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ABSTRACT

Design considerations for piezoelectric-based energy harvesters for MEMS-scale sen-

sors are presented, including a review of past work. Harvested ambient vibration energy

can satisfy power needs of advanced MEMS-scale autonomous sensors for numerous

applications, e.g., structural health monitoring. Coupled 1-D and modal (beam structure)

electromechanical models are presented to predict performance, especially power, from

measured low-level ambient vibration sources. Models are validated by comparison to

prior published results and tests of a MEMS-scale device. A non-optimized prototype

low-level ambient MEMS harvester producing 30 µW/cm3 is designed and modeled. A

MEMS fabrication process for the prototype device is presented based on past work.

Keywords: Energy scavenging; power harvesting; MEMS; piezoelectric; vibration

energy conversion; wireless sensors

INTRODUCTION

In recent years the development of distributed wireless sensor node networks

has been a focus of several research groups. Research projects include SenseIt

from DARPA, SmartDust at UC Berkeley [1], µ-AMPS at MIT [2], and i-Bean

wireless transmitters from Millennial Net, Inc. [3]. Distributed wireless micro-

sensor networks have been described as systems of ubiquitous, low-cost, self-

organizing agents (or nodes) that work in a collaborative manner to solve
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Figure 1. Wireless sensor node architecture.

problems [4]. A node is defined as “a single physical device consisting of a

sensor, a transceiver, and supporting electronics, and which is connected to a

larger wireless network” [5]. The basic architecture of a node is illustrated in

Fig. 1. Applications envisioned for these node-networks include building envi-

ronment control, warehouse inventory and supply chain control, identification

and personalization (RFID tags), the smart home [6], structural health monitor-

ing (aerospace and automotive sectors), agricultural automation, and homeland

security applications.

Advances in low power DSP’s (Digital Signal Processors) and trends in

VLSI (Very Large Scale Integration) system-design have reduced power re-

quirements for the individual nodes [7]. Power consumption of tens to hundreds

of µW is predicted [6, 8–10] and a current milli-scale commercial node has

an average power consumption of 6–300 µW, depending on the application

and/or mode of operation [11]. This lowered power requirement has made self-

powered sensor nodes a possibility. The power supplies envisioned for these

nodes will convert ambient energy into usable electric energy, and therefore can

be self-sustaining.

The power source selected for a node will be governed by the specific

application. General considerations when selecting a power source for a node

include: node network lifetime, cost and size of nodes, node placement and

resulting ambient energy availability, and communication requirements. Power

or energy sources for nodes can be divided into two groups: sources with a fixed

energy density (e.g., batteries) and sources with a fixed power density (normally

ambient energy harvesters). These source types are compared in Fig. 2. Fixed

energy density sources clearly have limited life—the source either needs to

be replaced or the fuel replenished from time to time. Many applications are

envisioned where maintenance and repair will not be desired or even possi-

ble (e.g., where the sensor is embedded for structural monitoring). Thus, it is

desirable to extend the power source life to match that of the application. As
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Figure 2. Comparison of fixed-energy and fixed-power density sources for nodes.

Adapted from [1, 5, 12, 20, 27–29].

applications such as embedded infrastructure monitoring could span decades,

ambient energy harvesters are well suited in these cases.

Many mechanisms of ambient energy scavenging have been investigated,

falling into four major categories: solar energy, thermoelectric [12–15], acous-

tic, and mechanical vibrations. Mechanical vibration energy harvesters can be

divided into two groups: non-resonant and resonant devices. The former are ap-

plied to very low frequency vibrations [16–18]. Resonant mechanical vibration

energy harvesting is the scheme under investigation here and three conversion

mechanisms exist: electrostatic [5, 7, 19, 20], electromagnetic [5, 21–26], and

piezoelectric.

Some experimental and predicted results on vibration harvesting have been

published, and are summarized in Table 1. From the published results it is clear

that the power generated varies greatly, according to device size, type, and input

vibration parameters. The device sizes vary from the micro-scale (0.01 cm3) to

the macro-scale (75 cm3). A normalization scheme can be used to compare the

performance and efficiency of the devices relatively. One method is to report

the power density (W/cm3 or W/kg). However, it was found that generally the

volume and/or mass are not clearly documented in the literature. Further, the

device volume given generally does not specify whether the complete power

subsystem is included, or only the power generation unit. The best method

for comparing devices would be with an efficiency parameter. From the basic

harvester model (see section on ambient vibrations), the power extracted is a

function of the input vibration parameters (both amplitude and frequency), the

device mass, and the damping ratios (electrical and mechanical). A relative

comparison of devices would be possible if all these parameters were made
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Table 1

Previous vibration energy harvester work: simulated and experimental results

Input vibration parameters

Power

[µW]

Volume†

[cm3]

Frequency

[Hz]

Amplitude

[µm]

Acceleration

[m/s2]

Simulation/

experiment

Type∗ and

reference

58 0.5 120 4.00 2.25 Simulation ES, [20]

5.6 N/A 2520 N/A N/A Simulation ES, [7]

200 75 28 6.46 0.20 Experiment EM, [21]

3600 75 28 32.3 1.00 Experiment EM, [21]

1 0.025 70 30.0 5.80 Simulation EM, [22]

100 0.025 330 30.0 12.0 Simulation EM, [22]

530 0.24 322 25.0 102 Experiment EM, [23]

830 1 110 150 71.7 Experiment EM, [25]

1000 N/A 102 8 3.29 Experiment EM, [24]

186 0.5 120 4.4 2.5 Simulation P, [5]

260 0.5 120 4.4 2.5 Simulation P, [5]

242 0.5 120 4.4 2.5 Simulation P, [5]

260 0.5 120 4.4 2.5 Simulation P, [5]

60 N/A 100 5.7 2.25 Experiment P, [5]

2 0.9 80 N/A N/A Experiment P, [42]

1 0.01 13,900 0.014 107 Experiment P, [51]

900 2 30 N/A N/A Experiment P, [36]

†Device size does not include power electronics. This parameter is oftentimes not

documented, but in some cases an estimate of the volume can be made.
∗ES is electrostatic, EM is electromagnetic, and P is piezoelectric.

available. Perhaps most importantly, input vibration magnitude and frequency

must be documented as the power output (converted power) obviously depends

on the power input.

Interest in the application of piezoelectric energy harvesters for convert-

ing mechanical energy into electrical energy increased dramatically in recent

years, though the idea is not new. An overview of research in this field has

recently been given by Sodana et al. [30]. In early work, the predicted power

output of a poly-vinylidene fluoride (PVDF) unimorph was so small that it

was not a feasible power source at the time [31]. The application of piezo-

electric elements to vibration damping (both active and passive) has received

much attention [32]. Some authors proposed using the energy extracted from

the system to power sensors or electronics [33–35], instead of dissipating the

energy through resistive heaters or other dissipative elements. When an en-

ergy harvester is applied to a system, structural damping can be achieved

[36–38].
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With the decrease in power requirements for sensor nodes, the applica-

tion of piezoelectricity to energy harvesting has become viable. Piezoelectric

elements in several geometries have been applied for this purpose. The most

common is the cantilever beam configuration [5, 24, 26, 36, 37, 39–43] and is

the focus of this work. A power density for this type of harvester was predicted

to be the highest of the three conversion mechanisms, as high is 250 µW/cm3,

for a micro-scale device [5], including the complete power subsystem. Other

harvesting schemes using piezoelectric elements include membrane structures

to harvest energy from pulsing pressure sources [44–46] and converting energy

from walking [47, 48]. Research focusing on the power electronics to optimize

the transfer of energy from the piezoelectric element to the storage device has

also been undertaken [7, 9, 49, 50].

MEMS PIEZOELECTRIC VIBRATION ENERGY

HARVESTER (MPVEH)

This research focuses on a micro-scale vibration energy harvester, applicable

to powering a micro-scale sensor node. A cantilever beam configuration was

chosen for its simplicity, compatibility with MEMS manufacturing processes,

and its low structural stiffness. The beam configuration is a unimorph structure

consisting of a structural layer, a single piezoelectric element/layer, and a top

interdigitated electrode, as illustrated in Fig. 3. The asymmetric layered design is

a consequence of the current MEMS manufacturing process used, as described

in the preliminary design section. The process was chosen since a low cost

device, integrable with the MEMS fabrication of other subsystems, is desired.

However, using a MEMS fabrication process for manufacture imposes definite

limits on the size of the device: as size scales down, the resonance frequency

of the device scales up. A low resonant frequency is desired since ambient

vibration sources (see section on ambient vibration sources) have significant

vibration components in the frequency range below 300 Hz. However, designing

a MEMS device with the resonant frequency below 100 Hz can be problematic

[5]. For these reasons, a target frequency range of 100–300 Hz was chosen.

Available MEMS manufacturing limits the beam length to around 1 mm, such

that a proof mass is needed to reduce the natural frequency of the device.

For an initial analysis, only static device failure will be considered. Me-

chanical fatigue in MEMS devices is oftentimes not an issue given the mate-

rials used in micro-fabrication, [52, 53]. However, fatigue (especially in the

piezoelectric element) will be considered in the future. Finally, the nominal

voltage output from the device has been set to approximately 3 V. This is an

electronics industry standard which was likely a consequence of the require-

ments set by the rectifier circuit [24] and/or to minimize switching losses [24,

50]. Spacing of the interdigitated electrodes allows the output voltage to be

controlled.
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Figure 3. Illustration of MPVEH unimorph configuration (left) and SEM of a prototype

device (right).

AMBIENT VIBRATION SOURCES AND MEMS HARVESTERS:

INTERPRETATION SCHEME, OPERATING POINT,

AND SUMMARY

In order to better understand the characteristics of low-level ambient vibra-

tions, vibrations measurements for a variety of everyday objects were taken.

The purpose of the measurements was to get a quantitative indication of the

frequency range and magnitude of vibrations from these sources. 14 conditions

of eight separate sources were analyzed in total, for the frequency range of 10–

1,000 Hz. Interpretation schemes, utilizing a simple but effective 1-D dynamic

model for optimal harvesting point selection, were developed and it was found

that macro- and micro-systems require separate schemes since the dominating

damping mechanisms for these systems vary. This is in contrast to previous

findings in the literature where the mechanisms of the damping were ignored

and/or assumed independent of frequency. For micro devices, the operating

environment will further influence the selection of a vibration peak to target.

Lastly, ambient vibration sources generally exhibit multiple peaks of signifi-

cant power, often at much higher frequencies. This observation motivates an

investigation of the effect of other device resonance modes (e.g., higher beam

modes) on the power generation of the system in the sections to follow.

Interpretation Scheme

A basic 1-D model, as illustrated in Fig. 4, is used to analyze the power gener-

ated from a vibration energy harvester to understand conversion, as proposed

by [22, 54]. This model is strictly valid only for harvesters where the electrical

damping term is linear and proportional to the velocity (e.g., certain electro-

magnetic converters [5]), but is useful in understanding the relative importance
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Figure 4. Illustration of basic 1-D model of vibration harvester.

of system (structural and electrical) and input parameters on power extracted.

The electrical energy is extracted from the mechanical system, which is excited

by a mechanical input. This extraction is not necessarily linear, or proportional

to velocity, however, it is a dissipative process and can generally be viewed as

electrical damping.

The dynamics of the system in Fig. 4 are described through Eq. (1).

ẅ + 2(ζm + ζe)ωN ẇ + ω2
N w = −ẅ B (1)

The natural frequency is defined as ωN =
√

k/M , and the damping ratio is

related to the damping coefficient, b, through b = 2MωN ζ . The total damping,

ζT , is the sum of the mechanical and electrical damping ratios, ζm and ζe re-

spectively. The base excitation is w B(t) = WBeiωt , where WB is the magnitude

of the base displacement, and ω the base input frequency. The electrical power

extracted through the damping element can be determined, |Pe| = 1
2
beẇ2, and

can be written in terms of the input vibration parameters. ẄB is the magnitude of

the base acceleration and is related to the base displacement magnitude through

ẄB = ω2WB for harmonic inputs, as is assumed here. Use was also made of

the definition of the frequency ratio, � = ω/ωN .

|Pe| =
Mζe�

2ω4W 2
B

ωN [(1 − �2)2 + (2ζT �)2]
=

Mζe�
2Ẅ 2

B

ωN

[

(1 − �2)2 + (2ζT �)2
] (2)



128 N. E. duToit et al.

The power generated can be maximized by determining the optimal oper-

ating frequency ratio.

(ωopt,Pe/ωN )2 = 2
(

1 − 2ζ 2
T

)

±
√

4
(

2ζ 2
T − 1

)2 − 3 (3)

When the total damping ratio is small, Eq. (3) suggests ωopt ≈ ωN . A

second optimum around ωopt ≈
√

3ωN is suggested by Eq. (3), but is a local

minimum. Since the total damping will typically be small, it is sufficient to let

ωopt = ωN , or � = 1.

Next, the power generated can be maximized with respect to the electrical

damping ratio. The optimum is calculated as:

ζe,opt =
√

ζ 2
m

+ (�2 − 1)2/4�2 (4)

When � = 1, the optimal electrical damping of ζe,opt = ζm is obtained.

These simplifications can be substituted into Eq. (2) to obtain:

|Pe|max =
MẄ 2

B

16ζe,optωN

(5)

In order to interpret this result, the damping ratio needs to be investigated

more closely since ζe,opt = ζm for optimal power generation. This damping ratio

has four dominant components for a MEMS-scale cantilever beam structure [26,

55–57]: drag force (airflow force), squeeze-force, support losses, and structural

damping. These four components can be modeled by adding linearly, as in

Eq. (6) and are defined in Eqs. (7–10).

ζm = ζm,drag + ζm,squeeze + ζm,struct + ζm,sup (6)

ζm,drag =
3πµd + 3

4
πb2

√
2ρairµω

2ρbeambhlω
(7)

ζm,squeeze =
µb2

2ρbeamg3
0hω

(8)

ζm,sup = 0.23h3/l3 (9)

ζm,struct = η/2 (10)

Here µ is the viscosity of air, ρair and ρbeam are the densities of air and

the beam structure respectively, η is the structural damping factor for the beam

material, g0 is the gap between the bottom surface of the beam and a fixed

floor, h is the height of the beam, b is the beam width, and l is the length. The

operating frequency, ω, coincides with the natural frequency.
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For a micro-scale device, the drag force damping term is dominant when the

device is operated in free space (e.g., not close to a wall) and under atmospheric

conditions. When the device is operated near a wall, the squeeze-force damping

term becomes dominant. When the device is operated in free space in a vacuum,

the structural damping term becomes dominant. The structural damping factor is

determined empirically, so for the purpose of the analysis that follows, η = 5.0

10−6 was used (obtained from [56]).

For the proposed micro-scale design (a cantilever beam operating in free

space under atmospheric conditions), the only significant source of damping

is due to the drag force. This component has two terms, ζm,drag ∝ α/ωN +
β/

√
ωN , where α and β are constants. Thus, for the purposes of the analysis,

the damping-frequency relation is ζe,opt = ζm ∝ 1/ωN . This relation also holds

for the squeeze-force damping term. Substituting this result into Eq. (5) it is

concluded that the input vibration parameter that most influences the gener-

ated power for the current conditions is the acceleration (see Eq. (11)). Thus,

when comparing different sources of vibration for a micro-scale device under

atmospheric conditions, it is important to maximize the acceleration.

|Pe|max ∝ MẄ 2
B (11)

When the micro-scale device is operated in vacuum, the dominant damping

components are independent of frequency. The vibration input will be related

to the power generated through:

|Pe|max ∝
MẄ 2

B

ωN

(12)

In summary, the optimal operating point for power harvesting is a function of the

harvesting device/system and is strongly influenced by the dominant damping

mechanism in the system. The damping mechanism for a micro-scale device is

influenced by whether the device is in vacuum or atmospheric conditions for

the current configuration. As devices scale down, the surface-fluid interactions

become dominant over inertial effects for microscopic devices. These fluidic-

damping mechanisms are generally dependent on frequency, which must be

accounted for when analyzing the generated power. On the other hand, surface-

fluid interactions are negligible for macroscopic systems, and the dominant

damping mechanisms (structural damping and support losses) are generally

independent of frequency [57].

Operating Point Selection

When selecting the vibration peak (in terms of acceleration and frequency)

to design a MPVEH for maximum power generation, the maximum value of

the input acceleration squared (Ẅ 2
B) must be considered as the device is to be
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operated in atmospheric conditions. Equivalently, the input parameters can be

written in terms of the input frequency and the displacement, ω4Ẅ 2
B . To facil-

itate this selection, lines of constant “reference power” can be added to any

measured acceleration-frequency plots. Reference power is defined as |Pe|max

in Eq. (5), at the acceleration and frequency of the highest acceleration peak

above 100 Hz (see Fig. 5). These constant power lines indicate the maximum

contribution to the power generated from the input spectrum, assuming damp-

ing ratio-optimized resonant harvesters of equal mass. When the MEMS-scale

device is operated in vacuum, the damping ratio is independent of the frequency,

and the ratio of acceleration squared to the frequency should be used to interpret

the measurement data (Fig. 5). In some cases, the optimal operating peak can

have a lower acceleration than other peaks.

Two other schemes for the interpretation of the measurement data have been

put forward. In the first, the peak power generated is written as in Eq. (2) (with

� = 1), but the frequency dependence of the damping term is not considered

[5, 20]. The second writes the power generated both in terms of input and

output parameters, which can be simplified to obtain Eq. (2) (with � = 1), and

similarly does not account for the damping-frequency dependence for a MEMS

device [58].

Figure 5. Interpreting ambient acceleration-frequency plots to determine target accel-

eration peak for the MPVEH under atmospheric conditions: A/C duct side example.
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Another important consideration is the lower limit in natural frequency

obtainable with a MEMS device. Consistent with our conclusions, others (e.g.,

[5]) have found it difficult to design a MEMS device with a resonant frequency

below 100 Hz (as size scales down, resonant frequency scales up). The lower

limit for viable vibration peaks has been set to 100 Hz for the current investi-

gation, thus defining the “accessible region” to be above 100 Hz (see Fig. 5).

Summary of Low-Level Ambient Sources

The interpretation scheme for a MPVEH device operated in atmospheric con-

ditions, |Pe|max ∝ Ẅ 2
B , as discussed in the previous section, is used to identify

three acceleration peaks for each source that are listed in Table 2. The first peak

has the maximum power content (e.g., the highest acceleration squared) and

is referred to as the ‘Highest Power Peak,’ or HPP. The ‘Reference Peak,’ RP,

is the highest power peak in the accessible region (i.e., above 100 Hz). The

‘Alternate Peak,’ AP, is a secondary peak in the accessible region. For some of

the sources, the HPP and the RP are the same.

From Table 2 it can be seen that the ranges and levels of ambient vibrations

differ greatly: for HPP, the levels varied from 10−3 m/s2 to around 4 m/s2.

However, not all these peaks are accessible (e.g., above 100 Hz), and RP values

range from 10−4 m/s2 to 4 m/s2.

These results show good agreement with published ambient vibration data,

e.g. [5]. Upon comparing RP and AP values, two important observations can be

made. Firstly, in 7 of the 14 cases investigated, an AP was identified at a lower

frequency than the RP. The significance of this becomes clear when the device

is operated in vacuum. As is illustrated in Fig. 5, the constant power lines for

a device operated in vacuum drop to zero as the frequency decreases. This is

because the power generated is inversely proportional to the vibration frequency.

From the example it is clear that the AP will have the same power content as

the RP. If the operating environment is vacuum, the optimal harvesting point

for a MEMS-scale beam harvester will not correspond to the highest vibration

level peak (RP as defined here), but will be at a lower level and frequency. A

reference vibration of ẄB = 4.2 m/s2 at 150 Hz is used for the preliminary

design of a low-level MPVEH device in a later section (vibrations measured on

a microwave oven side panel).

The second observation is that some sources exhibit peaks with comparable

power content at much higher frequencies. See for example source 12 (car hood

at 3000 rpm) in Table 2. The higher frequency peak can excite a second or

third resonance mode of the structure and strain cancellation (and therefore

power loss) in the harvester device is possible. The example reference peak

has 0.257 m/s2 acceleration at 148 Hz, and an alternate peak at 881 Hz with

an acceleration of 0.102 m/s2. This finding prompted an investigation into the

effect of higher frequency modes of the beam structure when aligned to an

alternate peak of the source vibration.
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As an example, a simple cantilever beam configuration was created with

the first resonance frequency at 140 Hz and the second resonance frequency

at 875 Hz. Thus, with the variability of vibration sources, it is possible for

the source alternate peak and the second resonance peak of the beam to align.

To investigate strain cancellation for this simple cantilever, a modal analysis

of the device with two input vibration components was conducted. The first

component was aligned to the first resonance of the device (as per design), and

the second component coincided with the second resonance of the beam. The

vibration level of the second frequency component was varied to analyze the

effect on the developed strain. Please refer to Fig. 6 for maximum axial strain

vs. the beam length at maximum tip displacement under these assumptions.

The power of the second or alternate input peak is zero, equal to, and half

the power of the reference peak, respectively. The strain developed over the

first region of the beam (near the base) increases with the additional excitation,

whereas the strain is decreased towards the tip. Assuming that the power scales

linearly with the strain, it is necessary to look at the total area under the strain

Figure 6. Strain distribution for a beam excited by multiple input vibration components,

illustrating net power loss.
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curve. Since the second mode causes the total area to decrease, the total power

will decrease too, assuming that the electrodes cover the whole surface. Thus,

it is possible to identify an optimal electrode length in the region where the

strain is increased, but that is not affected by the cancellation of strain, for

this simple case. Furthermore, the second mode contributes by increasing the

maximum developed strain at the base of the beam, affecting the static failure

design of such devices. For the purpose of the analysis, it is assumed that

the mode deflections due to the two inputs are in phase. Should this not be

the case, a different final strain distribution will be obtained, but the important

conclusion that strain cancellation is possible due to the influence of multiple

input vibration components remains.

MODELING: 1-D ANALYTICAL MODEL, CANTILEVER

BEAM MODEL

Coupled electromechanical models are developed, validated, and later applied

to the preliminary design and performance prediction of a low-level MPVEH. A

basic 1-D accelerometer-type closed-form model is shown to characterize beam

configuration harvesters adequately by comparison to more rigorous modal

analyses. Unimorph and bimorph beam configurations, as well as {3-1} and

{3-3} actuation modes (using interdigitated electrodes) are considered, as well

as beams with proof masses at the free end.

Power-Optimized 1-D Electromechanical Analytic Model

A closed-form coupled electromechanical 1-D model is developed that cap-

tures the basic response of piezoelectric vibration harvesters and is useful in

interpreting prior and more detailed 2-D beam models presented later. The

model is illustrated in Fig. 7 and consists of a piezoelectric element excited by

a base input, w B . The piezoelectric element has a mass m p and is connected to

a power-harvesting circuit, modeled simply as a resistor. A proof mass, M , is

also considered. Note that the entire structure is electromechanically coupled in

this example, whereas in energy harvesters such as unimorph/bimorph beams,

a portion of the structure will be a non-piezoelectric substrate.

Using the 1-D configuration, we can simplify the linear elastic constitutive

relations [59, 60], Eq. (13), to Eq. (14):

{

T

D

}

=
[

cE −et

e εS

] {

S

E

}

(13)

T3 = cE
33S3 − e33 E3

D3 = e33S3 + εS
33 E3 (14)
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Figure 7. General 1-D model of piezoelectric vibration energy harvester

D, E, S, and T are defined as the electric displacement, electric field, strain,

and stress, respectively. ε is the permittivity of the piezoelectric element and e

is the piezoelectric constant relating charge density and strain. The superscripts

E and S indicate a parameter at constant electric field and strain respectively,

while superscript t indicates the transpose of the matrix. For the analysis in later

sections, superscripts D and T indicate a parameter at constant electric charge

and stress, respectively.

From a force equilibrium analysis, the governing equations can be found

in terms of the device parameters defined in Fig. 7:

ẅ + 2ζmωN ẇ + ω2
N w − ω2

N d33v = −ẅ B (15)

ReqC p v̇ + v + meff Reqd33ω
2
N ẇ = 0 (16)

ζ m is the mechanical damping ratio, ωN is the natural frequency of the

device and meff = M + 1
3
m p is the approximate effective mass. The over-

head dot indicates the time derivative. The equations are written in terms of

d (the piezoelectric constant relating charge density per stress) because this

piezoelectric material parameter is more readily available and is related to e

through d = (cE )−1e. The resonance frequency of the 1-D device is given by

ω2
N = cE

33 Ap/meffh, where Ap is the area of the electrodes (or the piezoelec-

tric element). The equivalent resistance, Req , is the parallel resistance of the

load and the piezoelectric leakage resistance, Rl and Rp respectively. In gen-

eral, the leakage resistance is much higher than the load resistance [61], so

that Req ≈ Rl . Lastly, the capacitance is defined in terms of the constrained

permittivity, C p = εS
33 Ap/h.

Using Laplace transforms, the governing equations can be evaluated and

the magnitudes of the displacement, voltage, and the power extracted can be

determined. These are given in Eqs. (17–19), normalized by the base input

acceleration. The dimensionless parameters � = ω/ωN , r = ωN ReqC p, and

an alternative electromechanical coupling coefficient, k2
e = k2

33

1−k2
33

= e2
33

cE
33ε

S
33

can

be defined [62] to simplify the analysis. k33 is the electromechanical coupling
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coefficient relating the output electrical energy to the input mechanical energy.

∣

∣

∣

∣

w

ẅ B

∣

∣

∣

∣

=
1/ω2

N

√

1 + (r�)2

√

[1 − (1 + 2ζmr )�2]2 +
[(

1 + k2
e

)

r� + 2ζm� − r�3
]2

(17)

∣

∣

∣

∣

v

ẅ B

∣

∣

∣

∣

=
meff Reqd33ωN �

√

[1 − (1 + 2ζmr )�2]2 +
[(

1 + k2
e

)

r� + 2ζm� − r�3
]2

(18)

∣

∣

∣

∣

Pout

(ẅ B)2

∣

∣

∣

∣

=
meff1/ωN rk2

e Req/Rl�
2

[1 − (1 + 2ζmr )�2]2 +
[(

1 + k2
e

)

r� + 2ζm� − r�3
]2

(19)

In prior energy harvester work, Eqs. (17–19) have always been simplified

by setting � = 1, which will be shown to miss important aspects of the coupled

response (particularly anti-resonance). It is of interest to optimize the power

extracted from the source. Again, taking the leakage resistance as much larger

than the load resistance, the power can be optimized with respect to the load

resistance, Rl , or equivalently with respect to the dimensionless parameter, r .

ropt =
�4 +

(

4ζ 2
m − 2

)

�2 + 1

�6 +
(

4ζ 2
m − 2

[

1 + k2
e

])

�4 +
[

1 + k2
e

]2
�2

(20)

Furthermore, since a piezoelectric element exhibits both open- and short-

circuit stiffness, there will be two optimal power operating frequencies to con-

sider. For the short circuit stiffness we let Rl → 0 in Eq. (19) to obtain:

�sc = 1 or ωSC =
√

cE
33 Ap/meffh (21)

This has previously been defined as the resonance frequency. For the open

circuit analysis we let Rl → ∞ to obtain:

�oc =
√

1 + k2
e =

1
√

1 − k2
33

or ωOC =
√

cD
33 Ap/meffh (22)

This frequency is known as the anti-resonance frequency and is governed

by the electromechanical coupling coefficient of the device, as expected. Note

that �oc > �sc. Using these frequency ratios, it is possible to obtain optimal

resistances with Eq. (20) at the respective operating points. Power is plotted

against the frequency ratio for the values given in Fig. 7 with a base input accel-

eration of 9.81 m/s2, or 1 g, in Fig. 8. The thick, solid line forms the envelope

of maximum power because the resistance is maximized at all frequency ratios.

Switching between the two peaks, corresponding to the resonance and anti-

resonance frequencies, is achieved by varying the electrical load. The power



MEMS Piezoelectric Vibration Energy Harvester 137

Figure 8. Power vs. normalized frequency with varying electrical load resistance for

1-D model in Fig. 7.

increases as the resonance frequency is approached, and reaches a maximum,

before decreasing to a local minimum, which corresponds to a minimum proof

mass displacement. The power then increases to a second maximum, corre-

sponding to the anti-resonance frequency. While the power predicted at these

peaks is equal, the voltage and current differ significantly.

Next, the relative displacements of the proof mass at the two peaks are

compared, as illustrated in Fig. 9. The electrical resistance is still optimized for

maximum power, as in Fig. 8. Unlike the power, the displacement is higher at the

resonance than at the anti-resonance. Also note that the relative displacement

of the proof mass is not minimized at either the resonance or the anti-resonance

peak (where the power extracted is maximized), but at an intermediate peak.

Operating at the second peak could be advantageous since the proof mass

displacement will be smaller, allowing for a smaller device.

The voltage is plotted against the frequency ratio in Fig. 10. As with the

displacement, the voltage generated at the two peaks differ, but in the case of

the voltage the difference is around an order of magnitude. Since the power

generated at these peaks are the same, and power is related to voltage and

current, i , through Pout = vi (for a resistive load), the current at the first peak

will be an order of magnitude higher than at the second peak. The capability of a

piezoelectric element to charge a secondary battery was previously investigated
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Figure 9. Displacement vs. normalized frequency with varying electrical load resistance

for 1-D model in Fig. 7.

[63]. From the study it was concluded that certain piezoelectric elements are

not well suited for battery charging applications, as generated current levels

are too low. Operation at the resonance frequency could possibly alleviate the

problem. Furthermore, the rectifier circuit has a minimum voltage requirement

for operation, and the voltage requirement is also governed by the onset of

losses at lower voltages [24]. Operating at the anti-resonance frequency could

be advantageous in this case.

The frequency ratio is plotted against electrical load resistance in Fig. 11 to

clearly show the shift from the resonance to anti-resonance frequencies is clearly

observable. The magnitude of �oc vs. �sc is governed by the piezoelectric

constant, d, and the stiffness contribution of the piezoelectric element to the

device. In the 1-D model, the shift is most pronounced since the piezoelectric

element constitutes the entire structure (and thus the stiffness).

To summarize, as the electrical load is increased, the piezoelectric element

operating condition is changed from short-circuit to open-circuit. Since the

piezoelectric element constitutes the entire structure, there is a significant shift

in the frequency as operation is switched between the short- and open circuit

conditions. For beams at the macro-scale, this effect is not as pronounced as the

piezoelectric element does not contribute significantly to the overall structural

stiffness. It is much more important at the micro-scale. The power generated

at short- and open-circuit conditions are the equal, but the voltage and current
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Figure 10. Voltage vs. normalized frequency with varying electrical load resistance for

1-D model in Fig. 7.

developed at the different operating points differ substantially. The displacement

of the proof mass of the device is also different at these operating points, as

the system will have more damping at the open-circuit condition (due to more

electrical damping).

Modeling Unimorph/Bimorph Cantilever Beam Configurations

As stated earlier, the unimorph cantilever beam configuration was chosen for

its geometric compatibility with the MEMS fabrication processes. It is also a

relatively compliant structure, allowing for large strains and thus more power

generation. The basic configuration of a bimorph is illustrated in Fig. 12 and

has the following components: the beam structure, piezoelectric elements, elec-

trodes, and a proof mass if necessary.

In the section to follow, a modal analysis for a base-excited cantilever beam

with a mass at the end and a {3-1} actuation model of a typical bimorph are

developed. The model is then extended to a unimorph configuration operating

in the {3-3} actuation mode. The model predictions are compared to published

experimental and modeling results, and also to experimental work from a pro-

totype MEMS device. Since the coordinate systems for the {3-1} and {3-3}
models are different, two general position variables are introduced: xa indicates
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Figure 11. Power-optimal normalized frequency vs. electrical load resistance for 1-D

model in Fig. 7.

the axial position (along the length of the beam/structure), and xt indicates the

position through the thickness of the beam/structure.

Modeling of a Cantilever Beam with Piezoelectric Elements

The model for a cantilever beam with piezoelectric elements can be obtained

with an energy method approach. An alternative method, which will not be

Figure 12. Cantilever bimorph configuration.
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discussed in this paper, is a force equilibrium analysis [64]. The analysis to

follow was adapted from [65]. The generalized form of Hamilton’s Principle

for an electromechanical system, neglecting the magnetic terms and defining

the kinetic (Tk), internal potential (U ), and electrical (We) energies, as well as

the external work (W ), is given by:

∫ t2

t1

[δ (Tk − U + We) + δW ] dt = 0 (23)

The individual energy terms are defined as:

Tk =
∫

V s

1

2
ρs u̇

t

u̇dVs +
∫

V p

1

2
ρpu̇

t

u̇dVp (24)

U =
∫

V s

1

2
S

t

TdVs +
∫

V p

1

2
St TdVp (25)

We =
∫

V p

1

2
Et DdVp (26)

The subscripts p and s indicate the piezoelectric element and the inactive

(structural) sections of the beam volume, respectively. The mechanical dis-

placement is denoted by u(x,t) and ρ is the density. The contributions to We

due to fringing fields in the structure and free space are neglected. Considering

nf discretely applied external point forces, fk(t), at positions xk , and nq charges,

q j , applied at discrete electrodes with positions x j , the external work term is

defined in terms of the local mechanical displacement, uk = u(xk, t), and the

scalar electrical potential, ϕ j = ϕ(x j , t):

δW =
n f
∑

k=1

δukfk(t) −
nq
∑

j=1

δϕ j q j (t) (27)

The above definitions, as well as the constitutive relations of a piezoelectric

material (see Eq. (13)), are used in conjunction with a variational approach to

rewrite Eq. (23):

∫ t2

t1

[

∫

V s

ρsδu̇t u̇dVs +
∫

V p

ρpδu̇t u̇dVp −
∫

V s

δSt csSdVs −
∫

V p

δSt cE SdVp

+
∫

V p

δSt et EdVp +
∫

V p

δEt eSdVp +
∫

V p

δEtεSEdVp

+
n f
∑

k=1

δukfk(t) −
nq
∑

j=1

δϕ j q j

]

dt = 0 (28)
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Four basic assumptions are introduced: the Rayleigh-Ritz procedure, Euler-

Bernoulli beam theory, and that the electrical field across the piezoelectric is

constant. These assumptions are consistent with previous modeling efforts (e.g.,

[36, 37, 65]). In the Rayleigh-Ritz approach, the displacement of a structure can

be written as the sum of nr individual modes,ψri (x), multiplied by a mechanical

temporal coordinate, ri (t), as in Eq. (29) [66]. For a beam in bending, only the

transverse displacement is considered and the mode shape is a function only

of the axial position, xa,such that u(x, t) ≡ w(xa, t). Furthermore, the base

excitation is assumed to be in the transverse direction as well. Similarly, the

electric potential for each of the nq electrode pairs can be written in terms of

a potential distribution, ψv j , and the electrical temporal coordinate, v j (t), as in

Eq. (30). Note that the interdigitated electrodes consist only of one electrode

pair (nq = 1). The Euler-Bernoulli beam theory allows the axial strain in the

beam to be written in terms of the beam displacement and the distance from the

neutral axis, as in Eq. (31).

u(x, t) = w(xa, t) =
nr

∑

i=1

ψri (xa)ri (t) = ψr (xa)r(t) (29)

ϕ(x, t) =
nq
∑

j=1

ψv j (x)v j (t) = ψv (x)v(t) (30)

S(x, t) = −xt

∂2w(xa, t)

∂x2
a

= −xtψ
′′

r r(t) (31)

Prime indicates the derivative to the axial position, xa . The above assump-

tions allow Eq. (28) to be written in terms of mass, M, stiffness, K, coupling,

Θ, and capacitive terms, Cp, to obtain the governing equations in Eqs. (32–33).

The coefficients are defined in Eqs. (34–37).

Mr̈ + Kr − Θv =
n f
∑

k=1

ψt
r (xak) · fk(t) (32)

Θ
t r + Cpv =

nq
∑

j=1

ψv

(

x j

)

· q j (33)

M =
∫

Vs

ψt
rρsψr dVs +

∫

V p

ψt
rρpψr dVp (34)

K =
∫

Vs

(−xtψ
′′

r )t cs(−xtψ
′′

r )dVs

+
∫

Vs

(−xtψ
′′

r )t cE (−xtψ
′′

r )dVp (35)
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Θ =
∫

V p

(−xtψ
′′

r )t et (−∇ · ψv )dVp (36)

Cp =
∫

Vs

(−∇ · ψv )tεS(−∇ · ψv )dVp (37)

The input to the system is a base excitation. The structure is discretized

into nf elements of length �xa and the local inertial load is applied on the kth

element, or fk = −mk�xaẅ B . This results in nf point loads. mk is the element

mass per length. The loading is summated for all the elements. In the limit of

�xa → dxa , the summation reduces to the integral over the structure length and

a mass per length distribution is used, m(xa). For simplicity it has been assumed

that the device is uniform in the axial direction, so that m(xa) = m = const .

Substituting the forcing function into the right hand side of Eq. (32), the “forcing

vector”, B f , is defined.

B f = −
∫ L

0

m(xa)ψt
r dxa = −m

∫ L

0

ψt
r dxa (38)

The right hand side term of Eq. (33) reduces to a column vector of length nq

(the number of voltage modes) with element values qtot, where qtot =
∑nq

j=1 q j .

This equation can be differentiated with respect to time to obtain current. The

current can be related to the voltage, assuming that the electrical loading is a

resistor, Rl .

Mechanical damping is added through the addition of a damping matrix,

C, to Eq. (32). When multiple modes are investigated, a proportional damping

scheme is often used to ensure uncoupling of the equations during the modal

analysis [66].

Mr̈ + Cṙ + Kr − �v = B f ẅ B (39)

Θ
t ṙ + Cpv̇ + 1/Rlv = 0 (40)

It is important to note the similarities between the governing equations for

the vibrating beam (Eqs. (39, 40)) and the basic 1-D device (Eqs. (15, 16)). When

only a single beam mode is considered with one pair of electrodes, Eqs. (39, 40),

reduce to two scalar equations. The damping scalar damping ensures that the

equations uncouple automatically. The same optimization scheme in the 1-

D analysis can be used to find the maximum power developed, as well as the

optimal load resistance for different driving frequencies. Lastly, the damping for

a physical device is determined by the geometry and the operating environment

(as discussed earlier). The damping is measured at the device natural frequency,

which is fixed. As a consequence, the damping dependence on frequency need

not be considered here if it can be assumed that the damping ratios at the

resonance and anti-resonance frequencies are the same.



144 N. E. duToit et al.

Modal Analysis: Cantilever Beam with a Mass at the Free End

Since the target frequencies of the piezoelectric energy harvester under investi-

gation are very low for MEMS-scale devices, it will be necessary to add a mass

at the tip of the cantilever beam. The modal shapes and natural frequencies for

a fixed-free cantilever beam are readily available in vibration texts (e.g., [66]),

but the analysis with the addition of the mass is not as common, and will be

covered briefly. This section is adapted from [67–69].

It is assumed that the center of gravity of the mass does not coincide with

the end of the beam, O . Please refer to Fig. 13 for an illustration of the assumed

beam configuration. The Euler-Bernoulli beam theory is used to determine the

governing equations in terms of the mechanical displacement (Eq. (41)) and

can be solved generally for the N th mode, N ∈ {1, nr} (Eq. (42)).

E Iψ I V
r N − mω2ψr N = 0 (41)

ψr N = c sinh λN xa + d cosh λN xa + e sin λN xa + f cos λN xa

(42)

The arbitrary constants (c, d , e, and f ) are solved using the boundary

conditions of the beam with the mass. It is assumed that the both the beam

and the proof mass are uniform in the axial direction with mass per lengths of

m and mm , respectively. Using energy methods, it is possible to determine the

boundary conditions at the point where the beam and the mass are connected,

w L :

E I w ′′
L − ω2

N Iow ′
L − ω2

N S0w L = 0 (43)

E I w ′′′
L + ω2

N M0w L + ω2
N S0w ′

L = 0 (44)

where: M0 = mm L0, S0 = M0ox , I0 = Iyy + M0(o2
x + o2

z ), E is the axial mod-

ulus of the beam, I is the second moment of area of the beam, Iyy is the moment

of inertia of the proof mass around its center of gravity, and ωN is the natural

frequency of the beam. By defining λ̄N = λN L , M̄0 = M0/mL , S̄0 = S0/mL2,

Figure 13. Beam with proof mass: modal analysis parameters.
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and Ī0 = I0/mL3, the boundary conditions are used to obtain the matrix equa-

tion of the constants.

[

A11 A12

A21 A22

] [

e

f

]

= 0 (45)

A11 = (sinh λ̄N + sin λ̄N ) + λ̄3
N Ī0(−cosh λ̄N + cos λ̄N )

+ λ̄2
N S̄0(−sinh λ̄N + sin λ̄N ) (46)

A12 = (cosh λ̄N + cos λ̄N ) + λ̄3
N Ī0(− sinh λ̄N − sin λ̄N )

+ λ̄2
N S̄0(−cosh λ̄N + cos λ̄N ) (47)

A21 = (cosh λ̄N + cos λ̄N ) + λ̄N M̄0(sinh λ̄N − sin λ̄N )

+ λ̄2
N S̄0(cosh λ̄N − cos λ̄N ) (48)

A22 = (sinh λ̄N − sin λ̄N ) + λ̄N M̄0(cosh λ̄N − cos λ̄N )

+ λ̄2
N S̄0(sinh λ̄N + sin λ̄N ) (49)

The mode resonance frequencies are obtained by solving for λ̄N such

that |A11 A12
A21 A22

| = 0. Successive values of λ̄N correspond to the modes of

the beam and the natural frequency of each mode can be determined with:

ω2
N = λ̄2

N

√

E I
mL4 . The solution, Eq. (42), can be written in terms of a single

arbitrary constant, say f :

ψr N = f [(cosh λN xa − cos λN xa) − A12/A11(sinh λN xa − sin λN xa)] (50)

The effective mass of the structure is obtained from the Lagrange equations

of motion and is given in Eq. (51). Note that Eq. (51) replaces Eq. (34) when a

proof mass is added to a cantilever beam.

M =
∫

V s

ψt
rρsψr dVs +

∫

V p

ψt
rρpψr dVp + M0(ψr (L))t (ψr (L))

+ 2S0(ψr (L))tψ′
r (L) + I0(ψ′

r (L))t (ψ′
r (L)) (51)

Lastly, the external work term needs to be re-evaluated to include the in-

ertial loading due to the proof mass at the beam tip. In Eq. (38), the forcing

vector, B f , was defined to account for the inertial loading due to a base excita-

tion. It was previously assumed (for simplicity) that the device is uniform in the

axial direction. However, the device now consists of two separate sections, the

uniform beam and uniform proof mass. Both contribute to the inertial loading

of the device. The proof mass displacement is calculated in terms of the dis-

placement and rotation of the tip of the beam. A forcing function is defined in
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terms of the mass per length of the proof mass, mm , and two additional terms

are calculated to make up the modified input matrix:

B f = −

(

m

∫ L L

0

{ψr (xa)}t dxa + mm

∫ L+L0

L

{ψr (L)}t dxa

+mm

∫ L+L0

L

{ψ′
r (L)xa}t dxa

)

(52)

{3-1} Mode vs. {3-3} Mode of Operation

For piezoelectric elements, the longitudinal piezoelectric effect can be much

larger than the traverse effect (d33/d31 ∼ 2.4 for most piezoelectric ceramics,

see for example [70–72]). For this reason it is desirable to operate the device in

the {3-3}, or longitudinal, mode. Longitudinal mode operation occurs when the

electric field and the strain direction coincide. Refer to Fig. 14 for an illustration

of the two configurations. Conventionally, the electrodes are placed on the top

and bottom surfaces of the piezoelectric element. The electric field is through the

thickness of the piezoelectric element, while the strain is in the axial direction,

and the transverse, or {3-1}, mode is utilized. Through the use of interdigitated

electrodes, a large component of the electric field can be in the axial direction.

This configuration has been utilized in the past [70–74].

Conventional Piezoelectric Energy Harvester Utilizing the {3-1} Mode

The conventional cantilever configuration piezoelectric energy harvester model

({3-1}mode) is presented before considering the {3-3} interdigitated unimorph

cantilever. Please refer to Fig. 14 for an illustration of the configuration, as

well as the definition of the parameters. Assuming plane stress for a plate

(refer to [59] for a detailed description of plane stress and strain constitutive

reductions), the constitutive relations (Eq. (13)) can be simplified by taking

Figure 14. {3-1} vs. {3-3} modes of operation.
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T3 = T4 = T5 = 0:
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For the plate which bends only in one direction, the constitutive equations

can be further reduced by taking S2 = S6 = 0:

[

T1

D3

]

=

[

cE∗

11 −e∗
31

e∗
31 εS∗

33

] [

S1

E3

]

(53)

It is important to note that due to the plane stress assumption, the piezo-

electric constants in Eq. (53) are not equal to the fully 3-D constants. These

constants have to be determined from the compliance form of the constitutive

relations (i.e., with stress as the independent field variable and in terms of the

compliance, sE ), resulting in:

cE∗

11 =
s E

11
(

s E
11

)2 −
(

s E
12

)2
(54)

e∗
31 =

s E
11d31 − s E

12d31
(

s E
11

)2 −
(

s E
12

)2
(55)

εS∗

33 = εT
33 −

2d2
31

(

s E
11 − s E

12

)

(

s E
11

)2 −
(

s E
12

)2
(56)

The following electric potential distribution was assumed to give a con-

stant electric field through the thickness of the piezoelectric element. The po-

tential varies from +1 at top electrode to −1 at the bottom electrode. Tak-

ing only the first mode of the beam, the functions ψr and ψv in Eq. (29–30)

become:

ψv = ψv1 =
tp

2
−

(

x3 − tp

2

)

tp

2

(57)

ψr = ψr1 = f [(cosh λ1x1 − cos λ1x1) − A12/A11(sinh λ1x1 − sin λ1x1)] (58)

With these assumed modes, the system response is calculated in closed

form since the governing equations are scalar. First, the governing equation
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(Eq. (39)) is written in an alternative form by dividing through by M and

making use of the definitions ω1 =
√

K/M and ζm = C/M2ω1.

r̈ + 2ζmω1ṙ + ω2
1r − �/Mv = Bfẅ B/M (59)

�ṙ + C p v̇ + 1/Rlv = 0 (60)

The dimensionless factors Re = ω1 RlC p and � = ω/ω1 are introduced,

where ω is the base input frequency and the system response is calculated. The

resulting equations are similar to those derived for the basic 1-D piezoelectric

model.

∣

∣
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ẅ B

∣
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√
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√
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}

Re

)
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]2

(61)
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(63)

Again, the system can be analyzed at short and open circuit condi-

tions by letting the load resistance tend to zero and infinity respectively.

Two frequency ratios are obtained, which correspond to the resonance (short

circuit) and anti-resonance (open circuit) frequencies of the piezoelectric

element.

�sc = 1
(64)

�oc =
√

1 + �2/KCp

The power can be optimized with respect to the load resistance to obtain

an optimal electrical load:

Re,opt =

√

√

√

√

�4 +
(

4ζ 2
m − 2

)

�2 + 1

�6 +
(

4ζ 2
m − 2

(

1 + �2/KCp

))

�4 +
(

1 + �2/KCp

)2
�2

(65)
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Comparing these results to the 1-D model, we identify similar behavior

for the cantilever configuration as for the basic 1-D configuration. The anti-

resonance is determined by the coupling term �2/KCp. Since the structure is

made up of both piezoelectric- and non-piezoelectric layers, this term does not

in general correspond to the coupling coefficient as defined before (section on

1-D model), but reduces to this coefficient for a purely piezoelectric beam.

The model was applied to published experiments and analytical results

obtained for a macro-scale bimorph [36] using a Quick Pack QP40N actuator

from Midé Technology Corporation. The Quick Pack is a built-up plate de-

vice consisting of two piezoelectric element pairs (tp = 0.254 mm) embedded

in a Kapton and epoxy matrix (ts = 0.254 mm) with overall dimensions of

100.6 mm × 25.4 mm × 0.762 mm (L × b × t). No mass was present at the end

of the plate and the plate was clamped 8 mm from the end to have an effec-

tive length of 92.6 mm. PZT-5A properties and a mechanical damping ratio of

ζ m = 0.01 were assumed for the analysis. Base acceleration is a key assumption

for the power generated, as is the bending stiffness for the natural frequency

estimation. The input vibration amplitude was not specified, so a base acceler-

ation of 3 m/s2 was used, which was found to be within static failure limits for

the piezoelectric material. Effective bending stiffness was calculated from the

published experimental first resonance frequency of around 33 Hz as 23.553

10−3 Nm2.

As an approximation, the device is modeled with a single electrode, span-

ning the length of the plate and with a width of 20.6 mm. This will cause the

model to over-predict the power performance slightly. The forms of ψr and

ψv are given in Eqs. (57–58), assuming constant electric potential through the

thickness of the piezoelectric element and one beam mode. With these approx-

imations, the predicted performance was compared to the published results.

Please refer to Table 3 for selected values. The published and predicted cur-

rents and current trends compare well and help to validate the model.

The analysis was extended to include the resonance response of the de-

vice, and the two power-optimal operating points. The power vs. frequency

ratio is plotted, with varying load resistances in Fig. 15. The shift in operating

Table 3

{3-1} Bimorph beam comparison: measured and predicted results

Frequency

[Hz]

Load

resistance

[�]

Predicted

current

[mA], Ref. [36]

Measured

current

[mA], Ref. [36]

Predicted

current

[mA]

Percent

error

25 100 0.101 0.104 0.111 6.73

25 10,000 0.105 0.106 0.098 −7.55

30 100 0.360 0.345 0.343 −0.58

30 10,000 0.295 0.300 0.217 −27.7
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Figure 15. Power vs. normalized frequency with varying electrical load resistance for

{3-1} bimorph beam in [36].

frequency with the increasing load resistance from the resonance to the anti-

resonance frequency is clearly visible as the shift in frequency ratio is ∼12.2%,

corresponding to ∼7.5 Hz. This frequency shift is very pronounced because

the piezoelectric element’s contribution to the overall stiffness of the device is

large. The maximum power predicted is around 3,000 µW, as compared to the

maximum power measured of 900 µW (for the 30 Hz, 100,000 Ohm resistive

load combination). This power prediction emphasizes the importance of select-

ing the correct operating point, as well aligning the device natural frequency

with the dominant vibration component of the source. Please refer to Table 4

for a summary of the predicted performance.

A second bimorph device was modeled and compared to published, sim-

ulated results [5]. The device consisted of two piezoelectric elements with

no structural layer and a mass at the tip. The overall beam dimensions are

16.2 mm × 3 mm × 0.73 mm (L × b × t) and the mass has dimensions 17.1

mm × 3 mm × 5 mm (L0 × b0 × H0). No material properties are given for the

device. Assuming PZT-5A and steel (for the mass) material properties, reso-

nance and anti-resonance frequencies of 118 Hz and 134 Hz respectively are

predicted, compared to the 120 Hz specified. With an input acceleration of
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Table 4

Predicted performance for {3-1} bimorph beam modeled in Fig. 15

{3-1} model analysis

Parameter Short circuit Open circuit

Maximum power out [µW] 3,030 3,030

Power density [µW/cm3]† 200 238

Natural frequency [Hz] 32.8 40.1

Optimal resistance [kOhm] 1.31 543

Tip displacement of beam [mm] 2.84 2.32

Maximum strain [µm/m] 443 362

Voltage [V] 2.0 40.5

Current [mA] 1.52 0.074

†Device volume is approximated as L × b × (2{tip displacement} +
thickness).

2.5 m/s2, a power of 785 µW is predicted, compared to the published power

prediction of 242 µW. The deviation is ascribed to the uncertainty in material

properties and a more rigorous treatment of the beam and mass mode shapes in

the current analysis.

Piezoelectric Energy Harvester Utilizing the {3-3} Effect

Operating the piezoelectric element in the {3-3} actuation mode is advan-

tageous, as better coupling between the mechanical and electrical domain is

possible. An approximate model for the interdigitated electrode-configuration

has been adopted. It is assumed that the region of the piezoelectric element

under the electrode is electrically inactive, whereas the section between the

electrodes utilizes the full {3-3} effect. These are first approximations, since

the electric field is not completely in the axial direction through the thick-

ness of the piezoelectric element, nor is the section of piezoelectric element

under the electrode completely inactive. These effects compensate for each

other somewhat. Please refer to Fig. 16 for the geometry of the approximate

model.

Again, plane stress for a plate is assumed, and with the plate geometry

defined in Fig. 14, the constitutive relations for the active sections in Fig. 16

can be reduced to:

[

T3

D3

]

=

[

cE∗∗

33 −e∗∗
33

e∗∗
33 εS∗∗

33

] [

S3

E3

]

(66)
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Figure 16. Interdigitated electrode configuration (left) and model approximation

(right).

Due to the plane stress assumption the piezoelectric constants will not be

equal to any of the fully 3-D constants, but are defined as follows:

cE∗∗

33 =
s E

11

s E
11s E

33 −
(

s E
13

)2
(67)

e∗∗
33 =

s E
11d33 − s E

13d31

s E
11s E

33 −
(

s E
13

)2
(68)

εS∗∗

33 = εT
33 −

1

s E
11s E

33 −
(

s E
13

)2

(

s E
33d2

31 − 2s E
13d31d33 + s E

11d2
33

)

(69)

With the approximation that the region of piezoelectric element beneath

the electrode is inactive, while the section of piezoelectric element between

the electrodes experiences coupling through the full longitudinal mode, we

can specify an electrical potential distribution. To have a constant electric field

between the electrodes, the potential distribution needs to vary from +1 at the

electrode on the left to −1 at the electrode on the right in Fig. 16. Again only

the first beam mode is considered.

ψv = ψv1 =
p−w

2
−

(

x3 − p−w

2

)

p−w

2

(70)

ψr = ψr1 = f [(cosh λ1x3 − cos λ1x3) − A12/A11(sinh λ1x3 − sin λ1x3)] (71)

It is important to note that although the device is made up of a number of

separate piezoelectric control volumes, there is only one electrode pair and the

voltage across all the elements will be the same. Since the strain varies along

the length of the of the beam, different amounts of charge will be generated in

each element and the charge sums to give the total charge output of the device.

Using a similar analysis as in the previous section, the same governing equation

(Eq. (39)) is obtained. Only the coefficients of the equation will differ (due to

the {3-3} mode) and the same optimization scheme can be employed.
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To validate the model, a prototype device, previously built in our group [51,

61], was modeled. Please refer to Fig. 3 for the device configuration. The plate

is 170 µm long, 261 µm wide and is made up of 5 layers: SiNx (0.4 µm), SiO2

(0.1 µm), ZrO2 (0.05 µm), PZT (0.48 µm), and the electrode (Ti 0.02 µm and

Pt 0.2 µm). A proof mass of SU-8 was added at the tip of the plate and has the

following dimensions: 20 µm × 261 µm × 50 µm (L0 × b0 × H0). See Fig. 13

for the mass parameter definitions. A single interdigitated electrode pair was

deposited on the top surface with a pitch, p, of ∼8 µm and the electrode arms

width, w, was 4 µm (see Fig. 16 for the parameter definitions). An effective

electrode area of 50% was used for the mass calculation. For the contribution

of the electrodes to the stiffness of the plate, it was assumed that the arms of

the electrode will affect the bending stiffness very little and only the connects

(along the length of the plate near the plate width free edges) was used in the

calculation with an effective width of 10%. The plate tip displacement was

measured at short circuit conditions and this value was used to estimate the

mechanical damping ratio for the structure: ζm = 0.0056. Lastly, PZT material

properties were measured: d33 = 200 10−12 m/V, εT
33 = 1200ε0. A modulus of

cE
33 = 63 GPa is prescribed, but using PZT-5A compliance properties and the

effective piezoelectric constants and stiffness (Eq. (67)), a modulus of cE
33 =

64 GPa is calculated. For d31 a value was calculated based on the ratio of d31/d33

for PZT-5A. The value used in the analysis is: d31 = −91.7 10−12 m/V.

A resonance frequency of 13.7 kHz was measured (at open circuit condi-

tions), but was found to shift to around 13.9 kHz. With the model, a natural

frequency of 12.66 kHz is predicted for short circuit conditions, using the

prescribed parameters. The deviation of the model from the measurement is

ascribed to the uncertainty of material properties for the layers - including the

value for the PZT modulus (values of cE
33 for PZT-5A vary from 53 GPa to

111 GPa for different configurations). When the modulus is adjusted to cE
33 =

77 GPa, a resonance frequency of 13.7 kHz is predicted for short circuit condi-

tions. At open circuit conditions, the anti-resonance frequency of 14.0 kHz is

predicted. The predicted shift in natural frequency corresponds extremely well

with the ∼200 Hz shift in the measured natural frequency. A modulus of 64 GPa

and a reference base input of 14 nm at 13.7 kHz, giving a base acceleration of

103.7 m/s2, were used. The displacement of the center of the mass of 1.75 µm

was predicted at short circuit conditions, compared with the measured result of

1.85 µm. The electrical performance measured cannot be modeled currently as

the rectifier and storage electronics have not been incorporated in the model.

This will be accomplished in future work.

PRELIMINARY DESIGN: LOW-LEVEL MPVEH

A preliminary design of a MEMS-scale low level vibration energy harvester

using the developed models was undertaken, but not optimized. The fabrication
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process for the device has been established, placing limitations on the device

geometry and size. The device structure is outlined with the proposed fabrication

sequence. Next, the parameters for the preliminary design are presented, and

finally the performance of the device is predicted.

The fabrication for a prototype device is based on the sequence developed

in house [51, 61]. It is based on a 3-mask, 5-layer design. The first layer is a

membrane layer consisting of Plasma-Enhanced Chemical Vapor Deposition

(PECVD) SiNx and SiO2. The thickness ratio of the materials is varied to control

the residual stress and initial curvature of the structure. The second layer is a

buffer layer of ZrO2 and is deposited with a spin-on process. The layer is

necessary to prevent charge diffusion from the piezoelectric element into the

SiNx/SiO2 substrate. Since the ZrO2 does not adhere well to the SiNx the SiO2

layer is a necessary interface. Third, a PZT layer is deposited with a spin-on

process developed by Mitsubishi Materials Company. The first three layers are

patterned with the first mask, using reactive-ion etching (RIE). The electrode

layers (Ti and Pt) are deposited with an electron-beam evaporation process. The

electrodes are patterned with the second mask and a lift-off process. The last

layer is an SU-8 proof mass, which is deposited with a spin-on process and is

patterned with the third mask. An isotropic XeF2-vapor etch is used to release

the structure. The isotropic etch will lengthen the structure since the etch will

form an undercut in the substrate, which needs to be accounted for.

The fabrication process limits the total length dimension to <1 mm, and

the total beam thickness to <2 µm. The design parameters are given in Table 5,

followed by the predicted performance for a 4.2 m/s2, 150 Hz vibration input.

This input is the measured vibrations from a microwave oven side panel (refer

to Table 2). A promising 28.2 µW/cm3 from the low-level MPVEH is predicted

for the non-optimal design.

FUTURE WORK

An effective power normalization scheme is required in order to compare energy

harvester devices of different sizes and with different vibration inputs to estimate

efficiencies. Strain cancellation due to multiple input vibration components

will be investigated further with the objective of defining an optimal electrode

length. The efficiency of energy conversion from mechanical vibration energy

to electrical energy will be investigated to determine a minimum vibration level

required for positive energy harvesting given a known MPVEH performance.

A prototype device is to be built and tested under controlled conditions

in order to further validate the presented models. An improved design for a

MEMS-scale piezoelectric beam energy harvester will be performed based on

the preliminary design performed herein and the prototype built and tested.

Design schemes for achieving more compliant structures, in order to elimi-

nate the proof mass, will be investigated. Lastly, the system level design of
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Table 5

MPVEH preliminary design: device parameters and predicted performance

Device parameters Predicted performance

Length, L [µm] 1,000 Power extracted [µW] 0.031

Width, b [µm] 500 Power density [µW/cm3] 28.2

Structural layer 0.15/0.15/0.05 Short Circuit condition

(SiNx/SiO2/ZrO2) [µm]

Piezoelectric layer [µm] 0.5 Resonance frequency [Hz] 149.3

Electrode layer (Ti/Pt) [µm] 0.02/0.2 Strain [µm/m] 767

Electrode arm width, w [µm] 4 Tip displacement [µm] 445

Electrode pitch, p [µm] 20 Voltage [V] 0.553

Electrode overlap, loverlap[µm] 476 Optimal resistance [M�] 10.2

Proof mass length, L0 [µm] 200 Open Circuit condition

Proof mass width, b0 [µm] 1,000 Anti-resonance 152.0

frequency [Hz]

Proof mass height, H0 [µm] 50 Strain [µm/m] 756

Device total volume [cm3]† 1.1 × 10−3 Tip displacement [µm] 440

Mechanical damping ratio 0.0056 Voltage [V] 1.88

Base acceleration [m/s2] 4.2 Optimal resistance [M�] 118

†Device volume is approximated as (L + L0) × (b0) × (2{maximum tip displace-

ment} + H0).

a MPVEH will be investigated, including incorporation of optimized power

harvester electronics and storage.

CONCLUSIONS AND RECOMMENDATIONS

Design considerations related to the mechanical performance of piezoelectric

energy harvesters were presented. It has been recommended that the follow-

ing information be made available in future publications to facilitate a relative

comparison of devices: device size (including and excluding the power elec-

tronics), the maximum tip displacement at maximum power output (to define

the operating volume as in this work), the mechanical damping ratio, the elec-

trical load, the device mass, and the input vibration characteristics (frequency

and magnitude).

Ambient vibration energy sources were characterized and it was concluded

that significant power is present in the range from 100–300 Hz for a number

of ambient sources. An interpretation scheme, based on a general energy har-

vester model, was presented for vibration peak selection. It was shown that the

peak selection scheme differs for macro- and micro-scale beam devices and is

further influenced by the operating conditions for the micro-scale device (e.g.,
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atmospheric vs. vacuum conditions) since the dominant damping components

are different at the micro- vs. macro-scale.

A basic, fully coupled electromechanical model was developed to analyze

the response of a piezoelectric energy harvester. The system was optimized for

maximum power extraction. Two optimums for power extraction are identified,

corresponding to the resonance and anti-resonance frequencies of the device.

The shift in device natural frequency from short- to open-circuit conditions

is more pronounced for micro-scale devices since the piezoelectric element’s

contribution to the overall structural stiffness is larger than for macro-scale

devices. For macro-scale devices the effect is normally negligible. To date,

all optimization schemes have neglected the anti-resonance operating point by

assuming that the optimal operating frequency is at the resonance frequency.

However, as the power generated is equal at the two optima, generated current

is larger at short circuit conditions, whereas the voltage is larger under open

circuit conditions.

The basic electromechanical model was extended to a 2-D cantilever beam

model, including a modal analysis for a beam with a mass at the tip and the

derivation of governing equations with an energy method. A preliminary model

validation was completed, based on published measured results. The results

were extended to a resonant analysis and power predictions made, resulting

in a power density of 238 µW/cm3. The model was further extended to a

piezoelectric energy harvester utilizing the longitudinal actuation mode and a

micro-scale prototype device was analyzed. Frequency and tip displacement

results compare well. The electrical performance of the device has not been

predicted as the complete harvesting electronics have yet to be included.

A non-optimized preliminary design of a low-level MPVEH was performed

and the performance was predicted for the next generation MPVEH device,

which is to be built and tested. A power of 0.031 µW from low-level vibrations

was predicted, translating into a power density of 28.2 µW/cm3. With design

optimization, it is likely that the power density will be increased by as much as

an order of magnitude.
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