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Design Constraints for Image-Reject
Frequency-Translating ΔΣ Modulators

Philip M. Chopp and Anas A. Hamoui

Abstract—This brief derives design constraints for bandpass
ΔΣ modulators that use mixers to perform frequency downcon-
version inside their ΔΣ loop. Such systems, which are referred to
as frequency-translating ΔΣ modulators, facilitate direct analog-
to-digital conversion (ADC) of high-frequency signals that cannot
adequately be processed using classical bandpass ΔΣ modulator
architectures. The derived constraints are required for the correct
design of frequency-translating ΔΣ modulators: 1) The sampling
constraints maintain the stability of the ΔΣ feedback loop and
prevent the mixing of the undesired signal content into the input-
signal band, thereby ensuring that the time-varying behavior
of the mixers does not affect the ADC resolution; and 2) the
noise-shaping constraints minimize performance loss during the
recombination of the in-phase and quadrature feedback paths.
This brief analyzes frequency-translating ΔΣ modulators that
are designed with image-reject (quadrature) mixing and that
are implemented using continuous- or discrete-time lowpass or
complex-bandpass inner-loop ΔΣ modulators. Thus, the derived
constraints offer a valuable reference for the design of image-
reject frequency-translating ΔΣ ADCs.

Index Terms—Analog-to-digital (A/D) conversion, bandpass,
frequency translation, sigma–delta (ΔΣ) modulation.

I. INTRODUCTION

BANDPASS ΔΣ modulation is an attractive approach
for direct analog-to-digital (A/D) conversion of IF sig-

nals. However, due to the technological limitations of CMOS
processes and the requirement for a moderate power budget,
the maximum input frequency that can be adequately processed
using a classical bandpass ΔΣ modulator architecture is limited
to approximately 50–60 MHz [1], [2]. To extend the advantages
of ΔΣ modulation to high-frequency signals, [3] and [5] pro-
posed the use of frequency downconversion inside the ΔΣ loop.
These downconversion bandpass ΔΣ modulators perform noise
shaping largely at baseband or at a low IF, thereby relaxing the
design requirements on the ΔΣ loop filter.

Downconversion bandpass ΔΣ modulators can be split into
two categories: 1) frequency-translating ΔΣ modulators, which
use mixing in their forward path [3], [4]; and 2) subsampling
ΔΣ modulators, which use undersampling in their forward path
[5]–[9]. Both architectures require upconversion mixers in their
feedback path.

Manuscript received June 10, 2009; revised September 1, 2009. Current
version published December 16, 2009. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada and the Fonds
Québécois de la Recherche sur la Nature et les Technologies. This paper was
recommended by Associate Editor H.-S. Chen.

The authors are with the Department of Electrical and Computer En-
gineering, McGill University, Montreal, QC H3A 2A7, Canada (e-mail:
anas.hamoui@mcgill.ca).

Digital Object Identifier 10.1109/TCSII.2009.2035266

Fig. 1. Frequency-translating ΔΣ modulator with image-reject (quadrature)
mixing. Here, TS is the sampling period, and TD is the quadrature-path
sampling delay.

Frequency-translating ΔΣ modulators have two principal
advantages over subsampling ΔΣ modulators: 1) They can use
continuous-time (CT) loop-filter stages in their forward path
following downconversion mixing, thus suppressing aliasing
and sampling errors while offering greater potential for high-
speed low-power design; and 2) they do not require wideband
sampling switches, thus reducing both design complexity and
sampled out-of-band noise.

Fig. 1 depicts a block diagram of the image-reject (quadra-
ture) frequency-translating ΔΣ modulator. Observe that, since
the downconversion mixers are inside the ΔΣ loop, mixing
nonidealities and any in-phase and quadrature path mismatch
are shaped by the outer-loop bandpass filter. This filter is im-
plemented using a single-stage LC resonator, which is suitable
for high-frequency signal processing.

When the frequency response of the outer-loop bandpass
filter is translated to baseband or to a low IF, its selectivity,
and hence its ability to shape quantization noise, is reduced.
Therefore, additional ΔΣ loop-filter stages must be included
after the downconversion mixers to enhance the overall quan-
tization noise-shaping performance. These inner-loop ΔΣ
modulators (Fig. 1) can be realized with lowpass or complex-
bandpass loop filters to process zero- or low-IF signals. They
are implemented using active-RC or switched-capacitor circuit
topologies [10], which facilitate the use of switching mixers.
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For the image-reject frequency-translating ΔΣ ADC, this
brief derives the following: 1) sampling constraints, which
maintain the stability of the ΔΣ feedback loop and prevent
the mixing of the undesired signal content into the input-
signal band; and 2) noise-shaping constraints, which minimize
performance loss during the recombination of the in-phase and
quadrature feedback paths.

The brief is structured as follows. Sections II and III derive
the sampling and noise-shaping constraints, respectively.
Section IV then validates the derived constraints using system-
level behavioral simulations in Simulink.

II. SAMPLING CONSTRAINTS

Mixers are time-varying blocks by definition. When they are
inserted into the feedback loop of a ΔΣ modulator (Fig. 1),
its loop response also becomes time varying. Therefore, to
preserve the stability of the ΔΣ feedback loop and prevent
undesired signal content from mixing into the input-signal
band, certain constraints must be imposed on the timing of
the sampling instants in a frequency-translating ΔΣ modu-
lator. These constraints ensure that, when sampled, the loop
response of the frequency-translating ΔΣ modulator is effec-
tively linear time invariant (LTI). A time-varying system whose
sampled response is LTI is referred to as a periodically linear
time-invariant (PLTI) system [3]. Accordingly, a frequency-
translating ΔΣ modulator must be a PLTI system.

Consider the frequency-translating ΔΣ modulator in Fig. 1.
Define the in-phase and quadrature sampling instants as

tn = nTS and tnd = nTS + TD (1)

where TS is the sampling period, and TD is the quadrature-path
sampling delay. This section derives the general relationships
between TS , TD, and the period of the local-oscillation (LO)
signal TLO (in Fig. 1) that must be satisfied for correct operation
of an image-reject frequency-translating ΔΣ modulator.

A. Loop Response

The sampling constraints are developed by first deriving the
loop response, from y(t) to v(t), of the image-reject frequency-
translating ΔΣ modulator in Fig. 1. The sampling period TS

and the quadrature-path sampling delay TD are then selected,
such that the time-varying terms in this loop response are
suppressed.

Following upconversion mixing, the summed output of the
in-phase and quadrature feedback paths (Fig. 1) is given by

x1(t) = yI(t) cos(ωLOt) + yQ(t) sin(ωLOt) (2)

where yI(t) and yQ(t) represent the outputs of the in-phase
and quadrature feedback digital-to-analog converters (DACs),
respectively. To keep the derived results tractable, phase terms
θU and θD in Fig. 1 are assumed to be 0. Furthermore, sub-
sequent equations only consider the in-phase component yI(t)
(i.e., yQ(t) is set to 0).

The loop response, from y(t) to v(t), is derived by setting the
input signal x(t) to 0. The output of the outer-loop filter h(t) in

Fig. 1 is then given by

x2(t) = h(t) ⊗ x1(t)

=

∞∫

−∞
h(τ)yI(t − τ) cos (ωLO(t − τ)) dτ (3)

where ⊗ represents the convolution operation. By expanding
the cos(ωLO(t − τ)) term using standard trigonometric identi-
ties, x2(t) can be rewritten as

x2(t) = x2I(t) cos(ωLOt) + x2Q(t) sin(ωLOt) (4)

where

x2I(t) = [h(t) cos(ωLOt)] ⊗ yI(t) (5)

x2Q(t) = [h(t) sin(ωLOt)] ⊗ yI(t). (6)

The outputs of the downconversion mixers are then given by

vI(t)=
1
2
x2I(t) [1 + cos(2ωLOt)]+

1
2
x2Q(t) sin(2ωLOt) (7)

vQ(t)=
1
2
x2I(t) sin(2ωLOt)+

1
2
x2Q(t) [1 − cos(2ωLOt)]. (8)

Equations (7) and (8), together with (5) and (6), give the
effective response, from y(t) to v(t), of the feedback system in
Fig. 1. They demonstrate that the loop response of a frequency-
translating ΔΣ modulator is not LTI, due to the presence of
the cos(2ωLOt) and sin(2ωLOt) terms. To ensure that this loop
response is PLTI when sampled, the sampling period TS and
the quadrature-path sampling delay TD must be selected (as
derived next) such that the time-varying terms remain constant
across all sampling instants.

B. Sampling and Delay Constraints

If the in-phase component vI(t) in (7) is sampled at time
instants tn = nTS (Fig. 1), with TS set to an integer multiple
of TLO/2, it reduces to vI(tn) = x2I(tn), and hence, time
invariance is satisfied. This constraint on the sampling period
can be generalized as

TS = kS
TLO

2
, kS = 1, 2, 3, . . . . (9)

If the quadrature component vQ(t) in (8) is sampled at
time instants tn = nTS , with TS selected according to the
constraint given in (9), it reduces to vQ(tn) = 0 in all cases.
However, since the quadrature LO signal is π/2 out-of-phase
with respect to the in-phase LO signal, delaying the quadrature-
path sampling instants by TD = TLO/4 and sampling vQ(t) at
time instants tnd = nTS + TD (as shown in Fig. 1) results in
vQ(tnd) = x2Q(tnd). Accordingly, using (9), the constraint on
the quadrature-path sampling delay can be generalized as

TD =
1
kS

TS

2
, kS = 1, 2, 3, . . . . (10)

Observe that, when applying the constraints in (9) and (10),
the ratio TD/TS decreases as TS/TLO increases (i.e., as kS
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Fig. 2. Timing of the quadrature-path sampling instants tnd for TD = TS/2 and: (a) TS = TLO/2; (b) TS = TLO; and (c) TS = 3TLO/2.

increases), thereby making it increasingly difficult to accurately
implement TD. To solve this problem, the constraint in (9) is
revised in the following discussion, such that TD scales with
TLO. This makes it possible to adjust TS/TLO without affecting
TD/TS .

Let the quadrature-path sampling delay be fixed at
TD = TS/2. Consider the case where the sampling period is
TS = TLO/2 [i.e., for kS = 1 in (9)]. At the quadrature-path
sampling instants tnd = nTS + TD, cos(2ωLOtnd) = −1 and
sin(2ωLOtnd) = 0, resulting in vQ(tnd) = x2Q(tnd) in (8).
Fig. 2(a) plots the cos(2ωLOt) curve, marking the positions
of the quadrature-path sampling instants tnd for TS = TLO/2
and TD = TS/2. In Fig. 2(b) and (c), TS is increased by
multiples of TLO/2, whereas TD is fixed at TS/2. Note that
sin(2ωLOtnd) = 0 in Fig. 2(b) and (c). In Fig. 2(b) (i.e., for
TS = TLO), cos(2ωLOtnd) = 1, and hence, vQ(tnd) in (8)
reduces to 0, which is incorrect. However, in Fig. 2(c) (i.e.,
for TS = 3TLO/2), cos(2ωLOtnd) = −1, and hence, vQ(tnd)
in (8) reduces to x2Q(tnd), which is the correct result. There-
fore, when TD = TS/2, vQ(tnd) is nonzero, and time invari-
ance is correctly maintained only when the sampling period TS

is an odd multiple of TLO/2. This result can be generalized by
introducing an additional design factor kD into the sampling
constraint in (9) as follows:

TS =kDkS
TLO

2
, kD =1, 3, 5, . . . ; kS =1, 2, 3, . . . . (11)

Using (11), the constraint on the quadrature-path sampling
delay in (10) can be rewritten as

TD = kD
TLO

4
, kD = 1, 3, 5, . . . . (12)

Accordingly, the sampling period TS of an image-reject
frequency-translating ΔΣ modulator (Fig. 1) must be selected
using (11), and the quadrature-path sampling instants must be
delayed by TD according to (12).

It is important to point out that the sampling constraints
in (11) and (12) have been derived independent of the noise
transfer function (NTF) of the inner-loop ΔΣ modulators and,
therefore, can be applied to design image-reject frequency-
translating ΔΣ modulators with continous-time (CT) or
discrete-time (DT) lowpass or complex-bandpass inner-loop
ΔΣ modulators. However, note that a complex-bandpass inner-
loop ΔΣ modulator cannot be implemented with a DT loop
filter, since the cross-coupled feedback paths of the complex

integrators cannot be realized when the sampling instants of the
in-phase and quadrature paths have different delays.

C. DT Versus CT Inner-Loop ΔΣ Modulators

In Fig. 1, the outputs of the downconversion mixers contain
both a low-frequency term (close to dc) and a high-frequency
term (close to 2ωLO). Using DT inner-loop ΔΣ modulators [3],
the in-phase and quadrature paths are sampled immediately fol-
lowing downconversion mixing, and the high-frequency term
is subsampled to baseband. The quadrature-path sampling in-
stants must therefore be delayed by TD relative to the in-phase
path sampling instants [as per the constraint in (12)], to avoid
cancellation of the low-frequency term by the subsampled high-
frequency term.

In a frequency-translating ΔΣ modulator with CT inner-loop
ΔΣ modulators [4], the high-frequency term is filtered by the
signal transfer function of the CT inner-loop ΔΣ modulators
and is attenuated prior to sampling. This implicit filtering makes
it possible to realize an image-reject frequency-translating ΔΣ
modulator with TD = 0 (i.e., with the in-phase and quadrature
paths sampled at the same time instants), where the sampling
period TS is constrained by (9), rather than (11).

D. General LO Signals

The sampling constraints in (11) and (12) have been derived
assuming that the LO signals have the same phase as the
sampling clock (i.e., θU = 0 and θD = 0 in Fig. 1). To verify
that (11) and (12) are valid beyond this particular case, these
constraints are applied to the outputs of the downconversion
mixers, assuming that the LO signals have general phases θU

and θD (Fig. 1). At sampling instants, this results in

vI(tn)= cos(θD)[cos(θU )x2I(tn) + sin(θU )x2Q(tn)] (13)

vQ(tnd)= cos(θD)[cos(θU )x2Q(tnd) − sin(θU )x2I(tnd)] .

(14)

As per (13) and (14), the sampled outputs of the downcon-
version mixers remain time invariant but now depend on phases
θU and θD. The phase θU of the LO signal that is applied to
the upconversion mixers alters the response through the outer-
loop path [6], whereas the phase θD that is applied to the
downconversion mixer simply acts as a scaling factor.
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A nonsinusoidal LO signal (e.g., the square wave generated
by a switching mixer) introduces harmonics of the baseband
spectrum at multiples of the LO frequency. When a nonsi-
nusoidal LO signal is applied to the downconversion mixers,
its harmonics are either subsampled (for DT inner-loop ΔΣ
modulators) or attenuated (for CT inner-loop ΔΣ modulators)
and, hence, have the same effect as a scaling factor. When a
nonsinusoidal LO signal is applied to the upconversion mixers,
its harmonics change the effective response through the outer-
loop path. However, this change can be accounted for in the
loop-filter design in the same way that an arbitrary DAC pulse
shape is incorporated into the design of a classical CT ΔΣ
modulator. Accordingly, the observations that were previously
made for sinusoidal LO signals with arbitrary phase terms can
be extended to general LO signals.

Observe that errors in the LO signals affect the NTF of
a frequency-translating ΔΣ modulator in the same way that
coefficient errors affect the NTF of a classical ΔΣ modulator.
The impact of such errors, on the performance and stability of a
frequency-translating ΔΣ modulator, becomes more significant
as its out-of-band NTF gain is increased.

III. NOISE-SHAPING CONSTRAINTS

For stable operation, a ΔΣ modulator must be designed
such that the signal content of its input can be adequately
replicated by the signal content of its feedback path. This means
that the low-frequency signal at the output of a frequency-
translating ΔΣ modulator (Fig. 1) must be upconverted into
the same band as the high-frequency signal at its input. This
upconversion, as well as subsequent in-phase and quadrature
path recombination at the input of the frequency-translating ΔΣ
modulator, imposes basic constraints on the NTF of its inner-
loop ΔΣ modulators, as described below.

A. Lowpass Inner-Loop ΔΣ Modulators

Fig. 3 plots the magnitude response at four points along
the feedback path of an image-reject frequency-translating
ΔΣ modulator (Fig. 1) that has been designed with lowpass
inner-loop ΔΣ modulators (assuming fS = fLO): 1) at
the sampled output (y(n) = yI(n) + jyQ(n)); 2) after the
feedback DACs (y(t) = yI(t) + jyQ(t)); 3) after the up-
conversion mixers (y1(t) = y1I(t) + jy1Q(t)); and 4) after
in-phase/quadrature path recombination (x1(t)). Note that
Fig. 3(b) assumes a nonreturn-to-zero DAC, which has a mag-
nitude response of the form sin(f)/f with notches at multiples
of fS [6].

Observe that, in Fig. 3(d), the input-signal band contains
only the desired signal and shaped quantization noise. Accord-
ingly, there are no noise-shaping constraints for an image-reject
frequency-translating ΔΣ modulator that uses lowpass inner-
loop ΔΣ modulators.

B. Complex-Bandpass Inner-Loop ΔΣ Modulators

Fig. 4 plots the magnitude response at the aforementioned
points along the feedback path of a frequency-translating

Fig. 3. Magnitude response along the feedback path of an image-reject
frequency-translating ΔΣ modulator with lowpass inner-loop ΔΣ modulators:
(a) at the sampled output y(n); (b) after the DACs y(t); (c) after upconversion
mixing y1(t); and (d) after in-phase/quadrature path recombination x1(t).

Fig. 4. Magnitude response along the feedback path of an image-reject
frequency-translating ΔΣ modulator with a complex-bandpass inner-loop ΔΣ
modulator: (a) at the sampled output y(n); (b) after the DACs y(t); (c) after
mixing y1(t); and (d) after in-phase/quadrature path recombination x1(t).

ΔΣ modulator (Fig. 1) that has been designed with a
complex-bandpass inner-loop ΔΣ modulator (assuming fS =
fLO). Since the response of the complex loop filter is not
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Fig. 5. Output spectrum of the image-reject frequency-translating ΔΣ modulator, which is simulated for (a) TS = 3TLO/2, TD = TLO/4 (i.e., kD = 1 and
kS = 3), which satisfies the derived sampling constraints in (11) and (12); (b) TD = TLO/4, but TS = 3.25TLO/2, which violates the constraint in (11); and
(c) TS = 3TLO/2, but TD = 0, which violates the constraint in (12).

symmetric about dc, quantization noise from the image band
[close to −5fLO/4 in Fig. 4(c)] is translated into the input-
signal band during in-phase and quadrature path recombination
[Fig. 4(d)].

Performance loss can be minimized by filtering the quan-
tization noise [in Fig. 4(b)] at an offset of approximately
−2fLO from the input-signal band prior to upconversion mix-
ing. This can be achieved by increasing kS and reducing
the center frequency at the ΔΣ modulator output to improve
the filtering of the image band by the sin(f)/f response of
the DACs.

IV. BEHAVIORAL SIMULATION RESULTS

An image-reject frequency-translating ΔΣ modulator
(Fig. 1) was designed with first-order single-bit DT lowpass
inner-loop ΔΣ modulators and simulated in SIMULINK.
Circuit noise and nonlinearity were not considered in the
behavioral simulation models. However, the effect of these
nonidealities could be evaluated using standard techniques [10].

Fig. 5(a) plots the output spectrum of this ΔΣ modulator,
with its sampling period set to TS = 3TLO/2 (i.e., kD = 1 and
kS = 3) to satisfy the constraint in (11), and with its quadrature-
path sampling delay set to TD = TLO/4 (i.e., kD = 1)
to satisfy the constraint in (12). The simulation results in
Fig. 5(a) follow the expected noise-shaping performance of a
fourth-order bandpass ΔΣ modulator [10], after accounting for
the translated response of the outer-loop bandpass filter.

Fig. 5(b) plots the output spectrum of this ΔΣ modulator,
with its sampling period changed to TS = 3.25TLO/2, whereas
TD = TLO/4, as shown in Fig. 5(a). This choice of TS violates
the constraint in (11) and causes certain terms of the loop
response to oscillate at fS/4, thus mixing quantization noise
into the input-signal band.

Fig. 5(c) plots the output spectrum of this ΔΣ modulator,
with its quadrature-path sampling delay changed to TD = 0,
whereas TS = 3TLO/2, as shown in Fig. 5(a). This choice of
TD violates the constraint in (12) and effectively reduces the
output to a real spectrum.

V. CONCLUSION

For the image-reject (quadrature) frequency-translating ΔΣ
modulator, it has been demonstrated that: 1) the sampling
period TS must be a multiple of TLO/2 to maintain time invari-
ance, where TLO is the period of the LO signal; 2) a sampling
delay TD is required between the in-phase and quadrature paths
that can be reduced to 0 for CT inner-loop ΔΣ modulators;
and 3) the inner-loop ΔΣ modulators can utilize lowpass or
complex-bandpass loop filters. However, the complex-bandpass
case can only be implemented in CT and requires additional
filtering.
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