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Abstract

We review the design, data monitoring, and analyses of clinical trials with co-primary endpoints. 

Recently developed methods for fixed-sample and group-sequential settings are described. 

Practical considerations are discussed and guidance for the application of these methods is 

provided.
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1. Introduction

Typically in clinical trials, a single outcome is selected as a primary endpoint. This endpoint 

serves as the basis for the trial design including sample size determination, interim data 

monitoring, final analyses, and the reporting of the trial result. The primary endpoint should 

be an outcome which can provide the most clinically relevant measure to address the 

primary objective of a trial (e.g., see ICH E9 guideline (1998)).

However, the effects of interventions are multidimensional. Thus a single primary endpoint 

may not provide a comprehensive picture of the important effects of the intervention. For 

this reason, many recent clinical trials have been designed with more than one primary 

outcome. Multiple primary endpoints offer an attractive design feature as they could capture 

a more complete characterization of the effect of an intervention.

But multiple primary endpoints also create challenges. In December 2016, the European 

Medical Agency (EMA) released draft guidelines on multiplicity issues in clinical trials 

(CHMP, 2017), and in January 2017, the US Food and Drug Administration (FDA) issued 

guidance on multiple endpoints in clinical trials (FDA, 2017). The documents describe the 
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challenges raised by multiple endpoints and provide a regulatory perspective on how to deal 

with the issues, especially multiple comparisons and Type I and Type II error control during 

the planning and analysis of clinical trials. The guidelines distinguish two decision-making 

frameworks based upon whether it is desirable to evaluate if there are effects on AT LEAST 

ONE of the endpoints or whether there are effects on ALL of the endpoints. This decision 

defines the alternative hypothesis to be tested and provides a framework for approaching 

trial design. When designing the trial to evaluate an effect on AT LEAST ONE of the 

endpoints, then an adjustment is needed to control the Type I error rate. This is referred to as 

“multiple primary endpoints” (MPE) or “alternative primary endpoints” (Offen et al. 2007; 

Hung and Wang 2009; Dmitrienko et al. 2010) and is related to the union-intersection 

problem (Roy, 1953). In contrast, when designing the trial to evaluate the joint effects on 

ALL of the endpoints, no adjustment is needed to control the Type I error rate. However, the 

Type II error rate increases as the number of endpoints being evaluated increases. This is 

referred to as “co-primary endpoints” (CPE) (Offen et al., 2007; Hung and Wang, 2009; 

Dmitrienko et al., 2010) and is related to the intersection-union problem (Berger 1982). In 

CPE, failure to demonstrate an effect on any single endpoint implies that effects cannot be 

concluded. Table 1 summarizes the issues in MPE and CPE. Although CPE is a special case 

of MPE, it is important to recognize their differences. This paper will focus on statistical 

challenges created by CPE. We integrate recent methodological developments for design and 

analysis of CPE clinical trials.

In complex diseases, CPE may be preferable to a single primary endpoint as they offer the 

opportunity of characterizing intervention’s multidimensional effects. The use of CPE is 

increasingly common especially in medical product development. Regulators have issued 

guidelines recommending use of CPE in e.g., acute heart failure (Committee for Medicinal 

Products for Human Use, CHMP 2012a), Alzheimer’s disease (CHMP 2008; FDA 2013), 

diabetes mellitus (CHMP 2012b), Duchenne and Becker muscular dystrophy (CHMP 

2013a), and irritable bowel syndrome (IBS) (FDA 2012; CHMP 2013b). For example, 

CHMP 2008 and FDA (2013) recommend a co-primary endpoint approach using cognitive 

and functional or global endpoints to evaluate symptomatic improvement of dementia 

associated with Alzheimer’s disease. In some CPE trials, the sample size is often 

unnecessarily large and impractical. For example, Green et al. (2009) reported the results of 

a multicenter, randomized, double-blind, placebo-controlled trial in patients with mild 

Alzheimer disease (Tarenflurbil study), where co-primary endpoints were cognition as 

assessed by the Alzheimer Disease Assessment Scale Cognitive Subscale (ADAS-Cog) and 

functional ability as assessed by the Alzheimer Disease Cooperative Study activities of daily 

living (ADCS-ADL). The study was sized for 1600 participants in total (equally sized 

groups) based on a power of 96% to detect the between-group joint difference in the two 

primary endpoints (using a one-sided test at 2.5% significance level, with the standardized 

mean differences between the two groups of 0.2 for both endpoints, assuming zero 

correlation between the two endpoints). To overcome these issues, approaches to the design 

and analysis of CPE clinical trials in fixed-sample and group-sequential settings have been 

discussed (e.g., extensive references found in Offen et al. (2007), Alosh et al. (2014), 

Dmitrienko et al. (2013, 2014), Sozu et al. (2015) and Hamasaki et al. (2016)).
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We provide an overview of the design, data monitoring, and analyses of CPE clinical trials, 

summarizing recent developments. The paper is structured as follows: In Section 2, we 

describe the intersection-union principle and review recently developed approaches for 

testing hypotheses associated with CPE. We describe sample size determinations for fixed-

sample and group-sequential settings in Section 3 and Section 4, respectively. In Section 5, 

we discuss practical considerations and provide guidance for the design, data monitoring, 

and analyses of CPE clinical trials. In Section 6, we discuss developments for designing 

CPE clinical trials with other design characteristics including endpoints with other 

measurement scales, multiple intervention arms, enrichment designs and subgroup analyses, 

and multi-regional clinical trials.

2. Methods for evaluating CPE

2.1 Preliminaries and definition

Consider a randomized, fixed-sample clinical trial comparing the test intervention (T) with 

the control intervention (C), where K(≥ 2) continuous outcomes are to be evaluated as CPE, 

and n and rn participants are recruited and randomly assigned to the T and the C, 

respectively, where r is the allocation ratio of the C to the T. Then, there are n sets of K-

paired outcomes (YT1i, …, YTKi) (i = 1, …., n) for the T and rn sets of K-paired outcomes 

(YC1j, …, YCKj) (j = 1, …., rn) for the C. For k = 1, …, K, consider K mean difference and 

standardized mean difference for the T and C,, i.e., δ = (δ1, …, δK) and Δ = (Δ1, …, ΔK), 

wher δk = μTk – μCk and Δk = δk/σk. Suppose that a positive value of δk represent the test 

intervention’s advantage.

Assume that (YT1i, …, YTKi) and (YC1j, …, YCKj) are independently multivariate 

distributed with means E[YTki] = μTk and E[YCkj] = μCk, and common known variance-

covariance matrix Σ with diagonal elements var[YTki] = var[YCki] = σk
2, i.e.,

Σ =

σ1
2 ⋯ ρ1Kσ1σK

⋮ ⋱ ⋮

ρ1Kσ1σK ⋯ σK
2

where corr[YTki, YTk′i] = corr[YCkj, YTk′j] = ρkk′ (k ≠ k′; 1 ≤ k < k′ ≤ K). Let Zk be the 

statistic for testing the hypotheses, given by

Zk =
δk

σk (1 + 1 r) n

were δk = Y‒Tk − Y‒Ck, and Y‒Tk and Y‒Tk the sample means given by Y‒Tk = n−1Σi = 1
n YTki and 

Y‒Ck = (rn)−1Σ j = 1
n YCki. For large sample, each Zk is approximately normally distrusted as 

Zk ∼ N( rn(1 + r)Δk, 12) and (Z1, …, ZK) is approximately multivariate normally distributed 

with the correlation corr[Zk, Zk′] = ρkk′.
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2.2 Intersection–union principle

Suppose that there is an interest in evaluating whether T is superior to the C on all of the 

endpoints using a one-sided test. For CPE, “success” is declared if the superiority is 

achieved on all of the endpoints. The hypotheses for each endpoint are H0k: δk ≤ 0 versus 

H1k: δk > 0, and the each hypothesis is tested at significance level αk. The hypotheses for 

CPE are H0: ∪k = 1
K H0k versus H1: ∩k = 1

K H1k, and the null hypothesis H0 is rejected if and 

only if each null hypothesis H0k is rejected. In this procedure, the union H0 of all individual 

nulls is tested against the intersection of alternatives and this is referred to as the 

intersection-union test (IUT) (Berger, 1982). If αk is the size of test of H0k with the rejection 

region Rk, then the IUT with rejection region R = ∩k = 1
K Rk is a test of level α and the size of 

the test is most α with α = maxk=1,…, K αk. Therefore, if each endpoint is tested at level α 
then the size of the test for CPE is α. The IUT was described in Lehmann (1952) and was 

first called IUT by Gleser (1973). Since then, The IUT methods have been discussed in a 

variety of problems, for example, sampling problems by Berger (1982) and contingency 

table problems by Cohen et al. (1983).

When each endpoint is tested at α using IUT, then the Type I error is not inflated as the 

maximum Type I error remains bounded above by α. However, the rejection region of the 

null hypothesis defined as the intersection of K regions associated with the K endpoints, is 

considerably restricted and thus the hypothesis test is conservative, especially when the 

number of endpoints being evaluated is large and the correlations among the endpoints are 

small. Figure 1 illustrates the behavior of Type I error rate for α = 2.5% as a function of 

standardized mean difference Δ1 and correlation ρ12 for H0 when Δ2 = 0, where K = 2. The 

figure shows that the Type I error rate is the smallest when Δ1 = Δ2 = 0 and its maximum is 

not larger than the prespecified significance level of 2.5 % although the Type I error rate 

increases as Δ1 or ρ12 increases. When ρ12 = 0, the Type I error rate is 0.0625%. On the 

other hand, the Type II error rate increases as the number of endpoints being evaluated 

increases or the correlations among the endpoints are smaller. Here sample size adjustment 

is required to maintain the power of the test. This may result in a sample size that is too large 

and impractical to conduct the clinical trial. In order to provide a more reasonable and 

practical sample size, methods for CPE clinical trials have been discussed in fixed-sample 

designs (Chuang-Stein et al. 2007, 2017; Offen et al. 2007; Hamasaki et al., 2013; Hung and 

Wang, 2007, 2009; Kordzakhia et al., 2010; Julious and Mclntyre, 2012; Li, 2009; Sozu et 

al. 2010, 2011, 2012; 2016; Ristl et al, 2016; Senn and Bretz 2007; Sugimoto et al., 2012, 

2013, 2017; Xiong et al. 2005). Most methods consider incorporating the correlations among 

the endpoints into the calculations. We discuss methods for Type I error adjustment in 

Section 2.3 and for sample size determination with Type II error adjustment in Section 3.

2.3 Type I error adjustment methods

Several methods are available to improve the power for CPE with an adjusted Type I error. 

Based on examination of the false positive rate over a restricted null space discussed in Patel 

(1991), Chuang-Stein et al. (2007) proposed the “average Type I error” method. Instead of 

controlling the Type I error over the entire null space for CPE, their method takes the 

average Type I error rate over all possible null hypothesis configurations with an equal 
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weight. The significance level for each endpoint is adjusted to α* to ensure that the average 

Type I error rate is equal to the prespecified significant level of α. The value of α* depends 

on the correlation among the endpoints. Figure 2 illustrates the adjusted significance level 

α* for α = 2.5% and α = 5% as a function of the correlation ρ12, where K = 2. The figure 

shows that the adjusted significance level is largest when ρ12 = 0 (α* = 3.6% for α = 2.5% 

and α* = 7% for α = 5%), and is closer to α with increasing correlation toward one.

The method is attractive but introduces complexities. Within the IUT framework, the 

maximum of the Type I error rate is larger than the prespecified significance level of α if 

each endpoint is tested at α*. During trial planning, the adjusted significance level is 

prespecified by using the method with assumed correlations among the endpoints. But 

assumptions regarding the correlation may be incorrect. This calls into question of how such 

assumptions regarding the correlation affect the decision-making in clinical trials. Figure 3 

illustrates the behavior of Type I error for α* as observed the correlation ρ12 for H0 when Δ1 

= Δ2 = 0, where K =2 and α =2.5%. The adjusted significance levels using the average Type 

I error method are α* =3.6%, 3.5%, 3.3%, 3.0% and 2.6%, corresponding to ρ12 =0.0, 0.3, 

0.5, 0.8 and 0.99. The figure illustrates that the Type I error rate is larger than α = 2.5% 

when ρ12 is close to one.

Kordzakhia et al. (2010) introduced an interesting approach, called the “balanced adjustment 

method” for the Type I error. The method consists of adjustment of the significance level on 

other endpoints only if the intervention shows the highest significant difference on one 

endpoint (or more than one endpoint). Kordzakhia et al. (2010) illustrated a situation where 

a p-value from one of two endpoints is sufficiently small (e.g., p <0.001), but other p-value 

is slightly larger than the prespecified level, and the adjusted significance level αL (α < αL < 

Ka), which is slightly larger than α, is selected to testing a hypothesis. The method 

compensates a smaller intervention effect in one endpoint by a stronger intervention effect in 

other endpoint (Chuang-Stein and Li., 2017). For example, when K = 2, once αL has been 

allocated for the one endpoint with higher significant difference, the significance level for 

the other endpoint is given by (αL – p1)/(1 + cp1), where p1 is the p-value from the test for 

the endpoint with the higher significant difference and c = (αL – 2α)/α2. In the average Type 

I error method, the rejection regions of H0 include a region that all Zk are greater than c(α) 

and smaller than c(α*), where c(α) and c(α*) are the (1 – α)th and (1 – α*)th percentiles of 

the standardized normal distribution, respectively (Kordzakhia et al (2010) calls this region 

the “bad region”). The balanced adjustment method can exclude this region. Kordzakhia et 

al. (2010) discussed the balanced adjustment method under the average Type I error method 

and provide recommended values for αL via simulation. Similarly as in the average Type I 

error method, the adjustment depends on the correlation among the endpoints and a larger 

adjustment is needed when correlations are lower. One major concern is, similarly as in the 

average Type I error method, that at the planning, the adjusted significance levels for all of 

the endpoints can be prespecified by using the method with assumed standardized mean 

differences and correlations among the endpoints, but the assumptions may be incorrect. In 

such situations, an important question is whether the prespecified significance levels can be 

modified based on the observed data.
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The two procedures discussed above are motivated by the fact that the Type I error rate 

under the IUT near the origin in the null space is lower than the significance level. Recently 

Chuang-Stein and Li (2017) proposed a new test for which the information on the relative 

size of the mean difference and their distance from the origin in the null space are used to 

provide a more liberal critical value. Their procedure tests the endpoints sequentially 

according to their ordering by the size of mean difference even although they are equally 

important. This procedure also has associated concerns. Existing data may provide 

information on the size of the mean difference, but the assumptions may be incorrect. For 

example, Δ1
∗ > Δ2

∗ were assumed and significance levels for each endpoint were determined 

by this order. But if the observed order is reversed, i.e., Δ1 < Δ2, it is unclear how the two 

endpoints should be tested.

The problem in restricted null space associated with IUT has been also discussed in a 

different setting, where a clinical trial is designed to evaluate whether a combination or 

simultaneous administration of the interventions has a better benefit rather than monotherapy 

when two monotherapies are available for the treatment of a disease. For more details, please 

see Laska and Meisner(1989) and Sarkar et al. (1995).

Furthermore, Ristl et al. (2016) discussed a use of fallback procedure (Wiens, 2003; Wiens 

and Dmitrienko, 2005) for a special case of CPE, where a joint statistical significance have 

been demonstrated on not all, but a subset of the endpoints, and it is still of interest to make 

best use of the collected data by making at least partial claims on the efficacy in such a 

subset of endpoints. The procedure has the same rejection region as the conventional CPE 

test for simultaneous rejection of all null hypotheses, but allows one to reject elementary or 

intersection null hypotheses if this objective is not achieved. This is related to a problem of 

at least s endpoints must-win out of K endpoints. Delorme et al. (2016) defined the 

generalized Type II error rate and methods for sample size calculation in such a problem.

3. Sample size determination for CPE clinical trials

Methods for sample size determination in CPE clinical trials in a fixed-sample setting have 

been discussed by several authors. Jennison and Turnbull (1993) formulated one-sided 

testing and the decision-making framework, and discussed the behavior of sample size with 

varying correlation between the endpoints in clinical trials with efficacy and safety endpoints 

as co-primary. Xiong et al. (2005) discussed methods for power assessment and sample size 

calculation in clinical trials with two co-primary endpoints with application to Alzheimer’s 

disease, where two continuous endpoints are assumed to be bivariate-normally distributed 

with known variance-covariance matrix. Sozu et al. (2006) extended their method under 

unknown variance-covariance matrix using the Wishart distribution. Sozu et al. (2011) 

extended the methods to more than two endpoints under both known and unknown variance-

covariance matrices, and showed that the sample size using the method based on the known 

variance could be a good approximation to that using the unknown variance. Eaton and 

Muirhead (2007) provided a simple expression for calculating the p-value and computable 

bounds for the power function for CPE. Sugimoto et al. (2012) discussed a convenient and 

practical formula with accompanying numerical tables for sample size calculation in CPE 
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clinical trials. In this section, we outline the methods for sample size determinations for 

fixed-sample designs.

3.1 Type II adjustment and sample size calculation

When more than one endpoint is viewed as important in a clinical trial and the trial is 

designed to evaluate a joint effect on all of the endpoints, then the Type II error rate 

increases as the number of endpoints being evaluated increases. For example, if there are 

two co-primary endpoints with an equivalent standardized mean difference, then the sample 

size required for 80% power (i.e., the Type II error is 20%) for each endpoint provides the 

power of 80% × 80% =64% to evaluate the joint effect on both endpoints, assuming zero 

correlation between the endpoints. Therefore, to maintain 80% power for evaluating the joint 

effect on both endpoints, the sample size should be increased to provide the power of (100% 

– 20%)1/2 =89.4% for each endpoint. Similarly to the case with the Type I error, the Type II 

error changes with varying correlation among the endpoints (Sen and Bretz, 2007; Sozu et 

al., 2015). Therefore, it is important to evaluate the impact of the correlation on the power 

and sample size when designing CPE trials.

For CPE, the hypotheses for testing H0 versus H1 are tested by the statistics (Z1,…, ZK). The 

null hypothesis for each endpoint, H0k is rejected if the statistic Zk is larger than c(α) and 

the rejection regions of H0 are [{Z1 > c(α)} ∩ … ∩ {ZK > c(α)}], where c(α) is the (1 – 

α)the percentile of the standardized normal distribution. Defining δ∗ = (δ1
∗, …, δK

∗ ) to be the 

clinically meaningful difference in means between the two interventions to be detected with 

high probability. For large samples, we have the power for CPE at δ = δ* given as

1 − β = Pr
δ = δ∗ ⋂K

k = 1{Zk > c(α)} H1 ≈ Pr
δ = δ∗ ⋂K

k = 1{Zk
∗ > ck

∗(α)} H1 ,

where Zk
∗ = Zk − r (1 + r)nΔk and ck

∗(α) = c(α) − r (1 + r)nΔk with E[Zk
∗] = 0 and 

var[Zk
∗] = 1. This power is referred to as “complete power” (Westfall et al., 2011) or 

“conjunctive power” (Senn and Bretz, 2011). The joint distribution of (Z1
∗, …, ZK

∗ ) is K-

variate standardized normal NK(0, ρZ), where the off-diagonal element of ρZ is given by 

corr[Zk, Zk′] = ρkk′. Once the design parameters δk, σk, and ρkk′ has been given, the power 

can be numerically evaluated by the cumulative distribution function of K-variate 

standardized normal, i.e., ΦK( − c1
∗(α), ⋯, − cK

∗ (α) ∣ ρZ).

The sample size n required for achieving the desired power 1 – β at the significance level α 
is given by

n = n∗, if n is an interger,

[n∗] + 1, otherwise,
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where n* is the smallest value satisfying 1 − β ≤ ΦK( − c1
∗(α), …, − cK

∗ (α) ∣ ρZ), and [n*] is the 

greatest integer less than n. An iterative procedure is required to calculate n. The easiest way 

is a grid search to increase n gradually until the power under n exceeds the desired power of 

1 – β, where a maximum of sample sizes separately calculated for each endpoint with the 

power 1 ′ β at the significance level α can be used as an initial value for the calculation. 

This often requires considerable computing resources. The Newton–Raphson algorithm in 

Sugimoto et al. (2012) or the basic linear interpolation algorithm in Hamasaki eat al. (2013) 

may be utilized to reduce the necessary computational resources. For R and SAS® codes for 

implementing the calculations, please see Sozu et al. (2015).

Table 2 provides the sample size per intervention group (equally-sized groups: r = 1) in 

clinical trials with two co-primary endpoints (K = 2), using the method described above 

(hereafter we refer to this as the “conventional method”), with varying clinical meaningful 

standardized mean differences (Δ1
∗, Δ2

∗), and assumed correlation ρ12
∗  The sample size is 

calcualed to detect a joint effect on two endpoints with a power of 1 – β =80% or 90% at the 

significance level α = 2.5% by a one-sided test. The table also includes the sample size 

using the average Type I error method and the balanced adjustment method.

For the conventional method, when (Δ1
∗, Δ2

∗) = (0.2, 0.2), the sample size decreases as the 

correlation approaches one. Comparing the sample size for ρ12
∗ = 0.0 to that for for ρ12

∗ ≥ 0.8, 

the decrease in the sample size is more than 10%. However, when correlation is smaller, i.e., 

ρ12
∗ ≤ 0.5, the decrease is less than 5%. When (Δ1

∗, Δ2
∗) = (0.3, 0.2), the sample size still 

decreases, but does not change considerably as the correlation varies. When (Δ1
∗, Δ2

∗) = (0.4, 

0.2), there is no decrease with varying correlation and the sample size is equivalent to that 

required for the endpoint with the smaller standardized mean difference (i.e., Δ2
∗) under the 

non-adjusted Type II error rate. Both the average Type I method and the balanced adjusted 

method provide relatively smaller sample size compared with the conventional method. The 

sample size increases toward that required from the conventional method as the correlation 

approaches one. When (Δ1
∗, Δ2

∗) = (0.3, 0.2) and (0.4, 0.2), then the sample size calculated for 

evaluating a joint effect is smaller than that required for the endpoint with the smaller 

standardized mean difference under the non-adjusted Type II error rate.

3.2 A simpler approach for sample size calculation

One major consideration in sizing CPE clinical trials is whether the correlations among the 

endpoints should be incorporated into the power assessment and sample size calculation 

(Sozu et al., 2015). The correlations may be estimated from external or internal pilot data, 

though such data are usually limited or unreliable. If correlations are overestimated at the 

planning stage when including them into the sample size calculation, then the sample size is 

too small and important effects may not be detected.

Using the conventional method, there is no practical advantage to incorporating correlations 

into the power assessment and sample size calculation (i) when correlations are low or 
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moderate, and/or (ii) when the standardized mean difference for one endpoint(s) is smaller 

than the other endpoints as the reduction in the sample size is relatively small (less than 5%). 

For Situation (i), if the mean effect sizes are assumed to be the same on all K primary 

endpoints Δ = Δ1 = ⋯ = ΔK, and their correlations are ignored, then the sample size can be 

calculated simply using an equation for a single endpoint with adjusted power 1 – γ, given 

by

n = (c(α) + c(γ))2

r (1 + r)Δ2 .

where γ = 1 – (1 0– β)1/K and c(γ) is the (1 – γ)th percentile of the standardized normal 

distribution. If there are differences in mean effect sizes among the endpoints, Varga et al. 

(2017) discussed a simple procedure to calculate the sample size required to achieve the 

desired power using SAS® code. However, when the standardized mean difference for one 

endpoint(s) is smaller than the other endpoints (e.g., Δ1/Δ2 > 1.5 or Δ2/Δ1 > 1.5 for K = 2), 

then the sample size can be determined based on the one endpoint with the small 

standardized mean difference using the equation for the singe endpoint, without the adjusted 

power. Sozu et al. (2015) and Ando et al. (2015) provides reference values for when the 

sample size equation can be simplified using the equation for a single endpoint.

When the standardized mean difference for one endpoint(s) is smaller than the other 

endpoint(s), the sample size required may be too large to evaluate an effect on the 

endpoint(s) with the larger standardized mean difference. If these endpoints are very invasive 

or expensive to obtain (e.g., data from a liver biopsy or gastro-fiberscope, or data from 

expensive imaging), then one may consider stopping measurement of this endpoint as soon 

as possible, that is, once the number of participants required for that endpoint are accrued. 

However, the trial will continue until the number of participants required for CPE without 

further examination of the invasive endpoint. Sozu et al. (2015) discussed methods for 

allowing the option of selecting different sample sizes among the endpoints in CPE and 

MPE settings. The method does not reduce the sample size required for CPE, but reduces the 

participant’s burden.

3.3 Binary and time-to-event outcomes

We have reviewed the methods to address continuous endpoints in the previous sections. 

However clinical trials may be conducted with the objective of comparing a test intervention 

with that of a standard intervention based on several binary outcomes. For example, irritable 

bowel syndrome (IBS) is one of the most common gastrointestinal disorders and is 

characterized by symptoms of abdominal pain, discomfort, and altered bowel function 

(American College of Gastroenterology, 2013; Grundmann and Yoon, 2010). The 

comparison of the interventions to treat IBS is based on the proportions of participants with 

adequate relief of abdominal pain and discomfort, and improvements in urgency, stool 

frequency, and stool consistency.

Sozu et al. (2010) discussed sample size determination in clinical trials with multiple binary 

endpoints when risk differences are evaluated as co-primary. They introduced three different 
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measures to define the associations among multiple binary endpoints and discussed a 

formula for power for the five common testing strategies frequently used in the analysis of 

binary data for a two-group comparison. Based on simulations, they conclude that the 

normal approximation method works well in most situations except for extremely small 

event rates or small sample sizes. In these situations, they recommend more direct ways of 

calculating the sample size without using a normal approximation. Ando et al. (2015) and 

Sozu et al. (2015) described methods for power assessment and sample size calculation for 

clinical trials with multiple binary endpoints when relative risks or odds ratios are evaluated 

as co-primary. Song (2009) discussed sample size calculations with multiple co-primary 

binary endpoints in the case of noninferiority clinical trials.

Methods for time-to-event outcomes are more complex. Considerable care is needed to 

design event-time trials. As discussed in Sugimoto et al. (2013) and Hamasaki et al. (2013), 

the magnitude of the association among the time-to-event outcomes may depend on time. 

For example, the outcomes may be less correlated in earlier stages but more highly 

correlated in later stages. The censoring mechanism further complicates the design of these 

trials. For example, coinfection/comorbidity trials may utilize primary endpoints to evaluate 

multiple comorbidities; e.g., a trial evaluating therapies to treat Kaposi’s sarcoma (KS) in 

HIV-infected individuals may have the time to KS progression and the time to HIV virologic 

failure, as primary endpoints. Both events are non-fatal and neither event-time is censored by 

the other event. In new anticancer drug trials, the most commonly used primary endpoint is 

overall survival (OS) defined as the time from randomization until death from any cause. OS 

often requires long follow-up periods after disease progression leading to long and expensive 

trials. Therefore, in addition to OS, as a primary endpoint, many trials evaluate the time from 

randomization to the first of tumor progression (TTP) or progression-free survival (PFS) 

which is composite of tumor progression and death. In this example, a death event censors 

TTP: Death is a competing risk for TTP but not vice versa. This is referred to as “semi-

competing risks” (Fine et al. 2001).

Hamasaki et al. (2013) and Sugimoto et al. (2013) developed methods for sizing clinical 

trials with two time-to-event outcomes under a time-dependent correlation structure of three 

bivariate exponential distributions, where both events are non-fatal. Sugimoto et al. (2013) 

discussed the log-rank test based method using the normal approximation for calculating 

both sample size and the number of events. They evaluate how the sample size varies as a 

function of the correlation between the endpoints for CPE and MPC. Hamasaki et al. (2013) 

discussed a simpler normal approximation method for calculating the sample size based on 

the log-transformed hazard ratio. Sugimoto et al. (2017) extended this methodology to two 

additional situations, i.e., when one event is fatal and other is non-fatal, and when both are 

fatal.

Furthermore, there may be instances where CPE are of mixed scales of measurement. For 

example, a trial evaluating interventions for pain may have pain evaluated on a continuous 

scale (e.g., Gracely pain scale) but have a binary safety endpoint (occurrence of an adverse 

event). Sozu et al. (2012) discussed sample size methodology assuming that the endpoints 

are distributed as a multivariate normal distribution, where binary variables are observed in a 

dichotomized normal distribution with a certain point of dichotomy. For mixed time-to-event 
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and binary endpoints, Sugimoto et al. (2013) defined the relationship between the endpoints 

under the limited distributions of copulas. They evaluate how the correlation is restricted 

depending on the marginal probabilities of binary endpoints, and discussed how the sample 

size varies as a function of the correlation.

4. Group-sequential designs for CPE clinical trials

The Tarenflurbil trial, mentioned in Introduction, failed to demonstrate a beneficial effect of 

tarenflurbil as the observed ADCS-ADL scores in the tarenflurbil group were smaller than 

for the placebo group. If the design had included an interim efficacy or futility assessment, 

the trial may have been stopped earlier, saving resources and time, and preventing trial 

participants from being exposed to an ineffective intervention unnecessarily. Standard 

methods for sizing trials with CPE often results in large sample sizes due to the conservative 

nature of the testing procedure even when the correlations among the endpoints is 

incorporated into the calculation. Therefore, researchers may naturally consider interim 

analyses to evaluate if the research questions can be answered with fewer trial participants or 

shorter follow-up.

In this section, we review methods for group-sequential designs in CPE clinical trials. The 

improvement in power by incorporating the correlations among endpoints into Type I or 

Type II error adjustments is limited and the calculated sample size may still be large in 

practical situations. As suggested by Hung and Wang (2009), use of group-sequential 

designs may be a remedial but practical approach to improve efficiency. But it also creates 

operational challenges in study conduct and data monitoring.

4.1 Preliminaries and definitions

Consider a randomized, group-sequential clinical trial of comparing T with C, where the 

same L maximum planned analyses and the same information space are planned for all 

endpoints. Let nl and rnl be the cumulative number of participants on the T and the C at the 

lth analysis (l = 1, …, L). Hence, up to nL and rnL participants are recruited and randomly 

assigned to the T and the C. Then, there are n sets of nL-paired continuous outcomes (YT1i, 

…, YTKi) (i = 1, …., nL) for the T and rn sets of rnL-paired continuous outcomes (YC1j, …, 

YCKj)(j = 1, …., rnL) for the C. Let (Z1l, … ZKl) be the statistics for testing the hypotheses 

at the lth analysis Zkl = δkl (σk (1 + 1 r) nl), were δkl = Y‒Tkl − Y‒Ckl, and Y‒Tkl and Y‒Ckl the 

sample means given by Y‒Tkl = nl
−1Σi = 1

nl YTki and Y‒Ckl = (rnl)
−1Σ j = 1

rnl YCkj. For large samples, 

each Zkl is approximately normally distributed as Zkl ∼ N( rn(1 + r)Δk, 12). Furthermore, as 

the joint distribution of (Z1l, …, ZKl) is approximately K-variate normally distributed with 

the correlation pkk′ and the joint distribut on of (Zk1, …, ZkL) is approximately K-variate 

normally distributed with the correlation nl nl′(1 ≤ l ≤ l′ ≤ L), the joint distribution of the 

joint distribution of (Z11, …, ZK1, …, Z1L, …, ZKL) is KL-variate normal with their 

correlations given by ρkk′ nl nl′(k ≠ k′; l ≠ l′).

In group-sequential designs for CPE clinical trials, several decision-making frameworks 

associated with interim evaluation of efficacy in two endpoints (Ando et al., 2015; Asakura 
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et al., 2014, 2015; Cheng et al., 2014) and two or more endpoints (Hamasaki et al., 2015) or 

efficacy or futility in two endpoints (Cook and Farewell, 1994; Jennison and Turnbull, 1993; 

Schüler et al., 2017) and two or more endpoints (Asakura et al., 2017) have been discussed. 

In the subsequence sections, we briefly review these methods.

4.2 Interim evaluation of efficacy only

When evaluating the joint effects on all K endpoints within the context of group-sequential 

designs, a general decision-making framework associated with hypothesis testing is to reject 

H0 if statistical significance of the T relative to the C is achieved for all endpoints at any 

interim analysis until the final analysis (i.e., not necessarily simultaneously) (Asakura et al., 

2014; Hamasaki et al., 2015). If statistical significance is achieved on some but not all of the 

endpoints at the interim, then the trial will continue but subsequent hypothesis testing is 

repeatedly conducted only for the previously nonsignificant endpoint(s). This decision-

making framework offers the opportunity of stopping measurement of an endpoint for which 

superiority has already been demonstrated. This may be desirable if the endpoint is very 

invasive or expensive (e.g., data from a liver biopsy or gastro-fiberscope, or data from 

expensive imaging). The stopping rule is formally described as follows;

Until the lth analysis (l = 1, …, L – 1),

If Zkl > ckl
E (α) for each endpoint, for some 1 ≤ l′ ≤ l, then reject H0 and stop the trial, 

otherwise, continue to the (l + 1)th analysis

at the Lth analysis, for the endpoints that statistics have not yet crossed the efficacy 

boundary until (L – 1)th analysis,

If ZkL > ckL
E (α) for nonsignificant endpoint(s) until the (L – 1)th analysis, then reject H0, 

otherwise, do not reject H0,

where ckl
E (α)(k = 1, …, K; l = 1, …, L) are the efficacy boundaries. The efficacy boundaries for 

each endpoint can be simply prespecified using any group-sequential method such as the 

Lan–DeMets error-spending method (Lan and DeMets, 1983), analogously to the single 

endpoint case, as if they were a single primary endpoint, ignoring the other co-primary 

endpoint. The power corresponding to this decision-making framework at δ = δ* is

1 − β = Pr
δ = δ∗ ⋃L

l = 1Z1l > c1l
E (α) ∩ … ∩ ⋃L

l = 1ZKl > cKl
E (α) H1 .

This power can be numerically assessed by using multivariate normal integrals.

The decision-making framework described above is flexible but stopping measurement may 

also introduce operational challenges into the trial. To avoid the operational difficulties, one 

may opt for a restriction regarding when H0 is rejected and the trial is stopped. The 

simplified version of the former decision-making framework is to reject H0 if statistical 

significance is achieved on all of the endpoints at an interim simultaneously (Asakura et al., 
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2014; Cheng et al., 2014; Hamasaki et al., 2015). If any test of the endpoints is not 

significant, then the trial continues until the joint significance for all endpoints is established 

simultaneously. The stopping rule is formally described as follows;

Until the lth analysis (l = 1, …, L ′ 1),

If Zkl > ckl
E (α) for all endpoints, at the same lth interim analysis, then reject H0 and stop the 

trial,

otherwise, continue to the (l + 1)th analysis

at the Lth analysis,

If ZkL > ckL
E (α) for all endpoints, then reject H0, otherwise, do not reject H0.

The efficacy boundaries for each endpoint can be simply prespecified using any group-

sequential method such as the Lan–DeMets error-spending method. The power 

corresponding to this decision-making framework at δ = δ* is

1 − β = Pr
δ = δ∗ ⋃L

l = 1 Z1l > c1l
E (α) ∩ … ∩ ZKl > cKl

E (α) H1

This power can be numerically assessed by using multivariate normal integrals. Hamasaki et 

al. (2015, 2017) summarized advantages and disadvantages of these two decision-making 

frameworks. Hamasaki et al. (2015) discussed more flexible decision-making frameworks 

allowing the different time points of analyses among the endpoints and considered the use of 

hierarchical hypothesis testing methodology for CPE clinical trials.

In a group-sequential setting, we discuss two sample size concepts: the maximum sample 

size (MSS) and the average sample number (ASN). The MSS is the sample size required for 

the final analysis to achieve the desired power. The MSS is given by the smallest integer no 

less than nL satisfying the above power for prespecified design parameters including the 

differences in means, correlations among the endpoints, and the Fisher’s information time 

for the interim analyses. Similarly as in fixed-sample designs, an iterative procedure is 

required to find the maximum sample size.

The average sample number (ASN) is the expected sample under hypothetical reference 

values and provides the information regarding the number of participants anticipated in 

group-sequential design in order to reach a decision point. The ASN per intervention group 

is given by

ASN = ∑
l = 1

L − 1
nlPl + nL 1 − ∑

l = 1

L − 1
Pl ,

where Pl = Pl (Δ1,…, ΔK∣ρZ) is stopping probability or exit probability as defined the 

likelihood of crossing the critical boundaries at the lth interim analysis assuming the true 
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values of intervention’s standardized mean differences. Calculating power, MSS and ASN 

using the multivariate normal integrals does not requires expensive computing resources in 

most practical situations, and can be done within seconds using standard statistical software 

such as R or SAS® However, when considering more than two endpoints in a group-

sequential trial with more than five analyses, the computational time will increase 

considerably (Hamasaki et al., 2015). In such situations, Monte Carlo simulation-based 

methods provide an alternative. However the number of replications for the simulations 

should be carefully chosen to control simulation error in evaluating the empirical power. For 

more details, please see Asakura et al. (2014) and Hamasaki et al. (2015, 2016).

Table 3 provides MSS and ASN per intervention group (equally-sized groups: r = 1) in 

clinical trials with two co-primary endpoints (K =2), based on the two decision-making 

frameworks described above, with varying clinical meaningful standardized mean 

differences (Δ1
∗, Δ2

∗), assumed correlation ρ12
∗ , and the number of planned analyses L. The 

MSS is calculated to detect a joint effect on two endpoints with the power of 1 – β =80% or 

90% at the significance level of α =2.5% by a one-sided-test. The O’Brien-Fleming critical 

boundaries are selected for both endpoints and determined using the Lan-DeMets error 

spending method with equally-spaced increments of information. For both decision-making 

frameworks, when effect sizes are equal, i.e., (Δ1
∗, Δ2

∗) = (0.2, 0.2), the MSS increases as the 

number of the number of analyses increases and with lower correlation. On the other hand, 

the ASN decreases as the number of analyses increases and larger correlation. When effect 

sizes are unequal, i.e., Δ1
∗ > Δ2

∗, the MSS increases as the number of planned analyses 

increases, but it does not change as the correlation varies. On the other hand, the ASN 

decreases as the number of planned analyses increases independently of the correlation.

4.3 Interim evaluation of efficacy or futility

In many trials, in addition to efficacy assessments, it is often desirable to conduct interim 

assessments for futility (Gould and Pecore, 1982; Snapinn et al., 2006; Ware et al., 1985). 

There are two fundamental approaches for the interim futility assessment, based on: (i) the 

conditional power (Lachin, 2005; Lan et al., 1982;), and (ii) futility boundaries using group-

sequential methodology (DeMets and Ware, 1980, 1982; Whitehead and Matsushita, 2003). 

For CPE clinical trials, methods are limited with group-sequential based methods having 

been discussed by a few authors (Asakura et al. 2017; Cook and Farewell, 1994; Jennison 

and Turnbull, 1993; Schüler et al., 2017).

When considering CPE group-sequential trials with the decision-making frameworks 

evaluating efficacy (rejecting the null hypothesis) or futility (accepting the null hypothesis), 

efficacy and futility boundaries are prespecified and determined using any group-sequential 

method. Jennison and Turnbull (1993) provide the fundamentals for this design in clinical 

trials with two endpoints. When planning interim efficacy and futility assessments in CPE 

clinical trials, the approach determines efficacy and futility boundaries to preserve the 

desired Type I and II errors, analogously to the single endpoint case. Jennison and Turnbull 

(1993) described a simple decision-making framework for rejecting or accepting the null 

hypothesis associated with CPE. They assumed that both of efficacy and futility assessments 
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are performed at the same interims and determined the efficacy and non-binding futility 

boundaries based on methods in Emerson and Fleming (1989). Both of the efficacy and 

futility boundaries are fixed for any values of correlation among the endpoints but the 

method incorporates the correlations into the power assessment.

As an extension of Asakura (2014), Asakura et al. (2017) discussed more flexible division-

making frameworks that allow for different timings for the efficacy and futility assessments 

with two or more endpoints. The framework provides savings for error spending (Type I and 

II errors), thus improving the efficiency (increasing power and reducing required sample 

sizes). The efficacy and non-binding futility boundaries are determined using any error-

spending function to spend both Type I and Type II errors. The efficacy boundary for each 

endpoint is determined independent of the futility boundary. The futility boundary is 

determined by incorporating the correlations among the endpoints. They showed how the 

correlations may affect the decision-making for accepting the null hypothesis. Asakura et al. 

(2017) provide R codes for implementing the methods including efficacy and futility 

boundary calculation, and MSS and ASN.

Schüler et al. (2017) discussed methods to determine the binding futility boundary based on 

several optimal criteria in two-stage group-sequential designs with two co-primary 

endpoints. However, analogously to trials with a single primary endpoint, in general use of 

binding futility boundaries should be selected carefully in practice since the Type I error will 

be inflated if the trial is not stopped when at least one test statistic has crossed the futility 

boundary.

Group-sequential designs and other related methods do not provide formal evaluation 

regarding potential effect size estimates and associated precision with continuation of the 

trial to aid in go/no-go decision-making. Using prediction (Evans et al., 2007; Li et al., 

2009) could be a flexible and practical approach for monitoring interim data of CPE clinical 

trials. This approach is appealing in that it provides quantitative evaluation of potential effect 

sizes and associated precision, with endpoint measurement continuation, thus providing 

investigators with a better understanding of the pros and cons associated with continuation 

of endpoint measurement. Asakura et al (2017) discussed an extension to the two endpoint 

situation, and evaluated the relationship between the prediction with other methods 

including conditional power, predictive power, and group-sequential designs.

4.4 Sample size recalculation based on the observed effect at an interim look

Clinical trials are designed based on assumptions often constructed based on prior data. 

However, prior data may be limited or an inaccurate indication of future data, resulting in 

trials that are over/underpowered. Interim analyses provide an opportunity to evaluate the 

accuracy of the design assumptions and potentially make design adjustments (i.e., to the 

sample size) if the assumptions were markedly inaccurate. Group-sequential designs allow 

for early stopping when there is sufficient statistical evidence that the two treatments are 

different. However, more modern adaptive designs may also allow for increases in the 

sample size if effects are smaller than assumed. Such adjustments must be conducted 

carefully for several reasons (Evans and Ting, 2015). Challenges include the following: (i) 

maintaining control of statistical error rates, (ii) developing a plan to make sure that 
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treatment effects cannot be inferred via back-calculation of a resulting change in the sample 

size, (iii) consideration of the clinical relevance of the treatment effects, and (iv) practical 

concerns such as an increased cost and the challenge of accruing more trial participants. In 

this section, we discuss sample size recalculation based on the observed intervention’s 

effects at an interim analysis with a focus on control of statistical error rates.

Asakura et al. (2014) discussed sample size recalculation based on the observed 

intervention’s mean differences at an interim analysis with a focus on the control of 

statistical error rates, within the two decision-making frameworks discussed in Section 4.1, 

where all endpoints are continuous. Their method is based on Cui–Hung–Wang (CHW) 

statistics (Cui et al., 1999) to control the Type I error rate. Incorporating the uncertainty of 

the estimates at the interim into the sample size recalculation is important. When planning 

the sample size recalculation in CPE clinical trials, one practical question is whether the 

sample size can be increased or decreased in sample size recalculation. Referring to Asakura 

et al. (2014), the option of decreasing the sample size is a suboptimal choice as the power 

cannot maintain the targeted power although the expected sample size can be reduced more 

than other recalculation options. For other options, i.e., only allowing an increase in the 

sample size or allowing an increase or decrease in the sample size, the targeted power is 

maintained. An important decision regards the optimal timing of the sample size 

recalculation. The timing should also be carefully considered as the power does not reach 

desired levels if the sample size recalculation is done too early in the trial, especially when 

considering a decrease in the sample size. For more details, please see Asakura et al. (2014).

For other endpoint scale such as binary outcomes, Ando et al. (2015) and Asakura et al. 

(2015) described the methods when the risk difference or relative risks are being evaluated.

5 Considerations when designing co-primary clinical trials

When designing CPE trials in a fixed-sample or group-sequential setting, one important 

decision is the selection of the correlations among the endpoints in the power evaluation and 

sample size calculation, i.e., whether the observed correlations from external or pilot data 

should be utilized. As shown in Section 3, when the standardized mean differences for the 

endpoints are unequal, the advantage of incorporating the correlation into sample size 

calculation is less dramatic as the required sample size is primarily determined by the 

smaller standardized mean difference and does not greatly depend on the correlation. In this 

situation, the sample size equation for CPE can be simplified using the equation for a single 

endpoint. When the standardized mean differences among endpoints are approximately 

equal, one conservative approach is to assume that the correlations are zero even if nonzero 

correlations are expected. However, this may result in a sample size that is too large and 

impractical to conduct the clinical trial.

As discussed in Section 4, group-sequential designs provide an alternative solution to 

overcome this issue although may create implementation and operational issues associated 

with maintaining confidentiality of interim data (Evans and Ting, 2015). For example, when 

planning two analyses (one interim and final analyses), group-sequential designs provides 

very minimal increases in the required sample size compared to fixed-sample designs (see 
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Tables 2 and 3). Table 4 summarizes ASN under a given MSS in clinical trials with two co-

primary endpoints with varying clinically meaningful standardized mean differences (Δ1
∗, 

Δ2
∗), the number of planned analyses L and true correlation ρ12

# , where K = 2. The given MSS 

per intervention group (equally sized groups: r = 1) is calculated to detect a joint effect on 

the two endpoints with a power of 80% or 90% using a one-sided test at the significance 

level of α = 2.5%, based on the clinically meaningful standardized mean difference (Δ1
∗, Δ2

∗) 

and zero correlation, where the decision-making framework is to reject H0 at the same 

analysis for both endpoints. The critical boundaries for both endpoints are determined, using 

the O’Brien-Fleming function based on the Lan-DeMets error spending method with equal 

information space. The ASN is calculated under H1. For example, in a fixed-sample design, 

516 participates per intervention group are required to detect a joint effect on both endpoints 

assuming (Δ1
∗, Δ2

∗) =(0.2, 0.2) with correlation ρ12
∗  =0.0, at the power of 80% and a 

significance level of 2.5% by one-sided test. When planning two analyses in a group-

sequential design with the same designs parameter configuration, the MSS is 518. Under this 

MSS, the ASN are 502, 494, 488, 475 and 459 corresponding to true correlations ρ12
#  =0.0, 

0.3, 0.5, 0.8 and 0.99 respectively and smaller than the fixed sample size. The relative ratio 

of ASN to fixed sample size are from 3% to 11%. When planning more than two analyses, 

the ASN is much smaller than the fixed sample size. If four analyses are planned, the ASNs 

are 459, 449, 442, 428 and 410 corresponding to true correlations ρ12
#  =0.0, 0.3, 0.5, 0.8 and 

0.99 respectively, and the relative ratio of ASN to fixed sample size are from 11% to 21%. 

Similar behavior is also observed with unequal standardized mean differences (Δ1
∗, Δ2

∗) =(0.3, 

0.2) and (0.4, 0.2). There, if assuming zero correlations among the endpoints in group-

sequential designs, careful consideration is required regarding how to deal with the number 

of planned analyses to reduce the ANS.

However, assuming zero correlation is conservative when there is concrete evidence of 

higher correlations. In this situation, one approach is to use the confidence limit method 

discussed in Tamhane et al. (2012), which takes sampling error associated with the 

correlations into account by using of the upper confidence limit of the correlation. Recently 

Kunz et al. (2017) considered methods for incorporating the observed correlations among 

the endpoints into interim decision-making in clinical trials with multiple endpoints in 

blinded and unblinded settings and evaluated several types of correlation estimators in terms 

of expected value and mean square error. When standardized mean differences are unequal 

among the endpoints, the power is not improved with larger correlation. As discussed in 

Asakura et al. (2014), with unequal standardized mean differences, incorporating the 

correlation into the sample size calculation at the planning or interim stages may offer no 

advantage. Careful consideration is required regarding how to deal with correlations among 

the endpoints in designing clinical trials with multiple endpoints.

When constructing efficient group-sequential designs in CPE clinical trials, another 

important decision is the choice of the critical boundary based on an error-spending method 

for each endpoint. Although for illustrative objectives, the same critical boundaries were 
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selected for both endpoints in Section 4. Different critical boundaries can be considered. If 

the trial was designed to detect effects on at least one endpoint with a prespecified ordering 

of endpoints, then the selection of different boundaries for each endpoint (i.e., the O’Brien-

Fleming-type boundary for the primary endpoint and the Pocock type boundary for the 

secondary endpoint) can provide higher power than using the same critical boundary for 

both endpoints (Glimm et al. 2010; Tamhane et al., 2010). However, as Hung et al. (2016) 

noted, in cardiovascular clinical trials where the primary endpoint is a composite of major 

adverse cardiac events (MACE) including all-cause death, myocardial infraction, and stroke, 

and the secondary endpoint is all-cause death, the choice of the Pocock type boundary for 

the secondary endpoint is impractical as a larger sample sizes (or greater number of events) 

may be required to detect an effect on all-cause death.

On the other hand, as shown in Asakura et al. (2014) and Hamasaki et al. (2015, 2017), the 

selection of a different critical boundary has a minimal effect on the power, MSS and ASN. 

In the decision-making frameworks described in Section 4.2, regardless of equal or unequal 

standardized mean difference among the endpoints, the largest power is obtained from the 

O’Brien-Fleming boundary for all of the endpoints, and the lowest from the Pocock-type 

boundary for all of the endpoints. Regarding the ASN, the smallest is provided by the 

Pocock-type boundary for all of the endpoints while the largest is provided by the O’Brien-

Fleming boundary. One possible scenario for selecting different boundaries is when one 

endpoint is invasive or costly, and stopping measurement of that endpoint is desirable as 

soon as possible, e.g., once the superiority for the endpoint has been demonstrated.

6 Additional issues

We have reviewed methods recently developed for the design, data monitoring, and analyses 

of clinical trials with CPE in fixed-sample and group-sequential settings. In this final 

section, we briefly discuss further developments with other design characteristics, including: 

(i) more than two intervention groups; (ii) group-sequential designs with multiple time-to-

event endpoints; (iii) enrichment designs and subgroup analysis, and (iv) multi-regional 

clinical trials.

More than two intervention groups:

In clinical trials with multiple intervention arms, clarification of the trial objective is 

paramount. Objectives may include evaluating if all of the interventions are superior (or non-

inferior) to a control or if at least one intervention is superior (or non-inferior) to a control. 

For the latter objective, methods for group-sequential and modern adaptive designs for 

multiple intervention arms have been discussed (e.g., Thall et al. 1989; Follmann et al. 1994; 

Stallard and Todd 2003, 2008; König et al. 2008; Magirr et al. 2012). Further investigation is 

needed for group-sequential and adaptive designs in more complex clinical trial settings, 

e.g., multiple intervention arms with CPE and targeted subpopulations.

Group sequential designs with multiple time-to-event endpoints:

When extending the methods for fixed-sample designs in Sugimoto et al. (2013, 2017) to a 

group-sequential setting, a complex issue is how to allocate the significance level to each 
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interim analysis between the two endpoints as the amount of information for the endpoints 

may vary at a particular interim time-point of the trial. One strategy is to allocate the 

significance level, assuming the same information between the two endpoints based on one 

of the endpoints, even though they may never be at the same at the interim time-point. 

Another strategy is to calculate the required maximum number of events, or sample size and 

determine the timing of interim analyses based on one of the endpoints, and then calculate 

the maximum number of events required for the other endpoint under this sample size, and 

the information corresponding the timing of interim analyses for one endpoint, ignoring the 

relationship among the endpoints. However, when one event is fatal and the other is non-

fatal, then the fatal event may impact the information for the nonfatal event as the fatal event 

censors the non-fatal event. In addition, the required maximum number of events for both 

endpoints may not be achieved simultaneously, potentially resulting in a situation where the 

maximum required number of events for one endpoint is observed at a particular time point, 

but not for the other endpoint. Here, there may be the two options: (i) stop the trial even 

though the required maximum number of events for one of the endpoints has not yet been 

observed, or (ii) continue the trial until the required maximum number of events for both of 

the endpoints are observed. For (ii), the observed number of events may be larger than that 

required. Here the final critical boundary for the endpoint with the larger number of 

observed events must be recalculated to control the Type I error rate based on the observed 

events.

Enrichment designs and subgroup analysis:

When a disease is heterogeneous or the intervention can target a specific mechanism of 

action related to disease subtypes, use of conventional clinical trial design may not suffice. 

Conventional trials generally assume homogeneous treatment effect for all participants in the 

trial. When markers can precisely identify individuals with a high probability of response to 

an intervention, clinical trials could focus on such individuals. Conducting a trial in 

subgroup patients with a potentially high response is termed “enrichment.” Advantages of 

enrichment designs include: increasing the chance of success often with a smaller sample 

size, directing treatment where it is likely to work best, and avoiding unnecessary harm. In 

enrichment designs, the statistical challenging task is identifying and confirming that a 

subgroup of patients with a positive benefit: risk balance when treated with an intervention 

(Ondra et al. 2015).

Subgroup analyses are common in clinical trials. However, the quality and level of evidence 

as well as the strength of conclusions regarding a subgroup-specific intervention depends on 

many factors including the trial design and conduct, and the reliability and predictive ability 

of the biomarker that defines the subgroup. Wang and Hung (2014) provide a list of criteria 

for consideration that may affect interpretability of subgroup-specific findings. If 

participants with and without an enrichment characteristic are studied, then the primary 

result may be driven by the result in the enriched subgroup. In some enrichment designs that 

recruit participants with and without the enrichment characteristic, the trial-wise Type I error 

rate can be shared between a test conducted using only the enriched subgroup and a test 

conducted using the entire population. The Type I error allocation scheme allows for the 

assessment of the intervention effect in the entire entered population when there may be 
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some effect in the non-enriched subgroup while also allowing assessment in the enriched 

subgroup. Determining the required sample size that will provide reasonable power to test 

these hypotheses while controlling the Type I error including a prespecified order of testing 

or a multiple testing procedure is challenging. Statistical methods have been discussed and 

recent developments in the statistical literature regarding identification and confirmation of 

targeted subgroups can be found in the Journal of Biopharmaceutical Statistics Special Issue, 

“Subgroup Analysis in Clinical Trials” (2014). In addition, Ondra et al. (2015) provide a 

systematic review.

Multi-regional clinical trials:

Recently, clinical trials across multiple regions of the world, socalled ‘multiregional clinical 

trials’ (MRCTs), have become a common practice in the shift to the simultaneous 

development of drugs on a global scale (Ando and Hamasaki, 2010). The use of MRCTs in 

drug development will be of great benefit to the creation of solid evidence regarding the 

safety and efficacy of drugs, to more efficient and cost-effective drug development, and to a 

resolution of the drug lag with simultaneous worldwide registration, where drug lag means, 

for example, circumstances in which drugs already approved in the European Union (EU), 

United States (US) or other regions have not yet been approved and have not been made 

available to patients in e.g., Japan over a long period of time. However, such trials present 

considerable challenges as far as quality, design, implementation, analysis, and interpretation 

are concerned (please see ICH E17 Guideline (2016)). A key issue is sample size 

determination and evaluation of the consistency of the interventions’ effect among the 

regions participated in the MRCT. For example, Doody et al (2013) reported a randomized 

controlled clinical trial to evaluate an effect of semagacestat 100 mg and 140 mg compared 

to placebo in in patients with probable Alzheimer’s disease, and 19 countries participated 

the trial. The primary endpoints were (1) Changes in cognition from baseline to week 76 

assessed by the cognitive subscale of ADAS-cog, (2) changes in functioning assessed by 

ADCS-ADL. A sample size of 500 participants per intervention group (1500 participants in 

total) will have 89% power to detect a difference of 1.8 points change in ADAS-Cog and 

98% power to detect a difference of 3.1 points change in ADCS-ADL between the treatment 

groups after 18 months of treatment. This trial also planned to have an interim analysis of 

the primary endpoints after 50% of patients had completed 12 months of treatment or had 

dropped out of the study. Sample size determination and evaluation of consistency in 

intervention’s effects based on multiple endpoint are more complex in a fixed-sample or 

group-sequential setting. Huang et al. (2017) discussed sample size determination for a 

specific region in MRCTs with CPE and evaluated three consistency criteria for evaluating 

the intervention’s effects on two endpoints in fixed-sample designs. Further investigation is 

needed for in more complex MRCTs with multiple endpoints in a fixed-sample and group-

sequential/adaptive designs.
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Fig. 1. 
Behavior of the Type I error for α =2.5% as a function of the standardized mean effect size 

Δ1 and the correlation ρ12 for H0 when Δ2 = 0, where K = 2.
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Fig. 2. 
Behavior of the adjusted significance level α* for α =2.5% and α =5.0% as a function of the 

correlation ρ12, where K = 2.
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Fig. 3. 
Behavior of the Type I error for α* as a function of the observed correlation ρ12 for H0 when 

Δ1 = Δ2 = 0, where K = 2 and α = 2.5%. The adjusted significance levels using the Average 

Type I error method are α* =3.6%, 3.5%, 3.3%, 3.0% and 2.6%, corresponding to ρ12 =0.0, 

0.3, 0.5, 0.8 and 0.99.
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Table 1.

Comparison of multiple primary endpoints and co-primary endpoints in clinical trials

Multiple primary endpoints
(MPC)

Multiple co-primary endpoints
(CPE)

Study objective To evaluate whether a test intervention has an 
effect on at least one of the primary endpoints.

To evaluate whether a test intervention has an 
effect on all of the primary endpoints

Decision-making criterion Failure to demonstrate an effect on all endpoints 
implies that effects cannot be concluded.

Failure to demonstrate an effect on any single 
endpoint implies that effects cannot be concluded.

Hypothesis testing principle Union-Intersection Principle Intersection–Union Principle

Null hypothesis H0 (Number of 
endpoints: k =1, …, K)

An intersection of a family of hypotheses H01, 

…, H0k, H0 = ∩k = 1
K H0k

A union of a family of hypotheses H01, …, H0k, 

H0 = ∪k = 1
K H0k

Test statistics for rejecting H0 Z = maxk=1, …, K Zk Z = mink=1, …, K Zk

Type I error control Required: the Type I error increases as the 
number of endpoints to be tested is increased

Not required

Type II error control Not required Required: the Type II error increases as the number 
of endpoints to be tested is increased

Rejection region for the testing of 
H0 (Rejection region for each 
endpoint Rk)

∪k = 1
K Zk ∈ Rk  H0 is rejected if and only if 

at least one of the hypotheses H0k is rejected.

∩k = 1
K Zk ∈ Rk  H0 is rejected if and only if 

all hypotheses H0k are rejected.
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Table 2.

Sample size per intervention group (equally-sized group: r = 1) for two co-primary endpoints, using the 

conventional method (Conventional), average Type I error method (Average) and balanced adjustment method 

(Balanced) with varying clinically meaningful standardized mean differences (Δ1
∗, Δ2

∗) and correlation ρ12, 

where the power 1 – β = 80% and 90%, and the significance level α =2.5%

ρ 12

1 – β (Δ1
∗, Δ2

∗) Methods 0.0 0.3 0.5 0.8 0.99

80% (0.2, 0.2) Conventional 516 503 490 458 409

Average 465 457 453 435 404

Balanced 470 463 458 439 405

(0.3, 0.2) Conventional 402 399 397 393 393

Average 360 360 364 371 388

Balanced 361 361 365 372 388

(0.4, 0.2) Conventional 393 393 393 393 393

Average 349 353 360 371 388

Balanced 349 353 360 371 388

90% (0.2, 0.2) Conventional 646 637 626 597 544

Average 589 585 584 570 538

Balanced 593 590 589 574 539

(0.3, 0.2) Conventional 529 528 527 526 526

Average 479 482 489 501 520

Balanced 479 482 489 501 520

(0.4, 0.2) Conventional 526 526 526 526 526

Average 475 479 487 501 520

Balanced 475 479 487 501 520
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Table 3.

The MSS and ASN per intervention group (equally-sized group: r = 1) in clinical trials with two co-primary 

endpoints (K = 2), with varying clinically meaningful standardized mean differences (Δ1
∗, Δ2

∗), correlation ρ12, 

and number of analyses L, where the power 1 – β =80% and 90%, and the significance level α =2.5%. Two 

decision-making frameworks are considered: (1) reject H0 at any analysis, and (2) reject H0 at a same interim 

simultaneously, The critical boundaries for both endpoints are determine, using the O’Brien-Fleming-type 

function based on the Lan-DeMets error spending method with equal information space. The ASN is 

calculated under H1.

Decision-making
framework

MSS/ASN per intervention group

1 – β (Δ1
∗, Δ2

∗) L ρ12 =0.0 0.3 0.5 0.8 0.99

(1) Any analysis 80% (0.2, 0.2) 2 518/502 505/483 492/466 460/429 410/377

3 522/469 509/451 496/436 464/402 414/355

4 525/457 512/439 499/423 467/390 417/344

5 528/449 515/432 502/417 470/384 419/337

(0.3, 0.2) 2 403/385 401/378 398/371 395/364 394/362

3 407/358 404/352 402/347 398/341 398/340

4 410/349 407/342 404/337 401/331 401/330

5 412/343 409/336 406/331 403/325 403/324

(0.4, 0.2) 2 395/368 394/364 394/362 394/362 394/362

3 398/343 398/341 398/341 398/340 398/340

4 401/333 401/331 401/330 401/330 401/330

5 403/327 403/325 403/324 403/324 403/324

90% (0.2, 0.2) 2 648/611 639/591 628/573 599/535 546/479

3 653/555 644/539 633/525 604/493 550/442

4 657/536 648/520 637/505 608/473 554/424

5 660/524 651/508 640/494 610/462 556/414

(0.3, 0.2) 2 531/484 530/475 529/469 528/462 528/461

3 535/440 534/435 533/432 532/427 532/427

4 539/424 538/418 537/414 536/410 536/409

5 541/414 540/408 539/404 538/400 538/399

(0.4, 0.2) 2 528/465 528/462 528/462 528/461 528/461

3 532/430 532/428 532/427 532/427 532/427

4 536/411 536/410 536/409 536/409 536/409

5 538/402 538/400 538/399 538/399 538/399

(2) Same analysis 80% (0.2, 0.2) 2 518/502 505/483 492/466 460/429 410/377

3 524/471 510/452 497/437 465/403 414/355

4 528/459 514/440 501/425 468/391 417/344

5 530/451 517/433 503/417 470/384 419/337

(0.3, 0.2) 2 404/386 401/378 398/371 398/371 395/364

3 408/359 405/352 402/348 402/348 398/341

4 411/350 407/342 405/337 405/337 401/331
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Decision-making
framework

MSS/ASN per intervention group

1 – β (Δ1
∗, Δ2

∗) L ρ12 =0.0 0.3 0.5 0.8 0.99

5 413/344 410/337 407/331 407/331 403/325

(0.4, 0.2) 2 394/362 395/368 395/365 394/362 394/362

3 398/340 398/34 398/341 398/341 398/340

4 401/330 401/333 401/331 401/330 401/330

5 403/324 403/327 403/325 403/324 403/324

90% (0.2, 0.2) 2 648/611 639/591 628/573 599/535 546/479

3 654/555 645/540 634/526 604/493 550/442

4 659/538 649/521 638/506 608/473 554/424

5 662/526 653/510 642/495 611/462 556/414

(0.3, 0.2) 2 531/484 530/475 529/469 528/462 528/461

3 535/440 534/435 533/432 532/427 532/427

4 539/424 538/418 537/414 536/410 535/408

5 541/415 540/409 539/404 538/400 538/399

(0.4, 0.2) 2 528/465 528/462 528/462 528/461 528/461

3 532/430 532/428 532/427 532/427 532/427

4 536/411 536/410 535/409 535/408 535/408

5 538/402 538/400 538/399 538/399 538/399
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Table 4.

The ASN under a given MSS in clinical trials with two co-primary endpoints (K = 2), with varying clinically 

meaningful standardized mean differences (Δ1
∗, Δ2

∗) the number of planned analyses L and true correlation ρ12
∗ , 

where K = 2. The given MSS per intervention group (equally sized groups: r = 1) is calculated to detect a joint 

effect on the two endpoints with a power of 80% or 90% using a one-sided test at the significance level of α = 

2.5%, assuming standardized mean differences (Δ1
∗, Δ2

∗) and zero correlation where the decision-making 

framework is to reject H0 at a same analysis for both endpoints simultaneously. The critical boundaries for 

both endpoints are determined using the O’Brien-Fleming-type function based on the Lan-DeMets error 

spending method with equal information space. The ASN is calculated under H1.

ASN per intervention group

1 – β (Δ1
∗, Δ2

∗) L MSS ρ12
∗ = 0.0 0.3 0.5 0.8 0.99

80% (0.2, 0.2) 1 516

2 518 502 494 488 475 459

3 524 471 462 455 443 426

4 528 459 449 442 428 410

5 530 451 441 433 419 400

(0.3, 0.2) 1 402

2 404 386 380 376 371 370

3 408 359 354 352 348 347

4 411 349 344 341 337 336

5 413 343 338 335 331 330

(0.4, 0.2) 1 393

2 394 367 364 362 362 362

3 398 343 341 341 340 340

4 401 333 331 330 330 330

5 403 327 325 324 324 324

90% (0.2, 0.2) 1 646

2 648 611 597 587 569 545

3 654 555 545 538 522 502

4 659 538 526 517 500 478

5 662 526 514 505 487 465

(0.3, 0.2) 1 529

2 531 484 476 470 464 463

3 535 440 436 433 429 428

4 539 424 419 415 411 411

5 541 415 409 405 401 400

(0.4, 0.2) 1 526

2 528 465 462 462 461 461

3 532 430 428 427 427 427

4 536 411 410 409 409 409
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ASN per intervention group

1 – β (Δ1
∗, Δ2

∗) L MSS ρ12
∗ = 0.0 0.3 0.5 0.8 0.99

5 538 402 400 399 399 399
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