
Design, Construction, and Application
of a Generic Visual Language

Generation Environment
Kang Zhang, Senior Member, IEEE, Da-Qian Zhang, and Jiannong Cao, Senior Member, IEEE

AbstractÐThe implementation of visual programming languages (VPLs) and their supporting environments is time consuming and

tedious. To ease the task, researchers have developed some high level tools to reduce the development effort. None of these tools,

however, can be easily used to create a complete visual language in a seamless way like the lex/yacc tools for textual language

constructions. This paper presents the design, construction, and application of a generic visual language generation environment,

called VisPro. The VisPro design model improves the conventional Model-View-Controller framework in that its functional modules are

decoupled to allow independent development and integration. The VisPro environment consists of a set of visual programming tools.

Using VisPro, the process of VPL construction can be divided into two steps: lexicon definition and grammar specification. The former

step defines visual objects and a visual editor, and the latter step provides language grammars with graph rewriting rules. The compiler

for the VPL is automatically created according to the grammar specification. A target VPL is generated as a programming environment

which contains the compiler and the visual editor. The paper demonstrates how VisPro is used by building a simple visual language

and a more complex visual modeling language for distributed programming.

Index TermsÐVisual programming, visual languages, language construction, graph grammar.

æ

1 INTRODUCTION

VISUAL programming is aimed at effectively improving
the programming productivity by applying visual

technologies to support program construction. Visual
programming languages (VPLs) have been successfully
used in several application areas: teaching children and
adults, programming for nonprogrammers, development of
user-interfaces, etc. VPLs have also been used in the design
and analysis of software systems. Well-known examples of
software modeling and specification languages include
UMLÐthe Unified Modeling Languages [21], automata,
Petri nets, etc.

Implementing a visual language is much harder than
implementing a textual language [19]. VPLs are usually
embedded and tightly integrated within visual environ-
ments. Consequently, they are often characterized by the
attributes of the environments [9]. The VPL implementation
involves the implementation of a whole programming
environment with a user interface which supports devel-
oping programs using a visual language. Notice that VPL
interfaces are not the same as graphical user interfaces
(GUIs) nor are they just for visualization. Traditional GUI

development toolkits are inadequate for the creation of
VPLs because they do not support syntactic and semantic
specifications of visual programming. The graphical user
interface of a visual language relates to the language's
syntax and semantics. The interaction (dialogue) between
the interface, the syntax, and the semantics must be
maintained. Implementing a VPL interface and its support
for syntactic and semantic specifications of visual program-
ming suffers from a problem common to all large, complex
software systems, i.e., the generation is difficult and time
consuming. The remaining part of this section will start by a
discussion on the related work, then address the current
problems that we have identified, followed by our
approaches to solving the problems.

1.1 Related Work

Researchers have developed some high level tools to ease
the implementation of visual languages and visual pro-
gramming environments. For example, Escalante supports
the construction of applications for visual languages that
are based on object-relationship abstractions [17]. It pro-
vides mechanisms for iterative design, rapid prototyping,
and generation of visual language applications within an
integrated environment. DiaGen [18] is a tool for producing
diagram editors, which can be used to construct visual
programs. These tools can greatly reduce the effort of
developing visual languages, although they focus mainly
on the construction of user interface aspects of VPLs.

SPARGEN [11] is a visual language compiler generator.
Its generated parser supports additional action routines
written in C++ and, thus, allows complicated actions to be
specified in the form of rules. It, however, does not support
the generation of a visual programming environment.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001 289

. K. Zhang is with the Department of Computer Science, University of Texas
at Dallas, Box 830668, MS EC31, Richardson, TX 75083-0688.
E-mail: kzhang@utdallas.edu.

. D.-Q. Zhang is with the Corel Corporation, 621-25 Woodbridge Cres.,
Nepean, ON K2B 7T4. E-mail: daqianz@corel.ca.

. J. Cao is with the Department of Computing, Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong.
E-mail: csjcao@comp.polyu.edu.hk.

Manuscript received 23 Nov. 1998; revised 9 Apr. 1999; accepted 17 June
1999.
Recommended for acceptance by M. Jazayeri.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 108329.

0098-5589/01/$10.00 ß 2001 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

PROGRES [22], [23], [27] is a strongly typed multi-
paradigm language with a well-defined context-free syntax,
type checking rules, and semantics. The graph rewriting
rules in PROGRES provides a powerful formalism for graph
transformations and are particularly suitable for specifying
semantics of VPLs whose underlying structures are node-
edge graphs. PROGRES can generate both programming
environments and parsing algorithms. However, it cannot
use existing programming languages (e.g., C, C++, Java) to
specify the actions of its rules directly. Instead, it uses a
simple textual language which is a part of the system. This
limits the functionality of target VPLs. Moreover, it has
limited visual object construction ability and can only
produce syntax-directed editors, which are often difficult to
use. PROGRES uses layered graph grammars to specify
VPLs. This results in a very complicated parsing algorithm
and its performance reaches exponential time.

Glide [14] provides a BNF-like language for specifying
the logical structure and the user interface of a VPL. The
user specifies a graph data structure, associates graphical
attributes to the data structure, and then describes a set of
permissible changes to the data structure. Glide constructs a
VPL based on the specified data structure. It can also reason
about the VPL through its logic programming rules. Since
the Glide grammar is used for creating the underlying data
structure in the form of links between nodes, it is not
powerful enough for specifying the syntax of a VPL
grammar. Its logic programming implementation also limits
its visual expressiveness and intuitiveness.

Tools such as SIL-ICON [7] and VLCC [8] use para-
meterizable frameworks to support VPL generation. They
are easy to use since generating target VPLs is simply done
by customizing the predefined frameworks through do-
main specifications. SIL-ICON [7] has a complete function-
ality for the construction of icon-based visual languages.
The SIL-ICON compiler is based on the generalized icon
theory and, thus, is limited to iconic VPLs. VLCC [8] assists
the user with tools for defining a language's syntax,
semantics, and graphical objects. It produces an integrated
environment with an editor and a compiler for the defined
language. Using positional grammars as the underlying
theory and pure images as single-level visual objects, VLCC
has limitations in its visual representations.

1.2 Current Problems

Repetitive efforts have been made on developing various

domain-oriented VPLs, due to their specialized require-

ments and inseparatable development processes. In a visual

programming environment, users must be able to inter-

actively construct and manipulate expressions in the visual

language. The graphical requirements of a visual language

include defining the visual elements of the language and

the graphical relationships that must be maintained when

these elements are connected together. The editing opera-

tions themselves are event-driven, and appropriate inter-

pretations of mouse and keyboard events must be provided.

Algorithms must be provided for graphically editing these

elements. The solutions to these graphical requirements are

intricate and inherently difficult to implement. The under-

lying data structures are complex, containing information

about the visual representation, logical connectivity, do-

main knowledge, etc. They make it difficult to parse an

edited diagram with a general parsing algorithm. Existing

solutions of solving the data structure problem tend to be so

specialized that they apply only to a specific visual

languages.
So far, to our knowledge, there have been no effective

and efficient tools that support VPL generation with the

same sort of acceptance as a textual language construction

tool like Lex/Yacc. A Lex/Yacc-like tool divides the process

of language creation into two steps: lexicon definition and

grammar specification. The created lexical and grammar

analyzers are combined together to serve as a language

parser. In particular, its rules (i.e., grammar) can be

associated with actions written in C, so that a wide range

of textual languages can be specified. The fundamental

reason that no VPL generation tools can be as effective as

Lex/Yacc is that no design model has been able to

completely separate the processes of visual elements

creation, visual editing, and syntax and semantics specifica-

tions. Therefore, it is difficult to integrate independently

developed functional components into a single VPE.

Existing tools that aim at supporting different aspects of

VPL generation, e.g., for user interface generation and for

parsing, are not able to cooperate to generate VPLs. The

generation of every new visual language requires a

redevelopment of the whole machinery.

Another problem with many current VPL generation

tools is that their underlying graph formalisms are not

expressive enough to describe many types of visual

languages or not efficient enough to parse various types

of visual programs. The multidimensionality of visual

languages makes it difficult to build formal grammars

and compilers for them. While text strings only allow

concatenation before or after a character, visual languages

allow multiple concatenation options between its visual

elements. Attempts at developing visual grammars using

textual grammars as models have not been very successful;

there are many graph formalisms which cannot be specified

and parsed effectively and efficiently with existing gram-

mars. Moreover, little work has been done on the semantic

specification of visual languages.

Tools and formalisms have been created for automati-

cally generating visual languages. Most of them are

specialized in certain aspects of visual language generation,

e.g., user interface or grammar formalism. Some provide

support for producing a complete visual language

environment, but with limited capabilities. For example,

VPE generation tools based on grammar formalisms usually

generate visual editors automatically through their gram-

mars. This is the easiest way to produce a visual editor, but

generated visual editors are often not user friendly and the

functionalities are limited [8]. Yet, the formalisms which can

generate powerful visual editors do not provide an

adequate mechanism to support syntactic and semantic

specifications [4] or are inefficient in parsing [22].

290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

In summary, there are two major obstacles in VPL
generation:

. a lack of an effective and generic model which can
separate the design and implementation of a VPE
and abstract the common characteristics of VPLs,
and

. a lack of effective tools supported by formal
grammars which can specify and parse a wide range
of VPLs efficiently.

1.3 Our Approaches

To avoid the redevelopment, we need to find a proper
representation of the data structure and a generic model,
which are able to decouple the components of a visual
programming environment. Our approach is to view a
target or domain-oriented VPE as a specific instance of a
generic VPE such that the techniques applicable to the
generic VPE can also apply to the target VPE and
functionalities common to the VPEs need not be redeve-
loped. This approach enables us to design a generic visual
framework that can be customized into any target VPEs.
Such a customization process is realised by a set of visual
specification tools in a similar fashion as by Lex/Yacc in
generating textual languages. The main contributions of our
work include

. a high-level design model that supports a generic
but customizable framework with decoupled func-
tional modules,

. a set of customization and specification tools which
are visual tools supporting direct manipulation, and

. an underlying graphical formalism that can express
and parse a wide range of visual languages
effectively and efficiently.

This paper investigates the design of a generic visual
programming environment which has a multilevel tool
structure. It addresses the issues in developing a design
model that supports the development of a VPE by dividing
the whole development process into several independent
stages. The model offers several decoupled functional
modules, each supporting an independent development
stage. This makes it possible to develop an effective generic
system for the generation and reuse of a wide range of
VPLs. The paper presents a toolset called VisPro which
provides a similar mechanism as lex/yacc in the process of
constructing VPLs. It is very easy to use, since the tools in
VisPro are meta visual languages. To formally represent
VPLs, VisPro uses reserved graph grammars [32] to express
a wide range of diagrammatic VPLs. A graph grammar in
VisPro is a set of graph rewriting rules associated with
actions written in Java. The target language compilers for a
large class of diagrams can be automatically generated in
polynomial time by VisPro according to the grammar
specifications. Moreover, a set of language components (i.e.,
visual objects) can be created through direct manipulation
and a visual editor can be produced according to control
specifications. A visual programming environment inte-
grating the visual editor and the compiler is then created.
Therefore, VisPro provides a high-level support for
VL developers to rapidly construct a wide variety of

domain-oriented diagrammatic VPLs. It can easily create
both the user interface and the underlying language.

The paper focuses on the design, construction, and
application of VisPro, rather than on the formal aspects of
reserved graph grammars which have been reported else-
where [32]. It is organized as follows: Section 2 summarizes
the design criteria for a generic VPE, followed by a detailed
discussion in Section 3 of the VisPro design model that
meets the criteria. Section 4 describes the design of the
VisPro toolset which consists of a set of decoupled
functional modules. Section 5 presents an application of
the VisPro system in generating a visual distributed
modeling language. The paper is concluded by Section 6.

2 DESIGN CRITERIA FOR VPES

A generic VPE can be viewed as a collection of visual and
textual specification tools, which are themselves visual
languages and/or textual languages. A program for
generating a domain-specific VPE is a combination of
specifications written in a set of hierarchically organized
languages. Such a complex environment needs a careful
design. We regard the following three aspects as the key to
the successful design of a generic VPE.

. Heterogeneous programming. The VPE should
support heterogeneous visual programming, where
various visual languages and textual languages at
different levels of abstraction can work together to
specify real world applications.

. Hierarchical structure. With the support of various
languages and programming paradigms, the VPE
should have a well-designed mechanism that orga-
nizes and coordinates the languages in an effective
and efficient manner.

. Design model. To increase the reusablity of existing
visual languages and various language components
and simplify the generation of domain-specific
VPEs, the generic VPE should be designed as several
decoupled modules which can be developed inde-
pendently with possibly different formalisms.

The following sections discuss these criteria in more
details and how our generic VPE is designed against the
criteria.

2.1 Heterogeneous Visual Programming

The argument for supporting heterogeneous visual pro-
gramming is based on the following considerations:

. High-Level Programming. Visual languages do not
usually support the entire programming process [5].
A typical class of visual languages is designed to be
used for visual manipulation at a high level and to
combine low-level application components which
could be written in text languages. Examples of this
approach include the object-oriented visual pro-
gramming system HI-VISUAL [13] and the scientific
visualization system AVS [29].

. Low-Level Programming. Another class of VPLs
allow programming only at the lowest level. These
types of languages have all the capabilities needed to

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 291

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

express the fine-grain logic in a program, such as
conditions and repetitions. But they do not have the
facilities to organize portions of the program into
modules. Most VPLs of this nature are intended for
specific problem solving. They provide a number of
primitives for their particular domains, thereby
keeping most programs small enough to avoid the
need for user-defined abstractions. One example is
the NoPump system for interactive graphics [31]. For
such low-level VPLs, a high-level organization
mechanism could enhance their usability in large
scale applications.

. Independent Development. If visual languages are
independently developed to suit different applica-
tion purposes, they are usually unrelated to each
other. It is difficult, or impossible, to make these
visual languages work together to solve a compli-
cated problem. The most plausible way is through a
high level protocol, such as a formatted information
transfer system under the OS level. However, such a
protocol is usually inefficient and error-prone. A
framework for creating hybrid visual programming
environments is, therefore, desirable.

2.2 Hierarchical Structure

Schefstrom and van den Broek [25] proposed a model that

organizes tools used in the software engineering life cycle

[26]. A sophisticated application may be specified or

modeled by more than one software tool in a coordinated

fashion. These tools may work at different levels of the

software development process, but may interact at the same

level. The relationships among the tools in a programming

environment can be seen as a multilevel tool structure

which supports the following concepts, as illustrated in

Fig. 1.
A service is the smallest functional unit of interest to a

developer. A tool is a strongly related and clearly delimited

set of services that support a particular job, such as a

diagram editor. Similarly, a toolset has a set of tools that

show strong internal cohesion and low external coupling.

The set of tools work together to cover part of the

development process such as a compiler, its associated

syntax directed editor, and debugger. An environment is a

group of toolsets. A framework is a set of software modules

that are related to several tools and are typically well-

documented and supported.

As the scope of the support entity increases from a single
tool to a large environment, the cohesion among its
components will inevitably decrease. At the same time,
the coupling of the components may also decrease, or at
least not increase. The primary reason for this is that, as the
support scope widens, the range of support activities
diversifies. Software development planning, for example,
uses toolsets different from those for software construction
(programming, integration, and testing).

A sophisticated programming environment, such as a
software engineering environment, may have a set of visual
or textual languages. With the multilevel tool structure, the
languages may be seen as tools in the environment.

3 DESIGN MODEL

To design a visual programming environment, one needs to
consider the language's syntax and semantics, and the
visual interface. For supporting the generation of a wide
range of VPLs, we try to maximize the reuseability of the
language components with the following considerations:

. Different modules of a VPE should be designed and
implemented separately, and

. Improvement of one module should have little
impact on other modules.

To ease maintenance, modification, and reuse of a VPE,
interactions between different modules of the VPE should
be clearly specified. This also simplifies a VPE's generation
by dividing the VPE into several decoupled modules and
allows different formalisms to be developed into individual
modules.

3.1 The MVC Framework

A popular model for the user interface construction is the
the Model-View-Controller (MVC) [15] framework that has
been successfully used in Smalltalk-80. MVC consists of
three types of objects: Model, View, and Controller. Model
represents the logical structure of an application, whose
screen presentation is View. View requests data from Model
and handles all the graphical tasks. Controller defines the
way in which a user interface reacts to user inputs. The
standard interaction cycle is that the user provides
some input action and Controller responds by invoking an
appropriate operation in Model. Model then carries out

292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 1. Multilevel tool structure.

Fig. 2. The DV-Centro framework.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

the prescribed operation, possibly changes its state, and
broadcasts the changes to all its dependent Views. Each View
can query Model for its state and update its display, if
necessary.

There are some implementations of MVC which effec-
tively decouple the relations between different objects and
enhance the reusability [17], [18]. They are, however, mainly
for constructing user-interfaces with windows applications,
rather than for constructing visual languages. For con-
structing VPLs, more detailed specifications and tools are
needed for declaring and specifying the required interations
between the system modules.

Based on MVC, the DV-Centro framework [4] aims at
supporting visual language development, as shown in
Fig. 2. It uses the Supervisor-Agent pattern to specify the
interactions between the modules in the framework.

The Supervisor-Agent pattern (Fig. 3) assumes that
Supervisor must be able to control Agent's behavior, while
Agent is independent of Supervisor, except that it may notify
Supervisor in a predefined protocol. Since a Supervisor-Agent
pattern indicates a one direction dependency, i.e., the design
of Supervisor depends on that of Agent, the DV-Centro
framework reduces the number of dependent relationships
in a general MVC model. For example, ImageView in Fig. 2 is
independent from other modules, so that it can be developed
as a standalone tool.

There are, however, other dependency relationships (as
shown in Fig. 4) which have impact on the design and
implementation of various modules. For example, View
depends on Subject, which means that it must be designed
after the design of Subject. Any change of Subject may affect
View. On the other hand, as Subject is more application-
specific than other modules, the relationships between View
and Subject should be reversed. For example, Fig. 5 shows a
model having a Subject with two versions of View. The
model contains some data values and the views define a
histogram and a pie chart. It communicates with its views
when its values change and the views communicate with
the model to access these values. With the DV-Centro

framework, the histogram and the pie chart have to be

designed according to the specifications of the model. But

we believe that the design of the histogram and pie chart

should be independent of the model so that they are general

enough to be predefined in a toolset. The best solution is

that Subject and View are designed to be independent of

each other so that a subject can use any suitable views

without changing itself and the views.

3.2 An Ideal Design Model

The dependence of ViewController on ImageController and

View implies that the high-level control depends on its low-

level implementation (e.g., ImageController). It is, however,

desirable that any improvement on the low-level facilities

will have no impact on the high-level specification. So a

model that removes the dependency relationship between

ViewController and ImageController is more flexible.
Considering the model in Fig. 4 where the link between

ViewController and ImageController has been removed, we

find that View becomes a key module because it relates to

almost all the other modules. To allow ViewController,

Subject, and ImageController/ImageView to be designed and

implemented independently, we propose to reverse the

relationship between View and ImageView so that these

modules depend only on View. The resulting improved

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 293

Fig. 4. Dependency relationships.

Fig. 5. A Subject with two versions of View.

Fig. 6. An improved framework with Supervisor-Agent pattern.

Fig. 3. Supervisor-Agent pattern.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

framework is shown in Fig. 6, where View serves as an
interactive protocol between different modules.

To represent this framework with the MVC notations, we

redefine it as an ideal design model as shown in Fig. 7,

where View corresponds to ImageController and ImageView

in Fig. 6, Model corresponds to Subject, Controller corre-

sponds to ViewController, and Protocol replaces the previous

View. This new design model confines the dependencies

between the functional modules such that each module can

be developed independently.

3.3 The VisPro Design Model

The VisPro design model needs a protocol to define the

interaction between its functional modules. The protocol

is designed as a combination of an abstract diagram and a

concept space, as shown in Fig. 8. An abstract diagram

represents a common internal data structure that may be

used to display diagrams in various formats, such as

Nassi-Shneiderman diagrams and flowcharts. In an

abstract diagram, which can be considered a kind of

entity-relationship diagram, directions, distances, data

and control flows, joins, contacts, etc., can all be

represented as relations between entities. A concept space

is a set of specifications for a group of objects that share

some common characteristics. If we view a concept space

as a lexicon of a visual language, an abstract diagram

provides the sentence structure with which the words of

the lexicon can be described as visual sentences by

associating each word with an entity or a relation of the

abstract diagram. The sentences are constructed through

direct manipulation by the user on the screen (View) and

controlled by Controller. By providing a high-level

description of domain concepts in the form of a concept

space, Model can interpret the visual sentences. The

VisPro design model specifies the roles of Model, View,

and Controller, and how they interact with each other in

the design model.

. User Interaction Control. View consists of visual
objects which can be manipulated directly on the
screen. For example, a user may move the mouse
onto a visual object and click the left button to
trigger an action. When a visual object receives a
user input, View sends the visual object to Controller,
which interprets the input and sends back a control
command indicating what View should do next. For
example, Controller may instruct View to pop up a
menu to allow the user to act further.

. Diagram Creation. A graph consisting of a set of
visual objects can be created on a visual editor
controlled by the Controller. Once the graph is
constructed, its abstract diagram with domain

concepts is created. The mapping relationships
between an abstract diagram and a graph implies
that the abstract diagram provides a logical interface
understood by all the VPE modules and any
modification to the abstract diagram will be reflected
on the graph on the screen. A visual editor itself can
be a visual object in View.

. Parsing. Model receives parsing demands from
Controller and performs corresponding transforma-
tions and computations on abstract diagrams.

. Layout and Animation. If an abstract diagram is
associated with visual concepts, the parsing algo-
rithm can perform graph layout and animation by
operating on the visual concepts. This is because the
appearance of a visual object may be changed
dynamically when its visual attributes are modified
through the corresponding concepts.

In summary, as long as a domain concept space is

provided, each module can be designed independently and

used with other modules by sharing an abstract diagram

and some domain concepts.

4 THE VISPRO TOOLSET

Based on the above design model, we have developed a

generic VPE and a set of visual programming tools for

generating domain-oriented VPEs [34]. The generic VPE can

be customized to any domain VPEs once the domain

294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 7. An ideal design model. Fig. 8. The VPE design model.

Fig. 9. Constructing VPEs with VisPro.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

specifications are provided through these tools. Fig. 9

shows the generation process, which is supported by the

following three tools:

1. The visual object generator is used to specify visual
objects with desired appearances to be used in the
target visual language.

2. The rule specification generator is used to provide the
parsing specification for the target visual language
in the form of graph rewriting rules.

3. The control specification generator is used to specify
the control commands for each visual object
manipulated in a visual editor, which is to be
automatically generated.

In VisPro, the object-oriented language Java serves as a

low-level specification tool for details which may not be

effectively or accurately specified in these visual specifica-

tion tools. This arrangement allows us to precisely construct

effective visual programming environments.
The tools are meta visual programming languages that

are used to specify domain VPEs through direct manipula-

tion. First, the Visual Object Generator is used to construct

visual objectsÐit creates the appearance of each visual

object and attaches a specification of its behavior produced

by other tools, or another visual program, as its logical

function. The user then uses the Control Specification

Generator to specify the behaviors of constructed visual

objects. The specifications will define and automatically

generate a visual editor for the target visual language.

Finally, with the Rule Specification Generator, the user can

describe the grammar of the visual language in forms of

graph rewriting rules [32]. The rules can be specified as

either graphical productions or textual ones written in Java.

Having obtained all the required specifications, the generic

VPE becomes customized to the desired domain VPE that

integrates the target visual language editor and compiler.

With VisPro, a complete VPL is specified by a lexicon
definition and a grammar specification. A lexicon definition
describes the VPL's visual objects and the editor with which
the visual objects can be used to create a program. A
grammar specification (syntax and semantics) defines
whether the program is valid and what it means. A visual
programming environment is created automatically based
on the definition and the specification.

4.1 A Case Study

In the following sections, we will explain the functions and
the use of each specification tool by demonstrating the
construction of a simple visual programming environment
called summation. More sophisticated VPEs can be similarly
built through the same process but with more interactions.
This is the subject of Section 5. Fig. 10 is a snapshot taken
during the use of the generated summation. Using summa-
tion, one can sum up integers and visualize results. It has
three visual classes: numbers, pluses, and scalers. A number
stores an integer which can be entered through the
keyboard. A plus receives integers from two numbers and
produces their summation, also as an integer, which can be
stored as a number, sent to another plus, or sent to a scaler
for visualization. A scaler visualizes an integer in a vertical
bar. In Fig. 10, the maximal (100) and minimal (0) values of
the scaler can be changed by entering new values through
the keyboard. During the program execution, the displays
of the numbers and scalers are changed according to the
values sent to them. The following sections introduce the
specification tools and explain how summation can be
created using these tools.

4.2 Visual Object Generator

In the VisPro framework, a VO generator generates a set
of visual classes to suit any special-purpose visual
language by editing the predefined visual objects called
VO prototypes. We call such a process customisation. A

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 295

Fig. 10. A snapshot of the summation VPE.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

constructed visual object is not just an image. It is

manipulatable and may be a composite graph, whose

components can be manipulated independently.
A VO prototype is customizable. Fig. 11a shows two

visual classes which have been customized and a

VO prototype which is a black box in its original form.

One can edit the VO prototype by triggering the editing

commands attached to the box, i.e., by clicking the right

mouse button when the cursor is over the box. Fig. 11a

shows the menu commands of the box. For example, by

selecting the command create[node] in the menu items, a

node can be created in the box. A subgraph or a node has

its own commands which can be popped up in a menu

and used for editing the subgraph to obtain a desired

shape and color.
For example, to construct a scaler, a command called

selectShape can be triggered from the pop-up menu. This

command opens a dialog box which contains a set of graph

patterns. If a scaler is selected, the black box will be

reshaped to a scaler as shown in Fig. 11b. The dimension

and color of the scaler can be edited and also labeled if

necessary.

Fig. 11b shows three nodes that have been created:
number, plus, and scaler. One may notice that the scaler has

a fixed pointer. According to the semantics, the pointer
should be created dynamically using the mouse during

program editing, and a scaler can have more than one
pointer at a time. This is done in the VO generator by

specifying its construction style as ªdynamicº (by selecting

the menu item construction in the command menu).
We use attributes to parameterize all the three node

classes of summation. The domain attribute for the scaler

is (pointer, integer), for the number is (ªvalue,º integer),
and for the plus is (ªin1,º integer), (ªin2,º integer), and

(ªsumº, integer). For example, when we need to set a
value 3 to a number object called num, we simply write:

num.put(ªvalue,º 3), where put is a method of the number
class.

For a scaler class, a method of its attributes called put_do

can be rewritten so that when the value of a number

connected to the pointer of the scaler changes, the position
of the pointer will be adjusted accordingly. This modifica-

tion is done in Java. Other modules do not need to know
this modification when using the scaler, as the put method

will automatically call the put_do method. Therefore, a
method call like scaler.put(pointer, 3) will put an integer 3

into the attributes associated with the scaler and adjust the

position of the pointer geometrically.
An edge class can also be created in the VO generator.

The edge named flow-to used in summation is defined as

shown in Fig. 12, where two little filled rectangles are
supposed to be replaced by two nodes in an application

when the edge is used. The VO prototype of an edge can be
customized by changing its shape, color, and label through

the menu items selectShape, selectColor, and setLabel,

respectively.
A diagram workbench prototype can be customized to a

workbench for a specific VPL with a set of node classes and

edge classes. This is obtained via the control specification.
A workbench can be accessed, e.g., opened, through its

icon. Fig. 13 shows an icon for the summation workbench,

296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 11. Snapshots of visual object construction.

Fig. 12. Generating an edge class with the VO generator.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

which can be created in another diagram workbench as a
special icon.

4.3 Control Specification Generator

4.3.1 Object-Oriented Editing Commands

The process of editing a graph can be seen as a number of
steps, each being an execution of a command on the graph.
Usually in a visual editor, commands and visual objects are
independent of each other. Execution of a command is a
selection of both the command and its target graph. In our
object-oriented formalism, a graph is an object which
encapsulates a set of related commands.

The CS generator is used to visually generate a control
specification which can be understood by the object-
oriented controller. The controller allows its basic com-
mands to be triggered from its canvas and user-defined
commands to be triggered from the created visual objects.

The CS generator assigns a set of editing commands and
relationships to each visual class. The visual objects
instantiated from a visual class can then trigger the assigned
commands. The basic editing commands include cut, copy,
paste, create, link, open, and properties, which are pre-
defined in the VisPro framework. If a user wishes to define
additional commands, he/she can specify them in Java.

4.3.2 Command Specification

Fig. 14 shows a visual sentence which specifies a part of
control in summation. The visual objects handled in the
CS generator include edge objects, node objects, and
command objects. An edge object, e.g., an ellipse in Fig. 14,
is an instance of the edge class defined in the target VPL.
Its value is the label type of an edge class, i.e., flow-to,
which can be entered or modified through the keyboard.
A node object, drawn as an unfilled rectangle, is an
instance of a node class. It can be edited to form a
super node which is embedded with some other nodes. For
example, the node labeled plus represents the plus class of
summation. A command object, i.e., a gray box in Fig. 14,
represents an editing command and its value (i.e., delete,
link, etc.) can also be entered through the keyboard.

In Fig. 14, the node object labeled Workbench represents

the visual editor for summation. ªWorkbenchº is a reserved

word in the CS generator. The Workbench node links to a

command list which includes three create commands. A

create specification can be generated by interpreting the

link between a command object and a node. A create

command node linking a plus node, for example, will be

interpreted to produce a command specification create

create[plus] plus, where create[plus] is the name of the

command menu item.

The number node object is a super node that has two

embedded nodes in and out. The out node has one command

link, which links to an edge object labeled flow-to. The flow-to

edge object links to the nodes in1, in2, in, and pointer. This

indicates that an out can link to an in1, in2, in, or a pointer

in summation.
The control specification diagram in Fig. 14 will produce

a list of control specifications as the following:

Workbench

3

create create[plus] plus

create create[number] number

create create[scaler] scaler

It indicates that three create commands can be triggered
from the visual editor canvas. The specification

number.out

1

link connect flow-to

indicates that number.out has a link command named

connect and can be linked to other nodes through the edge

object instantiated from the flow-to edge class.
The specifications

VE number.out flow-to plus.in1

VE number.out flow-to plus.in2

VE number.out flow-to number.in

VE number.out flow-to scaler.point.

describe that the number.out may be linked to visual

objects instantiated from plus.in1, plus.in2, number.in, and

scaler.point visual classes, where number.out represents

an out node in a number super node. The number.out

cannot link to other node classes which are not provided

in the specifications.

The control specification diagram in Fig. 14 can be

extended to specify the complete behavior of summation.

Thus, the CS generator provides an intuitive and easy way

to produce the control specification for a visual editor.

4.4 Rule Specification Generator

4.4.1 Graph Grammar

The grammar of a VPL is a collection of graph rewriting

rules. A visual sentence can be interpreted by the rules

through graph transformations. A graph rewriting rule,

also called a production, has two graphs which are called

left graph and right graph. It can be applied to another

graph (called host graph) in the form of an L-application or

R-application. A production's L-application to a host graph

is to find in the host graph a redex of the left graph of the

production and replace the redex with the right graph of

the production. An R-application is a reverse replacement

(i.e., from the right graph to the left graph). A redex is a

subgraph in the host graph which is isomorphic to the

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 297

Fig. 13. An icon for summation.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

right graph in an R-application or to the left graph in an

L-application.
For linear textual languages, it is clear how to replace a

nonterminal in a sentence by a corresponding sequence of

(non)terminals. However, with a visual language that has

two-dimensional relationships among the language ele-

ments, a far more complicated mechanism is needed to

establish relationships between the substitute of a redex and

its adjacent elements.
There are three approaches to embedding a graph into a

host graph [23]:

. Implicit embedding. Formalisms such as picture
layout grammars [10] and constraint multiset gram-
mars [16] do not distinguish between vertices and
edges. Relationships are implicitly defined as con-
straints over their attribute values. Users are not
always aware of the consequences of attribute
assignments and parsers require considerable time
to extract, from attributes and constraints, implicitly
defined knowledge about the relationships.

. Embedding rules. Some graph grammars such as
the NLC graph grammar [24] and the DNECL graph
grammar [3] have separate embedding rules. This
approach is easy to implement. However, the rules
are often difficult to understand and all known
parsing algorithms for productions with embedding
rules are either inefficient or imposing very strict

restrictions on the left- and right-hand sides of the
productions. Embedding rules are only able to
redirect or relabel existing relationships. They
cannot be used to define such productions as the
one in Fig. 15a, which establishes new relations
between previously unconnected vertices.

. Context elements. Context elements can be used to
establish the relationships between a newly created
graph and the host graph. This approach is the
easiest to understand, but an unrestricted use of
context elements may complicate the graph rewrit-
ing rules. Furthermore, it is difficult to rewrite
elements which may participate in a statically
unknown number of relationships.

There has been no graph grammar that can handle a
wide range of visual languages both effectively and
efficiently. For example, if a grammar is expressive enough
to represent various types of VPLs, its parsing algorithm
usually reaches exponential time [22]. We have proposed a
new type of graph grammar known as reserved graph
grammar (RGG) [32], which can effectively represent most
existing types of diagrams with a parsing algorithm of
polynomial time complexity. The RGG combines the
approaches of embedding rules and context elements to
solve the embedding problem. By introducing context
information, simple embedding rules can be sufficiently
expressive to handle complicated programs. In order to
identify any graph elements which should be reserved

298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 14. An example of command specifications.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

during the transformation process, we mark each iso-
morphic vertex in a production graph by prefixing its label
with a unique integer. The purpose of marking a vertex is to
preserve the context.

We impose an embedding rulewhich states that if a vertex
in the right graph of the production is unmarked and has an
isomorphic vertex v in the redex of the host graph, then all
edges connected to v should be completely inside the redex.
With the above embedding rule, each application of a
production can ensure that a graph can be embedded in a
host graph without creating dangling edges. The example in
Fig. 15b illustrates the R-application process, where the host
graph (b(1)) has an isomorphic graph (enclosed in a dashed
box) of the right graph in the production of Fig. 15a. The
isomorphic graph is a redex. The vertices corresponding to
the isomorphic vertices marked in the right graph of the
production are painted gray. The transformation deletes the
redex while keeping the gray vertices. Then the left graph of
the production is embedded into the host graph, as shown in
Fig. 15b(2),while treatingamarkedvertex in the left graph the
same as a gray vertex having the samemark. We can see that
the marking mechanism allows some edges of a vertex to be
preserved after transformation. For example, in Fig. 15b, two
edges from B to T are preserved after transformation.

Fig. 16 shows a reserved graph grammar for summation.
The grammar completely describes the syntax of a valid
summation diagram. For example,

. plus.in1 (or plus.in2, or number.in) can connect to
plus.out or number.out but cannot connect to more
than one destination.

. plus.out (or number.out) can link to one or more
destinations, which include number.in, plus.in1,
plus.in2 and scaler.pointer.

The graph grammar also specifies the semantic aspects.
Fig. 17 shows a valid summation diagram. According to the
semantics, subgraph 1 must be interpreted first by applying
the grammar rule of Productionh3i. Subgraph 2 should be
done next, followed by subgraph 3. Otherwise, an incorrect
result will be produced. For example, if subgraph 2 is
interpreted first, since its numbers do not have the correct
values (from subgraph 1), the result of subgraph 2 will be
incorrect. Such an order of applications is not allowed
according to the graph rewriting system which dictates that

a rule can be applied to an unmarked visual object only if all
of the object's edges are matched by the rule.

A detailed description and formal treatment of reserved
graph grammars and their parsing complexity can be found
in [32].

4.4.2 Parsing

Parsing a diagram takes two phases: syntax parsing and
semantics parsing. Syntax parsing is to check whether the
diagram is valid. If a diagram is eventually transformed into
an initial graph (i.e.,�) by the graph rewriting rules, it is valid.
Semantics parsing is to produce a result from a diagram. The
result is meaningful only when the diagram is valid. In a
translation process, say from a diagram to a textual
specification, the syntax and semantics can usually be
specified in the same set of graph rewriting rules. In this
case, the graph transformation process checks the syntax and
translates a graph into a textual specification at the same time.
For an executable diagram, this is not always the case. The
syntax and semantics specifications of a Petri net visual
language, for example, should be specified separately. This is
because a Petri net can be executed repeatedly, while the
syntax checking must be done in finite steps. For summation,
the syntax and semantics can be specifiedwith the same set of
graph rewriting rules, as shown in Fig. 16.

To create a parser for a VPL, one must write a piece of
code (i.e., action) in Java for each graph rewriting rule. An
action performs computation over the attributes of a redex
(a subgraph of the program which is isomorphic to the right
graph of a production) when the production is applied.
Writing an action code is like writing a standard exception
handler in Java by treating each attribute as an object. The
actions of the graph rewriting rules of summation are listed
in Fig. 16. With the actions, the desired results can be
produced after the graph transformation. For example, the
action of Productionh3i is as follows:

action (AAMGraph g)

{

Attributes attributes=g.getAttributes();

int sum=(int)((Property)attributes(1)

.get(ªvalueº))+(int)((Property)

attributes(2).get(ªvalueº));

(Property)attributes(3).put(ªsumº, sum)

}

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 299

Fig. 15. Graph rewriting in RGG. (a) A Graph rewriting rule. (b) Application of the rule in (a).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

The action takes a graph g as its input. This graph has
a matching redex isomorphic to the right graph of
Productionh3i. To facilitate the access of attributes in the
redex, an array referring to required attributes is first
produced through the method g.getAttributes(). The array
member attributes(2), for example, refers to the attributes
of the super node which has a A ref � 2, i.e., number[2:2]
in the figure. The sum is calculated by summing up
values of two matched numbers. It is then stored in
attributes(3) as a result.

A parsing algorithm has been proposed and implemen-
ted in the tool and its parsing complexity has been proven
to be polynomial under a constraint condition [32].

4.4.3 Rule Specification

The RS generator facilitates the rule specification. Fig. 18 is a

snapshot when using the RS generator, where two kinds of

nodes (left graph node and right graph node) are used to

represent the left graph and the right graph of a production.

For example, the node labeled Lh3i is a left graph node for

Productionh3i. The node labeled Duplex is the head of the

rule list. It indicates that the rules are applied in a duplex

mode such that a production is created by linking a left

graph node and a right graph node. Each graph node has a

subeditor for defining a graph in the node. In addition, a

300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 16. A reserved graph grammar for summation.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

textual editor workbench can be triggered from the right
graph to be used for writing action codes.

Fig. 18 shows a snapshot of creating Productionh3i of the
summation graph grammar, where two windows are opened
for editing the left graph and the right graph of the
production, respectively. Also there is a textual window for
editing the action. Thus, the RS generator provides visual
editors for specifying the graph rewriting rules and a
textual editor for specifying actions. The RS generator can
compose complete graph rewriting rules automatically by
interpreting the connected editors.

4.5 Implementation

The VisPro architecture includes seven functional modules,
as shown in Fig. 19:

. The configuration interpreter receives the configura-
tion specification, and transfers the lexicon defini-
tion of the specification to the user interface and the
grammar specification to the parsing module.

. The user interface controls the interaction between
users and the VisPro tools.

. The underlying structure manages the diagrams
which are being edited.

. During parsing, the logical structure module creates
and manages the logical graph converted from the
underlying structure of a diagram.

. The parsing module is designed to parse the logical
structure of a diagram using the reserved graph
grammar formalism.

. The documentation module automatically records
edited diagrams and parsing results.

. The actions module collects actions for each VPL
from grammar specifications. The collected actions
are represented as a Java program and dynamically
linked to the parsing module during execution.

The above VisPro architecture is implemented in Java, an
object-oriented language. One advantage of using Java is

that it is platform independent, so that the system can be
ported to different platforms. Another advantage is that
Java is developed for network programming. This char-
acteristic can support the construction of VPLs which allow
visual programming for the Internet and distributed
applications.

5 GENERATING DISTRIBUTED PROGRAMMING

ENVIRONMENT PEDS

This section demonstrates the application of VisPro in
generating a distributed programming environment, called
PEDS [33]. It describes the features of PEDS and then shows
how the PEDS environment is generated using VisPro.

5.1 PEDS

In a heterogeneous distributed system, the processors and

software resources available are of different types. It is often

difficult for a user to interface cooperative processes which

are implemented with different software resources and

located on different processors [12], [28]. Unfortunately,

there are few systems that are aimed at providing shared

processing power in a distributed environment, while

taking into account the utilization of software resources of

the environment.
The programming environment for distributed systems,

or PEDS, has the following important features:

. It consists of a set of tools (visual languages) which
can cooperate with each other in order to solve
complicated distributed problems.

. It supports developing a distributed program gra-
phically, so that resources sharing and mapping can
be visually specified. Moreover, different graph
formalisms, such as control flow graphs and Petri
Nets, can work consistently in a single environment.

. A distributed program is divided into several local
processes, which may be located on multiple
physical machines. Local processes can be written
using different tools based on existing software
resources of the distributed system such as compi-
lers and program libraries.

. A user can have the freedom of control over the
mapping of processes to processors. With a high-
level graphical notation, a user can specify the
processor assignments completely, partially, or leave
it entirely up to the environment.

Based on a distributed graph model [6], PEDS can be
used to implement a wide range of distributed programs.
Each distributed program is modeled as a set of related
diagrams. The components of a diagram are implemented
with existing software resources of the distributed system.
The construction process is independent of any specific
distributed system and a constructed program can be
mapped onto different configurations by a flexible mapping
facility.

5.1.1 Graph Modeling of Distributed Applications

When designing distributed programs, programmers com-

monly draw informal directed graphs showing distributed

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 301

Fig. 17. Application of the grammar.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

structures [35]. These graphs abstract away the details of the

nodes being designed and concentrate on their interactions.

The advantage of this is that the programmer can specify

the distributed structure without concern about the internal

working of each node.

PEDS uses a graph abstraction method to represent

distributed programs. It divides a distributed program into

several local processes (LPs) and defines their interactions.

Each LP can be allocated on a processor in a distributed

system. An LP is characterized by the fact that all work

initiated in it is, mostly, limited to its sphere of control; it

essentially executes independently of other LPs except for

specific points in its processing when it needs to interact

with other LPs.

The process of creating a distributed program is then

divided into two steps: drawing an overall graph and

creating corresponding LPs. A graph-based visual distrib-

uted programming language can help realize this process

[6]. With the visual programming language, we separate the

specification of LPs from that of synchronization and

communication, and express synchronization and commu-

nication directly (but abstractly) using graphs.

An LP is defined as a graph node, which can have a set

of input and output ports. With these ports, a graph

illustrates the interaction among LPs. As LPs are located

on distributed processors, the interactive behavior de-

scribes the message-passing mechanism that is performed

between distributed processors. A processor can send

messages directly only to a subset of the processors with

which it is directly connected. Its directly connected

processors are called its neighbors. For communication

with nonneighbors, a routing algorithm is needed. Routing

is the term used to describe the decision procedure by

which a processor selects one of its neighbors to send a

message to an ultimate destination.

5.1.2 Programming Tools

In PEDS, various distributed tools are used to support

implementing the mentioned functionalities. They can

cooperate with each other to create sophisticated distributed

302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 18. A snapshot of the rule editor.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

programs. Such tools, which will be called workbenches,
include:

. High-Level Process Flow Diagram (HPFD) workbench is
a process flow diagram providing a high-level
control structure over a set of processes, whose
details can be specified in other workbenches.

. High-Level Petri Net (HLPN) workbench is a modeling
tool for specifying the high level behavior of a task
using Petri net. Each of its transitions can be
connected to a workbench, with which the transition
specification can be provided.

. Java workbench provides a platform for editing and
compiling Java programs.

. Supporting workbench is used to specify a set of
available software resources and their relationships
for mapping processes to processors.

. Net workbench is for specifying the configuration of
processors and their interconnecting network (e.g., a
distributed system).

. Distributed workbench (Fig. 20) is the top-level work-
ing environment that is used to configure all the
other workbenches to form an integrated distributed
application.

A distributed program modeled with a set of HLPN
workbenches and HPFD workbenches is linked to a
supporting workbench for resource mapping, which in turn
links to a net workbench for finding proper set of
processors. PEDS is, therefore, a hierarchical programming
environment supporting multiple programming paradigms.

5.2 Generation of PEDS Using VisPro

This section focuses on how to construct the PEDS hierarch-
ical environment and implement interactions between
different subvisual languages using the VisPro system.

5.2.1 Hierarchical Environment

An icon in the PEDS interface represents a window, called a
workbench, which can be opened and operated upon and can
include child icons. The main window in PEDS is an icon
window, called management-win, where various icons can
be created and managed. Apart from the management-win,
there are other windows: HLPN workbench, HPFD work-
bench, Java workbench, supporting workbench, net work-
bench, and configuration workbench.

In an icon window, each workbench represents a

program (or a specification). For example, when one wants

to create a Petri net, he/she can create an HLPN-icon, (i.e.,

an icon for HLPN window). By opening the HLPN-icon,

one can create a Petri net. Thus, the HLPN-icon uniquely

represents the created Petri net.
Fig. 21 shows the hierarchical programming environ-

ment of PEDS. It has a main icon window in which some

child icons have been created. A child icon window and a

HLPN workbench are also shown in the figure. They can be

triggered from icons in the main window.
Generating such a hierarchical programming environ-

ment is easy in the VisPro system. First, one can create icon
classes in the VO generator for each of the workbenches.
Then the control specifications for the icons can be created,
which include

ND-has-node management-win management-icon

ND-has-node management-win HPFD-icon

ND-has-node management-win HLPN-icon

ND-has-node management-win Java-icon

ND-has-node management-win supporting-icon

ND-has-node management-win net-icon

ND-has-node management-win configureicon

It indicates that seven classes of icons, namely, manage-
ment-icon, HLPN-icon, HPFD-icon, Java-icon, supporting-
icon, net-icon, and configure-icon, are created in a
management-win. Each of the child icons created in the
management-win may open a corresponding window (i.e.,
workbench). This can be specified as:

ND-has-workbench management-icon

management-win

ND-has-workbench HLPN-icon HLPN-win

...

The first item specifies that one can open a management-

win on a management-icon object. Similarly, the second
item indicates that a HLPN-win can be opened through an

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 303

Fig. 20. Distributed workbench.

Fig. 19. The VisPro architecture.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

HLPN-icon, where HLPN-win is the workbench class for
HLPN. In addition, commands should be added to each of
the icon classes, such as an open operation. For example:

open open-management management-win

specifies a menu item named open-management which can
be triggered to open a management-win.

The VisPro framework will create a command system
over each of the icons according to the control specification.
Icons and their commands provide a mechanism for
hierarchically specifying distributed programs. For a hier-
archical programming environment, interactions between
graph nodes and workbenches should also be created.

5.2.2 Construction of Interactions

A workbench w1 may be used to specify a subtask of
another workbench w by linking w1's own icon with a node
of w. As an example, we use a HLPN workbench to
illustrate the interaction between different specification
levels. Fig. 22 shows the visual objects used in a HLPN
workbench. Normal objects in a Petri net are transitions and
places. An annotation object can specify the annotation for a
visual object by linking to the visual object. To specify the
data transfer mechanism, we construct two classes:

input port and output port. An input port can be used in a
transition to specify the input information (i.e., name, type,
etc.). When an input port used independently, it represents
an input from outside and is called a global input port.
Similarly, we have output ports and global output ports.
Annotations can be given to an input port or an output port
to specify its type and name. The reference object in a
transition is used to link to another workbench for
specifying the transition details.

Fig. 23 shows two HLPN workbenches, where work-
bench (b) is used to specify a transition in workbench (a). To
transfer data correctly between two workbenches, each port
of the transition is annotated. In workbench (b), two global
input ports, annotated as int count and int work-id, have the
same annotations as the input ports of the transition. Input
ports with the same annotations are taken as the same port.
Thus, data accepted in the port annotated as int count in
workbench (a) is accepted in the port annotated as int count
in workbench (b). How data is transferred in output ports
can be specified in a similar fashion.

To implement the data transfer mechanism, we associate
a transition with an Attribute concept if the transition refers
to another workbench such that its ports are specified as
attributes in the concept. For example, the input port

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 21. PEDS hierarchical programming environment.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

labeled int count is specified as attribute(ºint count,º

parameter), where parameter is data transferred to the

port. In the subworkbench, a global input port will check

the Attribute concept and access the parameter it needs. In

this way, data are transferred between different work-

benches properly.

After the user has specified the hierarchical program-

ming environment of PEDS and the interactions between

the workbenches, the VisPro framework becomes custo-

mized to PEDS.

5.2.3 Summary

PEDS is a visual environment for distributed programming.

A distributed visual program can be created in PEDS with

different tools. This section has specified how to generate

PEDS using the VisPro system. The management of the

environment is described in the control specification. On

the other hand, interactions between different workbenches

can be specified in the annotations and with the Attributes

concept. PEDS, a hierarchical programming environment

with multiple paradigms, thus, is created by customizing

the VisPro framework through specifications.

6 CONCLUSION AND FUTURE WORK

This paper has presented a generic visual language

generation environment with a hierarchical specification

structure and multiple programming paradigms. To ease

the development of VPLs, we have proposed a VisPro

design model that divides any VPE into independent

functional modules and defines a protocol supporting the

interaction between the modules. The VisPro toolset with its

framework has been developed based on the above design

model, which can be used to generate diagrammatic VPLs.

The toolset consists of three specification tools, each of

which facilitates one aspect of the construction of VPLs in

the VisPro framework. These tools are visual languages

themselves so that the target language properties and the

domain specifications can be visually described by direct

manipulation.

The VPL construction process using the VisPro toolset is

similar to the textual language construction process using

Lex/Yacc. The process can be described as customization,

i.e., the VisPro framework can be customized to any target

visual language with a set of domain specifications

provided through the tools. The VisPro framework and

the specification tools together provide a complete support

for the VPL generation. They can be used to generate a wide

range of visual programming environments easily.
We will be applying the graph grammar techniques to

assist verifying the graphical design of Web sites. The Web
site design tool will be a special-purpose visual language
generated from VisPro. Our other future work includes the
application of the techniques used in VisPro to multimedia
presentations [30]. The reserved graph grammar can be
designed to represent a general-purpose multimedia
architecture. The system constructed based on such an
architecture will parse the input specifications of the

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 305

Fig. 22. Visual objects in a HLPN workbench.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

domain-oriented multimedia documents (in the form of

nodes and links) and produce a derivation tree. Then the

graph grammar rules are applied to translate the deriva-

tion tree into a set of media objects, together with their

spatial and temporal relationships. A layout algorithm [2]

can later be applied to the media objects to arrange the

final display layout.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees,

whose comments helped to improve the presentation of

the paper.

REFERENCES

[1] A. Ananda and B. Srinivasan, Distributed Computing Systems:
Concepts and Structures. Los Alamitos, Calif.: IEEE CS Press, 1991.

[2] G. Di Battista, P. Eades, P. Tammassia, and I.G. Tollis,
ªAlgorithms for Drawing Graphs: An Annotated Bibliography,º
Computational Geometry: Theory and Applications, vol. 4, no. 5,
pp. 235-282, 1994.

[3] F.J. Brandenburg, ªOn Polynomial Time Graph Grammars,º Proc.
Fifth Conf. Theoretical Aspects of Computer Science, pp. 227-236, 1988.

[4] P.C. Brown, ªSatisfying the Graphical Requirements of Visual
Languages in the DV-Centro Framework,º Proc. 13th Symp. Visual
Languages (VL '97), pp. 84-91, Sept. 1997.

[5] M.M. Burnett, ªSeven Programming Language Issues, Margaret
Burnett,º Visual Object-Oriented Programming, A. Goldberg and
T. Lewis, eds., pp. 161-181, 1994.

[6] J. Cao, F. Fernando, and K. Zhang, ªDig: A Graph-Based
Construct for Programming Distributed Systems,º Proc. Second
Int'l Conf. High Performance Computing (HiPC '95), pp. 417-422,
Dec. 1995.

[7] S.K. Chang, M.J. Tauber, B. Yu, and J.S. Yu, ªA Visual Language
Compiler,º IEEE Trans. Software Eng., vol. 15, no. 5, pp. 506-525,
May 1989.

[8] G. Costagliola, G. Tortora, S. Orefice, and A.D. Lucia, ªAutomatic
Generation of Visual Programming Environments,º Computer,
vol. 28, no. 3, pp. 56-66, Mar. 1995.

[9] A. Goldberg, M. Burnett, and T. Lewis, ªWhat Is Visual Object-
Oriented Programming?º Visual Object-Oriented Programming,
M. Burnett, A. Goldberg, and T. Lewis, eds., 1994.

[10] E.J. Golin, ªA Method for Specification and Parsing of Visual
Languages,º PhD thesis, Brown Univ., May 1991.

[11] E.J. Golin and T. Magliery, ªA Compiler Generator for Visual
Languages,º Proc. Ninth IEEE Symp. Visual Languages (VL '93),
pp. 314-323, Aug. 1993.

[12] A. Grimshaw, J. Weissman, E. West, and E. Loyot, ªMetasystems:
An Approach Combining Parallel Processing and Heterogeneous
Distributed Computing Systems,º J. Parallel and Distributed
Computing, vol. 21, no. 3, pp. 257-270 1994.

[13] M. Hirakawa, Y. Nishimura, M. Kado, and T. Ichikawa, ªInter-
pretation of Icon Overlapping in Iconic Programming,º Proc.
Seventh IEEE Workshop Visual Languages (VL '91), pp. 254-259, Oct.
1991.

[14] M. Kleyn and A High, ªLevel Language for Specifying Graph-
Based Languages and Their Programming Environments,º PhD
thesis, The Univ. of Texas at Austin, Aug. 1995.

[15] G.E. Krasner and S.T. Pope, ªA Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80,º
J. Object-Oriented Programming, vol. 1, no. 3, pp. 26-49, Aug. 1988.

[16] K. Marriott, ªConstraint Multiset Grammars,º Proc. 10th IEEE
Symp. Visual Languages (VL '94), pp. 118-125, Oct. 1994.

[17] J.D. McWhirter and G.J. Nutt, ªEscalante: An Environment for the
Rapid Construction of Visual Language Applications,º Proc. 10th
IEEE Symp Visual Languages (VL '94), pp. 15-22, Oct. 1994.

[18] M. Minas and G. Viehstaedt, ªDiaGen: A Generator for Diagram
Editors Providing Direct Manipulation and Execution of Dia-
grams,º Proc. 11th IEEE Symp. Visual Languages (VL '95), pp. 203-
210 Sept. 1995.

[19] B.A. Myers, ªTaxonomies of Visual Programming and Program
Visualisation,º J. Visual Languages and Computing, vol. 1, pp. 97-
123, 1990.

[20] J.V. Nickerson, ªVisual Programming,º PhD thesis, Dept. of
Computer Science, New York Univ., 1994.

[21] Rational Corporation, UML Document Set V1. 1, 1997, http://
www.rational.com.

[22] J. Rekers and A. SchuÈ rr, ªA Graph Based Framework for the
Implementation of Visual Environments,º Proc. 12th IEEE Symp.
Visual Languages (VL '96), Sept. 1996.

[23] J. Rekers and A. SchuÈ rr, ªDefining and Parsing Visual Languages
with Layered Graph Grammars,º J. Visual Languages and Comput-
ing, vol. 8, no. 1, pp. 27-55, 1997.

306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 4, APRIL 2001

Fig. 23. Hierarchical specifications.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

[24] G. Rozenburg and E. Welzl, ªBoundary NLC Graph GrammarsÐ-
Basic Definitions, Normal Forms, and Complexity,º Information
and Control, vol. 69, pp. 136-167, 1986.

[25] D. Schefstrom and G. van den Broek, Tool Integration-Environments
and Frameworks. Chichester, England: John Wiley, 1993.

[26] P. Salis, G. Tate, and S. MacDonell, Software Engineering. Addison-
Wesley, 1995.

[27] A. SchuÈ rr, A. Zundorf, and A. Winter, ªVisual Programming with
Graph Rewriting Systems,º Proc. 11th IEEE Symp. Visual Languages
(VL '95), pp. 326-333, Sept. 1995.

[28] S. Shatz, Development of Distributed Software. New York: Macmil-
lan, 1993.

[29] C. Upson, T. Faulhaver, D. Kamins, D. Laidlaw, D. Schlegel, J.
Vroom, R. Gurwitz, and A. Van Dam, ªThe Application
Visualization System: A Computational Environment for Scientific
Visualization,º IEEE Computer Graphics and Applications, vol. 9,
no. 7, pp. 30-42, July 1989.

[30] L. Weitzman and K. Wittenburg, ªAutomatic Presentation of
Multimedia Documents Using Relational Grammars,º Proc. ACM
Int'l Conf. Multimedia, pp. 443-451, Oct. 1994.

[31] N. Wilde and C. Lewis, ªSpreadsheet-Based Interactive Graphics:
From Prototype to Tool,º ACM SIGGHI Special Issue, Proc. CHI '90,
pp. 153-159, Apr. 1990.

[32] D.-Q. Zhang and K. Zhang, ªReserved Graph Grammar: A
Specification Tool for Diagrammatic VPLs,º Proc. 13th IEEE Symp.
Visual Languages (VL '97), pp. 284-291, Sept. 1997.

[33] D-Q. Zhang and K. Zhang, ªOn A Visual Distributed Program-
ming Environment and Its Construction by a Meta Toolset,º Proc.
SEKE '98Ð10th Int'l Conf. Software Eng. and Knowledge Eng., June
1998.

[34] D.-Q. Zhang and K. Zhang, ªVisPro: A Visual Language
Generation Toolset,º Proc. 14th IEEE Symp. Visual Languages
(VL '98), pp. 195-202, Sept. 1998.

[35] K. Zhang, X. Ma, and T. Hintz, ªThe Role of Graphics in Parallel
Program Development,º J. Visual Languages and Computing, vol. 10,
no. 3, pp. 215-243, 1999.

Kang Zhang received his BEng in Computer
Engineering from the University of Electronic
Science and Technology, China, in February
1982; and PhD from the University of Brighton,
UK, in 1990. He is currently an associate
professor of computer science at the University
of Texas at Dallas. He has held positions as a
Lecturer and Senior Lecturer at Macquarie
University, Sydney, Australia; a Research As-
sistant and SERC Postdoctoral Fellow at the

University of Brighton, UK; and a Software Engineer at the East-China
Research Institute of Computer Technology, Shanghai, China. Dr
Zhang's current research interests are in the areas of software
visualisation, parallel programming tools, visual programming, and
Internet computing. Dr Zhang is a senior member of IEEE.

Da-Qian Zhang received the BEng and MEng
degrees in computer engineering from Zhejiang
University, China, in 1985 and 1993, respec-
tively; and the PhD degree in computer science
from Macquarie University, Sydney, Australia in
1998. He is a software engineer at Corel
Corporation, Ottawa, Canada. Dr. Zhang was
an assistant lecturer at Hangzhou University,
China, for five years, before pursuing his PhD at
Macquarie University. After his PhD, he became

a software developer at Daedalian System Group, Canada, and then
joined Corel Corporation.

Jiannong Cao received the BS degree (1982)
from Nanjing University, China, the MS degree
(1986), and PhD degree (1990) from Washing-
ton State University, all in computer science. He
has been on the faculty of computer science at
James Cook University (Queensland, Australia),
University of Adelaide (South Australia, Austra-
lia), and City University of Hong Kong. He joined
the Hong Kong Polytechnic University in 1997,
where he is currently an assistant professor.

Dr. Cao's research interests include parallel and distributed systems,
computer networks, Internet computing, fault tolerance, and program-
ming methodology and environments. He has published more than
60 technical papers in the above areas, which have appeared in
international journals and conference proceedings. His recent research
has focused on how to build high-performance, fault-tolerant distributed
systems and applications on the Internet. Dr. Cao is a member of ACM
and a senior member of the IEEE.

ZHANG ET AL.: DESIGN, CONSTRUCTION, AND APPLICATION OF A GENERIC VISUAL LANGUAGE GENERATION ENVIRONMENT 307

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:27 from IEEE Xplore. Restrictions apply.

