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ABSTRACT

We introduce the concept of design continuums for the data
layout of key-value stores. A design continuum unifies major
distinct data structure designs under the same model. The
critical insight and potential long-term impact is that such
unifying models 1) render what we consider up to now as
fundamentally different data structures to be seen as“views”
of the very same overall design space, and 2) allow “seeing”
new data structure designs with performance properties that
are not feasible by existing designs. The core intuition be-
hind the construction of design continuums is that all data
structures arise from the very same set of fundamental de-
sign principles, i.e., a small set of data layout design con-
cepts out of which we can synthesize any design that exists
in the literature as well as new ones. We show how to con-
struct, evaluate, and expand, design continuums and we also
present the first continuum that unifies major data structure
designs, i.e., B+tree, Bǫtree, LSM-tree, and LSH-table.

The practical benefit of a design continuum is that it cre-
ates a fast inference engine for the design of data structures.
For example, we can near instantly predict how a specific de-
sign change in the underlying storage of a data system would
affect performance, or reversely what would be the optimal
data structure (from a given set of designs) given workload
characteristics and a memory budget. In turn, these prop-
erties allow us to envision a new class of self-designing key-
value stores with a substantially improved ability to adapt
to workload and hardware changes by transitioning between
drastically different data structure designs to assume a di-
verse set of performance properties at will.

1. A VAST DESIGN SPACE
Key-value stores are everywhere, providing the stor-

age backbone for an ever-growing number of diverse appli-
cations. The scenarios range from graph processing in social
media [10, 17], to event log processing in cybersecurity [18],
application data caching [65], NoSQL stores [72], flash trans-
lation layer design [24], and online transaction processing
[28]. In addition, increasingly key-value stores become an
attractive solution as embedded systems in complex data-
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Figure 1: From performance trade-offs to data structures,
key-value stores and rich applications.

intensive and machine learning pipelines as well as larger
systems that support more complex models. For example,
key-value stores are utilized in SQL systems, e.g., Founda-
tionDB [8] is a core part of Snowflake [22], while MyRocks
integrates RockDB in MySQL as its backend storage.

There is no Perfect Design. As shown in Figure 1, at
its core a key-value store implements a data structure that
stores key-value pairs. Each data structure design achieves
a specific balance regarding the fundamental trade-offs of
read, update, and memory amplification [12]. For example,
read amplification is defined as “how much more data do
we have to read for every key we are looking for on top
of accessing this particular key”. There exists no perfect
data structure that minimizes all three performance trade-
offs [12, 41]. For example, if we add a log to support efficient
out of place writes, we sacrifice memory/space cost as we
may have duplicate entries, and read cost as future queries
have to search both the core data structure and the log.

In turn, this means that there exists no perfect key-value
store that covers diverse performance requirements. Every
design is a compromise. But then how do we know which
design is best for an application, e.g., for specific data, access
patterns, hardware used, or even desired maximum costs on
the cloud? And do we have enough designs and systems to
cover the needs of emerging and ever-changing data-driven
applications? This is the problem we study in this paper
and envision a research path that makes it easier to create
custom data structure designs that match the needs of new
applications, hardware, and cloud pricing schemes.



The Big Three. As of 2018, there are three predomi-
nant data structure designs for key-value stores to organize
data. To give an idea of the diverse design goals and per-
formance balances they provide, we go briefly through their
core design characteristics. The first one is the B+tree [14].
The prototypical B+tree design consists of a leaf level of in-
dependent nodes with sorted key-value pairs (typically mul-
tiple storage blocks each) and an index (logarithmic at the
number of leaf nodes) which consists of nodes of cascading
fence pointers with a large fanout. For example, B+tree is
the backbone design of the BerkeleyDB key-value store [67],
now owned by Oracle, and the backbone of the WiredTiger
key-value store [88], now used as the primary storage engine
in MongoDB [66]. FoundationDB [8] also relies on a B+tree.
Overall, B+tree achieves a good balance between read and
write performance with a reasonable memory overhead that
is primarily due to its fill factor in each node (typically 50%)
and the auxiliary internal index nodes.

In the early 2000s, a new wave of applications emerged
requiring faster writes, while still giving good read perfor-
mance. At the same time, the advent of flash-based SSDs
has made write I/Os 1-2 orders of magnitude costlier than
read I/Os [1]. These workload and hardware trends led
to two data structure design decisions for key-value stores:
1) buffering new data in memory, batching writes in sec-
ondary storage, and 2) avoid maintaining global order. This
class of designs was pioneered by the Log-Structured Tree
(LSM-tree) [68] which partitions data temporally in a series
of increasingly larger levels. Each key-value entry enters
at the very top level (the in-memory buffer) and is sort
merged at lower levels as more data arrives. In-memory
structures such as Bloom filters, fence pointers and Tries
help filter queries to avoid disk I/O [23, 92]. This design
has been adopted in numerous industrial settings including
LevelDB [32] and BigTable [20] at Google, RocksDB [29] at
Facebook, Cassandra [55], HBase [35] and Accumulo [7] at
Apache, Voldemort [59] at LinkedIn, Dynamo [26] at Ama-
zon, WiredTiger [88] at MongoDB, and bLSM [78] and cLSM
[31] at Yahoo, and more designs in research such as SlimDB
[73], WiscKey [62], and Monkey [23]. Relational databases
such as MySQL and SQLite4 support this design too by
mapping primary keys to rows as values. Overall, LSM-
tree-based designs achieve better writes than B+tree-based
designs but they typically give up some read performance
(e.g., for short-range queries) given that we have to look for
data through multiple levels, and they also give up some
memory amplification to hold enough in-memory filters to
support efficient point queries. Crucial design knobs, such
as fill factor for B+tree and size ratio for LSM-tree, define
the space amplification relationship among the two designs.

More recently, a third design emerged for applications that
require even faster ingestion rates. The primary data struc-
ture design decision was to drop order maintenance. Data
accumulates in an in-memory buffer. Once full, it is pushed
to secondary storage as yet another node of an ever-growing
single level log. An in-memory index, e.g., a hash table,
allows locating any key-value pair easily while the log is pe-
riodically merged to force an upper bound on the number of
obsolete entries. This Log-Structured Hash-table (LSH-
table) is employed by BitCask [80] at Riak, Sparkey [82] at
Spotify, FASTER [19] at Microsoft, and many more systems
in research [74, 58, 2]. Overall, LSH-table achieves excellent
write performance, but it sacrifices read performance (for

range queries), while the memory footprint is also typically
higher since now all keys need to be indexed in-memory to
minimize I/O needs per key.

The Practical Problem. While key-value stores con-
tinue to be adopted by an ever-growing set of applications,
each application has to choose among the existing designs
which may or may not be close to the ideal performance
that could be achieved for the specific characteristics of this
application. This is a problem for several increasingly press-
ing reasons. First, new applications appear many of which
introduce new workload patterns that were not typical be-
fore. Second, existing applications keep redefining their ser-
vices and features which affects their workload patterns di-
rectly and in many cases renders the existing underlying
storage decisions sub-optimal or even bad. Third, hardware
keeps changing which affects the CPU/bandwidth/latency
balance. Across all those cases, achieving maximum perfor-
mance requires low-level storage design changes. This boils
down to the one size does not fit all problem, which holds
for overall system design [84] and for the storage layer [12].

Especially in today’s cloud-based world even slightly sub-
optimal designs by 1% translate to a massive loss in en-
ergy utilization and thus costs [52], even if the performance
difference is not directly felt by the end users. This im-
plies two trends. First, getting as close to the optimal de-
sign is critical. Second, the way a data structure design
translates to cost needs to be embedded in the design pro-
cess as it is not necessarily about achieving maximum query
throughput, but typically a more holistic view of the de-
sign is needed, including the memory footprint. Besides,
the cost policy varies from one cloud provider to the next,
and even for the same provider it may vary over time. For
example, Amazon AWS charges based on CPU and memory
for computation resources, and based on volume size, re-
served throughput, and I/O performed for networked stor-
age. Google Cloud Platform, while charging similarly for
computation, only charges based on volume size for net-
worked storage. This implies that the optimal data structure
1) is different for different cloud providers where the key-
value store is expected to run, and 2) can vary over time
for the same cloud provider even if the application itself and
underlying hardware stay the same.

The Research Challenge. The long-term challenge is
whether we can easily or even automatically find the op-
timal storage design for a given problem. This has been
recognized as an open problem since the early days of com-
puter science. In his seminal 1978 paper, Robert Tarjan
includes this problem in his list of the five major challenges
for the future (which also included P Vs NP ) [85]: “Is there
a calculus of data structures by which one can choose the
appropriate data representation and techniques for a given
problem?”. We propose that a significant step toward a so-
lution includes dealing with the following two challenges:

1) Can we know all possible data structure designs?

2) Can we compute the performance of any design?

Toward an Answer to Challenge 1. We made a step
toward the first challenge by introducing the design space
of data structures supporting the key-value model [42]. The
design space is defined by all designs that can be described
as combinations and tunings of the “first principles of data
layout design”. A first principle is a fundamental design con-
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Figure 2: From data layout design principles to the de-
sign space of possible data structures, where design continu-
ums can be observed to help navigate performance trade-offs
across diverse data structure designs.

cept that cannot be broken into additional concepts, e.g.,
fence pointers, links, and temporal partitioning. The intu-
ition is that, over the past several decades, researchers have
invented numerous fundamental design concepts such that
a plethora of new valid designs with interesting properties
can be synthesized out of those [42].

As an analogy consider the periodic table of elements
in chemistry; it sketched the design space of existing ele-
ments based on their fundamental components, and allowed
researchers to predict the existence of unknown, at the time,
elements and their properties, purely by the structure of the
design space. In the same way, we created the periodic
table of data structures [41] which describes more data
structure designs than stars on the sky and can be used as
a design and new data structure discovery guide.

Naturally, a design space does not necessarily describe“all
possible data structures”; a new design concept may be in-
vented and cause an exponential increase in the number of
possible designs. However, after 50 years of computer sci-
ence research, the chances of inventing a fundamentally new
design concept have decreased exponentially; many exciting
innovations, in fact, come from utilizing a design concept
that, while known, it was not explored in a given context
before and thus it revolutionizes how to think about a prob-
lem. Using Bloom filters as a way to filter accesses in storage
and remote machines, scheduling indexing construction ac-
tions lazily [38], using ML models to guide data access [54],
storage [47] and other system components [53], can all be
thought of as such examples. Design spaces that cover large
fundamental sets of concepts can help accelerate progress
with figuring out new promising directions, and when new
concepts are invented they can help with figuring out the
new possible derivative designs.

Toward an Answer to Challenge 2. The next piece
of the puzzle is to investigate if we can make it easy to com-
pute the performance properties of any given data structure
design. With the Data Calculator we introduced the idea of
learned cost models [42] which allow learning the costs
of fundamental access patterns (random access, scan, sorted
search) out of which we can synthesize the costs of complex
algorithms for a given data structure design. These costs
can, in turn, be used by machine learning algorithms that
iterate over machine generated data structure specifications
to label designs, and to compute rewards, deciding which de-
sign specification to try out next. Early results using genetic

algorithms show the strong potential of such approaches [39].
However, there is still an essential missing link; given the fact
that the design space size is exponential in the number of
design principles (and that it will likely only expand over
time), such solutions cannot find optimal designs in feasible
time, at least not with any guarantee, leaving valuable per-
formance behind [52]. This is the new problem we attack in
this paper: Can we develop fast search algorithms that au-
tomatically or interactively help researchers and engineers
find a close to optimal data structure design for a key-value
store given a target workload and hardware environment?

Design Continuums. Like when designing any algo-
rithm, the key ingredient is to induce domain-specific knowl-
edge. Our insight is that there exist“design continuums”em-
bedded in the design space of data structures. An intuitive
way to think of design continuums is as a performance hy-
perplane that connects a specific subset of data structures
designs. Design continuums are effectively a projection of
the design space, a “pocket” of designs where we can iden-
tify unifying properties among its members. Figure 2 gives
an abstract view of this intuition; it depicts the design space
of data structures where numerous possible designs can be
identified, each one being derived as a combination of a small
set of fundamental design primitives and performance con-
tinuums can be identified for subsets of those structures.

1. We introduce design continuums as subspaces of the
design space which connect more than one design. A
design continuum has the crucial property that it cre-
ates a continuous performance tradeoff for fundamen-
tal performance metrics such as updates, inserts, point
reads, long-range and short-range scans, etc.

2. We show how to construct continuums using few design
knobs. For every metric it is possible to produce a
closed-form formula to quickly compute the optimal
design. Thus, design continuums enable us to know
the best key-value store design for a given workload
and hardware.

3. We present a design continuum that connects major
classes of modern key-value stores including LSM-tree,
Bǫtree, and B+tree.

4. We show that for certain design decisions key-value
stores should still rely on learning as it is hard (per-
haps even impossible) to capture them in a continuum.

5. We present the vision of self-designing key-value stores,
which morph across designs that are now considered as
fundamentally different.

Inspiration. Our work is inspired by numerous efforts
that also use first principles and clean abstractions to un-
derstand a complex design space. John Ousterhout’s project
Magic allows for quick verification of transistor designs so
that engineers can easily test multiple designs synthesized
by basic concepts [69]. Leland Wilkinson’s “grammar of
graphics” provides structure and formulation on the massive
universe of possible graphics [87]. Timothy G. Mattson’s
work creates a language of design patterns for parallel algo-
rithms [64]. Mike Franklin’s Ph.D. thesis explores the pos-
sible client-server architecture designs using caching based
replication as the main design primitive [30]. Joe Heller-
stein’s work on Generalized Search Trees makes it easy to



design and test new data structures by providing templates
which expose only a few options where designs need to dif-
fer [36, 5, 6, 49, 48, 50, 51]. S. Bing Yao’s [91] and Stefan
Manegold’s [63] work on generalized hardware conscious cost
models showed that it is possible to synthesize the costs of
complex operations from basic access patterns. Work on
data representation synthesis in programming languages en-
ables synthesis of representations out of small sets of (3-5)
existing data structures [75, 76, 21, 81, 79, 33, 34, 61, 83].

2. DESIGN CONTINUUMS
We now describe how to construct a design continuum.

2.1 From B+tree to LSM-tree
We first give an example of a design continuum that con-

nects diverse designs including Tiered LSM-tree [43, 23, 55],
Lazy Leveled LSM-tree [25], Leveled LSM-tree [68, 23, 29,
32], COLA [15, 45], FD-tree [57], Bǫtree [16, 9, 15, 44, 45,
70], and B+tree [13]. The design continuum can be thought
of as a super-structure that encapsulates all those designs.
This super-structure consists of L levels where the larger Y
levels are cold and the smaller L−Y levels are hot. Hot levels
use in-memory fence pointers and Bloom filters to facilitate
lookups, whereas cold levels apply fractional cascading to
connect runs in storage. Each level contains one or more
runs, and each run is divided into one or more contiguous
nodes. There is a buffer in memory to ingest application
updates and flush to Level 1 when it fills up. This overall
abstraction allows instantiating any of the data structure de-
signs in the continuum. Figure 3 formalizes the continuum
and the super-structure is shown at the bottom left.

Environmental Parameters. The upper right table in
Figure 3 opens with a number of environmental parameters
such as dataset size, main memory budget, etc. which are
inherent to the application and context for which we want
to design a key-value store.

Design Parameters. The upper right table in Figure 3
further consists of five continuous design knobs which have
been chosen as the smallest set of movable design abstrac-
tions that we could find to allow differentiating among the
target designs in the continuum. The first knob is the growth
factor T between the capacities of adjacent levels of the
structure (e.g., “fanout” for B+tree or “size ratio” for LSM-
tree). This knob allows us to control the super-structure’s
depth. The second knob is the hot merge threshold K, which
is defined as the maximum number of independent sorted
partitions (i.e., runs) at each of Levels 1 to L− Y − 1 (i.e.,
all hot levels but the largest) before we trigger merging. The
lower we set K, the more greedy merge operations become
to enforce fewer sorted runs at each of these hot levels. Sim-
ilarly, the third knob is the cold merge threshold Z and is
defined as the maximum number of runs at each of Levels
L − Y to L (i.e., the largest hot level and all cold levels)
before we trigger merging. The node size D is the maximal
size of a contiguous data region (e.g., a “node” in a B+tree
or “SSTable” in an LSM-tree) within a run. Finally, the
fence and filters memory budget MF controls the amount
of the overall memory that is allocated for in-memory fence
pointers and Bloom filters.

Setting the domain of each parameter is a critical part
of crafting a design continuum so we can reach the target
designs and correct hybrid designs. Figure 3 describes how
each design parameter in the continuum may be varied. For

example, we set the maximum value for the size ratio T to
be the block size B. This ensures that when fractional cas-
cading is used at the cold levels, a parent block has enough
space to store pointers to all of its children. As another ex-
ample, we observe that a level can have at most T − 1 runs
before it runs out of capacity and so based on this observa-
tion we set the maximum values of K and Z to be T − 1.
Design Rules: Forming the Super-structure. The

continuum contains a set of design rules, shown on the up-
per right part of Figure 3. These rules enable instantiating
specific designs by deterministically deriving key design as-
pects. Below we describe the design rules in detail.

Exponentially Increasing Level Capacities. The levels’ ca-
pacities grow exponentially by a factor of T starting with
the buffer’s capacity. As a result, the overall number of lev-
els L is ⌈logT

N·E
MB

⌉, where MB is the memory assigned to

the buffer and N · E is the data volume.
Fence Pointers vs. Bloom Filters. Our design allocates

memory for fence pointers and Bloom filters from smaller to
larger levels based on the memory budget assigned by the
knobMF . Our strategy is to first assign this budget for fence
pointers to as many levels as there is enough memory for.
This is shown by the Equation for the fence pointers budget
MFP in Figure 3. The remaining portion of MF after fence
pointers is assigned to a Bloom filters memory budget MBF .
This can also be done in the reverse way when one designs a
structure, i.e., we can define the desired buffer budget first
and then give the remaining from the total memory budget
to filters and fence pointers.

Optimally Allocated Bloom Filters Across Levels. The
continuum assigns exponentially decreasing false positive rates
(FPRs) to Bloom filters at smaller levels as this approach
was shown to minimize the sum of their false positive rates
and thereby minimize point read cost [23]. In Figure 3, we
express the FPR assigned to Level i as pi and give corre-
sponding equations for how to set pi optimally with respect
to the different design knobs.

Hot vs. Cold Levels. Figure 3 further shows how to com-
pute the number of cold levels Y for which there is no suffi-
cient memory for fence pointers or Bloom filters (the deriva-
tion for Y is in terms of a known threshold X for when to
drop a filter for a level and instead use that memory for
filters at smaller levels to improve performance [25]). We
derive MFHI as the amount of memory above which all lev-
els are hot (i.e., Y = 0). We also set a minimum memory
requirement MFLO on MF to ensure that there is always
enough memory for fence pointers to point to Level 1.

Fractional Cascading for Cold Levels. To be able to con-
nect data at cold levels to the structure despite not having
enough memory to point to them using in-memory fence
pointers, we instead use fractional cascading. For every
block within a run at a cold level, we embed a “cascading”
pointer within the next younger run along with the smallest
key in the target block. This allows us to traverse cold lev-
els with one I/O for each run by following the corresponding
cascading pointers to reach the target key range.

Active vs. Static Runs. Each level consists of one active
run and a number of static runs. Incoming data into a
level gets merged into the active run. When the active run
reaches a fraction of T/K of the a levels’ capacity for Levels
1 to L − Y − 1 or T/Z for Levels L − Y to L, it becomes a
static run and a new empty active run is initialized.

Granular Rolling Merging. When a level reaches capacity,
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Term Name Description Min.
Value

Max.
Value

Units

B Block Size # data entries that �t in a storage block. Entries

M Memory Total main memory budget. B ·E +
F ·T ·MB

E ·B

N ·E Bits

N Dataset Size # total data entries in the dataset. Entries

E Entry Size Size of an entry. Bits

F Key Size Size of a key, also used to approximate
size of a fence (fence key and pointer).

Bits

s Avg. Selectivity Average selectivity of a long range query. Entries

T Growth Factor Capacity ratio between adjacent levels. 2 B Ratio

K Hot Merge
Threshold

Maximum # runs per hot level. 1 T � 1 Runs

Z Cold Merge
Threshold

Maximum # runs per cold level. 1 T � 1 Runs

D Max. Node Size Maximum size of a node; de�nes a con-
tiguous data region.

1 N
B

Blocks

MF Fence & Filter
Memory Budget

# bits of main memory budgeted to fence
pointers and �lters.

F ·T ·MB

E ·B
M Bits

Derived Term Expression Units

L (# total levels) dlogT
N ·E
MB

e Levels

X (Filters
Memory Threshold)

1
ln 22

· ( lnT
T�1
+

lnK�lnZ
T

) Bits per
Entry

MFH I
(MF Threshold:

Hot Levels Saturation)
N · ( X

T
+

F
B
) Bits

MFLO (MF Threshold:
Cold Levels Saturation)

MB ·F ·T
E ·B

Bits

Y (# Cold Levels)





0 if MF � MFHI

blogT
N
MF

· ( X
T
+

F
B
)c if MFLO < MF < MFHI

L � 1 if MF = MFLO

Levels

MF P (Fence Pointer
Memory Budget)

T L�Y+1 · F ·
Mb

E ·B
· T
T�1

Bits

MBF (Filter Memory
Budget)

MF �MFP Bits

MB (Bu�er Memory
Budget)

B · E + (M �MF ) Bits

psum (Sum of BF False
Positive Rates)

e�
MBF
N ·ln (2)2 ·T Y

· Z
T�1
T · K

1
T · T

T
T�1

T�1

pi (BF False Positive
Rate at Level i )
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Figure 3: An example of a design continuum: connecting complex designs with few continuous parameters.

a merge operation needs to take place to free up space. We
perform a merge by first picking an eviction key1. Since
each run is sorted across its constituent nodes, there is at
most one node in each of the static runs at the level that
intersects with the eviction key. We add these nodes into an
eviction set and merge them into the active run in the next
larger level. Hence, the merge granularity is controlled by
the maximum node size D, and merge operations roll across
static runs and eventually empty them out.

Fractional Cascading Maintenance. As merge operations
take place at cold levels, cascading fence pointers must be
maintained to keep runs connected. As an active run grad-
ually fills up, we must embed cascading fence pointers from
within the active run at the next smaller level. We must
also create cascading fence pointers from a new active run
into the next older static run at each level. To manage this,
whenever we create a new run, we also create a block in-
dex in storage to correspond to the fences for this new run.
Whenever we need to embed pointers into a Run i from some
new Run j as Run j is being created, we include the block
index for Run i in the sort-merge operation used to create
Run j to embed the cascading fence pointers within.

1The strategy for picking the eviction key may be as sim-
ple as round robin, though more sophisticated strategies to
minimize key overlap with the active run in the next level
are possible so as to minimize merge overheads [86].

Unified Cost Model. A design continuum includes a
cost model with a closed-form equation for each one of the
core performance metrics. The bottom right part of Figure
3 depicts these models for our example continuum. These
cost models measure the worst-case number of I/Os issued
for each of the operation types, the reason being that I/O
is typically the performance bottleneck for key-value stores
that store a larger amount of data than can fit in memory.2

For example, the cost for point reads is derived by adding
the expected number of I/Os due to false positives across
the hot levels (given by the Equation for psum, the sum of
the FPRs [25]) to the number of runs at the cold levels,
since with fractional cascading we perform 1 I/O for each
run. As another example, the cost for writes is derived by
observing that an application update gets copied on average
O(T/K) times at each of the hot levels (except the largest)
and O(T/Z) times at the largest hot level and at each of the
cold levels. We add these costs and divide by the block size
B as a single write I/O copies B entries from the original
runs to the resulting run.

While our models in this work are expressed in terms of
asymptotic notations, we have shown in earlier work that

2Future work can also try to generate in-memory design
continuums where we believe learned cost models that help
synthesize the cost of arbitrary data structure designs can
be a good start [42].
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Designs
Tiered LSM-
Tree [55,
23, 43]

Lazy Leveled
LSM-Tree [25]

Leveled
LSM-Tree
[32, 29, 23]

COLA [15, 45] FD-Tree [57] B
�Tree [16, 15,
44, 70, 9, 45]

B+Tree [13]

T (Growth
Factor)

[2, B] [2, B] [2, B] 2 [2, B] [2, B] B

K (Hot Merge
Threshold)

T − 1 T − 1 1 1 1 1 1

Z (Cold Merge
Threshold)

T − 1 1 1 1 1 1 1

D (Max.
Node Size)

[1, N

B
] [1, N

B
] [1, N

B
] N

B

N

B
1 1

MF (Fence &
Filter Mem.)

N · ( F
B
+ 10) N · ( F

B
+ 10) N · ( F

B
+ 10) F ·T ·MB

E ·B
F ·T ·MB

E ·B
F ·T ·MB

E ·B
F ·T ·MB

E ·B

Update O ( L
B
) O ( 1

B
· (T + L)) O ( T

B
· L) O ( L

B
) O ( T

B
· L) O ( T

B
· L) O (L)

Zero Result
Lookup

O (T · e
−MBF

N ) O (e−

MBF

N ) O (e−

MBF

N ) O (L) O (L) O (L) O (L)

Existing
Lookup

O (1+T · e
−MBF

N ) O (1) O (1) O (L) O (L) O (L) O (L)

Short Scan O (L · T ) O (1+T · (L − 1)) O (L) O (L) O (L) O (L) O (L)

Long Scan O (T · s

B
) O ( s

B
) O ( s

B
) O ( s

B
) O ( s

B
) O ( s

B
) O ( s

B
)

Figure 4: Instances of the design continuum and examples of their derived cost metrics.

such models can be captured more precisely to reliably pre-
dict worst-case performance [23, 25]. A central advantage of
having a set of closed-form set of models is that they allow
us to see how the different knobs interplay to impact per-
formance, and they reveal the trade-offs that the different
knobs control.

Overall, the choice of the design parameters and the deriva-
tion rules represent the infusion of expert design knowl-
edge such that we can create a navigable design continuum.
Specifically, fewer design parameters (for the same target
designs) lead to a cleaner abstraction which in turn makes
it easier to come up with algorithms that automatically find
the optimal design (to be discussed later on). We minimize
the number of design parameters in two ways: 1) by adding
deterministic design rules which encapsulate expert knowl-
edge about what is a good design, and 2) by collapsing more
than one interconnected design decisions to a single design
parameter. For example, owe used a single parameter for
the memory budget of bloom filters and fence pointers as
they only make sense when used together at each level.

Design Instances. Figure 4 depicts several known in-
stances of data structure designs as they are derived from
the continuum. In particular, the top part of Figure 4 shows
the values for the design knobs that derive each specific de-
sign, and the bottom part shows how their costs can indeed
be derived from the generalized cost model of the continuum.

For example, a B+tree is instantiated by (1) setting the
maximum node size D to be one block3, (2) setting K and Z
to 1 so that all nodes within a level are globally sorted, (3)
setting Mf to the minimum amount of memory so that Lev-

3Node size can be set to whatever we want the B+tree node
size to be - we use D = 1 block here as an example only.

els 1 to L get traversed using fractional cascading without
the utilization of Bloom filters or in-memory fence pointers,
and (4) setting the growth factor to be equal to the block
size. By plugging the values of these knobs into the cost ex-
pressions, the well-known write and read costs for a B+tree
of O(L) I/Os immediately follow.

As a second example, a leveled LSM-tree design is instan-
tiated by (1) setting K and Z to 1 so that there is at most
one run at each level, and (2) assigning enough memory to
the knobMf to enable fence pointers and Bloom filters (with
on average 10 bits per entry in the table) for all levels. We
leave the knobs D and T as variables in this case as they are
indeed used by modern leveled LSM-tree designs to strike
different trade-offs. By plugging in the values for the design
knobs into the cost models, we immediately obtain the well-
known costs for a leveled LSM-tree. For example, write cost
simplifies to O(T ·L

B
) as every entry gets copied across O(L)

levels and on average O(T ) times within each level.
Construction Summary. Figure 5 summarizes the pro-

cess of constructing a design continuum. We start by select-
ing a set of data structures. Then we select the minimum
set of design knobs that can instantiate these designs and
we impose design rules and domain restrictions to restrict
the population of the continuum to only the best designs
with respect to our target cost criteria. Finally, we derive
the generalized cost models.

Definition of Continuum. We can now revisit the ex-
act definition of the continuum. A design continuum con-
nects previously distinct and seemingly fundamentally dif-
ferent data structure designs. The construction process does
not necessarily result in continuous knobs in the mathemat-
ical sense (most of the design knobs have integer values).
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However, from a design point of view a continuum opens
the subspace in between previously unconnected designs; it
allows us to connect those discrete designs in fine grained
steps, and this is exactly what we refer to as the “design
continuum”. The reason that this is critical is that it allows
us to 1) “see” designs that we did not know before, derived
as combinations of those fine-grained design options, and
2) build techniques that smoothly transition across discrete
designs by using those intermediate states.

2.2 Interactive Design
The generalized cost models enable us to navigate the con-

tinuum, i.e., interactively design a data structure for a key-
value store with the optimal configuration for a particular
application as well as to react to changes in the environ-
ment, or workload. We formalize the navigation process by
introducing Equation 1 to model the average operation cost
θ through the costs of zero-result point lookups R, non-zero-
result point lookups V , short range lookups Q, long range
lookups C, and updates W (the coefficients depict the pro-
portions of each in the workload).

θ = (r ·R+ v · V + q ·Q+ c · C + w ·W ) (1)

To design a data structure using Equation 1, we first iden-
tify the bottleneck as the highest additive term as well as
which knobs in Figure 3 can be tweaked to alleviate it. We
then tweak the knob in one direction until we reach its
boundary or until θ reaches the minimum with respect to
that parameter. We then repeat this process with other pa-
rameters as well as with other bottlenecks that can emerge
during the process. This allows us to converge to the opti-
mal configuration without backtracking, which allows us to
adjust to a variety of application scenarios reliably. For ex-
ample, consider an application with a workload consisting of
point lookups and updates and an initial configuration of a
lazy-leveled LSM-tree with T = 10, K = T−1, Z = 1, D = 64,
MB set to 2 MB, and Mf set to N · (F/B + 10), meaning we
have memory for all the fence pointers and in addition 10
bits per entry for Bloom filters. We can now use the cost
models to react to different scenarios.

Scenario 1: Updates Increasing. Suppose that the propor-
tion of updates increases, as is the case for many applica-
tions [78]. To handle this, we first increase Z until we reach
the minimum value for θ or until we reach the maximum
value of Z. If we reach the maximum value of Z, the next
promising parameter to tweak is the size ratio T , which we
can increase in order to decrease the number of levels across
which entries get merged. Again, we increase T until we hit
its maximum value or reach a minimum value for θ.

Scenario 2: Range Lookups. Suppose that the application
changes such that short-range lookups appear in the work-

load. To optimize for them, we first decrease K to restrict
the number of runs that lookups need to access across Levels
1 to L− 1. If we reach the minimum value of K and short-
range lookups remain the bottleneck, we can now increase T
to decrease the overall number of levels thereby decreasing
the number of runs further.

Scenario 3: Data Size Growing. Suppose that the size of
the data is growing, yet most of the lookups are targeting the
youngest Nyoungest entries, and we do not have the resources
to continue scaling main memory in proportion to the overall
data size N . In such a case, we can fix Mf to Nyoungest ·

(F/B + 10) to ensure memory is invested to provide fast
lookups for the hot working set while minimizing memory
overhead of less frequently requested data by maintaining
cold levels with fractional cascading.

Effectively the above process shows how to quickly and
reliably go from a high-level workload requirement to a low-
level data structure design configuration at interactive times
using the performance continuum.

Auto-Design. It is possible to take the navigation pro-
cess one step further to create algorithms that iterate over
the continuum and independently find the best configura-
tion. The goal is to find the best values for T , K, Z, D, and
the best possible division of a memory budget between MF

and MB . While iterating over every single configuration
would be intractable as it would require traversing every
permutation of the parameters, we can leverage the man-
ner in which we constructed the continuum to significantly
prune the search space. For example, in Monkey [23], when
studying a design continuum that contained only a limited
set of LSM-tree variants we observed that two of the knobs
have a logarithmic impact on θ, particularly the size ratio T
and the memory allocation between Mb and Mf . For such
knobs, it is only meaningful to examine a logarithmic num-
ber of values that are exponentially increasing, and so their
multiplicative contribution to the overall search time is log-
arithmic in their domain. While the continuum we showed
here is richer, by adding B-tree variants, this does not add
significant complexity in terms of auto-design. The decision
to use cascading fence pointers or in-memory fence point-
ers completely hinges on the allocation of memory between
MF and MB , while the node size D adds one multiplicative
logarithmic term in the size of its domain.

2.3 Success Criteria
We now outline the ideal success criteria that should guide

the construction of elegant and practically useful design con-
tinuums in a principled approach.

Functionally Intact. All possible designs that can be
assumed by a continuum should be able to correctly sup-
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Figure 6: Extending the design continuum to support Log Structured Hash table designs.

port all operation types (e.g., writes, point reads, etc.). In
other words, a design continuum should only affect the per-
formance properties of the different operations rather than
the results that they return.

Pareto-Optimal. All designs that can be expressed should
be Pareto-optimal with respect to the cost metrics and work-
loads desired. This means that there should be no two de-
signs such that one of them is better than the other on one
or more of the performance metrics while being equal on
all the others. The goal of only supporting Pareto-optimal
designs is to shrink the size of the design space to the min-
imum essential set of knobs that allow to control and nav-
igate across only the best possible known trade-offs, while
eliminating inferior designs from the space.

Bijective. A design continuum should be a bijective (one-
to-one) mapping from the domain of design knobs to the
co-domain of performance and memory trade-offs. As with
Pareto-Optimality, the goal with bijectivity is to shrink a
design continuum to the minimal set of design knobs such
that no two designs that are equivalent in terms of perfor-
mance can be expressed as different knob configurations. If
there are multiple designs that map onto the same trade-off,
it is a sign that the model is either too large and can be
collapsed onto fewer knobs, or that there are core metrics
that we did not yet formalize, and that we should.

Diverse. A design continuum should enable a diverse
set of performance properties. For Pareto-Optimal and bi-
jective continuums, trade-off diversity can be measured and
compared across different continuums as the product of the
domains of all the design knobs, as each unique configuration
leads to a different unique and Pareto-optimal trade-off.

Navigable. The time complexity required for navigat-
ing the continuum to converge onto the optimal (or even
near-optimal) design should be tractable. With the Monkey
continuum, for example, we showed that it takes O(logT (N))

iterations to find the optimal design, and for Dostoevsky,
which includes more knobs and richer trade-offs, we showed
that it takes O(logT (N)3) iterations. Measuring navigabil-
ity complexity in this way allows system designers from the
onset to strike a balance between the diversity vs. the nav-
igability of a continuum.

Layered. By construction, a design continuum has to
strike a trade-off between diversity and navigability. The
more diverse a continuum becomes through the introduc-
tion of new knobs to assume new designs and trade-offs,
the longer it takes to navigate it to optimize for different
workloads. With that in mind, however, we observe that de-
sign continuums may be constructed in layers, each of which
builds on top of the others. Through layered design, differ-
ent applications may use the same continuum but choose

the most appropriate layer to navigate and optimize perfor-
mance across. For example, the design continuum in Dos-
toevsky [23] is layered on top of Monkey [25] by adding two
new knobs, K and Z, to enable intermediate designs be-
tween tiering, leveling and lazy leveling. While Dostoevsky
requires O(logT (N)3) iterations to navigate the possible de-
signs, an alternative is to leverage layering to restrict the
knobs K and Z to both always be either 1 or T − 1 (i.e.,
to enable only leveling and tiering) in order to project the
Monkey continuum and thereby reduce navigation time to
O(logT (N)). In this way, layered design enables continuum
expansion with no regret : we can continue to include new de-
signs in a continuum to enable new structures and trade-offs,
all without imposing an ever-increasing navigation penalty
on applications that need only some of the possible designs.

2.4 Expanding a Continuum:
A Case-Study with LSH-table

We now demonstrate how to expand the continuum with
a goal of adding a particular design to include certain per-
formance trade-offs. The goal is to highlight the design con-
tinuum construction process and principles.

Our existing continuum does not support the LSH-table
data structure used in many key-value stores such as BitCask
[80], FASTER [19], and others [2, 58, 74, 82, 89]. LSH-
table achieves a high write throughout by logging entries in
storage, and it achieves fast point reads by using a hash table
in memory to map every key to the corresponding entry in
the log. In particular, LSH-table supports writes in O(1/B)
I/O, point reads in O(1) I/O, range reads in O(N) I/O, and
it requires O(F · N) bits of main memory to store all keys
in the hash table. As a result, it is suitable for write-heavy
application with ample memory, and no range reads.

We outline the process of expanding our continuum in
three steps: bridging, patching, and costing.

Bridging. Bridging entails identifying the least number
of new movable design abstractions to introduce to a con-
tinuum to assume a new design. This process involves three
options: 1) introducing new design rules, 2) expanding the
domains of existing knobs, and 3) adding new design knobs.

Bridging increases the diversity of a design continuum,
though it risks compromising the other success metrics. De-
signers of continuums should experiment with the three steps
above in this particular order to minimize the chance of that
happening. With respect to LSH-table, we need two new ab-
stractions: one to allow assuming a log in storage, and one
to allow assuming a hash table in memory.

To assume a log in storage, our insight is that with a tiered
LSM-tree design, setting the size ratio to increase with re-
spect to the number of runs at Level 1 (i.e., T = (N·E)/MB)
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Figure 7: Instances of the extended design continuum and
examples of their derived cost metrics.

causes Level 1 to never run out of capacity. This effectively
creates a log in storage as merge operations never take place.
Our current design continuum, however, restricts the size ra-
tio to be at most B. To support a log, we expand the domain
of the size ratio with a new maximum value of (N·E)/MB.

To assume a hash table in memory, recall that our contin-
uum assigns more bits per entry for Bloom filters at smaller
levels. Our insight is that when the number of bits per entry
assigned to given level exceeds the average key size F , it is
always beneficial to replace the Bloom filters at that level
with an in-memory hash table that contains all keys at the
level. The reason is that a hash table takes as much memory
as the Bloom filters would, yet it is more precise as it does
not allow false positives at all. We therefore introduce a new
design rule whereby levels with enough memory to store all
keys use a hash table while levels with insufficient memory
use Bloom filters4. With these two new additions to the
continuum, we can now set the size ratio to (N·E)/MB and K
and Z to T −1 while procuring at least F ·N bits of memory
to our system to assume LSH-table5. Figure 6 shows the
new super-structure of the continuum while Figure 7 shows
how LSH-table can be derived.

An important point is that we managed to bridge LSH-
table with our continuum without introducing new design
knobs. As a rule of thumb, introducing new knobs for bridg-
ing should be a last resort as the additional degrees of free-
dom increase the time complexity of navigation. Our case-

4Future work toward an even more navigable continuum can
attempt to generalize a Bloom filter and a hash table into
one unified model with continuous knobs that allows to grad-
ually morph between these structures based on the amount
of main memory available.
5More precisely, F ·N · (1 + 1

B
) bits of memory are needed

to support both the hash table and fence pointers.

study here, however, demonstrates that even data structures
that seem very different at the onset can be bridged by find-
ing the right small set of movable abstractions.

Patching. Since the bridging process introduces many
new intermediate designs, we follow it with a patching pro-
cess to ensure that all of the new designs are functionally
intact (i.e., that they can correctly support all needed types
of queries). Patching involves either introducing new design
rules to fix broken designs or adding constraints on the do-
mains of some of the knobs to eliminate broken designs from
the continuum. To ensure that the expanded continuum is
layered (i.e., that it contains all designs from the contin-
uum that we started out with), any new design rules or con-
straints introduced by patching should only affect new parts
of the continuum. Let us illustrate an example of patching
with the expanded continuum.

The problem that we identify arises when fractional cas-
cading is used between two cold Levels i and i+1 while the
size ratio T is set to be greater than B. In this case, there
is not enough space inside each block at Level i to store all
pointers to its children blocks (i.e., ones with an overlap-
ping key range) at Level i + 1. The reason is that a block
contains B slots for pointers, and so a block at Level i has
a greater number of children T than the number of pointer
slots available. Worse, if the node size D is set to be small
(in particular, when D < T/B), some of the blocks at Level
i+1 will neither be pointed to from Level i nor exist within
a node whereon at least one other block is pointed to from
Level i. As a result, such nodes at Level i+1 would leak out
of the data structure, and so the data on these blocks would
be lost. To prevent leakage, we introduce a design rule that
when D < T/B and B < T , the setting at which leakage can
occur, we add sibling pointers to reconnect nodes that have
leaked. We introduce a rule that the parent block’s point-
ers are spatially evenly distributed across its children (every
(T/(B·D))th node at Level i+ 1 is pointed to from a block at
level i) to ensure that all sibling chains of nodes within Level
i+1 have an equal length. As these new rules only apply to
new parts of our continuum (i.e., when T > B), they do not
violate layering.

Costing. The final step is to generalize the continuum’s
cost model to account for all new designs. This requires
either extending the cost equations and/or proving that the
existing equations still hold for the new designs. Let us
illustrate two examples. First, we extend the cost model
with respect to the patch introduced above. In particular,
the lookup costs need to account for having to traverse a
chain of sibling nodes at each of the cold levels when T > B.
As the length of each chain is T/B blocks, we extend the
cost equations for point lookups and short-range lookups
with additional T/B I/Os per each of the Y cold levels. The
extended cost equations are shown in Figure 6.

In the derivation below, we start with general cost ex-
pression for point lookups in Figure 6 and show how the
expected point lookup cost for LSH-table is indeed derived
correctly. In Step 2, we plug in N/B for T and Z to assume a
log in storage. In Step 3, we set the number of cold levels to
zero as Level 1 in our continuum by construction is always
hot and in this case, there is only one level (i.e., L = 1), and
thus Y must be zero. In Step 4, we plug in the key size F for
the number of bits per entry for the Bloom filters, since with
LSH-table there is enough space to store all keys in memory.
In Step 5, we reason that the key size F must comprise on



average at least log(N) bits to represent all unique keys. In
Step 6, we simplify and omit small constants to arrive at a
cost of O(1) I/O per point lookup.
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2.5 Elegance Vs. Performance:
To Expand or Not to Expand?

As new data structures continue to get invented and opti-
mized, the question arises of when it is desirable to expand a
design continuum to include a new design. We show through
an example that the answer is not always clear cut.

In an effort to make B-trees more write-optimized for flash
devices, several recent B-tree designs buffer updates in mem-
ory and later flush them to a log in storage in their arrival
order. They further use an in-memory indirection table to
map each logical B-tree node to the locations in the log that
contain entries belonging to that given node. This design
can improve on update cost relative to a regular B-tree by
flushing multiple updates that target potentially different
nodes with a single sequential write. The trade-off is that
during reads, multiple I/Os need to be issued to the log
for every logical B-tree node that gets traversed in order to
fetch its contents. To bound the number of I/Os to the log,
a compaction process takes place once a logical node spans
over C blocks in the log, where C is a tunable parameter.
Overall, this design leads to a point and range read cost of
O(C · logB(N)) I/Os. On the other hand, update cost con-
sists of O(C · logB(N)) read I/Os to find the target leaf node
and an additional amortized O(1/C) write I/Os to account
for the overheads of compaction. The memory footprint for
the mapping table is O((C·N·F )/B) bits. We refer to this de-
sign as log-structured B-tree (LSB-tree). Would we benefit
from including LSB-tree in our continuum?

To approach an answer to this question, we analytically
compare LSB-tree against designs within our continuum to
gauge the amount by which LSB-tree would allow us to
achieve better trade-offs with respect to our continuum’s
cost metrics. We demonstrate this process in Figure 8, which
plots point and range read costs against write cost for both
LSB-tree and Leveled LSM-tree, a representative part of our
continuum. To model write cost for LSB-tree, we computed
a weighted cost of O(C · logB(N)) read I/Os to traverse the
tree, O(1/C) write I/Os to account for compaction overheads,
and we discounted the cost of a read I/O relative to a write
I/O by a factor of 20 to account for read/write cost asymme-
tries on flash devices. We generated the curve for LSB-tree
by varying the compaction factor C from 1 to 9, and the
curves for the LSM-tree by varying the size ratio T from 2 to
10. To enable an apples-to-apples comparison whereby both
LSB-tree and the LSM-tree have the same memory budget,
we assigned however much main memory LSB-tree requires
for its mapping table to the LSM-tree’s fence pointers and
Bloom filters. Overall, the figure serves as a first approx-
imation for the trade-offs that LSB-tree would allow us to
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achieve relative to our continuum.
Figure 8 reveals that point read cost for the LSM-tree is

much lower than for LSB-tree. The reason is that when
the same amount of memory required by LSB-tree’s mem-
ory budget is used for the LSM-tree’s fence pointers and
Bloom filters, hardly any false positives take place and so
the LSM-tree can answer most point reads with just one
I/O. Secondly, we observe that as we increase LSB-tree’s
compaction factor C, write cost initially decreases but then
starts degrading rapidly. The reason is that as C grows,
more reads I/Os are required by application writes to tra-
verse the tree to identify the target leaf node for the write.
On the other hand, for range reads there is a point at which
LSB-tree dominates the LSM-tree as fewer blocks need to
be accessed when C is small.

Elegance and Navigability versus Absolute Perfor-
mance. By weighing the advantages of LSB-tree against
the complexity of including it (i.e., adding movable abstrac-
tions to assume indirection and node compactions), one can
decide to leave LSB-tree out of the continuum. This is be-
cause its design principles are fundamentally different than
what we had included and so substantial changes would be
needed that would complicate the continuum’s construction
and navigability. On the other hand, when we did the expan-
sion for LSH-table, even though, it seemed initially that this
was a fundamentally different design, this was not the case:
LSH-table is synthesized from the same design principles we
already had in the continuum, and so we could achieve the
expansion in an elegant way at no extra complexity and with
a net benefit of including the new performance trade-offs.

At the other extreme, one may decide to include LSB-tree
because the additional performance trade-offs outweigh the
complexity for a given set of desired applications. We did
this analysis to make the point of elegance and navigabil-
ity versus absolute performance. However, we considered a
limited set of performance metrics, i.e., worst-case I/O per-
formance for writes, point reads and range reads. Most of
the work on LSB-tree-like design has been in the context
of enabling better concurrency control [56] and leveraging
workload skew to reduce compaction frequency and over-
heads [90]. Future expansion of the design space and contin-
uums should include such metrics and these considerations
described above for the specific example will be different. In
this way, the decision of whether to expand or not to expand
a continuum is a continual process, for which the outcome
may change over time as different cost metrics change in
their level of importance given target applications.



3. WHY NOT MUTUALLY EXCLUSIVE

DESIGN COMPONENTS?
Many modern key-value stores are composed of mutually

exclusive sets of swappable data layout designs to provide di-
verse performance properties. For example, WiredTiger sup-
ports separate B-tree and LSM-tree implementations to op-
timize more for reads or writes, respectively, while RocksDB
files support either a sorted strings layout or a hash table
layout to optimize more for range reads or point reads, re-
spectively. A valid question is how does this compare to the
design continuum in general? And in practice how does it
compare to the vision of self-designing key-value stores?

Any exposure of data layout design knobs is similar in
spirit and goals to the continuum but how it is done exactly
is the key. Mutually exclusive design components can be in
practice a tremendously useful tool to allow a single system
to be tuned for a broader range of applications than we
would have been able to do without this feature. However,
it is not a general solution and leads to three fundamental
problems.

1) Expensive Transitions. Predicting the optimal set
of design components for a given application before deploy-
ment is hard as the workload may not be known precisely. As
a result, components may need to be continually reshuffled
during runtime. Changing among large components during
runtime is disruptive as it often requires rewriting all data.
In practice, the overheads associated with swapping compo-
nents often force practitioners to commit to a suboptimal
design from the onset for a given application scenario.

2) Sparse Mapping to Performance Properties. An
even deeper problem is that mutually exclusive design com-
ponents tend to have polar opposite performance properties
(e.g., hash table vs. sorted array). Swapping between two
components to optimize for one operation type (e.g. point
reads) may degrade a different cost metric (e.g. range reads)
by so much that it would offset the gain in the first metric
and lead to poorer performance overall. In other words,
optimizing by shuffling components carries a risk of over-
shooting the target performance properties and hitting the
point of diminishing returns. A useful way of thinking about
this problem is that mutually exclusive design components
map sparsely onto the space of possible performance proper-
ties. The problem is that, with large components, there are
no intermediate designs that allow to navigate performance
properties in smaller steps.

3) Intractable Modeling. Even analytically, it quickly
becomes intractable to reason about the tens to hundreds
of tuning parameters in modern key-value stores and how
they interact with all the different mutually exclusive design
components to lead to different performance properties. An
entirely new performance model is often needed for each
permutation of design components, and that the number of
possible permutations increases exponentially with respect
to the number of components available. Creating such an
extensive set of models and trying to optimize across them
quickly becomes intractable. This problem gets worse as
systems mature and more components get added and it boils
down to manual tuning by experts.

The Design Continuum Spirit. Our work helps with
this problem by formalizing this data layout design space
so that educated decisions can be made easily and quickly,
sometimes even automatically. Design continuums deal with
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Figure 9: Visualizing the performance continuum.

even more knobs than what existing systems expose because
they try to capture the fundamental design principles of de-
sign which by definition are more fine-grained concepts. For
example, a sorted array is already a full data structure that
can be synthesized out of many smaller decisions. However,
the key is that design continuums know how to navigate
those fine-grained concepts and eventually expose to design-
ers a much smaller set of knobs and a way to argue directly at
the performance tradeoff level. The key lies in constructing
design continuums and key-value store systems via unified
models and implementations with continuous data layout
design knobs rather than swappable components.

For example, the advantage of supporting LSH-table by
continuum expansion rather than as an independent swap-
pable component is that the bridging process adds new in-
termediate designs into the continuum with appealing trade-
offs in-between. The new continuum allows us to gradually
transition from a tiered LSM-tree into LSH-table by increas-
ing the size ratio in small increments to optimize more for
writes at the expense of range reads and avoid overshooting
the optimal performance properties when tuning.

4. ENHANCING CREATIVITY
Beyond the ability to assume existing designs, a contin-

uum can also assist in identifying new data structure designs
that were unknown before, but they are naturally derived
from the continuum’s design parameters and rules.

For example, the design continuum we presented in this
paper allows us to synthesize two new subspaces of hybrid
designs, which we depict in Figure 9. The first new subspace
extends the Bǫtree curve to be more write-optimized by in-
creasing Z and K to gather multiple linked nodes at a level
before merging them. The second subspace connects Bǫtree
with LSM-tree designs, allowing first to optimize for writes
and lookups at hot levels by using Bloom filters and fence
pointers, and second to minimize memory investment at cold
levels by using fractional cascading instead. Thus, we turn
the design space into a multi-dimensional space whereon ev-
ery point maps onto a unique position along a hyperplane of
Pareto-optimal performance trade-offs (as opposed to hav-
ing to choose between drastically different designs only).

In addition, as the knobs in a bijective continuum are di-
mensions that interact to yield unique designs, expanding
any knob’s domain or adding new knobs during the bridg-
ing process can in fact enrich a continuum with new, good
designs that were not a part of the original motivation for



expansion. Such examples are present in our expanded con-
tinuum where our original goal was to include LSH-table.
For example, fixing K and Z to 1 and increasing the size
ratio beyond B towards N/(D·P ) allows us to gradually tran-
sition from a leveled LSM-tree into a sorted array (as even-
tually there is only one level). This design was not possible
before, and it is beneficial for workloads with many range
reads. In this way, the bridging process makes a continuum
increasingly rich and powerful.

What is a new Data Structure? There are a number
of open questions this work touches on. And some of these
questions become even philosophical. For example, if all
data structures can be described as combinations of a small
set of design principles, then what constitutes a new data
structure design? Given the vastness of the design space, we
think that the discovery of any combination of design princi-
ples that brings new and interesting performance properties
classifies as a new data structure. Historically, this has been
the factor of recognizing new designs as worthy and inter-
esting even if seemingly “small” differences separated them.
For example, while an LSM-tree can simply be seen as a
sequence of unmerged B-trees, the performance properties
it brings are so drastically different that it has become its
own category of study and whole systems are built around
its basic design principles.

5. THE PATH TO SELF-DESIGN
Knowing which design is the best for a workload opens

the opportunity for systems that can adapt on-the-fly. While
adaptivity has been studied in several forms including adapt-
ing storage to queries [38, 4, 11, 46, 40, 27, 37, 60], the
new opportunity is morphing among what is typically con-
sidered as fundamentally different designs, e.g., from an
LSM-tree to a B+tree, which can allow systems to grace-
fully adapt to a larger array of diverse workload patterns.
Design continuums bring such a vision a small step closer be-
cause of two reasons: 1) they allow quickly computing the
best data structure design (out of a set of possible designs),
and 2) by knowing intermediate data structure designs that
can be used as transition points in-between“distant”designs
(among which it would otherwise be too expensive to tran-
sition).

There are (at least) three challenges on the way to such
self-designing systems: a) designing algorithms to physically
transition among any two designs, b) automatically materi-
alizing the needed code to utilize diverse designs, and c) re-
solving fundamental system design knobs beyond layout de-
cisions that are hard to encapsulate in a continuum. Below
we briefly touch on these research challenges, and we show
hints that they are likely possible to be resolved.

Transitions. As in all adaptive studies, we need to con-
sider the cost of a transition. The new challenge here is
transitioning among fundamentally different designs. For
example, assume a transition between a Leveled LSM-tree
and B+tree. Even though at a first glance these designs
are vastly different, the design continuum helps us see pos-
sible efficient transitions; The difference in the specification
of each structure on the design continuum indicates what
we need to morph from one to the other. Specifically, be-
tween an LSM-tree and B+tree, merging and fence pointers
characterize the main design differences and so the transi-
tion policies should depend on these design principles. For
example, one way to do such a transition is to wait until

Figure 10: Potential benefit of on-the-fly transitions between
B+tree and LSM-tree.

the LSM-tree is in a state where all of the entries are at the
bottom level and then build the B+tree off of that level so
that we don’t have to copy the data (similar to how we build
the internal index of B+tree when we do bulk loading). Ef-
fectively waiting until merging is not a difference between
the source and target design. A second option is to preemp-
tively merge the levels of the LSM-tree into a single level
so we can build the B+tree off of that level without waiting
for a natural merge to arrive. A third option is a compro-
mise between the two: we can use the bottom level of the
LSM-tree as the leaf layer of the B+tree (avoiding copying
the data) and then insert entries from the smaller levels of
the B+tree into the LSM-tree one by one.
The opposite transition, from a B+tree to an LSM-tree,

is also possible with the reverse problem that the scattered
leaves of the B+tree need to represent a contiguous run in an
LSM-tree. To avoid a full write we can trick virtual memory
to see these pages as contiguous [77]. The very first time
the new LSM-tree does a full merge, the state goes back to
physically contiguous runs.

Figure 10 depicts the potential of transitions. During the
first 2000 queries, the workload is short-range scan heavy
and thus favors B+tree. During the next 2000 queries, the
workload becomes write heavy, favoring LSM-Trees. While
pure LSM-tree and pure B-tree designs fail to achieve glob-
ally good performance, when using transitions, we can stay
close to the optimal performance across the whole workload.
The figure captures the I/O behavior of these data structure
designs and the transitions (in number of blocks). Overall,
it is possible to do transitions at a smaller cost than reading
and writing all data even if we transition among fundamen-
tally different structures. The future path for the realization
of this vision points to a transition algebra.
Code Generation. Tailored storage requires tailored

code to get maximum performance [4]. The continuum pro-
vides the means towards such a path; since there exists a
unifying model that describes the diverse designs in the con-
tinuum, this means that we can write a single generalized
algorithm for each operation o that can instantiate the in-
dividual algorithm for operation o for each possible designs.
For example, Algorithm 1 depicts such a generalized algo-
rithm for the point lookup operation for the design contin-
uum we presented in this paper.

Learning to go Beyond the Continuum. We expect
that there will likely be critical design knobs that are very



1 PointLookup (searchKey)
2 if MB > E then

3 entry := buffer.find(searchKey);
4 if entry then

5 return entry ;

// Pointer for direct block access. Set to root.
6 blockToCheck := levels[0].runs[0].nodes[0];
7 for i← 0 to L do

// Check each level’s runs from recent to oldest.
8 for j ← 0 to levels[i].runs.count do

/* Prune search using bloom filters and fences
when available. */

9 if i < (L− Y ) // At hot levels.
10 then

11 keyCouldExist :=
filters[i][j].checkExists(searchKey);

12 if !keyCouldExist then

13 continue;
14 else

15 blockToCheck :=
fences[i][j].find(searchKey);

/* For oldest hot run, and all cold runs, if no
entry is returned, then the search continues
using a pointer into the next oldest run. */

16 entry, blockToCheck :=
blockToCheck.find(searchKey);

17 if entry then

18 return entry;

19 return keyDoesNotExist;

Algorithm 1: Lookup algorithm template for any design.

hard or even impossible to include in a well-constructed de-
sign continuum. The path forward is to combine machine
learning with the design continuum. Machine learning is
increasingly used to tune exposed tuning knobs in systems
[3, 71]. The new opportunity here is the native combina-
tion of such techniques with the system design itself. For
example, consider the critical decision of how much memory
resources to allocate to the cache. What is hard about this
decision is that it interacts in multiple ways with numerous
other memory allocations that uniquely characterize a de-
sign (specifically the main memory buffer, the bloom filters,
and the fence pointers in our design continuum) but it is also
highly sensitive to the workload. However, we can use the
generalized cost formulas of the continuum to derive formu-
las for the expected I/O savings if we increase the memory
in any memory component. We can then use these estimates
to implement a discrete form of stochastic gradient descent.
Figure 11 shows an example of our results for a skewed work-
load where we tested two instances of our continuum, the
Monkey design [23] which optimizes bloom filter allocation
and Leveled LSM-tree design with fixed false positive ratio
across all bloom filters. We evaluate all three gradients at
every grid point along the simplex of simulated LSM-trees
with constant total memory. We then overlay an arrow on
top of the disk access contour plot pointing from the lowest
gradient component to the highest gradient component (we
move 8 bytes from one component to the other every time).
Finally, for each grid location, the process follows the arrows
until we either reach the edge of the simplex or a previously
visited point. We then plot an orange dot. The yellow dot
represents a global minimum found experimentally. Tests
with numerous other workloads also indicate that although
as expected the overall optimization problem is sometimes
non-convex, we can usually reach a point close to the op-
timum. The net result is that design continuums can be
blended with ML approaches to co-design a tailored system
that both knows how to navigate a vast space of the design

Figure 11: Navigating memory allocation by learning.

space and learns when needed to navigate design options
that are hard to deterministically formulate how they will
interact with the rest of the design.

6. NEXT STEPS
Research on data structures has focused on identifying

the fundamentally best performance trade-offs. We envision
a complementary line of future research to construct and
improve on design continuums. The overarching goal is to
flexibly harness our maturing knowledge of data structures
to build more robust, diverse and navigable systems. Future
steps include the construction of more and larger continu-
ums, and especially the investigation of broader classes of
data structure design, including graphs, spatial data, com-
pression, replication as well as crucially more performance
metrics such as concurrency, and adaptivity. The most chal-
lenging next step is whether the construction of design con-
tinuums itself can be (semi-) automated.
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