associated with

the other.

One should also notice that the tentative prolonga-

tor factory produces coarse nullspace vectors but that

another definition of the nullspace is created by a dif-

ferent factory for the energy-minimization algorithm.

Again, as output of factories are distinguishable, mod-

ules can select different nullspace information. The

same mechanism is also in action to distinguish the ten-

tative prolongator and the final prolongator. Finally, an

aggregation algorithm is required by the tentative pro-

longator factory, but as each module is designed to be

self-sufficient, a default algorithm will be called auto-

matically if none is provided. Hence, users still have

full control over aggregation parameters if need be.

6. Conclusion

In this paper we have presented a flexible design for

a multigrid preconditioning library, MueLu. The fac-

tory pattern is used throughout the design, which sup-

ports both current core solver methods as well as future

algorithm research. The design is general enough that

both algebraic and geometric algorithms are possible.
The library interfaces support a wide range of users.
The multigrid preconditioners can be customized by
simple interfaces that use parameter lists. More ad-
vanced interactions are supported by directly creat-
ing and modifying factories for each of the multigrid
algorithm components. MueLu leverages many exist-
ing mature Trilinos libraries, due in large part to a
lightweight linear algebra layer called XPETRA that
separates MueLu from the underlying linear algebra li-
brary.
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